ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.234 by root, Tue May 6 23:42:16 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 241
159#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
162#endif 245#endif
164#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
167#endif 250#endif
168 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
169#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 268# include <winsock.h>
171#endif 269#endif
172 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
173/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 294
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 298
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 299#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 301# define noinline __attribute__ ((noinline))
189#else 302#else
190# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
191# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
192#endif 308#endif
193 309
194#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
196 319
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 322
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
202 325
203typedef struct ev_watcher *W; 326typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
206 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
208 338
209#ifdef _WIN32 339#ifdef _WIN32
210# include "ev_win32.c" 340# include "ev_win32.c"
211#endif 341#endif
212 342
213/*****************************************************************************/ 343/*****************************************************************************/
214 344
215static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
216 346
347void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 349{
219 syserr_cb = cb; 350 syserr_cb = cb;
220} 351}
221 352
222static void 353static void noinline
223syserr (const char *msg) 354syserr (const char *msg)
224{ 355{
225 if (!msg) 356 if (!msg)
226 msg = "(libev) system error"; 357 msg = "(libev) system error";
227 358
232 perror (msg); 363 perror (msg);
233 abort (); 364 abort ();
234 } 365 }
235} 366}
236 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
237static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 384
385void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 387{
241 alloc = cb; 388 alloc = cb;
242} 389}
243 390
244static void * 391inline_speed void *
245ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
246{ 393{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
248 395
249 if (!ptr && size) 396 if (!ptr && size)
250 { 397 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 399 abort ();
273typedef struct 420typedef struct
274{ 421{
275 W w; 422 W w;
276 int events; 423 int events;
277} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
278 432
279#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
280 434
281 struct ev_loop 435 struct ev_loop
282 { 436 {
316 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 472#endif
319} 473}
320 474
321inline ev_tstamp 475ev_tstamp inline_size
322get_clock (void) 476get_clock (void)
323{ 477{
324#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
326 { 480 {
339{ 493{
340 return ev_rt_now; 494 return ev_rt_now;
341} 495}
342#endif 496#endif
343 497
344#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
345 554
346#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
348 { \ 557 { \
349 int newcnt = cur; \ 558 int ocur_ = (cur); \
350 do \ 559 (base) = (type *)array_realloc \
351 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 562 }
360 563
564#if 0
361#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 567 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 571 }
572#endif
368 573
369#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 576
372/*****************************************************************************/ 577/*****************************************************************************/
373 578
374static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
375anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
376{ 609{
377 while (count--) 610 while (count--)
378 { 611 {
379 base->head = 0; 612 base->head = 0;
382 615
383 ++base; 616 ++base;
384 } 617 }
385} 618}
386 619
387void 620void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
415{ 622{
416 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 624 ev_io *w;
418 625
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 627 {
421 int ev = w->events & revents; 628 int ev = w->events & revents;
422 629
423 if (ev) 630 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
426} 633}
427 634
428void 635void
429ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 637{
638 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
432} 640}
433 641
434/*****************************************************************************/ 642void inline_size
435
436inline void
437fd_reify (EV_P) 643fd_reify (EV_P)
438{ 644{
439 int i; 645 int i;
440 646
441 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
442 { 648 {
443 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 651 ev_io *w;
446 652
447 int events = 0; 653 unsigned char events = 0;
448 654
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 656 events |= (unsigned char)w->events;
451 657
452#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
453 if (events) 659 if (events)
454 { 660 {
455 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
456 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 668 }
459#endif 669#endif
460 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
461 anfd->reify = 0; 675 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
465 } 681 }
466 682
467 fdchangecnt = 0; 683 fdchangecnt = 0;
468} 684}
469 685
470static void 686void inline_size
471fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
472{ 688{
473 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
477 691
692 if (expect_true (!reify))
693 {
478 ++fdchangecnt; 694 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
481} 698}
482 699
483static void 700void inline_speed
484fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
485{ 702{
486 struct ev_io *w; 703 ev_io *w;
487 704
488 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
489 { 706 {
490 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 709 }
493} 710}
494 711
495inline int 712int inline_size
496fd_valid (int fd) 713fd_valid (int fd)
497{ 714{
498#ifdef _WIN32 715#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 716 return _get_osfhandle (fd) != -1;
500#else 717#else
501 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
502#endif 719#endif
503} 720}
504 721
505/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
506static void 723static void noinline
507fd_ebadf (EV_P) 724fd_ebadf (EV_P)
508{ 725{
509 int fd; 726 int fd;
510 727
511 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
515} 732}
516 733
517/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 735static void noinline
519fd_enomem (EV_P) 736fd_enomem (EV_P)
520{ 737{
521 int fd; 738 int fd;
522 739
523 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
527 return; 744 return;
528 } 745 }
529} 746}
530 747
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 749static void noinline
533fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
534{ 751{
535 int fd; 752 int fd;
536 753
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 755 if (anfds [fd].events)
540 { 756 {
541 anfds [fd].events = 0; 757 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 759 }
544} 760}
545 761
546/*****************************************************************************/ 762/*****************************************************************************/
547 763
548static void 764/* towards the root */
765void inline_speed
549upheap (WT *heap, int k) 766upheap (WT *heap, int k)
550{ 767{
551 WT w = heap [k]; 768 WT w = heap [k];
552 769
553 while (k && heap [k >> 1]->at > w->at) 770 for (;;)
554 { 771 {
772 int p = k >> 1;
773
774 /* maybe we could use a dummy element at heap [0]? */
775 if (!p || heap [p]->at <= w->at)
776 break;
777
555 heap [k] = heap [k >> 1]; 778 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 779 ev_active (heap [k]) = k;
557 k >>= 1; 780 k = p;
558 } 781 }
559 782
560 heap [k] = w; 783 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 784 ev_active (heap [k]) = k;
562
563} 785}
564 786
565static void 787/* away from the root */
788void inline_speed
566downheap (WT *heap, int N, int k) 789downheap (WT *heap, int N, int k)
567{ 790{
568 WT w = heap [k]; 791 WT w = heap [k];
569 792
570 while (k < (N >> 1)) 793 for (;;)
571 { 794 {
572 int j = k << 1; 795 int c = k << 1;
573 796
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 797 if (c > N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 798 break;
579 799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
580 heap [k] = heap [j]; 806 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 807 ev_active (heap [k]) = k;
808
582 k = j; 809 k = c;
583 } 810 }
584 811
585 heap [k] = w; 812 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 813 ev_active (heap [k]) = k;
587} 814}
588 815
589inline void 816void inline_size
590adjustheap (WT *heap, int N, int k) 817adjustheap (WT *heap, int N, int k)
591{ 818{
592 upheap (heap, k); 819 upheap (heap, k);
593 downheap (heap, N, k); 820 downheap (heap, N, k);
594} 821}
596/*****************************************************************************/ 823/*****************************************************************************/
597 824
598typedef struct 825typedef struct
599{ 826{
600 WL head; 827 WL head;
601 sig_atomic_t volatile gotsig; 828 EV_ATOMIC_T gotsig;
602} ANSIG; 829} ANSIG;
603 830
604static ANSIG *signals; 831static ANSIG *signals;
605static int signalmax; 832static int signalmax;
606 833
607static int sigpipe [2]; 834static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 835
611static void 836void inline_size
612signals_init (ANSIG *base, int count) 837signals_init (ANSIG *base, int count)
613{ 838{
614 while (count--) 839 while (count--)
615 { 840 {
616 base->head = 0; 841 base->head = 0;
618 843
619 ++base; 844 ++base;
620 } 845 }
621} 846}
622 847
623static void 848/*****************************************************************************/
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629 849
630 signals [signum - 1].gotsig = 1; 850void inline_speed
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 851fd_intern (int fd)
676{ 852{
677#ifdef _WIN32 853#ifdef _WIN32
678 int arg = 1; 854 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 855 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 857 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 858 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 859#endif
684} 860}
685 861
862static void noinline
863evpipe_init (EV_P)
864{
865 if (!ev_is_active (&pipeev))
866 {
867#if EV_USE_EVENTFD
868 if ((evfd = eventfd (0, 0)) >= 0)
869 {
870 evpipe [0] = -1;
871 fd_intern (evfd);
872 ev_io_set (&pipeev, evfd, EV_READ);
873 }
874 else
875#endif
876 {
877 while (pipe (evpipe))
878 syserr ("(libev) error creating signal/async pipe");
879
880 fd_intern (evpipe [0]);
881 fd_intern (evpipe [1]);
882 ev_io_set (&pipeev, evpipe [0], EV_READ);
883 }
884
885 ev_io_start (EV_A_ &pipeev);
886 ev_unref (EV_A); /* watcher should not keep loop alive */
887 }
888}
889
890void inline_size
891evpipe_write (EV_P_ EV_ATOMIC_T *flag)
892{
893 if (!*flag)
894 {
895 int old_errno = errno; /* save errno because write might clobber it */
896
897 *flag = 1;
898
899#if EV_USE_EVENTFD
900 if (evfd >= 0)
901 {
902 uint64_t counter = 1;
903 write (evfd, &counter, sizeof (uint64_t));
904 }
905 else
906#endif
907 write (evpipe [1], &old_errno, 1);
908
909 errno = old_errno;
910 }
911}
912
686static void 913static void
687siginit (EV_P) 914pipecb (EV_P_ ev_io *iow, int revents)
688{ 915{
689 fd_intern (sigpipe [0]); 916#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 917 if (evfd >= 0)
918 {
919 uint64_t counter;
920 read (evfd, &counter, sizeof (uint64_t));
921 }
922 else
923#endif
924 {
925 char dummy;
926 read (evpipe [0], &dummy, 1);
927 }
691 928
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 929 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 930 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 931 int signum;
932 gotsig = 0;
933
934 for (signum = signalmax; signum--; )
935 if (signals [signum].gotsig)
936 ev_feed_signal_event (EV_A_ signum + 1);
937 }
938
939#if EV_ASYNC_ENABLE
940 if (gotasync)
941 {
942 int i;
943 gotasync = 0;
944
945 for (i = asynccnt; i--; )
946 if (asyncs [i]->sent)
947 {
948 asyncs [i]->sent = 0;
949 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
950 }
951 }
952#endif
695} 953}
696 954
697/*****************************************************************************/ 955/*****************************************************************************/
698 956
699static struct ev_child *childs [PID_HASHSIZE]; 957static void
958ev_sighandler (int signum)
959{
960#if EV_MULTIPLICITY
961 struct ev_loop *loop = &default_loop_struct;
962#endif
963
964#if _WIN32
965 signal (signum, ev_sighandler);
966#endif
967
968 signals [signum - 1].gotsig = 1;
969 evpipe_write (EV_A_ &gotsig);
970}
971
972void noinline
973ev_feed_signal_event (EV_P_ int signum)
974{
975 WL w;
976
977#if EV_MULTIPLICITY
978 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
979#endif
980
981 --signum;
982
983 if (signum < 0 || signum >= signalmax)
984 return;
985
986 signals [signum].gotsig = 0;
987
988 for (w = signals [signum].head; w; w = w->next)
989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
990}
991
992/*****************************************************************************/
993
994static WL childs [EV_PID_HASHSIZE];
700 995
701#ifndef _WIN32 996#ifndef _WIN32
702 997
703static struct ev_signal childev; 998static ev_signal childev;
999
1000#ifndef WIFCONTINUED
1001# define WIFCONTINUED(status) 0
1002#endif
1003
1004void inline_speed
1005child_reap (EV_P_ int chain, int pid, int status)
1006{
1007 ev_child *w;
1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1009
1010 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1011 {
1012 if ((w->pid == pid || !w->pid)
1013 && (!traced || (w->flags & 1)))
1014 {
1015 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1016 w->rpid = pid;
1017 w->rstatus = status;
1018 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1019 }
1020 }
1021}
704 1022
705#ifndef WCONTINUED 1023#ifndef WCONTINUED
706# define WCONTINUED 0 1024# define WCONTINUED 0
707#endif 1025#endif
708 1026
709static void 1027static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1028childcb (EV_P_ ev_signal *sw, int revents)
726{ 1029{
727 int pid, status; 1030 int pid, status;
728 1031
1032 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1033 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1034 if (!WCONTINUED
1035 || errno != EINVAL
1036 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1037 return;
1038
731 /* make sure we are called again until all childs have been reaped */ 1039 /* make sure we are called again until all children have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 1040 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1041 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 1042
735 child_reap (EV_A_ sw, pid, pid, status); 1043 child_reap (EV_A_ pid, pid, status);
1044 if (EV_PID_HASHSIZE > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1045 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 1046}
739 1047
740#endif 1048#endif
741 1049
742/*****************************************************************************/ 1050/*****************************************************************************/
768{ 1076{
769 return EV_VERSION_MINOR; 1077 return EV_VERSION_MINOR;
770} 1078}
771 1079
772/* return true if we are running with elevated privileges and should ignore env variables */ 1080/* return true if we are running with elevated privileges and should ignore env variables */
773static int 1081int inline_size
774enable_secure (void) 1082enable_secure (void)
775{ 1083{
776#ifdef _WIN32 1084#ifdef _WIN32
777 return 0; 1085 return 0;
778#else 1086#else
812 1120
813 return flags; 1121 return flags;
814} 1122}
815 1123
816unsigned int 1124unsigned int
1125ev_embeddable_backends (void)
1126{
1127 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1128
1129 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1130 /* please fix it and tell me how to detect the fix */
1131 flags &= ~EVBACKEND_EPOLL;
1132
1133 return flags;
1134}
1135
1136unsigned int
817ev_backend (EV_P) 1137ev_backend (EV_P)
818{ 1138{
819 return backend; 1139 return backend;
820} 1140}
821 1141
822static void 1142unsigned int
1143ev_loop_count (EV_P)
1144{
1145 return loop_count;
1146}
1147
1148void
1149ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1150{
1151 io_blocktime = interval;
1152}
1153
1154void
1155ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1156{
1157 timeout_blocktime = interval;
1158}
1159
1160static void noinline
823loop_init (EV_P_ unsigned int flags) 1161loop_init (EV_P_ unsigned int flags)
824{ 1162{
825 if (!backend) 1163 if (!backend)
826 { 1164 {
827#if EV_USE_MONOTONIC 1165#if EV_USE_MONOTONIC
830 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
831 have_monotonic = 1; 1169 have_monotonic = 1;
832 } 1170 }
833#endif 1171#endif
834 1172
835 ev_rt_now = ev_time (); 1173 ev_rt_now = ev_time ();
836 mn_now = get_clock (); 1174 mn_now = get_clock ();
837 now_floor = mn_now; 1175 now_floor = mn_now;
838 rtmn_diff = ev_rt_now - mn_now; 1176 rtmn_diff = ev_rt_now - mn_now;
1177
1178 io_blocktime = 0.;
1179 timeout_blocktime = 0.;
1180 backend = 0;
1181 backend_fd = -1;
1182 gotasync = 0;
1183#if EV_USE_INOTIFY
1184 fs_fd = -2;
1185#endif
1186
1187 /* pid check not overridable via env */
1188#ifndef _WIN32
1189 if (flags & EVFLAG_FORKCHECK)
1190 curpid = getpid ();
1191#endif
839 1192
840 if (!(flags & EVFLAG_NOENV) 1193 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 1194 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 1195 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 1196 flags = atoi (getenv ("LIBEV_FLAGS"));
844 1197
845 if (!(flags & 0x0000ffffUL)) 1198 if (!(flags & 0x0000ffffU))
846 flags |= ev_recommended_backends (); 1199 flags |= ev_recommended_backends ();
847 1200
848 backend = 0;
849#if EV_USE_PORT 1201#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 1203#endif
852#if EV_USE_KQUEUE 1204#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1205 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
860#endif 1212#endif
861#if EV_USE_SELECT 1213#if EV_USE_SELECT
862 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1214 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
863#endif 1215#endif
864 1216
865 ev_init (&sigev, sigcb); 1217 ev_init (&pipeev, pipecb);
866 ev_set_priority (&sigev, EV_MAXPRI); 1218 ev_set_priority (&pipeev, EV_MAXPRI);
867 } 1219 }
868} 1220}
869 1221
870static void 1222static void noinline
871loop_destroy (EV_P) 1223loop_destroy (EV_P)
872{ 1224{
873 int i; 1225 int i;
1226
1227 if (ev_is_active (&pipeev))
1228 {
1229 ev_ref (EV_A); /* signal watcher */
1230 ev_io_stop (EV_A_ &pipeev);
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 close (evfd);
1235#endif
1236
1237 if (evpipe [0] >= 0)
1238 {
1239 close (evpipe [0]);
1240 close (evpipe [1]);
1241 }
1242 }
1243
1244#if EV_USE_INOTIFY
1245 if (fs_fd >= 0)
1246 close (fs_fd);
1247#endif
1248
1249 if (backend_fd >= 0)
1250 close (backend_fd);
874 1251
875#if EV_USE_PORT 1252#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1253 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 1254#endif
878#if EV_USE_KQUEUE 1255#if EV_USE_KQUEUE
887#if EV_USE_SELECT 1264#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1265 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 1266#endif
890 1267
891 for (i = NUMPRI; i--; ) 1268 for (i = NUMPRI; i--; )
1269 {
892 array_free (pending, [i]); 1270 array_free (pending, [i]);
1271#if EV_IDLE_ENABLE
1272 array_free (idle, [i]);
1273#endif
1274 }
1275
1276 ev_free (anfds); anfdmax = 0;
893 1277
894 /* have to use the microsoft-never-gets-it-right macro */ 1278 /* have to use the microsoft-never-gets-it-right macro */
895 array_free (fdchange, EMPTY0); 1279 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 1280 array_free (timer, EMPTY);
897#if EV_PERIODICS 1281#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 1282 array_free (periodic, EMPTY);
899#endif 1283#endif
1284#if EV_FORK_ENABLE
900 array_free (idle, EMPTY0); 1285 array_free (fork, EMPTY);
1286#endif
901 array_free (prepare, EMPTY0); 1287 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 1288 array_free (check, EMPTY);
1289#if EV_ASYNC_ENABLE
1290 array_free (async, EMPTY);
1291#endif
903 1292
904 backend = 0; 1293 backend = 0;
905} 1294}
906 1295
907static void 1296#if EV_USE_INOTIFY
1297void inline_size infy_fork (EV_P);
1298#endif
1299
1300void inline_size
908loop_fork (EV_P) 1301loop_fork (EV_P)
909{ 1302{
910#if EV_USE_PORT 1303#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1304 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 1305#endif
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1307 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 1308#endif
916#if EV_USE_EPOLL 1309#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1310 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
918#endif 1311#endif
1312#if EV_USE_INOTIFY
1313 infy_fork (EV_A);
1314#endif
919 1315
920 if (ev_is_active (&sigev)) 1316 if (ev_is_active (&pipeev))
921 { 1317 {
922 /* default loop */ 1318 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */
1320 gotsig = 1;
1321#if EV_ASYNC_ENABLE
1322 gotasync = 1;
1323#endif
923 1324
924 ev_ref (EV_A); 1325 ev_ref (EV_A);
925 ev_io_stop (EV_A_ &sigev); 1326 ev_io_stop (EV_A_ &pipeev);
1327
1328#if EV_USE_EVENTFD
1329 if (evfd >= 0)
1330 close (evfd);
1331#endif
1332
1333 if (evpipe [0] >= 0)
1334 {
926 close (sigpipe [0]); 1335 close (evpipe [0]);
927 close (sigpipe [1]); 1336 close (evpipe [1]);
1337 }
928 1338
929 while (pipe (sigpipe))
930 syserr ("(libev) error creating pipe");
931
932 siginit (EV_A); 1339 evpipe_init (EV_A);
1340 /* now iterate over everything, in case we missed something */
1341 pipecb (EV_A_ &pipeev, EV_READ);
933 } 1342 }
934 1343
935 postfork = 0; 1344 postfork = 0;
936} 1345}
937 1346
959} 1368}
960 1369
961void 1370void
962ev_loop_fork (EV_P) 1371ev_loop_fork (EV_P)
963{ 1372{
964 postfork = 1; 1373 postfork = 1; /* must be in line with ev_default_fork */
965} 1374}
966
967#endif 1375#endif
968 1376
969#if EV_MULTIPLICITY 1377#if EV_MULTIPLICITY
970struct ev_loop * 1378struct ev_loop *
971ev_default_loop_init (unsigned int flags) 1379ev_default_loop_init (unsigned int flags)
972#else 1380#else
973int 1381int
974ev_default_loop (unsigned int flags) 1382ev_default_loop (unsigned int flags)
975#endif 1383#endif
976{ 1384{
977 if (sigpipe [0] == sigpipe [1])
978 if (pipe (sigpipe))
979 return 0;
980
981 if (!ev_default_loop_ptr) 1385 if (!ev_default_loop_ptr)
982 { 1386 {
983#if EV_MULTIPLICITY 1387#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1388 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
985#else 1389#else
988 1392
989 loop_init (EV_A_ flags); 1393 loop_init (EV_A_ flags);
990 1394
991 if (ev_backend (EV_A)) 1395 if (ev_backend (EV_A))
992 { 1396 {
993 siginit (EV_A);
994
995#ifndef _WIN32 1397#ifndef _WIN32
996 ev_signal_init (&childev, childcb, SIGCHLD); 1398 ev_signal_init (&childev, childcb, SIGCHLD);
997 ev_set_priority (&childev, EV_MAXPRI); 1399 ev_set_priority (&childev, EV_MAXPRI);
998 ev_signal_start (EV_A_ &childev); 1400 ev_signal_start (EV_A_ &childev);
999 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1401 ev_unref (EV_A); /* child watcher should not keep loop alive */
1016#ifndef _WIN32 1418#ifndef _WIN32
1017 ev_ref (EV_A); /* child watcher */ 1419 ev_ref (EV_A); /* child watcher */
1018 ev_signal_stop (EV_A_ &childev); 1420 ev_signal_stop (EV_A_ &childev);
1019#endif 1421#endif
1020 1422
1021 ev_ref (EV_A); /* signal watcher */
1022 ev_io_stop (EV_A_ &sigev);
1023
1024 close (sigpipe [0]); sigpipe [0] = 0;
1025 close (sigpipe [1]); sigpipe [1] = 0;
1026
1027 loop_destroy (EV_A); 1423 loop_destroy (EV_A);
1028} 1424}
1029 1425
1030void 1426void
1031ev_default_fork (void) 1427ev_default_fork (void)
1033#if EV_MULTIPLICITY 1429#if EV_MULTIPLICITY
1034 struct ev_loop *loop = ev_default_loop_ptr; 1430 struct ev_loop *loop = ev_default_loop_ptr;
1035#endif 1431#endif
1036 1432
1037 if (backend) 1433 if (backend)
1038 postfork = 1; 1434 postfork = 1; /* must be in line with ev_loop_fork */
1039} 1435}
1040 1436
1041/*****************************************************************************/ 1437/*****************************************************************************/
1042 1438
1043static int 1439void
1044any_pending (EV_P) 1440ev_invoke (EV_P_ void *w, int revents)
1045{ 1441{
1046 int pri; 1442 EV_CB_INVOKE ((W)w, revents);
1047
1048 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri])
1050 return 1;
1051
1052 return 0;
1053} 1443}
1054 1444
1055inline void 1445void inline_speed
1056call_pending (EV_P) 1446call_pending (EV_P)
1057{ 1447{
1058 int pri; 1448 int pri;
1059 1449
1060 for (pri = NUMPRI; pri--; ) 1450 for (pri = NUMPRI; pri--; )
1062 { 1452 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1453 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 1454
1065 if (expect_true (p->w)) 1455 if (expect_true (p->w))
1066 { 1456 {
1457 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1458
1067 p->w->pending = 0; 1459 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 1460 EV_CB_INVOKE (p->w, p->events);
1069 } 1461 }
1070 } 1462 }
1071} 1463}
1072 1464
1073inline void 1465#if EV_IDLE_ENABLE
1466void inline_size
1467idle_reify (EV_P)
1468{
1469 if (expect_false (idleall))
1470 {
1471 int pri;
1472
1473 for (pri = NUMPRI; pri--; )
1474 {
1475 if (pendingcnt [pri])
1476 break;
1477
1478 if (idlecnt [pri])
1479 {
1480 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1481 break;
1482 }
1483 }
1484 }
1485}
1486#endif
1487
1488void inline_size
1074timers_reify (EV_P) 1489timers_reify (EV_P)
1075{ 1490{
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 1491 while (timercnt && ev_at (timers [1]) <= mn_now)
1077 { 1492 {
1078 struct ev_timer *w = timers [0]; 1493 ev_timer *w = (ev_timer *)timers [1];
1079 1494
1080 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1495 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1081 1496
1082 /* first reschedule or stop timer */ 1497 /* first reschedule or stop timer */
1083 if (w->repeat) 1498 if (w->repeat)
1084 { 1499 {
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1500 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086 1501
1087 ((WT)w)->at += w->repeat; 1502 ev_at (w) += w->repeat;
1088 if (((WT)w)->at < mn_now) 1503 if (ev_at (w) < mn_now)
1089 ((WT)w)->at = mn_now; 1504 ev_at (w) = mn_now;
1090 1505
1091 downheap ((WT *)timers, timercnt, 0); 1506 downheap (timers, timercnt, 1);
1092 } 1507 }
1093 else 1508 else
1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1509 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1095 1510
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1511 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1097 } 1512 }
1098} 1513}
1099 1514
1100#if EV_PERIODICS 1515#if EV_PERIODIC_ENABLE
1101inline void 1516void inline_size
1102periodics_reify (EV_P) 1517periodics_reify (EV_P)
1103{ 1518{
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1519 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1105 { 1520 {
1106 struct ev_periodic *w = periodics [0]; 1521 ev_periodic *w = (ev_periodic *)periodics [1];
1107 1522
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1523 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 1524
1110 /* first reschedule or stop timer */ 1525 /* first reschedule or stop timer */
1111 if (w->reschedule_cb) 1526 if (w->reschedule_cb)
1112 { 1527 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1528 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1529 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1115 downheap ((WT *)periodics, periodiccnt, 0); 1530 downheap (periodics, periodiccnt, 1);
1116 } 1531 }
1117 else if (w->interval) 1532 else if (w->interval)
1118 { 1533 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1536 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0); 1537 downheap (periodics, periodiccnt, 1);
1122 } 1538 }
1123 else 1539 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1540 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 1541
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1542 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 } 1543 }
1128} 1544}
1129 1545
1130static void 1546static void noinline
1131periodics_reschedule (EV_P) 1547periodics_reschedule (EV_P)
1132{ 1548{
1133 int i; 1549 int i;
1134 1550
1135 /* adjust periodics after time jump */ 1551 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i) 1552 for (i = 1; i <= periodiccnt; ++i)
1137 { 1553 {
1138 struct ev_periodic *w = periodics [i]; 1554 ev_periodic *w = (ev_periodic *)periodics [i];
1139 1555
1140 if (w->reschedule_cb) 1556 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1557 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval) 1558 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1559 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1144 } 1560 }
1145 1561
1146 /* now rebuild the heap */ 1562 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; ) 1563 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i); 1564 downheap (periodics, periodiccnt, i);
1149} 1565}
1150#endif 1566#endif
1151 1567
1152inline int 1568void inline_speed
1153time_update_monotonic (EV_P) 1569time_update (EV_P_ ev_tstamp max_block)
1154{ 1570{
1571 int i;
1572
1573#if EV_USE_MONOTONIC
1574 if (expect_true (have_monotonic))
1575 {
1576 ev_tstamp odiff = rtmn_diff;
1577
1155 mn_now = get_clock (); 1578 mn_now = get_clock ();
1156 1579
1580 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1581 /* interpolate in the meantime */
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1582 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 { 1583 {
1159 ev_rt_now = rtmn_diff + mn_now; 1584 ev_rt_now = rtmn_diff + mn_now;
1160 return 0; 1585 return;
1161 } 1586 }
1162 else 1587
1163 {
1164 now_floor = mn_now; 1588 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 1590
1170inline void 1591 /* loop a few times, before making important decisions.
1171time_update (EV_P) 1592 * on the choice of "4": one iteration isn't enough,
1172{ 1593 * in case we get preempted during the calls to
1173 int i; 1594 * ev_time and get_clock. a second call is almost guaranteed
1174 1595 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 1596 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 1597 * in the unlikely event of having been preempted here.
1177 { 1598 */
1178 if (time_update_monotonic (EV_A)) 1599 for (i = 4; --i; )
1179 { 1600 {
1180 ev_tstamp odiff = rtmn_diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 1601 rtmn_diff = ev_rt_now - mn_now;
1185 1602
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1603 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1187 return; /* all is well */ 1604 return; /* all is well */
1188 1605
1189 ev_rt_now = ev_time (); 1606 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 1607 mn_now = get_clock ();
1191 now_floor = mn_now; 1608 now_floor = mn_now;
1192 } 1609 }
1193 1610
1194# if EV_PERIODICS 1611# if EV_PERIODIC_ENABLE
1612 periodics_reschedule (EV_A);
1613# endif
1614 /* no timer adjustment, as the monotonic clock doesn't jump */
1615 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1616 }
1617 else
1618#endif
1619 {
1620 ev_rt_now = ev_time ();
1621
1622 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1623 {
1624#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 1625 periodics_reschedule (EV_A);
1196# endif 1626#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */ 1627 /* adjust timers. this is easy, as the offset is the same for all of them */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1628 for (i = 1; i <= timercnt; ++i)
1629 ev_at (timers [i]) += ev_rt_now - mn_now;
1199 } 1630 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */
1213 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 }
1216 1631
1217 mn_now = ev_rt_now; 1632 mn_now = ev_rt_now;
1218 } 1633 }
1219} 1634}
1220 1635
1233static int loop_done; 1648static int loop_done;
1234 1649
1235void 1650void
1236ev_loop (EV_P_ int flags) 1651ev_loop (EV_P_ int flags)
1237{ 1652{
1238 double block; 1653 loop_done = EVUNLOOP_CANCEL;
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1240 1654
1241 while (activecnt) 1655 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1656
1657 do
1242 { 1658 {
1659#ifndef _WIN32
1660 if (expect_false (curpid)) /* penalise the forking check even more */
1661 if (expect_false (getpid () != curpid))
1662 {
1663 curpid = getpid ();
1664 postfork = 1;
1665 }
1666#endif
1667
1668#if EV_FORK_ENABLE
1669 /* we might have forked, so queue fork handlers */
1670 if (expect_false (postfork))
1671 if (forkcnt)
1672 {
1673 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1674 call_pending (EV_A);
1675 }
1676#endif
1677
1243 /* queue check watchers (and execute them) */ 1678 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 1679 if (expect_false (preparecnt))
1245 { 1680 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1681 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 1682 call_pending (EV_A);
1248 } 1683 }
1249 1684
1685 if (expect_false (!activecnt))
1686 break;
1687
1250 /* we might have forked, so reify kernel state if necessary */ 1688 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 1689 if (expect_false (postfork))
1252 loop_fork (EV_A); 1690 loop_fork (EV_A);
1253 1691
1254 /* update fd-related kernel structures */ 1692 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 1693 fd_reify (EV_A);
1256 1694
1257 /* calculate blocking time */ 1695 /* calculate blocking time */
1696 {
1697 ev_tstamp waittime = 0.;
1698 ev_tstamp sleeptime = 0.;
1258 1699
1259 /* we only need this for !monotonic clock or timers, but as we basically 1700 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1260 always have timers, we just calculate it always */
1261#if EV_USE_MONOTONIC
1262 if (expect_true (have_monotonic))
1263 time_update_monotonic (EV_A);
1264 else
1265#endif
1266 { 1701 {
1267 ev_rt_now = ev_time (); 1702 /* update time to cancel out callback processing overhead */
1268 mn_now = ev_rt_now; 1703 time_update (EV_A_ 1e100);
1269 }
1270 1704
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 1705 waittime = MAX_BLOCKTIME;
1276 1706
1277 if (timercnt) 1707 if (timercnt)
1278 { 1708 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1709 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1280 if (block > to) block = to; 1710 if (waittime > to) waittime = to;
1281 } 1711 }
1282 1712
1283#if EV_PERIODICS 1713#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 1714 if (periodiccnt)
1285 { 1715 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1716 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 1717 if (waittime > to) waittime = to;
1288 } 1718 }
1289#endif 1719#endif
1290 1720
1291 if (expect_false (block < 0.)) block = 0.; 1721 if (expect_false (waittime < timeout_blocktime))
1722 waittime = timeout_blocktime;
1723
1724 sleeptime = waittime - backend_fudge;
1725
1726 if (expect_true (sleeptime > io_blocktime))
1727 sleeptime = io_blocktime;
1728
1729 if (sleeptime)
1730 {
1731 ev_sleep (sleeptime);
1732 waittime -= sleeptime;
1733 }
1292 } 1734 }
1293 1735
1736 ++loop_count;
1294 backend_poll (EV_A_ block); 1737 backend_poll (EV_A_ waittime);
1295 1738
1296 /* update ev_rt_now, do magic */ 1739 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 1740 time_update (EV_A_ waittime + sleeptime);
1741 }
1298 1742
1299 /* queue pending timers and reschedule them */ 1743 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 1744 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 1745#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 1746 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 1747#endif
1304 1748
1749#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 1750 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 1751 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1752#endif
1308 1753
1309 /* queue check watchers, to be executed first */ 1754 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 1755 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1756 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1312 1757
1313 call_pending (EV_A); 1758 call_pending (EV_A);
1314
1315 if (expect_false (loop_done))
1316 break;
1317 } 1759 }
1760 while (expect_true (
1761 activecnt
1762 && !loop_done
1763 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1764 ));
1318 1765
1319 if (loop_done != 2) 1766 if (loop_done == EVUNLOOP_ONE)
1320 loop_done = 0; 1767 loop_done = EVUNLOOP_CANCEL;
1321} 1768}
1322 1769
1323void 1770void
1324ev_unloop (EV_P_ int how) 1771ev_unloop (EV_P_ int how)
1325{ 1772{
1326 loop_done = how; 1773 loop_done = how;
1327} 1774}
1328 1775
1329/*****************************************************************************/ 1776/*****************************************************************************/
1330 1777
1331inline void 1778void inline_size
1332wlist_add (WL *head, WL elem) 1779wlist_add (WL *head, WL elem)
1333{ 1780{
1334 elem->next = *head; 1781 elem->next = *head;
1335 *head = elem; 1782 *head = elem;
1336} 1783}
1337 1784
1338inline void 1785void inline_size
1339wlist_del (WL *head, WL elem) 1786wlist_del (WL *head, WL elem)
1340{ 1787{
1341 while (*head) 1788 while (*head)
1342 { 1789 {
1343 if (*head == elem) 1790 if (*head == elem)
1348 1795
1349 head = &(*head)->next; 1796 head = &(*head)->next;
1350 } 1797 }
1351} 1798}
1352 1799
1353inline void 1800void inline_speed
1354ev_clear_pending (EV_P_ W w) 1801clear_pending (EV_P_ W w)
1355{ 1802{
1356 if (w->pending) 1803 if (w->pending)
1357 { 1804 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1805 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1359 w->pending = 0; 1806 w->pending = 0;
1360 } 1807 }
1361} 1808}
1362 1809
1363inline void 1810int
1811ev_clear_pending (EV_P_ void *w)
1812{
1813 W w_ = (W)w;
1814 int pending = w_->pending;
1815
1816 if (expect_true (pending))
1817 {
1818 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1819 w_->pending = 0;
1820 p->w = 0;
1821 return p->events;
1822 }
1823 else
1824 return 0;
1825}
1826
1827void inline_size
1828pri_adjust (EV_P_ W w)
1829{
1830 int pri = w->priority;
1831 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1832 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1833 w->priority = pri;
1834}
1835
1836void inline_speed
1364ev_start (EV_P_ W w, int active) 1837ev_start (EV_P_ W w, int active)
1365{ 1838{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1839 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 1840 w->active = active;
1370 ev_ref (EV_A); 1841 ev_ref (EV_A);
1371} 1842}
1372 1843
1373inline void 1844void inline_size
1374ev_stop (EV_P_ W w) 1845ev_stop (EV_P_ W w)
1375{ 1846{
1376 ev_unref (EV_A); 1847 ev_unref (EV_A);
1377 w->active = 0; 1848 w->active = 0;
1378} 1849}
1379 1850
1380/*****************************************************************************/ 1851/*****************************************************************************/
1381 1852
1382void 1853void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 1854ev_io_start (EV_P_ ev_io *w)
1384{ 1855{
1385 int fd = w->fd; 1856 int fd = w->fd;
1386 1857
1387 if (expect_false (ev_is_active (w))) 1858 if (expect_false (ev_is_active (w)))
1388 return; 1859 return;
1389 1860
1390 assert (("ev_io_start called with negative fd", fd >= 0)); 1861 assert (("ev_io_start called with negative fd", fd >= 0));
1391 1862
1392 ev_start (EV_A_ (W)w, 1); 1863 ev_start (EV_A_ (W)w, 1);
1393 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1864 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1865 wlist_add (&anfds[fd].head, (WL)w);
1395 1866
1396 fd_change (EV_A_ fd); 1867 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1868 w->events &= ~EV_IOFDSET;
1397} 1869}
1398 1870
1399void 1871void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 1872ev_io_stop (EV_P_ ev_io *w)
1401{ 1873{
1402 ev_clear_pending (EV_A_ (W)w); 1874 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 1875 if (expect_false (!ev_is_active (w)))
1404 return; 1876 return;
1405 1877
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1878 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 1879
1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1880 wlist_del (&anfds[w->fd].head, (WL)w);
1409 ev_stop (EV_A_ (W)w); 1881 ev_stop (EV_A_ (W)w);
1410 1882
1411 fd_change (EV_A_ w->fd); 1883 fd_change (EV_A_ w->fd, 1);
1412} 1884}
1413 1885
1414void 1886void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 1887ev_timer_start (EV_P_ ev_timer *w)
1416{ 1888{
1417 if (expect_false (ev_is_active (w))) 1889 if (expect_false (ev_is_active (w)))
1418 return; 1890 return;
1419 1891
1420 ((WT)w)->at += mn_now; 1892 ev_at (w) += mn_now;
1421 1893
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1894 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 1895
1424 ev_start (EV_A_ (W)w, ++timercnt); 1896 ev_start (EV_A_ (W)w, ++timercnt);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1897 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1426 timers [timercnt - 1] = w; 1898 timers [timercnt] = (WT)w;
1427 upheap ((WT *)timers, timercnt - 1); 1899 upheap (timers, timercnt);
1428 1900
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1901 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1430} 1902}
1431 1903
1432void 1904void noinline
1433ev_timer_stop (EV_P_ struct ev_timer *w) 1905ev_timer_stop (EV_P_ ev_timer *w)
1434{ 1906{
1435 ev_clear_pending (EV_A_ (W)w); 1907 clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 1908 if (expect_false (!ev_is_active (w)))
1437 return; 1909 return;
1438 1910
1911 {
1912 int active = ev_active (w);
1913
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1914 assert (("internal timer heap corruption", timers [active] == (WT)w));
1440 1915
1441 if (expect_true (((W)w)->active < timercnt--)) 1916 if (expect_true (active < timercnt))
1442 { 1917 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 1918 timers [active] = timers [timercnt];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1919 adjustheap (timers, timercnt, active);
1445 } 1920 }
1446 1921
1447 ((WT)w)->at -= mn_now; 1922 --timercnt;
1923 }
1924
1925 ev_at (w) -= mn_now;
1448 1926
1449 ev_stop (EV_A_ (W)w); 1927 ev_stop (EV_A_ (W)w);
1450} 1928}
1451 1929
1452void 1930void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 1931ev_timer_again (EV_P_ ev_timer *w)
1454{ 1932{
1455 if (ev_is_active (w)) 1933 if (ev_is_active (w))
1456 { 1934 {
1457 if (w->repeat) 1935 if (w->repeat)
1458 { 1936 {
1459 ((WT)w)->at = mn_now + w->repeat; 1937 ev_at (w) = mn_now + w->repeat;
1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1938 adjustheap (timers, timercnt, ev_active (w));
1461 } 1939 }
1462 else 1940 else
1463 ev_timer_stop (EV_A_ w); 1941 ev_timer_stop (EV_A_ w);
1464 } 1942 }
1465 else if (w->repeat) 1943 else if (w->repeat)
1466 { 1944 {
1467 w->at = w->repeat; 1945 ev_at (w) = w->repeat;
1468 ev_timer_start (EV_A_ w); 1946 ev_timer_start (EV_A_ w);
1469 } 1947 }
1470} 1948}
1471 1949
1472#if EV_PERIODICS 1950#if EV_PERIODIC_ENABLE
1473void 1951void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 1952ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 1953{
1476 if (expect_false (ev_is_active (w))) 1954 if (expect_false (ev_is_active (w)))
1477 return; 1955 return;
1478 1956
1479 if (w->reschedule_cb) 1957 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1958 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 1959 else if (w->interval)
1482 { 1960 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1961 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 1962 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1963 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1486 } 1964 }
1965 else
1966 ev_at (w) = w->offset;
1487 1967
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 1968 ev_start (EV_A_ (W)w, ++periodiccnt);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1969 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 1970 periodics [periodiccnt] = (WT)w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 1971 upheap (periodics, periodiccnt);
1492 1972
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1973 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1494} 1974}
1495 1975
1496void 1976void noinline
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 1977ev_periodic_stop (EV_P_ ev_periodic *w)
1498{ 1978{
1499 ev_clear_pending (EV_A_ (W)w); 1979 clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 1980 if (expect_false (!ev_is_active (w)))
1501 return; 1981 return;
1502 1982
1983 {
1984 int active = ev_active (w);
1985
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1986 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1504 1987
1505 if (expect_true (((W)w)->active < periodiccnt--)) 1988 if (expect_true (active < periodiccnt))
1506 { 1989 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1990 periodics [active] = periodics [periodiccnt];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1991 adjustheap (periodics, periodiccnt, active);
1509 } 1992 }
1993
1994 --periodiccnt;
1995 }
1510 1996
1511 ev_stop (EV_A_ (W)w); 1997 ev_stop (EV_A_ (W)w);
1512} 1998}
1513 1999
1514void 2000void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 2001ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 2002{
1517 /* TODO: use adjustheap and recalculation */ 2003 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 2004 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 2005 ev_periodic_start (EV_A_ w);
1520} 2006}
1521#endif 2007#endif
1522 2008
1523void
1524ev_idle_start (EV_P_ struct ev_idle *w)
1525{
1526 if (expect_false (ev_is_active (w)))
1527 return;
1528
1529 ev_start (EV_A_ (W)w, ++idlecnt);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1531 idles [idlecnt - 1] = w;
1532}
1533
1534void
1535ev_idle_stop (EV_P_ struct ev_idle *w)
1536{
1537 ev_clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w)))
1539 return;
1540
1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1542 ev_stop (EV_A_ (W)w);
1543}
1544
1545void
1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1547{
1548 if (expect_false (ev_is_active (w)))
1549 return;
1550
1551 ev_start (EV_A_ (W)w, ++preparecnt);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1553 prepares [preparecnt - 1] = w;
1554}
1555
1556void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1558{
1559 ev_clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w)))
1561 return;
1562
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1564 ev_stop (EV_A_ (W)w);
1565}
1566
1567void
1568ev_check_start (EV_P_ struct ev_check *w)
1569{
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 ev_start (EV_A_ (W)w, ++checkcnt);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w;
1576}
1577
1578void
1579ev_check_stop (EV_P_ struct ev_check *w)
1580{
1581 ev_clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w)))
1583 return;
1584
1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1586 ev_stop (EV_A_ (W)w);
1587}
1588
1589#ifndef SA_RESTART 2009#ifndef SA_RESTART
1590# define SA_RESTART 0 2010# define SA_RESTART 0
1591#endif 2011#endif
1592 2012
1593void 2013void noinline
1594ev_signal_start (EV_P_ struct ev_signal *w) 2014ev_signal_start (EV_P_ ev_signal *w)
1595{ 2015{
1596#if EV_MULTIPLICITY 2016#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2017 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 2018#endif
1599 if (expect_false (ev_is_active (w))) 2019 if (expect_false (ev_is_active (w)))
1600 return; 2020 return;
1601 2021
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2022 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 2023
2024 evpipe_init (EV_A);
2025
2026 {
2027#ifndef _WIN32
2028 sigset_t full, prev;
2029 sigfillset (&full);
2030 sigprocmask (SIG_SETMASK, &full, &prev);
2031#endif
2032
2033 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2034
2035#ifndef _WIN32
2036 sigprocmask (SIG_SETMASK, &prev, 0);
2037#endif
2038 }
2039
1604 ev_start (EV_A_ (W)w, 1); 2040 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2041 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 2042
1608 if (!((WL)w)->next) 2043 if (!((WL)w)->next)
1609 { 2044 {
1610#if _WIN32 2045#if _WIN32
1611 signal (w->signum, sighandler); 2046 signal (w->signum, ev_sighandler);
1612#else 2047#else
1613 struct sigaction sa; 2048 struct sigaction sa;
1614 sa.sa_handler = sighandler; 2049 sa.sa_handler = ev_sighandler;
1615 sigfillset (&sa.sa_mask); 2050 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2051 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0); 2052 sigaction (w->signum, &sa, 0);
1618#endif 2053#endif
1619 } 2054 }
1620} 2055}
1621 2056
1622void 2057void noinline
1623ev_signal_stop (EV_P_ struct ev_signal *w) 2058ev_signal_stop (EV_P_ ev_signal *w)
1624{ 2059{
1625 ev_clear_pending (EV_A_ (W)w); 2060 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 2061 if (expect_false (!ev_is_active (w)))
1627 return; 2062 return;
1628 2063
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2064 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 2065 ev_stop (EV_A_ (W)w);
1631 2066
1632 if (!signals [w->signum - 1].head) 2067 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 2068 signal (w->signum, SIG_DFL);
1634} 2069}
1635 2070
1636void 2071void
1637ev_child_start (EV_P_ struct ev_child *w) 2072ev_child_start (EV_P_ ev_child *w)
1638{ 2073{
1639#if EV_MULTIPLICITY 2074#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2075 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 2076#endif
1642 if (expect_false (ev_is_active (w))) 2077 if (expect_false (ev_is_active (w)))
1643 return; 2078 return;
1644 2079
1645 ev_start (EV_A_ (W)w, 1); 2080 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2081 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 2082}
1648 2083
1649void 2084void
1650ev_child_stop (EV_P_ struct ev_child *w) 2085ev_child_stop (EV_P_ ev_child *w)
1651{ 2086{
1652 ev_clear_pending (EV_A_ (W)w); 2087 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2088 if (expect_false (!ev_is_active (w)))
1654 return; 2089 return;
1655 2090
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2091 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1658} 2093}
1659 2094
2095#if EV_STAT_ENABLE
2096
2097# ifdef _WIN32
2098# undef lstat
2099# define lstat(a,b) _stati64 (a,b)
2100# endif
2101
2102#define DEF_STAT_INTERVAL 5.0074891
2103#define MIN_STAT_INTERVAL 0.1074891
2104
2105static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2106
2107#if EV_USE_INOTIFY
2108# define EV_INOTIFY_BUFSIZE 8192
2109
2110static void noinline
2111infy_add (EV_P_ ev_stat *w)
2112{
2113 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2114
2115 if (w->wd < 0)
2116 {
2117 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2118
2119 /* monitor some parent directory for speedup hints */
2120 /* note that exceeding the hardcoded limit is not a correctness issue, */
2121 /* but an efficiency issue only */
2122 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2123 {
2124 char path [4096];
2125 strcpy (path, w->path);
2126
2127 do
2128 {
2129 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2130 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2131
2132 char *pend = strrchr (path, '/');
2133
2134 if (!pend)
2135 break; /* whoops, no '/', complain to your admin */
2136
2137 *pend = 0;
2138 w->wd = inotify_add_watch (fs_fd, path, mask);
2139 }
2140 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2141 }
2142 }
2143 else
2144 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2145
2146 if (w->wd >= 0)
2147 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2148}
2149
2150static void noinline
2151infy_del (EV_P_ ev_stat *w)
2152{
2153 int slot;
2154 int wd = w->wd;
2155
2156 if (wd < 0)
2157 return;
2158
2159 w->wd = -2;
2160 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2161 wlist_del (&fs_hash [slot].head, (WL)w);
2162
2163 /* remove this watcher, if others are watching it, they will rearm */
2164 inotify_rm_watch (fs_fd, wd);
2165}
2166
2167static void noinline
2168infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2169{
2170 if (slot < 0)
2171 /* overflow, need to check for all hahs slots */
2172 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2173 infy_wd (EV_A_ slot, wd, ev);
2174 else
2175 {
2176 WL w_;
2177
2178 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2179 {
2180 ev_stat *w = (ev_stat *)w_;
2181 w_ = w_->next; /* lets us remove this watcher and all before it */
2182
2183 if (w->wd == wd || wd == -1)
2184 {
2185 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2186 {
2187 w->wd = -1;
2188 infy_add (EV_A_ w); /* re-add, no matter what */
2189 }
2190
2191 stat_timer_cb (EV_A_ &w->timer, 0);
2192 }
2193 }
2194 }
2195}
2196
2197static void
2198infy_cb (EV_P_ ev_io *w, int revents)
2199{
2200 char buf [EV_INOTIFY_BUFSIZE];
2201 struct inotify_event *ev = (struct inotify_event *)buf;
2202 int ofs;
2203 int len = read (fs_fd, buf, sizeof (buf));
2204
2205 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2206 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2207}
2208
2209void inline_size
2210infy_init (EV_P)
2211{
2212 if (fs_fd != -2)
2213 return;
2214
2215 fs_fd = inotify_init ();
2216
2217 if (fs_fd >= 0)
2218 {
2219 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2220 ev_set_priority (&fs_w, EV_MAXPRI);
2221 ev_io_start (EV_A_ &fs_w);
2222 }
2223}
2224
2225void inline_size
2226infy_fork (EV_P)
2227{
2228 int slot;
2229
2230 if (fs_fd < 0)
2231 return;
2232
2233 close (fs_fd);
2234 fs_fd = inotify_init ();
2235
2236 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2237 {
2238 WL w_ = fs_hash [slot].head;
2239 fs_hash [slot].head = 0;
2240
2241 while (w_)
2242 {
2243 ev_stat *w = (ev_stat *)w_;
2244 w_ = w_->next; /* lets us add this watcher */
2245
2246 w->wd = -1;
2247
2248 if (fs_fd >= 0)
2249 infy_add (EV_A_ w); /* re-add, no matter what */
2250 else
2251 ev_timer_start (EV_A_ &w->timer);
2252 }
2253
2254 }
2255}
2256
2257#endif
2258
2259void
2260ev_stat_stat (EV_P_ ev_stat *w)
2261{
2262 if (lstat (w->path, &w->attr) < 0)
2263 w->attr.st_nlink = 0;
2264 else if (!w->attr.st_nlink)
2265 w->attr.st_nlink = 1;
2266}
2267
2268static void noinline
2269stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2270{
2271 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2272
2273 /* we copy this here each the time so that */
2274 /* prev has the old value when the callback gets invoked */
2275 w->prev = w->attr;
2276 ev_stat_stat (EV_A_ w);
2277
2278 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2279 if (
2280 w->prev.st_dev != w->attr.st_dev
2281 || w->prev.st_ino != w->attr.st_ino
2282 || w->prev.st_mode != w->attr.st_mode
2283 || w->prev.st_nlink != w->attr.st_nlink
2284 || w->prev.st_uid != w->attr.st_uid
2285 || w->prev.st_gid != w->attr.st_gid
2286 || w->prev.st_rdev != w->attr.st_rdev
2287 || w->prev.st_size != w->attr.st_size
2288 || w->prev.st_atime != w->attr.st_atime
2289 || w->prev.st_mtime != w->attr.st_mtime
2290 || w->prev.st_ctime != w->attr.st_ctime
2291 ) {
2292 #if EV_USE_INOTIFY
2293 infy_del (EV_A_ w);
2294 infy_add (EV_A_ w);
2295 ev_stat_stat (EV_A_ w); /* avoid race... */
2296 #endif
2297
2298 ev_feed_event (EV_A_ w, EV_STAT);
2299 }
2300}
2301
2302void
2303ev_stat_start (EV_P_ ev_stat *w)
2304{
2305 if (expect_false (ev_is_active (w)))
2306 return;
2307
2308 /* since we use memcmp, we need to clear any padding data etc. */
2309 memset (&w->prev, 0, sizeof (ev_statdata));
2310 memset (&w->attr, 0, sizeof (ev_statdata));
2311
2312 ev_stat_stat (EV_A_ w);
2313
2314 if (w->interval < MIN_STAT_INTERVAL)
2315 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2316
2317 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2318 ev_set_priority (&w->timer, ev_priority (w));
2319
2320#if EV_USE_INOTIFY
2321 infy_init (EV_A);
2322
2323 if (fs_fd >= 0)
2324 infy_add (EV_A_ w);
2325 else
2326#endif
2327 ev_timer_start (EV_A_ &w->timer);
2328
2329 ev_start (EV_A_ (W)w, 1);
2330}
2331
2332void
2333ev_stat_stop (EV_P_ ev_stat *w)
2334{
2335 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w)))
2337 return;
2338
2339#if EV_USE_INOTIFY
2340 infy_del (EV_A_ w);
2341#endif
2342 ev_timer_stop (EV_A_ &w->timer);
2343
2344 ev_stop (EV_A_ (W)w);
2345}
2346#endif
2347
2348#if EV_IDLE_ENABLE
2349void
2350ev_idle_start (EV_P_ ev_idle *w)
2351{
2352 if (expect_false (ev_is_active (w)))
2353 return;
2354
2355 pri_adjust (EV_A_ (W)w);
2356
2357 {
2358 int active = ++idlecnt [ABSPRI (w)];
2359
2360 ++idleall;
2361 ev_start (EV_A_ (W)w, active);
2362
2363 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2364 idles [ABSPRI (w)][active - 1] = w;
2365 }
2366}
2367
2368void
2369ev_idle_stop (EV_P_ ev_idle *w)
2370{
2371 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w)))
2373 return;
2374
2375 {
2376 int active = ev_active (w);
2377
2378 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2379 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2380
2381 ev_stop (EV_A_ (W)w);
2382 --idleall;
2383 }
2384}
2385#endif
2386
2387void
2388ev_prepare_start (EV_P_ ev_prepare *w)
2389{
2390 if (expect_false (ev_is_active (w)))
2391 return;
2392
2393 ev_start (EV_A_ (W)w, ++preparecnt);
2394 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2395 prepares [preparecnt - 1] = w;
2396}
2397
2398void
2399ev_prepare_stop (EV_P_ ev_prepare *w)
2400{
2401 clear_pending (EV_A_ (W)w);
2402 if (expect_false (!ev_is_active (w)))
2403 return;
2404
2405 {
2406 int active = ev_active (w);
2407
2408 prepares [active - 1] = prepares [--preparecnt];
2409 ev_active (prepares [active - 1]) = active;
2410 }
2411
2412 ev_stop (EV_A_ (W)w);
2413}
2414
2415void
2416ev_check_start (EV_P_ ev_check *w)
2417{
2418 if (expect_false (ev_is_active (w)))
2419 return;
2420
2421 ev_start (EV_A_ (W)w, ++checkcnt);
2422 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2423 checks [checkcnt - 1] = w;
2424}
2425
2426void
2427ev_check_stop (EV_P_ ev_check *w)
2428{
2429 clear_pending (EV_A_ (W)w);
2430 if (expect_false (!ev_is_active (w)))
2431 return;
2432
2433 {
2434 int active = ev_active (w);
2435
2436 checks [active - 1] = checks [--checkcnt];
2437 ev_active (checks [active - 1]) = active;
2438 }
2439
2440 ev_stop (EV_A_ (W)w);
2441}
2442
2443#if EV_EMBED_ENABLE
2444void noinline
2445ev_embed_sweep (EV_P_ ev_embed *w)
2446{
2447 ev_loop (w->other, EVLOOP_NONBLOCK);
2448}
2449
2450static void
2451embed_io_cb (EV_P_ ev_io *io, int revents)
2452{
2453 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2454
2455 if (ev_cb (w))
2456 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2457 else
2458 ev_loop (w->other, EVLOOP_NONBLOCK);
2459}
2460
2461static void
2462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2463{
2464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2465
2466 {
2467 struct ev_loop *loop = w->other;
2468
2469 while (fdchangecnt)
2470 {
2471 fd_reify (EV_A);
2472 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2473 }
2474 }
2475}
2476
2477#if 0
2478static void
2479embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2480{
2481 ev_idle_stop (EV_A_ idle);
2482}
2483#endif
2484
2485void
2486ev_embed_start (EV_P_ ev_embed *w)
2487{
2488 if (expect_false (ev_is_active (w)))
2489 return;
2490
2491 {
2492 struct ev_loop *loop = w->other;
2493 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2494 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2495 }
2496
2497 ev_set_priority (&w->io, ev_priority (w));
2498 ev_io_start (EV_A_ &w->io);
2499
2500 ev_prepare_init (&w->prepare, embed_prepare_cb);
2501 ev_set_priority (&w->prepare, EV_MINPRI);
2502 ev_prepare_start (EV_A_ &w->prepare);
2503
2504 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2505
2506 ev_start (EV_A_ (W)w, 1);
2507}
2508
2509void
2510ev_embed_stop (EV_P_ ev_embed *w)
2511{
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 ev_io_stop (EV_A_ &w->io);
2517 ev_prepare_stop (EV_A_ &w->prepare);
2518
2519 ev_stop (EV_A_ (W)w);
2520}
2521#endif
2522
2523#if EV_FORK_ENABLE
2524void
2525ev_fork_start (EV_P_ ev_fork *w)
2526{
2527 if (expect_false (ev_is_active (w)))
2528 return;
2529
2530 ev_start (EV_A_ (W)w, ++forkcnt);
2531 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2532 forks [forkcnt - 1] = w;
2533}
2534
2535void
2536ev_fork_stop (EV_P_ ev_fork *w)
2537{
2538 clear_pending (EV_A_ (W)w);
2539 if (expect_false (!ev_is_active (w)))
2540 return;
2541
2542 {
2543 int active = ev_active (w);
2544
2545 forks [active - 1] = forks [--forkcnt];
2546 ev_active (forks [active - 1]) = active;
2547 }
2548
2549 ev_stop (EV_A_ (W)w);
2550}
2551#endif
2552
2553#if EV_ASYNC_ENABLE
2554void
2555ev_async_start (EV_P_ ev_async *w)
2556{
2557 if (expect_false (ev_is_active (w)))
2558 return;
2559
2560 evpipe_init (EV_A);
2561
2562 ev_start (EV_A_ (W)w, ++asynccnt);
2563 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2564 asyncs [asynccnt - 1] = w;
2565}
2566
2567void
2568ev_async_stop (EV_P_ ev_async *w)
2569{
2570 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w)))
2572 return;
2573
2574 {
2575 int active = ev_active (w);
2576
2577 asyncs [active - 1] = asyncs [--asynccnt];
2578 ev_active (asyncs [active - 1]) = active;
2579 }
2580
2581 ev_stop (EV_A_ (W)w);
2582}
2583
2584void
2585ev_async_send (EV_P_ ev_async *w)
2586{
2587 w->sent = 1;
2588 evpipe_write (EV_A_ &gotasync);
2589}
2590#endif
2591
1660/*****************************************************************************/ 2592/*****************************************************************************/
1661 2593
1662struct ev_once 2594struct ev_once
1663{ 2595{
1664 struct ev_io io; 2596 ev_io io;
1665 struct ev_timer to; 2597 ev_timer to;
1666 void (*cb)(int revents, void *arg); 2598 void (*cb)(int revents, void *arg);
1667 void *arg; 2599 void *arg;
1668}; 2600};
1669 2601
1670static void 2602static void
1679 2611
1680 cb (revents, arg); 2612 cb (revents, arg);
1681} 2613}
1682 2614
1683static void 2615static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 2616once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 2617{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2618 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1687} 2619}
1688 2620
1689static void 2621static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 2622once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 2623{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2624 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1693} 2625}
1694 2626
1695void 2627void
1719 ev_timer_set (&once->to, timeout, 0.); 2651 ev_timer_set (&once->to, timeout, 0.);
1720 ev_timer_start (EV_A_ &once->to); 2652 ev_timer_start (EV_A_ &once->to);
1721 } 2653 }
1722} 2654}
1723 2655
2656#if EV_MULTIPLICITY
2657 #include "ev_wrap.h"
2658#endif
2659
1724#ifdef __cplusplus 2660#ifdef __cplusplus
1725} 2661}
1726#endif 2662#endif
1727 2663

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines