ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.233 by root, Tue May 6 23:34:16 2008 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
422 W w; 446 W w;
423 int events; 447 int events;
424} ANPENDING; 448} ANPENDING;
425 449
426#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
427typedef struct 452typedef struct
428{ 453{
429 WL head; 454 WL head;
430} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
431#endif 474#endif
432 475
433#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
434 477
435 struct ev_loop 478 struct ev_loop
759 } 802 }
760} 803}
761 804
762/*****************************************************************************/ 805/*****************************************************************************/
763 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
764/* towards the root */ 906/* towards the root */
765void inline_speed 907void inline_speed
766upheap (WT *heap, int k) 908upheap (ANHE *heap, int k)
767{ 909{
768 WT w = heap [k]; 910 ANHE he = heap [k];
769 911
770 for (;;) 912 for (;;)
771 { 913 {
772 int p = k >> 1; 914 int p = HPARENT (k);
773 915
774 /* maybe we could use a dummy element at heap [0]? */ 916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
775 if (!p || heap [p]->at <= w->at)
776 break; 917 break;
777 918
778 heap [k] = heap [p]; 919 heap [k] = heap [p];
779 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (heap [k])) = k;
780 k = p; 921 k = p;
781 } 922 }
782 923
783 heap [k] = w; 924 heap [k] = he;
784 ev_active (heap [k]) = k; 925 ev_active (ANHE_w (he)) = k;
785}
786
787/* away from the root */
788void inline_speed
789downheap (WT *heap, int N, int k)
790{
791 WT w = heap [k];
792
793 for (;;)
794 {
795 int c = k << 1;
796
797 if (c > N)
798 break;
799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
806 heap [k] = heap [c];
807 ev_active (heap [k]) = k;
808
809 k = c;
810 }
811
812 heap [k] = w;
813 ev_active (heap [k]) = k;
814} 926}
815 927
816void inline_size 928void inline_size
817adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
818{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
819 upheap (heap, k); 932 upheap (heap, k);
933 else
820 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
821} 947}
822 948
823/*****************************************************************************/ 949/*****************************************************************************/
824 950
825typedef struct 951typedef struct
1343 1469
1344 postfork = 0; 1470 postfork = 0;
1345} 1471}
1346 1472
1347#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1348struct ev_loop * 1475struct ev_loop *
1349ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1350{ 1477{
1351 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1352 1479
1371ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1372{ 1499{
1373 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1374} 1501}
1375 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1376#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1377 1603
1378#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1379struct ev_loop * 1605struct ev_loop *
1380ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1381#else 1607#else
1457 { 1683 {
1458 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1459 1685
1460 p->w->pending = 0; 1686 p->w->pending = 0;
1461 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1462 } 1689 }
1463 } 1690 }
1464} 1691}
1465
1466void inline_size
1467timers_reify (EV_P)
1468{
1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1470 {
1471 ev_timer *w = (ev_timer *)timers [1];
1472
1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1474
1475 /* first reschedule or stop timer */
1476 if (w->repeat)
1477 {
1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1479
1480 ev_at (w) += w->repeat;
1481 if (ev_at (w) < mn_now)
1482 ev_at (w) = mn_now;
1483
1484 downheap (timers, timercnt, 1);
1485 }
1486 else
1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1490 }
1491}
1492
1493#if EV_PERIODIC_ENABLE
1494void inline_size
1495periodics_reify (EV_P)
1496{
1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1498 {
1499 ev_periodic *w = (ev_periodic *)periodics [1];
1500
1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1502
1503 /* first reschedule or stop timer */
1504 if (w->reschedule_cb)
1505 {
1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1508 downheap (periodics, periodiccnt, 1);
1509 }
1510 else if (w->interval)
1511 {
1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1515 downheap (periodics, periodiccnt, 1);
1516 }
1517 else
1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1519
1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1521 }
1522}
1523
1524static void noinline
1525periodics_reschedule (EV_P)
1526{
1527 int i;
1528
1529 /* adjust periodics after time jump */
1530 for (i = 1; i <= periodiccnt; ++i)
1531 {
1532 ev_periodic *w = (ev_periodic *)periodics [i];
1533
1534 if (w->reschedule_cb)
1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1536 else if (w->interval)
1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1538 }
1539
1540 /* now rebuild the heap */
1541 for (i = periodiccnt >> 1; i--; )
1542 downheap (periodics, periodiccnt, i);
1543}
1544#endif
1545 1692
1546#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1547void inline_size 1694void inline_size
1548idle_reify (EV_P) 1695idle_reify (EV_P)
1549{ 1696{
1561 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1562 break; 1709 break;
1563 } 1710 }
1564 } 1711 }
1565 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1566} 1815}
1567#endif 1816#endif
1568 1817
1569void inline_speed 1818void inline_speed
1570time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1599 */ 1848 */
1600 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1601 { 1850 {
1602 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1603 1852
1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1605 return; /* all is well */ 1854 return; /* all is well */
1606 1855
1607 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1608 mn_now = get_clock (); 1857 mn_now = get_clock ();
1609 now_floor = mn_now; 1858 now_floor = mn_now;
1624 { 1873 {
1625#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1626 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1627#endif 1876#endif
1628 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1629 for (i = 1; i <= timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1630 ev_at (timers [i]) += ev_rt_now - mn_now; 1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1631 } 1884 }
1632 1885
1633 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1634 } 1887 }
1635} 1888}
1655 1908
1656 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1657 1910
1658 do 1911 do
1659 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1660#ifndef _WIN32 1917#ifndef _WIN32
1661 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1662 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1663 { 1920 {
1664 curpid = getpid (); 1921 curpid = getpid ();
1705 1962
1706 waittime = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1707 1964
1708 if (timercnt) 1965 if (timercnt)
1709 { 1966 {
1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1711 if (waittime > to) waittime = to; 1968 if (waittime > to) waittime = to;
1712 } 1969 }
1713 1970
1714#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1715 if (periodiccnt) 1972 if (periodiccnt)
1716 { 1973 {
1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1718 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1719 } 1976 }
1720#endif 1977#endif
1721 1978
1722 if (expect_false (waittime < timeout_blocktime)) 1979 if (expect_false (waittime < timeout_blocktime))
1859 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1860 return; 2117 return;
1861 2118
1862 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1863 2120
2121 EV_FREQUENT_CHECK;
2122
1864 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1865 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1866 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1867 2126
1868 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1869 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1870} 2131}
1871 2132
1872void noinline 2133void noinline
1873ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1874{ 2135{
1875 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1877 return; 2138 return;
1878 2139
1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
1880 2143
1881 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1883 2146
1884 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1885} 2150}
1886 2151
1887void noinline 2152void noinline
1888ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1889{ 2154{
1892 2157
1893 ev_at (w) += mn_now; 2158 ev_at (w) += mn_now;
1894 2159
1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1896 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1897 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1899 timers [timercnt] = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
2168 ANHE_at_cache (timers [ev_active (w)]);
1900 upheap (timers, timercnt); 2169 upheap (timers, ev_active (w));
1901 2170
2171 EV_FREQUENT_CHECK;
2172
1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1903} 2174}
1904 2175
1905void noinline 2176void noinline
1906ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1907{ 2178{
1908 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1910 return; 2181 return;
1911 2182
2183 EV_FREQUENT_CHECK;
2184
1912 { 2185 {
1913 int active = ev_active (w); 2186 int active = ev_active (w);
1914 2187
1915 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1916 2189
2190 --timercnt;
2191
1917 if (expect_true (active < timercnt)) 2192 if (expect_true (active < timercnt + HEAP0))
1918 { 2193 {
1919 timers [active] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1920 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
1921 } 2196 }
1922
1923 --timercnt;
1924 } 2197 }
2198
2199 EV_FREQUENT_CHECK;
1925 2200
1926 ev_at (w) -= mn_now; 2201 ev_at (w) -= mn_now;
1927 2202
1928 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1929} 2204}
1930 2205
1931void noinline 2206void noinline
1932ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1933{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1934 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1935 { 2212 {
1936 if (w->repeat) 2213 if (w->repeat)
1937 { 2214 {
1938 ev_at (w) = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1939 adjustheap (timers, timercnt, ev_active (w)); 2217 adjustheap (timers, timercnt, ev_active (w));
1940 } 2218 }
1941 else 2219 else
1942 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1943 } 2221 }
1944 else if (w->repeat) 2222 else if (w->repeat)
1945 { 2223 {
1946 ev_at (w) = w->repeat; 2224 ev_at (w) = w->repeat;
1947 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1948 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
1949} 2229}
1950 2230
1951#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
1952void noinline 2232void noinline
1953ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1965 } 2245 }
1966 else 2246 else
1967 ev_at (w) = w->offset; 2247 ev_at (w) = w->offset;
1968 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1969 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1971 periodics [periodiccnt] = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1972 upheap (periodics, periodiccnt); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1973 2257
2258 EV_FREQUENT_CHECK;
2259
1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1975} 2261}
1976 2262
1977void noinline 2263void noinline
1978ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1979{ 2265{
1980 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1981 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1982 return; 2268 return;
1983 2269
2270 EV_FREQUENT_CHECK;
2271
1984 { 2272 {
1985 int active = ev_active (w); 2273 int active = ev_active (w);
1986 2274
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1988 2276
2277 --periodiccnt;
2278
1989 if (expect_true (active < periodiccnt)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1990 { 2280 {
1991 periodics [active] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1992 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
1993 } 2283 }
1994
1995 --periodiccnt;
1996 } 2284 }
2285
2286 EV_FREQUENT_CHECK;
1997 2287
1998 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1999} 2289}
2000 2290
2001void noinline 2291void noinline
2021 return; 2311 return;
2022 2312
2023 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2024 2314
2025 evpipe_init (EV_A); 2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2026 2318
2027 { 2319 {
2028#ifndef _WIN32 2320#ifndef _WIN32
2029 sigset_t full, prev; 2321 sigset_t full, prev;
2030 sigfillset (&full); 2322 sigfillset (&full);
2051 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
2052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2053 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
2054#endif 2346#endif
2055 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
2056} 2350}
2057 2351
2058void noinline 2352void noinline
2059ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
2060{ 2354{
2061 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
2062 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
2063 return; 2357 return;
2064 2358
2359 EV_FREQUENT_CHECK;
2360
2065 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
2066 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
2067 2363
2068 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
2069 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
2070} 2368}
2071 2369
2072void 2370void
2073ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
2074{ 2372{
2076 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2077#endif 2375#endif
2078 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
2079 return; 2377 return;
2080 2378
2379 EV_FREQUENT_CHECK;
2380
2081 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
2082 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
2083} 2385}
2084 2386
2085void 2387void
2086ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
2087{ 2389{
2088 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
2089 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
2090 return; 2392 return;
2091 2393
2394 EV_FREQUENT_CHECK;
2395
2092 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2093 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
2094} 2400}
2095 2401
2096#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
2097 2403
2098# ifdef _WIN32 2404# ifdef _WIN32
2326 else 2632 else
2327#endif 2633#endif
2328 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2329 2635
2330 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2331} 2639}
2332 2640
2333void 2641void
2334ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2335{ 2643{
2336 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2337 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2338 return; 2646 return;
2339 2647
2648 EV_FREQUENT_CHECK;
2649
2340#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2341 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2342#endif 2652#endif
2343 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2344 2654
2345 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2346} 2658}
2347#endif 2659#endif
2348 2660
2349#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2350void 2662void
2352{ 2664{
2353 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2354 return; 2666 return;
2355 2667
2356 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2357 2671
2358 { 2672 {
2359 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2360 2674
2361 ++idleall; 2675 ++idleall;
2362 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2363 2677
2364 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2365 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2366 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2367} 2683}
2368 2684
2369void 2685void
2370ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2371{ 2687{
2372 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2373 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2374 return; 2690 return;
2375 2691
2692 EV_FREQUENT_CHECK;
2693
2376 { 2694 {
2377 int active = ev_active (w); 2695 int active = ev_active (w);
2378 2696
2379 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2380 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2381 2699
2382 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2383 --idleall; 2701 --idleall;
2384 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2385} 2705}
2386#endif 2706#endif
2387 2707
2388void 2708void
2389ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2390{ 2710{
2391 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2392 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2393 2715
2394 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2395 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2396 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2397} 2721}
2398 2722
2399void 2723void
2400ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2401{ 2725{
2402 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2403 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2404 return; 2728 return;
2405 2729
2730 EV_FREQUENT_CHECK;
2731
2406 { 2732 {
2407 int active = ev_active (w); 2733 int active = ev_active (w);
2408 2734
2409 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2410 ev_active (prepares [active - 1]) = active; 2736 ev_active (prepares [active - 1]) = active;
2411 } 2737 }
2412 2738
2413 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2414} 2742}
2415 2743
2416void 2744void
2417ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2418{ 2746{
2419 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2420 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2421 2751
2422 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2423 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2424 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2425} 2757}
2426 2758
2427void 2759void
2428ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2429{ 2761{
2430 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2431 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2432 return; 2764 return;
2433 2765
2766 EV_FREQUENT_CHECK;
2767
2434 { 2768 {
2435 int active = ev_active (w); 2769 int active = ev_active (w);
2436 2770
2437 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2438 ev_active (checks [active - 1]) = active; 2772 ev_active (checks [active - 1]) = active;
2439 } 2773 }
2440 2774
2441 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2442} 2778}
2443 2779
2444#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2445void noinline 2781void noinline
2446ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2493 struct ev_loop *loop = w->other; 2829 struct ev_loop *loop = w->other;
2494 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2496 } 2832 }
2497 2833
2834 EV_FREQUENT_CHECK;
2835
2498 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2499 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2500 2838
2501 ev_prepare_init (&w->prepare, embed_prepare_cb); 2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2502 ev_set_priority (&w->prepare, EV_MINPRI); 2840 ev_set_priority (&w->prepare, EV_MINPRI);
2503 ev_prepare_start (EV_A_ &w->prepare); 2841 ev_prepare_start (EV_A_ &w->prepare);
2504 2842
2505 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2506 2844
2507 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2508} 2848}
2509 2849
2510void 2850void
2511ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2512{ 2852{
2513 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2515 return; 2855 return;
2516 2856
2857 EV_FREQUENT_CHECK;
2858
2517 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2518 ev_prepare_stop (EV_A_ &w->prepare); 2860 ev_prepare_stop (EV_A_ &w->prepare);
2519 2861
2520 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2521} 2865}
2522#endif 2866#endif
2523 2867
2524#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2525void 2869void
2526ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2527{ 2871{
2528 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2529 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2530 2876
2531 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2533 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2534} 2882}
2535 2883
2536void 2884void
2537ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2538{ 2886{
2539 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2540 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2541 return; 2889 return;
2542 2890
2891 EV_FREQUENT_CHECK;
2892
2543 { 2893 {
2544 int active = ev_active (w); 2894 int active = ev_active (w);
2545 2895
2546 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2547 ev_active (forks [active - 1]) = active; 2897 ev_active (forks [active - 1]) = active;
2548 } 2898 }
2549 2899
2550 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2551} 2903}
2552#endif 2904#endif
2553 2905
2554#if EV_ASYNC_ENABLE 2906#if EV_ASYNC_ENABLE
2555void 2907void
2557{ 2909{
2558 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2559 return; 2911 return;
2560 2912
2561 evpipe_init (EV_A); 2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2562 2916
2563 ev_start (EV_A_ (W)w, ++asynccnt); 2917 ev_start (EV_A_ (W)w, ++asynccnt);
2564 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2565 asyncs [asynccnt - 1] = w; 2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2566} 2922}
2567 2923
2568void 2924void
2569ev_async_stop (EV_P_ ev_async *w) 2925ev_async_stop (EV_P_ ev_async *w)
2570{ 2926{
2571 clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
2572 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
2573 return; 2929 return;
2574 2930
2931 EV_FREQUENT_CHECK;
2932
2575 { 2933 {
2576 int active = ev_active (w); 2934 int active = ev_active (w);
2577 2935
2578 asyncs [active - 1] = asyncs [--asynccnt]; 2936 asyncs [active - 1] = asyncs [--asynccnt];
2579 ev_active (asyncs [active - 1]) = active; 2937 ev_active (asyncs [active - 1]) = active;
2580 } 2938 }
2581 2939
2582 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2583} 2943}
2584 2944
2585void 2945void
2586ev_async_send (EV_P_ ev_async *w) 2946ev_async_send (EV_P_ ev_async *w)
2587{ 2947{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines