ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.233 by root, Tue May 6 23:34:16 2008 UTC vs.
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
198
168#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
169# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
170#endif 205#endif
171 206
172#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 209#endif
175 210
176#ifndef EV_USE_NANOSLEEP 211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
177# define EV_USE_NANOSLEEP 0 215# define EV_USE_NANOSLEEP 0
216# endif
178#endif 217#endif
179 218
180#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
182#endif 221#endif
235# else 274# else
236# define EV_USE_EVENTFD 0 275# define EV_USE_EVENTFD 0
237# endif 276# endif
238#endif 277#endif
239 278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 320
242#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 338# include <sys/select.h>
260# endif 339# endif
261#endif 340#endif
262 341
263#if EV_USE_INOTIFY 342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
264# include <sys/inotify.h> 345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
265#endif 351#endif
266 352
267#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 354# include <winsock.h>
269#endif 355#endif
270 356
271#if EV_USE_EVENTFD 357#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
274# ifdef __cplusplus 366# ifdef __cplusplus
275extern "C" { 367extern "C" {
276# endif 368# endif
277int eventfd (unsigned int initval, int flags); 369int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus 370# ifdef __cplusplus
279} 371}
280# endif 372# endif
281#endif 373#endif
282 374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
283/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
284 386
285/* 387/*
286 * This is used to avoid floating point rounding problems. 388 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 389 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 390 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 417# define inline_speed static noinline
316#else 418#else
317# define inline_speed static inline 419# define inline_speed static inline
318#endif 420#endif
319 421
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
322 429
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
325 432
326typedef ev_watcher *W; 433typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
329 436
330#define ev_active(w) ((W)(w))->active 437#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 438#define ev_at(w) ((WT)(w))->at
332 439
333#if EV_USE_MONOTONIC 440#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 448#endif
338 449
339#ifdef _WIN32 450#ifdef _WIN32
340# include "ev_win32.c" 451# include "ev_win32.c"
349{ 460{
350 syserr_cb = cb; 461 syserr_cb = cb;
351} 462}
352 463
353static void noinline 464static void noinline
354syserr (const char *msg) 465ev_syserr (const char *msg)
355{ 466{
356 if (!msg) 467 if (!msg)
357 msg = "(libev) system error"; 468 msg = "(libev) system error";
358 469
359 if (syserr_cb) 470 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
407 518
408/*****************************************************************************/ 519/*****************************************************************************/
409 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
410typedef struct 525typedef struct
411{ 526{
412 WL head; 527 WL head;
413 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
415#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 536 SOCKET handle;
417#endif 537#endif
418} ANFD; 538} ANFD;
419 539
540/* stores the pending event set for a given watcher */
420typedef struct 541typedef struct
421{ 542{
422 W w; 543 W w;
423 int events; 544 int events; /* the pending event set for the given watcher */
424} ANPENDING; 545} ANPENDING;
425 546
426#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
427typedef struct 549typedef struct
428{ 550{
429 WL head; 551 WL head;
430} ANFS; 552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
431#endif 573#endif
432 574
433#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
434 576
435 struct ev_loop 577 struct ev_loop
454 596
455 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
456 598
457#endif 599#endif
458 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
459/*****************************************************************************/ 613/*****************************************************************************/
460 614
615#ifndef EV_HAVE_EV_TIME
461ev_tstamp 616ev_tstamp
462ev_time (void) 617ev_time (void)
463{ 618{
464#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
465 struct timespec ts; 622 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 625 }
626#endif
627
469 struct timeval tv; 628 struct timeval tv;
470 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 631}
632#endif
474 633
475ev_tstamp inline_size 634inline_size ev_tstamp
476get_clock (void) 635get_clock (void)
477{ 636{
478#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
480 { 639 {
513 struct timeval tv; 672 struct timeval tv;
514 673
515 tv.tv_sec = (time_t)delay; 674 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
518 select (0, 0, 0, 0, &tv); 680 select (0, 0, 0, 0, &tv);
519#endif 681#endif
520 } 682 }
521} 683}
522 684
523/*****************************************************************************/ 685/*****************************************************************************/
524 686
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 688
527int inline_size 689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
528array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
529{ 693{
530 int ncur = cur + 1; 694 int ncur = cur + 1;
531 695
532 do 696 do
549array_realloc (int elem, void *base, int *cur, int cnt) 713array_realloc (int elem, void *base, int *cur, int cnt)
550{ 714{
551 *cur = array_nextsize (elem, *cur, cnt); 715 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 716 return ev_realloc (base, elem * *cur);
553} 717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 721
555#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 723 if (expect_false ((cnt) > (cur))) \
557 { \ 724 { \
558 int ocur_ = (cur); \ 725 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 738 }
572#endif 739#endif
573 740
574#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 743
577/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
578 751
579void noinline 752void noinline
580ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
581{ 754{
582 W w_ = (W)w; 755 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 764 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 765 pendings [pri][w_->pending - 1].events = revents;
593 } 766 }
594} 767}
595 768
596void inline_speed 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 786{
599 int i; 787 int i;
600 788
601 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
603} 791}
604 792
605/*****************************************************************************/ 793/*****************************************************************************/
606 794
607void inline_size 795inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
622{ 797{
623 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
624 ev_io *w; 799 ev_io *w;
625 800
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 805 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
632 } 807 }
633} 808}
634 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
635void 821void
636ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 823{
638 if (fd >= 0 && fd < anfdmax) 824 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
640} 826}
641 827
642void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
643fd_reify (EV_P) 831fd_reify (EV_P)
644{ 832{
645 int i; 833 int i;
646 834
647 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 844 events |= (unsigned char)w->events;
657 845
658#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
659 if (events) 847 if (events)
660 { 848 {
661 unsigned long argp; 849 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 850 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 852 #else
665 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
666 #endif 854 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 856 }
669#endif 857#endif
670 858
671 { 859 {
672 unsigned char o_events = anfd->events; 860 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 861 unsigned char o_reify = anfd->reify;
674 862
675 anfd->reify = 0; 863 anfd->reify = 0;
676 anfd->events = events; 864 anfd->events = events;
677 865
678 if (o_events != events || o_reify & EV_IOFDSET) 866 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 867 backend_modify (EV_A_ fd, o_events, events);
680 } 868 }
681 } 869 }
682 870
683 fdchangecnt = 0; 871 fdchangecnt = 0;
684} 872}
685 873
686void inline_size 874/* something about the given fd changed */
875inline_size void
687fd_change (EV_P_ int fd, int flags) 876fd_change (EV_P_ int fd, int flags)
688{ 877{
689 unsigned char reify = anfds [fd].reify; 878 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 879 anfds [fd].reify |= flags;
691 880
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
697 } 886 }
698} 887}
699 888
700void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
701fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
702{ 892{
703 ev_io *w; 893 ev_io *w;
704 894
705 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 899 }
710} 900}
711 901
712int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
713fd_valid (int fd) 904fd_valid (int fd)
714{ 905{
715#ifdef _WIN32 906#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
717#else 908#else
725{ 916{
726 int fd; 917 int fd;
727 918
728 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 920 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
732} 923}
733 924
734/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 926static void noinline
753 944
754 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 946 if (anfds [fd].events)
756 { 947 {
757 anfds [fd].events = 0; 948 anfds [fd].events = 0;
949 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 951 }
760} 952}
761 953
762/*****************************************************************************/ 954/*****************************************************************************/
763 955
956/*
957 * the heap functions want a real array index. array index 0 uis guaranteed to not
958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
959 * the branching factor of the d-tree.
960 */
961
962/*
963 * at the moment we allow libev the luxury of two heaps,
964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
965 * which is more cache-efficient.
966 * the difference is about 5% with 50000+ watchers.
967 */
968#if EV_USE_4HEAP
969
970#define DHEAP 4
971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
974
975/* away from the root */
976inline_speed void
977downheap (ANHE *heap, int N, int k)
978{
979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
981
982 for (;;)
983 {
984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
987
988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
990 {
991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
1004 break;
1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
1044 heap [k] = heap [c];
1045 ev_active (ANHE_w (heap [k])) = k;
1046
1047 k = c;
1048 }
1049
1050 heap [k] = he;
1051 ev_active (ANHE_w (he)) = k;
1052}
1053#endif
1054
764/* towards the root */ 1055/* towards the root */
765void inline_speed 1056inline_speed void
766upheap (WT *heap, int k) 1057upheap (ANHE *heap, int k)
767{ 1058{
768 WT w = heap [k]; 1059 ANHE he = heap [k];
769 1060
770 for (;;) 1061 for (;;)
771 { 1062 {
772 int p = k >> 1; 1063 int p = HPARENT (k);
773 1064
774 /* maybe we could use a dummy element at heap [0]? */ 1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
775 if (!p || heap [p]->at <= w->at)
776 break; 1066 break;
777 1067
778 heap [k] = heap [p]; 1068 heap [k] = heap [p];
779 ev_active (heap [k]) = k; 1069 ev_active (ANHE_w (heap [k])) = k;
780 k = p; 1070 k = p;
781 } 1071 }
782 1072
783 heap [k] = w; 1073 heap [k] = he;
784 ev_active (heap [k]) = k; 1074 ev_active (ANHE_w (he)) = k;
785} 1075}
786 1076
787/* away from the root */ 1077/* move an element suitably so it is in a correct place */
788void inline_speed 1078inline_size void
789downheap (WT *heap, int N, int k)
790{
791 WT w = heap [k];
792
793 for (;;)
794 {
795 int c = k << 1;
796
797 if (c > N)
798 break;
799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
806 heap [k] = heap [c];
807 ev_active (heap [k]) = k;
808
809 k = c;
810 }
811
812 heap [k] = w;
813 ev_active (heap [k]) = k;
814}
815
816void inline_size
817adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
818{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
819 upheap (heap, k); 1082 upheap (heap, k);
1083 else
820 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
821} 1097}
822 1098
823/*****************************************************************************/ 1099/*****************************************************************************/
824 1100
1101/* associate signal watchers to a signal signal */
825typedef struct 1102typedef struct
826{ 1103{
827 WL head; 1104 WL head;
828 EV_ATOMIC_T gotsig; 1105 EV_ATOMIC_T gotsig;
829} ANSIG; 1106} ANSIG;
831static ANSIG *signals; 1108static ANSIG *signals;
832static int signalmax; 1109static int signalmax;
833 1110
834static EV_ATOMIC_T gotsig; 1111static EV_ATOMIC_T gotsig;
835 1112
836void inline_size
837signals_init (ANSIG *base, int count)
838{
839 while (count--)
840 {
841 base->head = 0;
842 base->gotsig = 0;
843
844 ++base;
845 }
846}
847
848/*****************************************************************************/ 1113/*****************************************************************************/
849 1114
850void inline_speed 1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
851fd_intern (int fd) 1118fd_intern (int fd)
852{ 1119{
853#ifdef _WIN32 1120#ifdef _WIN32
854 int arg = 1; 1121 unsigned long arg = 1;
855 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
856#else 1123#else
857 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
858 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
859#endif 1126#endif
860} 1127}
861 1128
862static void noinline 1129static void noinline
863evpipe_init (EV_P) 1130evpipe_init (EV_P)
864{ 1131{
865 if (!ev_is_active (&pipeev)) 1132 if (!ev_is_active (&pipe_w))
866 { 1133 {
867#if EV_USE_EVENTFD 1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
868 if ((evfd = eventfd (0, 0)) >= 0) 1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
869 { 1140 {
870 evpipe [0] = -1; 1141 evpipe [0] = -1;
871 fd_intern (evfd); 1142 fd_intern (evfd); /* doing it twice doesn't hurt */
872 ev_io_set (&pipeev, evfd, EV_READ); 1143 ev_io_set (&pipe_w, evfd, EV_READ);
873 } 1144 }
874 else 1145 else
875#endif 1146#endif
876 { 1147 {
877 while (pipe (evpipe)) 1148 while (pipe (evpipe))
878 syserr ("(libev) error creating signal/async pipe"); 1149 ev_syserr ("(libev) error creating signal/async pipe");
879 1150
880 fd_intern (evpipe [0]); 1151 fd_intern (evpipe [0]);
881 fd_intern (evpipe [1]); 1152 fd_intern (evpipe [1]);
882 ev_io_set (&pipeev, evpipe [0], EV_READ); 1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
883 } 1154 }
884 1155
885 ev_io_start (EV_A_ &pipeev); 1156 ev_io_start (EV_A_ &pipe_w);
886 ev_unref (EV_A); /* watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
887 } 1158 }
888} 1159}
889 1160
890void inline_size 1161inline_size void
891evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
892{ 1163{
893 if (!*flag) 1164 if (!*flag)
894 { 1165 {
895 int old_errno = errno; /* save errno because write might clobber it */ 1166 int old_errno = errno; /* save errno because write might clobber it */
908 1179
909 errno = old_errno; 1180 errno = old_errno;
910 } 1181 }
911} 1182}
912 1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
913static void 1186static void
914pipecb (EV_P_ ev_io *iow, int revents) 1187pipecb (EV_P_ ev_io *iow, int revents)
915{ 1188{
916#if EV_USE_EVENTFD 1189#if EV_USE_EVENTFD
917 if (evfd >= 0) 1190 if (evfd >= 0)
973ev_feed_signal_event (EV_P_ int signum) 1246ev_feed_signal_event (EV_P_ int signum)
974{ 1247{
975 WL w; 1248 WL w;
976 1249
977#if EV_MULTIPLICITY 1250#if EV_MULTIPLICITY
978 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
979#endif 1252#endif
980 1253
981 --signum; 1254 --signum;
982 1255
983 if (signum < 0 || signum >= signalmax) 1256 if (signum < 0 || signum >= signalmax)
987 1260
988 for (w = signals [signum].head; w; w = w->next) 1261 for (w = signals [signum].head; w; w = w->next)
989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
990} 1263}
991 1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
992/*****************************************************************************/ 1285/*****************************************************************************/
993 1286
994static WL childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
995 1288
996#ifndef _WIN32 1289#ifndef _WIN32
999 1292
1000#ifndef WIFCONTINUED 1293#ifndef WIFCONTINUED
1001# define WIFCONTINUED(status) 0 1294# define WIFCONTINUED(status) 0
1002#endif 1295#endif
1003 1296
1004void inline_speed 1297/* handle a single child status event */
1298inline_speed void
1005child_reap (EV_P_ int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
1006{ 1300{
1007 ev_child *w; 1301 ev_child *w;
1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1009 1303
1022 1316
1023#ifndef WCONTINUED 1317#ifndef WCONTINUED
1024# define WCONTINUED 0 1318# define WCONTINUED 0
1025#endif 1319#endif
1026 1320
1321/* called on sigchld etc., calls waitpid */
1027static void 1322static void
1028childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
1029{ 1324{
1030 int pid, status; 1325 int pid, status;
1031 1326
1112 /* kqueue is borked on everything but netbsd apparently */ 1407 /* kqueue is borked on everything but netbsd apparently */
1113 /* it usually doesn't work correctly on anything but sockets and pipes */ 1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1114 flags &= ~EVBACKEND_KQUEUE; 1409 flags &= ~EVBACKEND_KQUEUE;
1115#endif 1410#endif
1116#ifdef __APPLE__ 1411#ifdef __APPLE__
1117 // flags &= ~EVBACKEND_KQUEUE; for documentation 1412 /* only select works correctly on that "unix-certified" platform */
1118 flags &= ~EVBACKEND_POLL; 1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1119#endif 1415#endif
1120 1416
1121 return flags; 1417 return flags;
1122} 1418}
1123 1419
1137ev_backend (EV_P) 1433ev_backend (EV_P)
1138{ 1434{
1139 return backend; 1435 return backend;
1140} 1436}
1141 1437
1438#if EV_MINIMAL < 2
1142unsigned int 1439unsigned int
1143ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
1144{ 1441{
1145 return loop_count; 1442 return loop_count;
1146} 1443}
1147 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1148void 1451void
1149ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1150{ 1453{
1151 io_blocktime = interval; 1454 io_blocktime = interval;
1152} 1455}
1155ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1156{ 1459{
1157 timeout_blocktime = interval; 1460 timeout_blocktime = interval;
1158} 1461}
1159 1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1160static void noinline 1488static void noinline
1161loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
1162{ 1490{
1163 if (!backend) 1491 if (!backend)
1164 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
1165#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1166 { 1505 {
1167 struct timespec ts; 1506 struct timespec ts;
1507
1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1169 have_monotonic = 1; 1509 have_monotonic = 1;
1170 } 1510 }
1171#endif 1511#endif
1172 1512
1173 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
1174 mn_now = get_clock (); 1514 mn_now = get_clock ();
1175 now_floor = mn_now; 1515 now_floor = mn_now;
1176 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1177 1520
1178 io_blocktime = 0.; 1521 io_blocktime = 0.;
1179 timeout_blocktime = 0.; 1522 timeout_blocktime = 0.;
1180 backend = 0; 1523 backend = 0;
1181 backend_fd = -1; 1524 backend_fd = -1;
1182 gotasync = 0; 1525 gotasync = 0;
1183#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1184 fs_fd = -2; 1527 fs_fd = -2;
1185#endif 1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1186 1532
1187 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
1188#ifndef _WIN32 1534#ifndef _WIN32
1189 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
1190 curpid = getpid (); 1536 curpid = getpid ();
1212#endif 1558#endif
1213#if EV_USE_SELECT 1559#if EV_USE_SELECT
1214 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1215#endif 1561#endif
1216 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1217 ev_init (&pipeev, pipecb); 1565 ev_init (&pipe_w, pipecb);
1218 ev_set_priority (&pipeev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1219 } 1567 }
1220} 1568}
1221 1569
1570/* free up a loop structure */
1222static void noinline 1571static void noinline
1223loop_destroy (EV_P) 1572loop_destroy (EV_P)
1224{ 1573{
1225 int i; 1574 int i;
1226 1575
1227 if (ev_is_active (&pipeev)) 1576 if (ev_is_active (&pipe_w))
1228 { 1577 {
1229 ev_ref (EV_A); /* signal watcher */ 1578 /*ev_ref (EV_A);*/
1230 ev_io_stop (EV_A_ &pipeev); 1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1231 1580
1232#if EV_USE_EVENTFD 1581#if EV_USE_EVENTFD
1233 if (evfd >= 0) 1582 if (evfd >= 0)
1234 close (evfd); 1583 close (evfd);
1235#endif 1584#endif
1239 close (evpipe [0]); 1588 close (evpipe [0]);
1240 close (evpipe [1]); 1589 close (evpipe [1]);
1241 } 1590 }
1242 } 1591 }
1243 1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1244#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
1245 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
1246 close (fs_fd); 1605 close (fs_fd);
1247#endif 1606#endif
1248 1607
1274 } 1633 }
1275 1634
1276 ev_free (anfds); anfdmax = 0; 1635 ev_free (anfds); anfdmax = 0;
1277 1636
1278 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1279 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1280 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1281#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1282 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1283#endif 1643#endif
1292 1652
1293 backend = 0; 1653 backend = 0;
1294} 1654}
1295 1655
1296#if EV_USE_INOTIFY 1656#if EV_USE_INOTIFY
1297void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1298#endif 1658#endif
1299 1659
1300void inline_size 1660inline_size void
1301loop_fork (EV_P) 1661loop_fork (EV_P)
1302{ 1662{
1303#if EV_USE_PORT 1663#if EV_USE_PORT
1304 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1305#endif 1665#endif
1311#endif 1671#endif
1312#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1313 infy_fork (EV_A); 1673 infy_fork (EV_A);
1314#endif 1674#endif
1315 1675
1316 if (ev_is_active (&pipeev)) 1676 if (ev_is_active (&pipe_w))
1317 { 1677 {
1318 /* this "locks" the handlers against writing to the pipe */ 1678 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */ 1679 /* while we modify the fd vars */
1320 gotsig = 1; 1680 gotsig = 1;
1321#if EV_ASYNC_ENABLE 1681#if EV_ASYNC_ENABLE
1322 gotasync = 1; 1682 gotasync = 1;
1323#endif 1683#endif
1324 1684
1325 ev_ref (EV_A); 1685 ev_ref (EV_A);
1326 ev_io_stop (EV_A_ &pipeev); 1686 ev_io_stop (EV_A_ &pipe_w);
1327 1687
1328#if EV_USE_EVENTFD 1688#if EV_USE_EVENTFD
1329 if (evfd >= 0) 1689 if (evfd >= 0)
1330 close (evfd); 1690 close (evfd);
1331#endif 1691#endif
1336 close (evpipe [1]); 1696 close (evpipe [1]);
1337 } 1697 }
1338 1698
1339 evpipe_init (EV_A); 1699 evpipe_init (EV_A);
1340 /* now iterate over everything, in case we missed something */ 1700 /* now iterate over everything, in case we missed something */
1341 pipecb (EV_A_ &pipeev, EV_READ); 1701 pipecb (EV_A_ &pipe_w, EV_READ);
1342 } 1702 }
1343 1703
1344 postfork = 0; 1704 postfork = 0;
1345} 1705}
1346 1706
1347#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
1348struct ev_loop * 1709struct ev_loop *
1349ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1350{ 1711{
1351 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1352 1713
1353 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1354
1355 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1356 1716
1357 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1358 return loop; 1718 return loop;
1359 1719
1370void 1730void
1371ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1372{ 1732{
1373 postfork = 1; /* must be in line with ev_default_fork */ 1733 postfork = 1; /* must be in line with ev_default_fork */
1374} 1734}
1735#endif /* multiplicity */
1375 1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
1376#endif 1836#endif
1377 1837
1378#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1379struct ev_loop * 1839struct ev_loop *
1380ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1414{ 1874{
1415#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
1416 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
1417#endif 1877#endif
1418 1878
1879 ev_default_loop_ptr = 0;
1880
1419#ifndef _WIN32 1881#ifndef _WIN32
1420 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
1421 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
1422#endif 1884#endif
1423 1885
1429{ 1891{
1430#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1431 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1432#endif 1894#endif
1433 1895
1434 if (backend)
1435 postfork = 1; /* must be in line with ev_loop_fork */ 1896 postfork = 1; /* must be in line with ev_loop_fork */
1436} 1897}
1437 1898
1438/*****************************************************************************/ 1899/*****************************************************************************/
1439 1900
1440void 1901void
1441ev_invoke (EV_P_ void *w, int revents) 1902ev_invoke (EV_P_ void *w, int revents)
1442{ 1903{
1443 EV_CB_INVOKE ((W)w, revents); 1904 EV_CB_INVOKE ((W)w, revents);
1444} 1905}
1445 1906
1446void inline_speed 1907unsigned int
1447call_pending (EV_P) 1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1448{ 1921{
1449 int pri; 1922 int pri;
1450 1923
1451 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1452 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1453 { 1926 {
1454 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1455 1928
1456 if (expect_true (p->w))
1457 {
1458 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1459 1931
1460 p->w->pending = 0; 1932 p->w->pending = 0;
1461 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1462 } 1934 EV_FREQUENT_CHECK;
1463 } 1935 }
1464} 1936}
1465 1937
1466void inline_size
1467timers_reify (EV_P)
1468{
1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1470 {
1471 ev_timer *w = (ev_timer *)timers [1];
1472
1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1474
1475 /* first reschedule or stop timer */
1476 if (w->repeat)
1477 {
1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1479
1480 ev_at (w) += w->repeat;
1481 if (ev_at (w) < mn_now)
1482 ev_at (w) = mn_now;
1483
1484 downheap (timers, timercnt, 1);
1485 }
1486 else
1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1490 }
1491}
1492
1493#if EV_PERIODIC_ENABLE
1494void inline_size
1495periodics_reify (EV_P)
1496{
1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1498 {
1499 ev_periodic *w = (ev_periodic *)periodics [1];
1500
1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1502
1503 /* first reschedule or stop timer */
1504 if (w->reschedule_cb)
1505 {
1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1508 downheap (periodics, periodiccnt, 1);
1509 }
1510 else if (w->interval)
1511 {
1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1515 downheap (periodics, periodiccnt, 1);
1516 }
1517 else
1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1519
1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1521 }
1522}
1523
1524static void noinline
1525periodics_reschedule (EV_P)
1526{
1527 int i;
1528
1529 /* adjust periodics after time jump */
1530 for (i = 1; i <= periodiccnt; ++i)
1531 {
1532 ev_periodic *w = (ev_periodic *)periodics [i];
1533
1534 if (w->reschedule_cb)
1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1536 else if (w->interval)
1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1538 }
1539
1540 /* now rebuild the heap */
1541 for (i = periodiccnt >> 1; i--; )
1542 downheap (periodics, periodiccnt, i);
1543}
1544#endif
1545
1546#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1547void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1548idle_reify (EV_P) 1942idle_reify (EV_P)
1549{ 1943{
1550 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1551 { 1945 {
1552 int pri; 1946 int pri;
1564 } 1958 }
1565 } 1959 }
1566} 1960}
1567#endif 1961#endif
1568 1962
1569void inline_speed 1963/* make timers pending */
1964inline_size void
1965timers_reify (EV_P)
1966{
1967 EV_FREQUENT_CHECK;
1968
1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1970 {
1971 do
1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1985
1986 ANHE_at_cache (timers [HEAP0]);
1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1994 }
1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996
1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1998 }
1999}
2000
2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
2003inline_size void
2004periodics_reify (EV_P)
2005{
2006 EV_FREQUENT_CHECK;
2007
2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2009 {
2010 int feed_count = 0;
2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
1570time_update (EV_P_ ev_tstamp max_block) 2100time_update (EV_P_ ev_tstamp max_block)
1571{ 2101{
1572 int i;
1573
1574#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
1575 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
1576 { 2104 {
2105 int i;
1577 ev_tstamp odiff = rtmn_diff; 2106 ev_tstamp odiff = rtmn_diff;
1578 2107
1579 mn_now = get_clock (); 2108 mn_now = get_clock ();
1580 2109
1581 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1599 */ 2128 */
1600 for (i = 4; --i; ) 2129 for (i = 4; --i; )
1601 { 2130 {
1602 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1603 2132
1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1605 return; /* all is well */ 2134 return; /* all is well */
1606 2135
1607 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1608 mn_now = get_clock (); 2137 mn_now = get_clock ();
1609 now_floor = mn_now; 2138 now_floor = mn_now;
1610 } 2139 }
1611 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1612# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1613 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1614# endif 2145# endif
1615 /* no timer adjustment, as the monotonic clock doesn't jump */
1616 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1617 } 2146 }
1618 else 2147 else
1619#endif 2148#endif
1620 { 2149 {
1621 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1622 2151
1623 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1624 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1625#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1626 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1627#endif 2158#endif
1628 /* adjust timers. this is easy, as the offset is the same for all of them */
1629 for (i = 1; i <= timercnt; ++i)
1630 ev_at (timers [i]) += ev_rt_now - mn_now;
1631 } 2159 }
1632 2160
1633 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1634 } 2162 }
1635} 2163}
1636 2164
1637void 2165void
1638ev_ref (EV_P)
1639{
1640 ++activecnt;
1641}
1642
1643void
1644ev_unref (EV_P)
1645{
1646 --activecnt;
1647}
1648
1649static int loop_done;
1650
1651void
1652ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1653{ 2167{
2168#if EV_MINIMAL < 2
2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
1654 loop_done = EVUNLOOP_CANCEL; 2174 loop_done = EVUNLOOP_CANCEL;
1655 2175
1656 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1657 2177
1658 do 2178 do
1659 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
1660#ifndef _WIN32 2184#ifndef _WIN32
1661 if (expect_false (curpid)) /* penalise the forking check even more */ 2185 if (expect_false (curpid)) /* penalise the forking check even more */
1662 if (expect_false (getpid () != curpid)) 2186 if (expect_false (getpid () != curpid))
1663 { 2187 {
1664 curpid = getpid (); 2188 curpid = getpid ();
1670 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1671 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1672 if (forkcnt) 2196 if (forkcnt)
1673 { 2197 {
1674 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1675 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1676 } 2200 }
1677#endif 2201#endif
1678 2202
1679 /* queue prepare watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1680 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1681 { 2205 {
1682 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1683 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1684 } 2208 }
1685 2209
1686 if (expect_false (!activecnt)) 2210 if (expect_false (loop_done))
1687 break; 2211 break;
1688 2212
1689 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1690 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1691 loop_fork (EV_A); 2215 loop_fork (EV_A);
1698 ev_tstamp waittime = 0.; 2222 ev_tstamp waittime = 0.;
1699 ev_tstamp sleeptime = 0.; 2223 ev_tstamp sleeptime = 0.;
1700 2224
1701 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1702 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
1703 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
1704 time_update (EV_A_ 1e100); 2231 time_update (EV_A_ 1e100);
1705 2232
1706 waittime = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1707 2234
1708 if (timercnt) 2235 if (timercnt)
1709 { 2236 {
1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1711 if (waittime > to) waittime = to; 2238 if (waittime > to) waittime = to;
1712 } 2239 }
1713 2240
1714#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1715 if (periodiccnt) 2242 if (periodiccnt)
1716 { 2243 {
1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1718 if (waittime > to) waittime = to; 2245 if (waittime > to) waittime = to;
1719 } 2246 }
1720#endif 2247#endif
1721 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
1722 if (expect_false (waittime < timeout_blocktime)) 2250 if (expect_false (waittime < timeout_blocktime))
1723 waittime = timeout_blocktime; 2251 waittime = timeout_blocktime;
1724 2252
1725 sleeptime = waittime - backend_fudge; 2253 /* extra check because io_blocktime is commonly 0 */
1726
1727 if (expect_true (sleeptime > io_blocktime)) 2254 if (expect_false (io_blocktime))
1728 sleeptime = io_blocktime;
1729
1730 if (sleeptime)
1731 { 2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
1732 ev_sleep (sleeptime); 2263 ev_sleep (sleeptime);
1733 waittime -= sleeptime; 2264 waittime -= sleeptime;
2265 }
1734 } 2266 }
1735 } 2267 }
1736 2268
2269#if EV_MINIMAL < 2
1737 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1738 backend_poll (EV_A_ waittime); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1739 2275
1740 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1741 time_update (EV_A_ waittime + sleeptime); 2277 time_update (EV_A_ waittime + sleeptime);
1742 } 2278 }
1743 2279
1754 2290
1755 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1756 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1757 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1758 2294
1759 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1760 } 2296 }
1761 while (expect_true ( 2297 while (expect_true (
1762 activecnt 2298 activecnt
1763 && !loop_done 2299 && !loop_done
1764 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1765 )); 2301 ));
1766 2302
1767 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
1768 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1769} 2309}
1770 2310
1771void 2311void
1772ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1773{ 2313{
1774 loop_done = how; 2314 loop_done = how;
1775} 2315}
1776 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1777/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1778 2356
1779void inline_size 2357inline_size void
1780wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1781{ 2359{
1782 elem->next = *head; 2360 elem->next = *head;
1783 *head = elem; 2361 *head = elem;
1784} 2362}
1785 2363
1786void inline_size 2364inline_size void
1787wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1788{ 2366{
1789 while (*head) 2367 while (*head)
1790 { 2368 {
1791 if (*head == elem) 2369 if (*head == elem)
1796 2374
1797 head = &(*head)->next; 2375 head = &(*head)->next;
1798 } 2376 }
1799} 2377}
1800 2378
1801void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
1802clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1803{ 2382{
1804 if (w->pending) 2383 if (w->pending)
1805 { 2384 {
1806 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1807 w->pending = 0; 2386 w->pending = 0;
1808 } 2387 }
1809} 2388}
1810 2389
1811int 2390int
1815 int pending = w_->pending; 2394 int pending = w_->pending;
1816 2395
1817 if (expect_true (pending)) 2396 if (expect_true (pending))
1818 { 2397 {
1819 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
1820 w_->pending = 0; 2400 w_->pending = 0;
1821 p->w = 0;
1822 return p->events; 2401 return p->events;
1823 } 2402 }
1824 else 2403 else
1825 return 0; 2404 return 0;
1826} 2405}
1827 2406
1828void inline_size 2407inline_size void
1829pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
1830{ 2409{
1831 int pri = w->priority; 2410 int pri = ev_priority (w);
1832 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1833 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1834 w->priority = pri; 2413 ev_set_priority (w, pri);
1835} 2414}
1836 2415
1837void inline_speed 2416inline_speed void
1838ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1839{ 2418{
1840 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
1841 w->active = active; 2420 w->active = active;
1842 ev_ref (EV_A); 2421 ev_ref (EV_A);
1843} 2422}
1844 2423
1845void inline_size 2424inline_size void
1846ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1847{ 2426{
1848 ev_unref (EV_A); 2427 ev_unref (EV_A);
1849 w->active = 0; 2428 w->active = 0;
1850} 2429}
1857 int fd = w->fd; 2436 int fd = w->fd;
1858 2437
1859 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1860 return; 2439 return;
1861 2440
1862 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1863 2445
1864 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1865 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1866 wlist_add (&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1867 2449
1868 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1869 w->events &= ~EV_IOFDSET; 2451 w->events &= ~EV__IOFDSET;
2452
2453 EV_FREQUENT_CHECK;
1870} 2454}
1871 2455
1872void noinline 2456void noinline
1873ev_io_stop (EV_P_ ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1874{ 2458{
1875 clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
1877 return; 2461 return;
1878 2462
1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464
2465 EV_FREQUENT_CHECK;
1880 2466
1881 wlist_del (&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1883 2469
1884 fd_change (EV_A_ w->fd, 1); 2470 fd_change (EV_A_ w->fd, 1);
2471
2472 EV_FREQUENT_CHECK;
1885} 2473}
1886 2474
1887void noinline 2475void noinline
1888ev_timer_start (EV_P_ ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1889{ 2477{
1890 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1891 return; 2479 return;
1892 2480
1893 ev_at (w) += mn_now; 2481 ev_at (w) += mn_now;
1894 2482
1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1896 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1897 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1899 timers [timercnt] = (WT)w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
2491 ANHE_at_cache (timers [ev_active (w)]);
1900 upheap (timers, timercnt); 2492 upheap (timers, ev_active (w));
1901 2493
2494 EV_FREQUENT_CHECK;
2495
1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1903} 2497}
1904 2498
1905void noinline 2499void noinline
1906ev_timer_stop (EV_P_ ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1907{ 2501{
1908 clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
1910 return; 2504 return;
1911 2505
2506 EV_FREQUENT_CHECK;
2507
1912 { 2508 {
1913 int active = ev_active (w); 2509 int active = ev_active (w);
1914 2510
1915 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1916 2512
2513 --timercnt;
2514
1917 if (expect_true (active < timercnt)) 2515 if (expect_true (active < timercnt + HEAP0))
1918 { 2516 {
1919 timers [active] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1920 adjustheap (timers, timercnt, active); 2518 adjustheap (timers, timercnt, active);
1921 } 2519 }
1922
1923 --timercnt;
1924 } 2520 }
2521
2522 EV_FREQUENT_CHECK;
1925 2523
1926 ev_at (w) -= mn_now; 2524 ev_at (w) -= mn_now;
1927 2525
1928 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1929} 2527}
1930 2528
1931void noinline 2529void noinline
1932ev_timer_again (EV_P_ ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1933{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1934 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1935 { 2535 {
1936 if (w->repeat) 2536 if (w->repeat)
1937 { 2537 {
1938 ev_at (w) = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1939 adjustheap (timers, timercnt, ev_active (w)); 2540 adjustheap (timers, timercnt, ev_active (w));
1940 } 2541 }
1941 else 2542 else
1942 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1943 } 2544 }
1944 else if (w->repeat) 2545 else if (w->repeat)
1945 { 2546 {
1946 ev_at (w) = w->repeat; 2547 ev_at (w) = w->repeat;
1947 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1948 } 2549 }
2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1949} 2558}
1950 2559
1951#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
1952void noinline 2561void noinline
1953ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1957 2566
1958 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960 else if (w->interval) 2569 else if (w->interval)
1961 { 2570 {
1962 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1963 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1965 } 2574 }
1966 else 2575 else
1967 ev_at (w) = w->offset; 2576 ev_at (w) = w->offset;
1968 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1969 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1971 periodics [periodiccnt] = (WT)w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1972 upheap (periodics, periodiccnt); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1973 2586
2587 EV_FREQUENT_CHECK;
2588
1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1975} 2590}
1976 2591
1977void noinline 2592void noinline
1978ev_periodic_stop (EV_P_ ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1979{ 2594{
1980 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1981 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1982 return; 2597 return;
1983 2598
2599 EV_FREQUENT_CHECK;
2600
1984 { 2601 {
1985 int active = ev_active (w); 2602 int active = ev_active (w);
1986 2603
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1988 2605
2606 --periodiccnt;
2607
1989 if (expect_true (active < periodiccnt)) 2608 if (expect_true (active < periodiccnt + HEAP0))
1990 { 2609 {
1991 periodics [active] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1992 adjustheap (periodics, periodiccnt, active); 2611 adjustheap (periodics, periodiccnt, active);
1993 } 2612 }
1994
1995 --periodiccnt;
1996 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
1997 2616
1998 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1999} 2618}
2000 2619
2001void noinline 2620void noinline
2013 2632
2014void noinline 2633void noinline
2015ev_signal_start (EV_P_ ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
2016{ 2635{
2017#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
2018 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2019#endif 2638#endif
2020 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
2021 return; 2640 return;
2022 2641
2023 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2024 2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2025 evpipe_init (EV_A); 2676 evpipe_init (EV_A);
2026 2677
2027 { 2678 {
2028#ifndef _WIN32 2679#ifndef _WIN32
2029 sigset_t full, prev; 2680 sigset_t full, prev;
2030 sigfillset (&full); 2681 sigfillset (&full);
2031 sigprocmask (SIG_SETMASK, &full, &prev); 2682 sigprocmask (SIG_SETMASK, &full, &prev);
2032#endif 2683#endif
2033 2684
2034 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2035 2686
2036#ifndef _WIN32 2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif
2691 sigdelset (&prev, w->signum);
2037 sigprocmask (SIG_SETMASK, &prev, 0); 2692 sigprocmask (SIG_SETMASK, &prev, 0);
2038#endif 2693#endif
2039 } 2694 }
2040 2695
2041 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2044 if (!((WL)w)->next) 2699 if (!((WL)w)->next)
2045 { 2700 {
2046#if _WIN32 2701#if _WIN32
2047 signal (w->signum, ev_sighandler); 2702 signal (w->signum, ev_sighandler);
2048#else 2703#else
2704# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/
2706# endif
2707 {
2049 struct sigaction sa; 2708 struct sigaction sa = { };
2050 sa.sa_handler = ev_sighandler; 2709 sa.sa_handler = ev_sighandler;
2051 sigfillset (&sa.sa_mask); 2710 sigfillset (&sa.sa_mask);
2052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2053 sigaction (w->signum, &sa, 0); 2712 sigaction (w->signum, &sa, 0);
2713 }
2054#endif 2714#endif
2055 } 2715 }
2716
2717 EV_FREQUENT_CHECK;
2056} 2718}
2057 2719
2058void noinline 2720void noinline
2059ev_signal_stop (EV_P_ ev_signal *w) 2721ev_signal_stop (EV_P_ ev_signal *w)
2060{ 2722{
2061 clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
2062 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
2063 return; 2725 return;
2064 2726
2727 EV_FREQUENT_CHECK;
2728
2065 wlist_del (&signals [w->signum - 1].head, (WL)w); 2729 wlist_del (&signals [w->signum - 1].head, (WL)w);
2066 ev_stop (EV_A_ (W)w); 2730 ev_stop (EV_A_ (W)w);
2067 2731
2068 if (!signals [w->signum - 1].head) 2732 if (!signals [w->signum - 1].head)
2733#if EV_USE_SIGNALFD
2734 if (sigfd >= 0)
2735 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2737 sigdelset (&sigfd_set, w->signum);
2738 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2740 /*TODO: maybe unblock signal? */
2741 }
2742 else
2743#endif
2069 signal (w->signum, SIG_DFL); 2744 signal (w->signum, SIG_DFL);
2745
2746 EV_FREQUENT_CHECK;
2070} 2747}
2071 2748
2072void 2749void
2073ev_child_start (EV_P_ ev_child *w) 2750ev_child_start (EV_P_ ev_child *w)
2074{ 2751{
2075#if EV_MULTIPLICITY 2752#if EV_MULTIPLICITY
2076 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2077#endif 2754#endif
2078 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2079 return; 2756 return;
2080 2757
2758 EV_FREQUENT_CHECK;
2759
2081 ev_start (EV_A_ (W)w, 1); 2760 ev_start (EV_A_ (W)w, 1);
2082 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2762
2763 EV_FREQUENT_CHECK;
2083} 2764}
2084 2765
2085void 2766void
2086ev_child_stop (EV_P_ ev_child *w) 2767ev_child_stop (EV_P_ ev_child *w)
2087{ 2768{
2088 clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
2089 if (expect_false (!ev_is_active (w))) 2770 if (expect_false (!ev_is_active (w)))
2090 return; 2771 return;
2091 2772
2773 EV_FREQUENT_CHECK;
2774
2092 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2093 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2094} 2779}
2095 2780
2096#if EV_STAT_ENABLE 2781#if EV_STAT_ENABLE
2097 2782
2098# ifdef _WIN32 2783# ifdef _WIN32
2099# undef lstat 2784# undef lstat
2100# define lstat(a,b) _stati64 (a,b) 2785# define lstat(a,b) _stati64 (a,b)
2101# endif 2786# endif
2102 2787
2103#define DEF_STAT_INTERVAL 5.0074891 2788#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2104#define MIN_STAT_INTERVAL 0.1074891 2790#define MIN_STAT_INTERVAL 0.1074891
2105 2791
2106static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2107 2793
2108#if EV_USE_INOTIFY 2794#if EV_USE_INOTIFY
2109# define EV_INOTIFY_BUFSIZE 8192 2795# define EV_INOTIFY_BUFSIZE 8192
2113{ 2799{
2114 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2115 2801
2116 if (w->wd < 0) 2802 if (w->wd < 0)
2117 { 2803 {
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2118 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2119 2806
2120 /* monitor some parent directory for speedup hints */ 2807 /* monitor some parent directory for speedup hints */
2121 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2122 /* but an efficiency issue only */ 2809 /* but an efficiency issue only */
2123 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2124 { 2811 {
2125 char path [4096]; 2812 char path [4096];
2126 strcpy (path, w->path); 2813 strcpy (path, w->path);
2130 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2817 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2131 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2818 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2132 2819
2133 char *pend = strrchr (path, '/'); 2820 char *pend = strrchr (path, '/');
2134 2821
2135 if (!pend) 2822 if (!pend || pend == path)
2136 break; /* whoops, no '/', complain to your admin */ 2823 break;
2137 2824
2138 *pend = 0; 2825 *pend = 0;
2139 w->wd = inotify_add_watch (fs_fd, path, mask); 2826 w->wd = inotify_add_watch (fs_fd, path, mask);
2140 } 2827 }
2141 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2142 } 2829 }
2143 } 2830 }
2144 else
2145 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2146 2831
2147 if (w->wd >= 0) 2832 if (w->wd >= 0)
2833 {
2148 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2835
2836 /* now local changes will be tracked by inotify, but remote changes won't */
2837 /* unless the filesystem it known to be local, we therefore still poll */
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer);
2852 }
2149} 2853}
2150 2854
2151static void noinline 2855static void noinline
2152infy_del (EV_P_ ev_stat *w) 2856infy_del (EV_P_ ev_stat *w)
2153{ 2857{
2167 2871
2168static void noinline 2872static void noinline
2169infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2170{ 2874{
2171 if (slot < 0) 2875 if (slot < 0)
2172 /* overflow, need to check for all hahs slots */ 2876 /* overflow, need to check for all hash slots */
2173 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2174 infy_wd (EV_A_ slot, wd, ev); 2878 infy_wd (EV_A_ slot, wd, ev);
2175 else 2879 else
2176 { 2880 {
2177 WL w_; 2881 WL w_;
2183 2887
2184 if (w->wd == wd || wd == -1) 2888 if (w->wd == wd || wd == -1)
2185 { 2889 {
2186 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2187 { 2891 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2188 w->wd = -1; 2893 w->wd = -1;
2189 infy_add (EV_A_ w); /* re-add, no matter what */ 2894 infy_add (EV_A_ w); /* re-add, no matter what */
2190 } 2895 }
2191 2896
2192 stat_timer_cb (EV_A_ &w->timer, 0); 2897 stat_timer_cb (EV_A_ &w->timer, 0);
2205 2910
2206 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2207 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2912 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2208} 2913}
2209 2914
2210void inline_size 2915inline_size void
2916check_2625 (EV_P)
2917{
2918 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */
2921 struct utsname buf;
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return;
2926
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1;
2936}
2937
2938inline_size void
2211infy_init (EV_P) 2939infy_init (EV_P)
2212{ 2940{
2213 if (fs_fd != -2) 2941 if (fs_fd != -2)
2214 return; 2942 return;
2943
2944 fs_fd = -1;
2945
2946 check_2625 (EV_A);
2215 2947
2216 fs_fd = inotify_init (); 2948 fs_fd = inotify_init ();
2217 2949
2218 if (fs_fd >= 0) 2950 if (fs_fd >= 0)
2219 { 2951 {
2221 ev_set_priority (&fs_w, EV_MAXPRI); 2953 ev_set_priority (&fs_w, EV_MAXPRI);
2222 ev_io_start (EV_A_ &fs_w); 2954 ev_io_start (EV_A_ &fs_w);
2223 } 2955 }
2224} 2956}
2225 2957
2226void inline_size 2958inline_size void
2227infy_fork (EV_P) 2959infy_fork (EV_P)
2228{ 2960{
2229 int slot; 2961 int slot;
2230 2962
2231 if (fs_fd < 0) 2963 if (fs_fd < 0)
2247 w->wd = -1; 2979 w->wd = -1;
2248 2980
2249 if (fs_fd >= 0) 2981 if (fs_fd >= 0)
2250 infy_add (EV_A_ w); /* re-add, no matter what */ 2982 infy_add (EV_A_ w); /* re-add, no matter what */
2251 else 2983 else
2252 ev_timer_start (EV_A_ &w->timer); 2984 ev_timer_again (EV_A_ &w->timer);
2253 } 2985 }
2254
2255 } 2986 }
2256} 2987}
2257 2988
2989#endif
2990
2991#ifdef _WIN32
2992# define EV_LSTAT(p,b) _stati64 (p, b)
2993#else
2994# define EV_LSTAT(p,b) lstat (p, b)
2258#endif 2995#endif
2259 2996
2260void 2997void
2261ev_stat_stat (EV_P_ ev_stat *w) 2998ev_stat_stat (EV_P_ ev_stat *w)
2262{ 2999{
2289 || w->prev.st_atime != w->attr.st_atime 3026 || w->prev.st_atime != w->attr.st_atime
2290 || w->prev.st_mtime != w->attr.st_mtime 3027 || w->prev.st_mtime != w->attr.st_mtime
2291 || w->prev.st_ctime != w->attr.st_ctime 3028 || w->prev.st_ctime != w->attr.st_ctime
2292 ) { 3029 ) {
2293 #if EV_USE_INOTIFY 3030 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0)
3032 {
2294 infy_del (EV_A_ w); 3033 infy_del (EV_A_ w);
2295 infy_add (EV_A_ w); 3034 infy_add (EV_A_ w);
2296 ev_stat_stat (EV_A_ w); /* avoid race... */ 3035 ev_stat_stat (EV_A_ w); /* avoid race... */
3036 }
2297 #endif 3037 #endif
2298 3038
2299 ev_feed_event (EV_A_ w, EV_STAT); 3039 ev_feed_event (EV_A_ w, EV_STAT);
2300 } 3040 }
2301} 3041}
2304ev_stat_start (EV_P_ ev_stat *w) 3044ev_stat_start (EV_P_ ev_stat *w)
2305{ 3045{
2306 if (expect_false (ev_is_active (w))) 3046 if (expect_false (ev_is_active (w)))
2307 return; 3047 return;
2308 3048
2309 /* since we use memcmp, we need to clear any padding data etc. */
2310 memset (&w->prev, 0, sizeof (ev_statdata));
2311 memset (&w->attr, 0, sizeof (ev_statdata));
2312
2313 ev_stat_stat (EV_A_ w); 3049 ev_stat_stat (EV_A_ w);
2314 3050
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2315 if (w->interval < MIN_STAT_INTERVAL) 3052 w->interval = MIN_STAT_INTERVAL;
2316 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2317 3053
2318 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3054 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2319 ev_set_priority (&w->timer, ev_priority (w)); 3055 ev_set_priority (&w->timer, ev_priority (w));
2320 3056
2321#if EV_USE_INOTIFY 3057#if EV_USE_INOTIFY
2322 infy_init (EV_A); 3058 infy_init (EV_A);
2323 3059
2324 if (fs_fd >= 0) 3060 if (fs_fd >= 0)
2325 infy_add (EV_A_ w); 3061 infy_add (EV_A_ w);
2326 else 3062 else
2327#endif 3063#endif
2328 ev_timer_start (EV_A_ &w->timer); 3064 ev_timer_again (EV_A_ &w->timer);
2329 3065
2330 ev_start (EV_A_ (W)w, 1); 3066 ev_start (EV_A_ (W)w, 1);
3067
3068 EV_FREQUENT_CHECK;
2331} 3069}
2332 3070
2333void 3071void
2334ev_stat_stop (EV_P_ ev_stat *w) 3072ev_stat_stop (EV_P_ ev_stat *w)
2335{ 3073{
2336 clear_pending (EV_A_ (W)w); 3074 clear_pending (EV_A_ (W)w);
2337 if (expect_false (!ev_is_active (w))) 3075 if (expect_false (!ev_is_active (w)))
2338 return; 3076 return;
2339 3077
3078 EV_FREQUENT_CHECK;
3079
2340#if EV_USE_INOTIFY 3080#if EV_USE_INOTIFY
2341 infy_del (EV_A_ w); 3081 infy_del (EV_A_ w);
2342#endif 3082#endif
2343 ev_timer_stop (EV_A_ &w->timer); 3083 ev_timer_stop (EV_A_ &w->timer);
2344 3084
2345 ev_stop (EV_A_ (W)w); 3085 ev_stop (EV_A_ (W)w);
3086
3087 EV_FREQUENT_CHECK;
2346} 3088}
2347#endif 3089#endif
2348 3090
2349#if EV_IDLE_ENABLE 3091#if EV_IDLE_ENABLE
2350void 3092void
2352{ 3094{
2353 if (expect_false (ev_is_active (w))) 3095 if (expect_false (ev_is_active (w)))
2354 return; 3096 return;
2355 3097
2356 pri_adjust (EV_A_ (W)w); 3098 pri_adjust (EV_A_ (W)w);
3099
3100 EV_FREQUENT_CHECK;
2357 3101
2358 { 3102 {
2359 int active = ++idlecnt [ABSPRI (w)]; 3103 int active = ++idlecnt [ABSPRI (w)];
2360 3104
2361 ++idleall; 3105 ++idleall;
2362 ev_start (EV_A_ (W)w, active); 3106 ev_start (EV_A_ (W)w, active);
2363 3107
2364 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2365 idles [ABSPRI (w)][active - 1] = w; 3109 idles [ABSPRI (w)][active - 1] = w;
2366 } 3110 }
3111
3112 EV_FREQUENT_CHECK;
2367} 3113}
2368 3114
2369void 3115void
2370ev_idle_stop (EV_P_ ev_idle *w) 3116ev_idle_stop (EV_P_ ev_idle *w)
2371{ 3117{
2372 clear_pending (EV_A_ (W)w); 3118 clear_pending (EV_A_ (W)w);
2373 if (expect_false (!ev_is_active (w))) 3119 if (expect_false (!ev_is_active (w)))
2374 return; 3120 return;
2375 3121
3122 EV_FREQUENT_CHECK;
3123
2376 { 3124 {
2377 int active = ev_active (w); 3125 int active = ev_active (w);
2378 3126
2379 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3127 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2380 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3128 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2381 3129
2382 ev_stop (EV_A_ (W)w); 3130 ev_stop (EV_A_ (W)w);
2383 --idleall; 3131 --idleall;
2384 } 3132 }
3133
3134 EV_FREQUENT_CHECK;
2385} 3135}
2386#endif 3136#endif
2387 3137
2388void 3138void
2389ev_prepare_start (EV_P_ ev_prepare *w) 3139ev_prepare_start (EV_P_ ev_prepare *w)
2390{ 3140{
2391 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
2392 return; 3142 return;
3143
3144 EV_FREQUENT_CHECK;
2393 3145
2394 ev_start (EV_A_ (W)w, ++preparecnt); 3146 ev_start (EV_A_ (W)w, ++preparecnt);
2395 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2396 prepares [preparecnt - 1] = w; 3148 prepares [preparecnt - 1] = w;
3149
3150 EV_FREQUENT_CHECK;
2397} 3151}
2398 3152
2399void 3153void
2400ev_prepare_stop (EV_P_ ev_prepare *w) 3154ev_prepare_stop (EV_P_ ev_prepare *w)
2401{ 3155{
2402 clear_pending (EV_A_ (W)w); 3156 clear_pending (EV_A_ (W)w);
2403 if (expect_false (!ev_is_active (w))) 3157 if (expect_false (!ev_is_active (w)))
2404 return; 3158 return;
2405 3159
3160 EV_FREQUENT_CHECK;
3161
2406 { 3162 {
2407 int active = ev_active (w); 3163 int active = ev_active (w);
2408 3164
2409 prepares [active - 1] = prepares [--preparecnt]; 3165 prepares [active - 1] = prepares [--preparecnt];
2410 ev_active (prepares [active - 1]) = active; 3166 ev_active (prepares [active - 1]) = active;
2411 } 3167 }
2412 3168
2413 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
2414} 3172}
2415 3173
2416void 3174void
2417ev_check_start (EV_P_ ev_check *w) 3175ev_check_start (EV_P_ ev_check *w)
2418{ 3176{
2419 if (expect_false (ev_is_active (w))) 3177 if (expect_false (ev_is_active (w)))
2420 return; 3178 return;
3179
3180 EV_FREQUENT_CHECK;
2421 3181
2422 ev_start (EV_A_ (W)w, ++checkcnt); 3182 ev_start (EV_A_ (W)w, ++checkcnt);
2423 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2424 checks [checkcnt - 1] = w; 3184 checks [checkcnt - 1] = w;
3185
3186 EV_FREQUENT_CHECK;
2425} 3187}
2426 3188
2427void 3189void
2428ev_check_stop (EV_P_ ev_check *w) 3190ev_check_stop (EV_P_ ev_check *w)
2429{ 3191{
2430 clear_pending (EV_A_ (W)w); 3192 clear_pending (EV_A_ (W)w);
2431 if (expect_false (!ev_is_active (w))) 3193 if (expect_false (!ev_is_active (w)))
2432 return; 3194 return;
2433 3195
3196 EV_FREQUENT_CHECK;
3197
2434 { 3198 {
2435 int active = ev_active (w); 3199 int active = ev_active (w);
2436 3200
2437 checks [active - 1] = checks [--checkcnt]; 3201 checks [active - 1] = checks [--checkcnt];
2438 ev_active (checks [active - 1]) = active; 3202 ev_active (checks [active - 1]) = active;
2439 } 3203 }
2440 3204
2441 ev_stop (EV_A_ (W)w); 3205 ev_stop (EV_A_ (W)w);
3206
3207 EV_FREQUENT_CHECK;
2442} 3208}
2443 3209
2444#if EV_EMBED_ENABLE 3210#if EV_EMBED_ENABLE
2445void noinline 3211void noinline
2446ev_embed_sweep (EV_P_ ev_embed *w) 3212ev_embed_sweep (EV_P_ ev_embed *w)
2473 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3239 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2474 } 3240 }
2475 } 3241 }
2476} 3242}
2477 3243
3244static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248
3249 ev_embed_stop (EV_A_ w);
3250
3251 {
3252 struct ev_loop *loop = w->other;
3253
3254 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3256 }
3257
3258 ev_embed_start (EV_A_ w);
3259}
3260
2478#if 0 3261#if 0
2479static void 3262static void
2480embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3263embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2481{ 3264{
2482 ev_idle_stop (EV_A_ idle); 3265 ev_idle_stop (EV_A_ idle);
2489 if (expect_false (ev_is_active (w))) 3272 if (expect_false (ev_is_active (w)))
2490 return; 3273 return;
2491 3274
2492 { 3275 {
2493 struct ev_loop *loop = w->other; 3276 struct ev_loop *loop = w->other;
2494 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2496 } 3279 }
3280
3281 EV_FREQUENT_CHECK;
2497 3282
2498 ev_set_priority (&w->io, ev_priority (w)); 3283 ev_set_priority (&w->io, ev_priority (w));
2499 ev_io_start (EV_A_ &w->io); 3284 ev_io_start (EV_A_ &w->io);
2500 3285
2501 ev_prepare_init (&w->prepare, embed_prepare_cb); 3286 ev_prepare_init (&w->prepare, embed_prepare_cb);
2502 ev_set_priority (&w->prepare, EV_MINPRI); 3287 ev_set_priority (&w->prepare, EV_MINPRI);
2503 ev_prepare_start (EV_A_ &w->prepare); 3288 ev_prepare_start (EV_A_ &w->prepare);
2504 3289
3290 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork);
3292
2505 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2506 3294
2507 ev_start (EV_A_ (W)w, 1); 3295 ev_start (EV_A_ (W)w, 1);
3296
3297 EV_FREQUENT_CHECK;
2508} 3298}
2509 3299
2510void 3300void
2511ev_embed_stop (EV_P_ ev_embed *w) 3301ev_embed_stop (EV_P_ ev_embed *w)
2512{ 3302{
2513 clear_pending (EV_A_ (W)w); 3303 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 3304 if (expect_false (!ev_is_active (w)))
2515 return; 3305 return;
2516 3306
3307 EV_FREQUENT_CHECK;
3308
2517 ev_io_stop (EV_A_ &w->io); 3309 ev_io_stop (EV_A_ &w->io);
2518 ev_prepare_stop (EV_A_ &w->prepare); 3310 ev_prepare_stop (EV_A_ &w->prepare);
3311 ev_fork_stop (EV_A_ &w->fork);
2519 3312
2520 ev_stop (EV_A_ (W)w); 3313 EV_FREQUENT_CHECK;
2521} 3314}
2522#endif 3315#endif
2523 3316
2524#if EV_FORK_ENABLE 3317#if EV_FORK_ENABLE
2525void 3318void
2526ev_fork_start (EV_P_ ev_fork *w) 3319ev_fork_start (EV_P_ ev_fork *w)
2527{ 3320{
2528 if (expect_false (ev_is_active (w))) 3321 if (expect_false (ev_is_active (w)))
2529 return; 3322 return;
3323
3324 EV_FREQUENT_CHECK;
2530 3325
2531 ev_start (EV_A_ (W)w, ++forkcnt); 3326 ev_start (EV_A_ (W)w, ++forkcnt);
2532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2533 forks [forkcnt - 1] = w; 3328 forks [forkcnt - 1] = w;
3329
3330 EV_FREQUENT_CHECK;
2534} 3331}
2535 3332
2536void 3333void
2537ev_fork_stop (EV_P_ ev_fork *w) 3334ev_fork_stop (EV_P_ ev_fork *w)
2538{ 3335{
2539 clear_pending (EV_A_ (W)w); 3336 clear_pending (EV_A_ (W)w);
2540 if (expect_false (!ev_is_active (w))) 3337 if (expect_false (!ev_is_active (w)))
2541 return; 3338 return;
2542 3339
3340 EV_FREQUENT_CHECK;
3341
2543 { 3342 {
2544 int active = ev_active (w); 3343 int active = ev_active (w);
2545 3344
2546 forks [active - 1] = forks [--forkcnt]; 3345 forks [active - 1] = forks [--forkcnt];
2547 ev_active (forks [active - 1]) = active; 3346 ev_active (forks [active - 1]) = active;
2548 } 3347 }
2549 3348
2550 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
2551} 3352}
2552#endif 3353#endif
2553 3354
2554#if EV_ASYNC_ENABLE 3355#if EV_ASYNC_ENABLE
2555void 3356void
2557{ 3358{
2558 if (expect_false (ev_is_active (w))) 3359 if (expect_false (ev_is_active (w)))
2559 return; 3360 return;
2560 3361
2561 evpipe_init (EV_A); 3362 evpipe_init (EV_A);
3363
3364 EV_FREQUENT_CHECK;
2562 3365
2563 ev_start (EV_A_ (W)w, ++asynccnt); 3366 ev_start (EV_A_ (W)w, ++asynccnt);
2564 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2565 asyncs [asynccnt - 1] = w; 3368 asyncs [asynccnt - 1] = w;
3369
3370 EV_FREQUENT_CHECK;
2566} 3371}
2567 3372
2568void 3373void
2569ev_async_stop (EV_P_ ev_async *w) 3374ev_async_stop (EV_P_ ev_async *w)
2570{ 3375{
2571 clear_pending (EV_A_ (W)w); 3376 clear_pending (EV_A_ (W)w);
2572 if (expect_false (!ev_is_active (w))) 3377 if (expect_false (!ev_is_active (w)))
2573 return; 3378 return;
2574 3379
3380 EV_FREQUENT_CHECK;
3381
2575 { 3382 {
2576 int active = ev_active (w); 3383 int active = ev_active (w);
2577 3384
2578 asyncs [active - 1] = asyncs [--asynccnt]; 3385 asyncs [active - 1] = asyncs [--asynccnt];
2579 ev_active (asyncs [active - 1]) = active; 3386 ev_active (asyncs [active - 1]) = active;
2580 } 3387 }
2581 3388
2582 ev_stop (EV_A_ (W)w); 3389 ev_stop (EV_A_ (W)w);
3390
3391 EV_FREQUENT_CHECK;
2583} 3392}
2584 3393
2585void 3394void
2586ev_async_send (EV_P_ ev_async *w) 3395ev_async_send (EV_P_ ev_async *w)
2587{ 3396{
2604once_cb (EV_P_ struct ev_once *once, int revents) 3413once_cb (EV_P_ struct ev_once *once, int revents)
2605{ 3414{
2606 void (*cb)(int revents, void *arg) = once->cb; 3415 void (*cb)(int revents, void *arg) = once->cb;
2607 void *arg = once->arg; 3416 void *arg = once->arg;
2608 3417
2609 ev_io_stop (EV_A_ &once->io); 3418 ev_io_stop (EV_A_ &once->io);
2610 ev_timer_stop (EV_A_ &once->to); 3419 ev_timer_stop (EV_A_ &once->to);
2611 ev_free (once); 3420 ev_free (once);
2612 3421
2613 cb (revents, arg); 3422 cb (revents, arg);
2614} 3423}
2615 3424
2616static void 3425static void
2617once_cb_io (EV_P_ ev_io *w, int revents) 3426once_cb_io (EV_P_ ev_io *w, int revents)
2618{ 3427{
2619 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3428 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3429
3430 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2620} 3431}
2621 3432
2622static void 3433static void
2623once_cb_to (EV_P_ ev_timer *w, int revents) 3434once_cb_to (EV_P_ ev_timer *w, int revents)
2624{ 3435{
2625 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3436 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3437
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2626} 3439}
2627 3440
2628void 3441void
2629ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2630{ 3443{
2652 ev_timer_set (&once->to, timeout, 0.); 3465 ev_timer_set (&once->to, timeout, 0.);
2653 ev_timer_start (EV_A_ &once->to); 3466 ev_timer_start (EV_A_ &once->to);
2654 } 3467 }
2655} 3468}
2656 3469
3470/*****************************************************************************/
3471
3472#if EV_WALK_ENABLE
3473void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3475{
3476 int i, j;
3477 ev_watcher_list *wl, *wn;
3478
3479 if (types & (EV_IO | EV_EMBED))
3480 for (i = 0; i < anfdmax; ++i)
3481 for (wl = anfds [i].head; wl; )
3482 {
3483 wn = wl->next;
3484
3485#if EV_EMBED_ENABLE
3486 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3487 {
3488 if (types & EV_EMBED)
3489 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3490 }
3491 else
3492#endif
3493#if EV_USE_INOTIFY
3494 if (ev_cb ((ev_io *)wl) == infy_cb)
3495 ;
3496 else
3497#endif
3498 if ((ev_io *)wl != &pipe_w)
3499 if (types & EV_IO)
3500 cb (EV_A_ EV_IO, wl);
3501
3502 wl = wn;
3503 }
3504
3505 if (types & (EV_TIMER | EV_STAT))
3506 for (i = timercnt + HEAP0; i-- > HEAP0; )
3507#if EV_STAT_ENABLE
3508 /*TODO: timer is not always active*/
3509 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3510 {
3511 if (types & EV_STAT)
3512 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3513 }
3514 else
3515#endif
3516 if (types & EV_TIMER)
3517 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3518
3519#if EV_PERIODIC_ENABLE
3520 if (types & EV_PERIODIC)
3521 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif
3524
3525#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; )
3528 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif
3531
3532#if EV_FORK_ENABLE
3533 if (types & EV_FORK)
3534 for (i = forkcnt; i--; )
3535 if (ev_cb (forks [i]) != embed_fork_cb)
3536 cb (EV_A_ EV_FORK, forks [i]);
3537#endif
3538
3539#if EV_ASYNC_ENABLE
3540 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif
3544
3545 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]);
3551
3552 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]);
3555
3556 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i)
3558 for (wl = signals [i].head; wl; )
3559 {
3560 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn;
3563 }
3564
3565 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; )
3567 for (wl = childs [i]; wl; )
3568 {
3569 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn;
3572 }
3573/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3575}
3576#endif
3577
2657#if EV_MULTIPLICITY 3578#if EV_MULTIPLICITY
2658 #include "ev_wrap.h" 3579 #include "ev_wrap.h"
2659#endif 3580#endif
2660 3581
2661#ifdef __cplusplus 3582#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines