ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
158 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 211# else
161# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 241
165#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
168#endif 245#endif
170#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
173#endif 250#endif
174 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
175#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 268# include <winsock.h>
177#endif 269#endif
178 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
179/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 294
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 298
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 299#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 301# define noinline __attribute__ ((noinline))
195#else 302#else
196# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
197# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
198#endif 308#endif
199 309
200#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
202 319
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 322
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
208 325
209typedef struct ev_watcher *W; 326typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
212 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
214 338
215#ifdef _WIN32 339#ifdef _WIN32
216# include "ev_win32.c" 340# include "ev_win32.c"
217#endif 341#endif
218 342
219/*****************************************************************************/ 343/*****************************************************************************/
220 344
221static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
222 346
347void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 349{
225 syserr_cb = cb; 350 syserr_cb = cb;
226} 351}
227 352
228static void 353static void noinline
229syserr (const char *msg) 354syserr (const char *msg)
230{ 355{
231 if (!msg) 356 if (!msg)
232 msg = "(libev) system error"; 357 msg = "(libev) system error";
233 358
238 perror (msg); 363 perror (msg);
239 abort (); 364 abort ();
240 } 365 }
241} 366}
242 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
243static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 384
385void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 387{
247 alloc = cb; 388 alloc = cb;
248} 389}
249 390
250static void * 391inline_speed void *
251ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
252{ 393{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
254 395
255 if (!ptr && size) 396 if (!ptr && size)
256 { 397 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 399 abort ();
279typedef struct 420typedef struct
280{ 421{
281 W w; 422 W w;
282 int events; 423 int events;
283} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
284 432
285#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
286 434
287 struct ev_loop 435 struct ev_loop
288 { 436 {
322 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 472#endif
325} 473}
326 474
327inline ev_tstamp 475ev_tstamp inline_size
328get_clock (void) 476get_clock (void)
329{ 477{
330#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
332 { 480 {
345{ 493{
346 return ev_rt_now; 494 return ev_rt_now;
347} 495}
348#endif 496#endif
349 497
350#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
351 554
352#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
354 { \ 557 { \
355 int newcnt = cur; \ 558 int ocur_ = (cur); \
356 do \ 559 (base) = (type *)array_realloc \
357 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 562 }
366 563
564#if 0
367#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 567 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 571 }
572#endif
374 573
375#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 576
378/*****************************************************************************/ 577/*****************************************************************************/
379 578
380static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
381anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
382{ 609{
383 while (count--) 610 while (count--)
384 { 611 {
385 base->head = 0; 612 base->head = 0;
388 615
389 ++base; 616 ++base;
390 } 617 }
391} 618}
392 619
393void 620void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
421{ 622{
422 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 624 ev_io *w;
424 625
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 627 {
427 int ev = w->events & revents; 628 int ev = w->events & revents;
428 629
429 if (ev) 630 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
432} 633}
433 634
434void 635void
435ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 637{
638 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
438} 640}
439 641
440/*****************************************************************************/ 642void inline_size
441
442inline void
443fd_reify (EV_P) 643fd_reify (EV_P)
444{ 644{
445 int i; 645 int i;
446 646
447 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
448 { 648 {
449 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 651 ev_io *w;
452 652
453 int events = 0; 653 unsigned char events = 0;
454 654
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 656 events |= (unsigned char)w->events;
457 657
458#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
459 if (events) 659 if (events)
460 { 660 {
461 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
462 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
464 } 668 }
465#endif 669#endif
466 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
467 anfd->reify = 0; 675 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
471 } 681 }
472 682
473 fdchangecnt = 0; 683 fdchangecnt = 0;
474} 684}
475 685
476static void 686void inline_size
477fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
478{ 688{
479 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
483 691
692 if (expect_true (!reify))
693 {
484 ++fdchangecnt; 694 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
487} 698}
488 699
489static void 700void inline_speed
490fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
491{ 702{
492 struct ev_io *w; 703 ev_io *w;
493 704
494 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
495 { 706 {
496 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 709 }
499} 710}
500 711
501inline int 712int inline_size
502fd_valid (int fd) 713fd_valid (int fd)
503{ 714{
504#ifdef _WIN32 715#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 716 return _get_osfhandle (fd) != -1;
506#else 717#else
507 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
508#endif 719#endif
509} 720}
510 721
511/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
512static void 723static void noinline
513fd_ebadf (EV_P) 724fd_ebadf (EV_P)
514{ 725{
515 int fd; 726 int fd;
516 727
517 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
520 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
521} 732}
522 733
523/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 735static void noinline
525fd_enomem (EV_P) 736fd_enomem (EV_P)
526{ 737{
527 int fd; 738 int fd;
528 739
529 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
533 return; 744 return;
534 } 745 }
535} 746}
536 747
537/* usually called after fork if method needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 749static void noinline
539fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
540{ 751{
541 int fd; 752 int fd;
542 753
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 755 if (anfds [fd].events)
546 { 756 {
547 anfds [fd].events = 0; 757 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 759 }
550} 760}
551 761
552/*****************************************************************************/ 762/*****************************************************************************/
553 763
554static void 764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define HEAP0 3 /* index of first element in heap */
774
775/* towards the root */
776void inline_speed
555upheap (WT *heap, int k) 777upheap (WT *heap, int k)
556{ 778{
557 WT w = heap [k]; 779 WT w = heap [k];
558 780
559 while (k && heap [k >> 1]->at > w->at) 781 for (;;)
560 { 782 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
561 heap [k] = heap [k >> 1]; 788 heap [k] = heap [p];
562 ((W)heap [k])->active = k + 1; 789 ev_active (heap [k]) = k;
563 k >>= 1; 790 k = p;
564 } 791 }
565 792
566 heap [k] = w; 793 heap [k] = w;
567 ((W)heap [k])->active = k + 1; 794 ev_active (heap [k]) = k;
568
569} 795}
570 796
571static void 797/* away from the root */
798void inline_speed
572downheap (WT *heap, int N, int k) 799downheap (WT *heap, int N, int k)
573{ 800{
574 WT w = heap [k]; 801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
575 803
576 while (k < (N >> 1)) 804 for (;;)
577 { 805 {
578 int j = k << 1; 806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
579 809
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 810 // find minimum child
811 if (expect_true (pos +3 < E))
581 ++j; 812 {
813 (minpos = pos + 0), (minat = (*minpos)->at);
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
817 }
818 else
819 {
820 if (pos >= E)
821 break;
582 822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
583 if (w->at <= heap [j]->at) 829 if (w->at <= minat)
584 break; 830 break;
585 831
586 heap [k] = heap [j]; 832 ev_active (*minpos) = k;
587 ((W)heap [k])->active = k + 1; 833 heap [k] = *minpos;
588 k = j; 834
835 k = minpos - heap;
589 } 836 }
590 837
591 heap [k] = w; 838 heap [k] = w;
839 ev_active (heap [k]) = k;
840}
841
842#else // 4HEAP
843
844#define HEAP0 1
845
846/* towards the root */
847void inline_speed
848upheap (WT *heap, int k)
849{
850 WT w = heap [k];
851
852 for (;;)
853 {
854 int p = k >> 1;
855
856 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at)
858 break;
859
860 heap [k] = heap [p];
861 ev_active (heap [k]) = k;
862 k = p;
863 }
864
865 heap [k] = w;
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break;
881
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c];
592 ((W)heap [k])->active = k + 1; 889 ((W)heap [k])->active = k;
593} 890
891 k = c;
892 }
594 893
595inline void 894 heap [k] = w;
895 ev_active (heap [k]) = k;
896}
897#endif
898
899void inline_size
596adjustheap (WT *heap, int N, int k) 900adjustheap (WT *heap, int N, int k)
597{ 901{
598 upheap (heap, k); 902 upheap (heap, k);
599 downheap (heap, N, k); 903 downheap (heap, N, k);
600} 904}
602/*****************************************************************************/ 906/*****************************************************************************/
603 907
604typedef struct 908typedef struct
605{ 909{
606 WL head; 910 WL head;
607 sig_atomic_t volatile gotsig; 911 EV_ATOMIC_T gotsig;
608} ANSIG; 912} ANSIG;
609 913
610static ANSIG *signals; 914static ANSIG *signals;
611static int signalmax; 915static int signalmax;
612 916
613static int sigpipe [2]; 917static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 918
617static void 919void inline_size
618signals_init (ANSIG *base, int count) 920signals_init (ANSIG *base, int count)
619{ 921{
620 while (count--) 922 while (count--)
621 { 923 {
622 base->head = 0; 924 base->head = 0;
624 926
625 ++base; 927 ++base;
626 } 928 }
627} 929}
628 930
629static void 931/*****************************************************************************/
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635 932
636 signals [signum - 1].gotsig = 1; 933void inline_speed
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 934fd_intern (int fd)
682{ 935{
683#ifdef _WIN32 936#ifdef _WIN32
684 int arg = 1; 937 int arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 940 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 941 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 942#endif
690} 943}
691 944
945static void noinline
946evpipe_init (EV_P)
947{
948 if (!ev_is_active (&pipeev))
949 {
950#if EV_USE_EVENTFD
951 if ((evfd = eventfd (0, 0)) >= 0)
952 {
953 evpipe [0] = -1;
954 fd_intern (evfd);
955 ev_io_set (&pipeev, evfd, EV_READ);
956 }
957 else
958#endif
959 {
960 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe");
962
963 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ);
966 }
967
968 ev_io_start (EV_A_ &pipeev);
969 ev_unref (EV_A); /* watcher should not keep loop alive */
970 }
971}
972
973void inline_size
974evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{
976 if (!*flag)
977 {
978 int old_errno = errno; /* save errno because write might clobber it */
979
980 *flag = 1;
981
982#if EV_USE_EVENTFD
983 if (evfd >= 0)
984 {
985 uint64_t counter = 1;
986 write (evfd, &counter, sizeof (uint64_t));
987 }
988 else
989#endif
990 write (evpipe [1], &old_errno, 1);
991
992 errno = old_errno;
993 }
994}
995
692static void 996static void
693siginit (EV_P) 997pipecb (EV_P_ ev_io *iow, int revents)
694{ 998{
695 fd_intern (sigpipe [0]); 999#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1000 if (evfd >= 0)
1001 {
1002 uint64_t counter;
1003 read (evfd, &counter, sizeof (uint64_t));
1004 }
1005 else
1006#endif
1007 {
1008 char dummy;
1009 read (evpipe [0], &dummy, 1);
1010 }
697 1011
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1012 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1013 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 int signum;
1015 gotsig = 0;
1016
1017 for (signum = signalmax; signum--; )
1018 if (signals [signum].gotsig)
1019 ev_feed_signal_event (EV_A_ signum + 1);
1020 }
1021
1022#if EV_ASYNC_ENABLE
1023 if (gotasync)
1024 {
1025 int i;
1026 gotasync = 0;
1027
1028 for (i = asynccnt; i--; )
1029 if (asyncs [i]->sent)
1030 {
1031 asyncs [i]->sent = 0;
1032 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1033 }
1034 }
1035#endif
701} 1036}
702 1037
703/*****************************************************************************/ 1038/*****************************************************************************/
704 1039
705static struct ev_child *childs [PID_HASHSIZE]; 1040static void
1041ev_sighandler (int signum)
1042{
1043#if EV_MULTIPLICITY
1044 struct ev_loop *loop = &default_loop_struct;
1045#endif
1046
1047#if _WIN32
1048 signal (signum, ev_sighandler);
1049#endif
1050
1051 signals [signum - 1].gotsig = 1;
1052 evpipe_write (EV_A_ &gotsig);
1053}
1054
1055void noinline
1056ev_feed_signal_event (EV_P_ int signum)
1057{
1058 WL w;
1059
1060#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1062#endif
1063
1064 --signum;
1065
1066 if (signum < 0 || signum >= signalmax)
1067 return;
1068
1069 signals [signum].gotsig = 0;
1070
1071 for (w = signals [signum].head; w; w = w->next)
1072 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1073}
1074
1075/*****************************************************************************/
1076
1077static WL childs [EV_PID_HASHSIZE];
706 1078
707#ifndef _WIN32 1079#ifndef _WIN32
708 1080
709static struct ev_signal childev; 1081static ev_signal childev;
1082
1083#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0
1085#endif
1086
1087void inline_speed
1088child_reap (EV_P_ int chain, int pid, int status)
1089{
1090 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092
1093 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1094 {
1095 if ((w->pid == pid || !w->pid)
1096 && (!traced || (w->flags & 1)))
1097 {
1098 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1099 w->rpid = pid;
1100 w->rstatus = status;
1101 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1102 }
1103 }
1104}
710 1105
711#ifndef WCONTINUED 1106#ifndef WCONTINUED
712# define WCONTINUED 0 1107# define WCONTINUED 0
713#endif 1108#endif
714 1109
715static void 1110static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1111childcb (EV_P_ ev_signal *sw, int revents)
732{ 1112{
733 int pid, status; 1113 int pid, status;
734 1114
1115 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1116 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1117 if (!WCONTINUED
1118 || errno != EINVAL
1119 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1120 return;
1121
737 /* make sure we are called again until all childs have been reaped */ 1122 /* make sure we are called again until all children have been reaped */
1123 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1124 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1125
740 child_reap (EV_A_ sw, pid, pid, status); 1126 child_reap (EV_A_ pid, pid, status);
1127 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1128 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1129}
744 1130
745#endif 1131#endif
746 1132
747/*****************************************************************************/ 1133/*****************************************************************************/
773{ 1159{
774 return EV_VERSION_MINOR; 1160 return EV_VERSION_MINOR;
775} 1161}
776 1162
777/* return true if we are running with elevated privileges and should ignore env variables */ 1163/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1164int inline_size
779enable_secure (void) 1165enable_secure (void)
780{ 1166{
781#ifdef _WIN32 1167#ifdef _WIN32
782 return 0; 1168 return 0;
783#else 1169#else
785 || getgid () != getegid (); 1171 || getgid () != getegid ();
786#endif 1172#endif
787} 1173}
788 1174
789unsigned int 1175unsigned int
790ev_method (EV_P) 1176ev_supported_backends (void)
791{ 1177{
792 return method; 1178 unsigned int flags = 0;
793}
794 1179
795static void 1180 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1181 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1182 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1183 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1184 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1185
1186 return flags;
1187}
1188
1189unsigned int
1190ev_recommended_backends (void)
1191{
1192 unsigned int flags = ev_supported_backends ();
1193
1194#ifndef __NetBSD__
1195 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE;
1198#endif
1199#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation
1201 flags &= ~EVBACKEND_POLL;
1202#endif
1203
1204 return flags;
1205}
1206
1207unsigned int
1208ev_embeddable_backends (void)
1209{
1210 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1211
1212 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1213 /* please fix it and tell me how to detect the fix */
1214 flags &= ~EVBACKEND_EPOLL;
1215
1216 return flags;
1217}
1218
1219unsigned int
1220ev_backend (EV_P)
1221{
1222 return backend;
1223}
1224
1225unsigned int
1226ev_loop_count (EV_P)
1227{
1228 return loop_count;
1229}
1230
1231void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{
1234 io_blocktime = interval;
1235}
1236
1237void
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{
1240 timeout_blocktime = interval;
1241}
1242
1243static void noinline
796loop_init (EV_P_ unsigned int flags) 1244loop_init (EV_P_ unsigned int flags)
797{ 1245{
798 if (!method) 1246 if (!backend)
799 { 1247 {
800#if EV_USE_MONOTONIC 1248#if EV_USE_MONOTONIC
801 { 1249 {
802 struct timespec ts; 1250 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1252 have_monotonic = 1;
805 } 1253 }
806#endif 1254#endif
807 1255
808 ev_rt_now = ev_time (); 1256 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1257 mn_now = get_clock ();
810 now_floor = mn_now; 1258 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1259 rtmn_diff = ev_rt_now - mn_now;
812 1260
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1261 io_blocktime = 0.;
1262 timeout_blocktime = 0.;
1263 backend = 0;
1264 backend_fd = -1;
1265 gotasync = 0;
1266#if EV_USE_INOTIFY
1267 fs_fd = -2;
1268#endif
1269
1270 /* pid check not overridable via env */
1271#ifndef _WIN32
1272 if (flags & EVFLAG_FORKCHECK)
1273 curpid = getpid ();
1274#endif
1275
1276 if (!(flags & EVFLAG_NOENV)
1277 && !enable_secure ()
1278 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1279 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1280
816 if (!(flags & 0x0000ffff)) 1281 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1282 flags |= ev_recommended_backends ();
818 1283
819 method = 0;
820#if EV_USE_PORT 1284#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1285 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1286#endif
823#if EV_USE_KQUEUE 1287#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1288 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1289#endif
826#if EV_USE_EPOLL 1290#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1291 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1292#endif
829#if EV_USE_POLL 1293#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1294 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1295#endif
832#if EV_USE_SELECT 1296#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1298#endif
835 1299
836 ev_init (&sigev, sigcb); 1300 ev_init (&pipeev, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1301 ev_set_priority (&pipeev, EV_MAXPRI);
838 } 1302 }
839} 1303}
840 1304
841static void 1305static void noinline
842loop_destroy (EV_P) 1306loop_destroy (EV_P)
843{ 1307{
844 int i; 1308 int i;
845 1309
1310 if (ev_is_active (&pipeev))
1311 {
1312 ev_ref (EV_A); /* signal watcher */
1313 ev_io_stop (EV_A_ &pipeev);
1314
1315#if EV_USE_EVENTFD
1316 if (evfd >= 0)
1317 close (evfd);
1318#endif
1319
1320 if (evpipe [0] >= 0)
1321 {
1322 close (evpipe [0]);
1323 close (evpipe [1]);
1324 }
1325 }
1326
1327#if EV_USE_INOTIFY
1328 if (fs_fd >= 0)
1329 close (fs_fd);
1330#endif
1331
1332 if (backend_fd >= 0)
1333 close (backend_fd);
1334
846#if EV_USE_PORT 1335#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1336 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1337#endif
849#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1339 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1340#endif
852#if EV_USE_EPOLL 1341#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1342 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1343#endif
855#if EV_USE_POLL 1344#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1345 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1346#endif
858#if EV_USE_SELECT 1347#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1348 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1349#endif
861 1350
862 for (i = NUMPRI; i--; ) 1351 for (i = NUMPRI; i--; )
1352 {
863 array_free (pending, [i]); 1353 array_free (pending, [i]);
1354#if EV_IDLE_ENABLE
1355 array_free (idle, [i]);
1356#endif
1357 }
1358
1359 ev_free (anfds); anfdmax = 0;
864 1360
865 /* have to use the microsoft-never-gets-it-right macro */ 1361 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0); 1362 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1363 array_free (timer, EMPTY);
868#if EV_PERIODICS 1364#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1365 array_free (periodic, EMPTY);
870#endif 1366#endif
1367#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1368 array_free (fork, EMPTY);
1369#endif
872 array_free (prepare, EMPTY0); 1370 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1371 array_free (check, EMPTY);
1372#if EV_ASYNC_ENABLE
1373 array_free (async, EMPTY);
1374#endif
874 1375
875 method = 0; 1376 backend = 0;
876} 1377}
877 1378
878static void 1379#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P);
1381#endif
1382
1383void inline_size
879loop_fork (EV_P) 1384loop_fork (EV_P)
880{ 1385{
881#if EV_USE_PORT 1386#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1388#endif
884#if EV_USE_KQUEUE 1389#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1390 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1391#endif
887#if EV_USE_EPOLL 1392#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1393 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1394#endif
1395#if EV_USE_INOTIFY
1396 infy_fork (EV_A);
1397#endif
890 1398
891 if (ev_is_active (&sigev)) 1399 if (ev_is_active (&pipeev))
892 { 1400 {
893 /* default loop */ 1401 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */
1403 gotsig = 1;
1404#if EV_ASYNC_ENABLE
1405 gotasync = 1;
1406#endif
894 1407
895 ev_ref (EV_A); 1408 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1409 ev_io_stop (EV_A_ &pipeev);
1410
1411#if EV_USE_EVENTFD
1412 if (evfd >= 0)
1413 close (evfd);
1414#endif
1415
1416 if (evpipe [0] >= 0)
1417 {
897 close (sigpipe [0]); 1418 close (evpipe [0]);
898 close (sigpipe [1]); 1419 close (evpipe [1]);
1420 }
899 1421
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1422 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ);
904 } 1425 }
905 1426
906 postfork = 0; 1427 postfork = 0;
907} 1428}
908 1429
914 1435
915 memset (loop, 0, sizeof (struct ev_loop)); 1436 memset (loop, 0, sizeof (struct ev_loop));
916 1437
917 loop_init (EV_A_ flags); 1438 loop_init (EV_A_ flags);
918 1439
919 if (ev_method (EV_A)) 1440 if (ev_backend (EV_A))
920 return loop; 1441 return loop;
921 1442
922 return 0; 1443 return 0;
923} 1444}
924 1445
930} 1451}
931 1452
932void 1453void
933ev_loop_fork (EV_P) 1454ev_loop_fork (EV_P)
934{ 1455{
935 postfork = 1; 1456 postfork = 1; /* must be in line with ev_default_fork */
936} 1457}
937
938#endif 1458#endif
939 1459
940#if EV_MULTIPLICITY 1460#if EV_MULTIPLICITY
941struct ev_loop * 1461struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1462ev_default_loop_init (unsigned int flags)
943#else 1463#else
944int 1464int
945ev_default_loop (unsigned int flags) 1465ev_default_loop (unsigned int flags)
946#endif 1466#endif
947{ 1467{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1468 if (!ev_default_loop_ptr)
953 { 1469 {
954#if EV_MULTIPLICITY 1470#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1471 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1472#else
957 ev_default_loop_ptr = 1; 1473 ev_default_loop_ptr = 1;
958#endif 1474#endif
959 1475
960 loop_init (EV_A_ flags); 1476 loop_init (EV_A_ flags);
961 1477
962 if (ev_method (EV_A)) 1478 if (ev_backend (EV_A))
963 { 1479 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1480#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1481 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1482 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1483 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1484 ev_unref (EV_A); /* child watcher should not keep loop alive */
987#ifndef _WIN32 1501#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1502 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1503 ev_signal_stop (EV_A_ &childev);
990#endif 1504#endif
991 1505
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1506 loop_destroy (EV_A);
999} 1507}
1000 1508
1001void 1509void
1002ev_default_fork (void) 1510ev_default_fork (void)
1003{ 1511{
1004#if EV_MULTIPLICITY 1512#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1513 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1514#endif
1007 1515
1008 if (method) 1516 if (backend)
1009 postfork = 1; 1517 postfork = 1; /* must be in line with ev_loop_fork */
1010} 1518}
1011 1519
1012/*****************************************************************************/ 1520/*****************************************************************************/
1013 1521
1014static int 1522void
1015any_pending (EV_P) 1523ev_invoke (EV_P_ void *w, int revents)
1016{ 1524{
1017 int pri; 1525 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1526}
1025 1527
1026inline void 1528void inline_speed
1027call_pending (EV_P) 1529call_pending (EV_P)
1028{ 1530{
1029 int pri; 1531 int pri;
1030 1532
1031 for (pri = NUMPRI; pri--; ) 1533 for (pri = NUMPRI; pri--; )
1033 { 1535 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1537
1036 if (expect_true (p->w)) 1538 if (expect_true (p->w))
1037 { 1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541
1038 p->w->pending = 0; 1542 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1543 EV_CB_INVOKE (p->w, p->events);
1040 } 1544 }
1041 } 1545 }
1042} 1546}
1043 1547
1044inline void 1548#if EV_IDLE_ENABLE
1549void inline_size
1550idle_reify (EV_P)
1551{
1552 if (expect_false (idleall))
1553 {
1554 int pri;
1555
1556 for (pri = NUMPRI; pri--; )
1557 {
1558 if (pendingcnt [pri])
1559 break;
1560
1561 if (idlecnt [pri])
1562 {
1563 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1564 break;
1565 }
1566 }
1567 }
1568}
1569#endif
1570
1571void inline_size
1045timers_reify (EV_P) 1572timers_reify (EV_P)
1046{ 1573{
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1048 { 1575 {
1049 struct ev_timer *w = timers [0]; 1576 ev_timer *w = (ev_timer *)timers [HEAP0];
1050 1577
1051 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1052 1579
1053 /* first reschedule or stop timer */ 1580 /* first reschedule or stop timer */
1054 if (w->repeat) 1581 if (w->repeat)
1055 { 1582 {
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1584
1058 ((WT)w)->at += w->repeat; 1585 ev_at (w) += w->repeat;
1059 if (((WT)w)->at < mn_now) 1586 if (ev_at (w) < mn_now)
1060 ((WT)w)->at = mn_now; 1587 ev_at (w) = mn_now;
1061 1588
1062 downheap ((WT *)timers, timercnt, 0); 1589 downheap (timers, timercnt, HEAP0);
1063 } 1590 }
1064 else 1591 else
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1593
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1068 } 1595 }
1069} 1596}
1070 1597
1071#if EV_PERIODICS 1598#if EV_PERIODIC_ENABLE
1072inline void 1599void inline_size
1073periodics_reify (EV_P) 1600periodics_reify (EV_P)
1074{ 1601{
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1076 { 1603 {
1077 struct ev_periodic *w = periodics [0]; 1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1078 1605
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1607
1081 /* first reschedule or stop timer */ 1608 /* first reschedule or stop timer */
1082 if (w->reschedule_cb) 1609 if (w->reschedule_cb)
1083 { 1610 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1086 downheap ((WT *)periodics, periodiccnt, 0); 1613 downheap (periodics, periodiccnt, 1);
1087 } 1614 }
1088 else if (w->interval) 1615 else if (w->interval)
1089 { 1616 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0); 1620 downheap (periodics, periodiccnt, HEAP0);
1093 } 1621 }
1094 else 1622 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1624
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 } 1626 }
1099} 1627}
1100 1628
1101static void 1629static void noinline
1102periodics_reschedule (EV_P) 1630periodics_reschedule (EV_P)
1103{ 1631{
1104 int i; 1632 int i;
1105 1633
1106 /* adjust periodics after time jump */ 1634 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i) 1635 for (i = 1; i <= periodiccnt; ++i)
1108 { 1636 {
1109 struct ev_periodic *w = periodics [i]; 1637 ev_periodic *w = (ev_periodic *)periodics [i];
1110 1638
1111 if (w->reschedule_cb) 1639 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval) 1641 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1115 } 1643 }
1116 1644
1117 /* now rebuild the heap */ 1645 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; ) 1646 for (i = periodiccnt >> 1; --i; )
1119 downheap ((WT *)periodics, periodiccnt, i); 1647 downheap (periodics, periodiccnt, i + HEAP0);
1120} 1648}
1121#endif 1649#endif
1122 1650
1123inline int 1651void inline_speed
1124time_update_monotonic (EV_P) 1652time_update (EV_P_ ev_tstamp max_block)
1125{ 1653{
1654 int i;
1655
1656#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic))
1658 {
1659 ev_tstamp odiff = rtmn_diff;
1660
1126 mn_now = get_clock (); 1661 mn_now = get_clock ();
1127 1662
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1664 /* interpolate in the meantime */
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1665 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 { 1666 {
1130 ev_rt_now = rtmn_diff + mn_now; 1667 ev_rt_now = rtmn_diff + mn_now;
1131 return 0; 1668 return;
1132 } 1669 }
1133 else 1670
1134 {
1135 now_floor = mn_now; 1671 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1672 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1673
1141inline void 1674 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1675 * on the choice of "4": one iteration isn't enough,
1143{ 1676 * in case we get preempted during the calls to
1144 int i; 1677 * ev_time and get_clock. a second call is almost guaranteed
1145 1678 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1679 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1680 * in the unlikely event of having been preempted here.
1148 { 1681 */
1149 if (time_update_monotonic (EV_A)) 1682 for (i = 4; --i; )
1150 { 1683 {
1151 ev_tstamp odiff = rtmn_diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1156 1685
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1686 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 1687 return; /* all is well */
1159 1688
1160 ev_rt_now = ev_time (); 1689 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 1690 mn_now = get_clock ();
1162 now_floor = mn_now; 1691 now_floor = mn_now;
1163 } 1692 }
1164 1693
1165# if EV_PERIODICS 1694# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A);
1696# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 }
1700 else
1701#endif
1702 {
1703 ev_rt_now = ev_time ();
1704
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 {
1707#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 1708 periodics_reschedule (EV_A);
1167# endif 1709#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */ 1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1170 } 1713 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 1714
1188 mn_now = ev_rt_now; 1715 mn_now = ev_rt_now;
1189 } 1716 }
1190} 1717}
1191 1718
1204static int loop_done; 1731static int loop_done;
1205 1732
1206void 1733void
1207ev_loop (EV_P_ int flags) 1734ev_loop (EV_P_ int flags)
1208{ 1735{
1209 double block; 1736 loop_done = EVUNLOOP_CANCEL;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1211 1737
1212 while (activecnt) 1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739
1740 do
1213 { 1741 {
1742#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid))
1745 {
1746 curpid = getpid ();
1747 postfork = 1;
1748 }
1749#endif
1750
1751#if EV_FORK_ENABLE
1752 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork))
1754 if (forkcnt)
1755 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A);
1758 }
1759#endif
1760
1214 /* queue check watchers (and execute them) */ 1761 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 1762 if (expect_false (preparecnt))
1216 { 1763 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 1765 call_pending (EV_A);
1219 } 1766 }
1220 1767
1768 if (expect_false (!activecnt))
1769 break;
1770
1221 /* we might have forked, so reify kernel state if necessary */ 1771 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 1772 if (expect_false (postfork))
1223 loop_fork (EV_A); 1773 loop_fork (EV_A);
1224 1774
1225 /* update fd-related kernel structures */ 1775 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 1776 fd_reify (EV_A);
1227 1777
1228 /* calculate blocking time */ 1778 /* calculate blocking time */
1779 {
1780 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.;
1229 1782
1230 /* we only need this for !monotonic clock or timers, but as we basically 1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 1784 {
1238 ev_rt_now = ev_time (); 1785 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 1786 time_update (EV_A_ 1e100);
1240 }
1241 1787
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 1788 waittime = MAX_BLOCKTIME;
1247 1789
1248 if (timercnt) 1790 if (timercnt)
1249 { 1791 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 1793 if (waittime > to) waittime = to;
1252 } 1794 }
1253 1795
1254#if EV_PERIODICS 1796#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 1797 if (periodiccnt)
1256 { 1798 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 1800 if (waittime > to) waittime = to;
1259 } 1801 }
1260#endif 1802#endif
1261 1803
1262 if (expect_false (block < 0.)) block = 0.; 1804 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime;
1806
1807 sleeptime = waittime - backend_fudge;
1808
1809 if (expect_true (sleeptime > io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 {
1814 ev_sleep (sleeptime);
1815 waittime -= sleeptime;
1816 }
1263 } 1817 }
1264 1818
1265 method_poll (EV_A_ block); 1819 ++loop_count;
1820 backend_poll (EV_A_ waittime);
1266 1821
1267 /* update ev_rt_now, do magic */ 1822 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 1823 time_update (EV_A_ waittime + sleeptime);
1824 }
1269 1825
1270 /* queue pending timers and reschedule them */ 1826 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 1827 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 1828#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 1829 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 1830#endif
1275 1831
1832#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 1833 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 1834 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1835#endif
1279 1836
1280 /* queue check watchers, to be executed first */ 1837 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 1838 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 1840
1284 call_pending (EV_A); 1841 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 1842 }
1843 while (expect_true (
1844 activecnt
1845 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 ));
1289 1848
1290 if (loop_done != 2) 1849 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 1850 loop_done = EVUNLOOP_CANCEL;
1292} 1851}
1293 1852
1294void 1853void
1295ev_unloop (EV_P_ int how) 1854ev_unloop (EV_P_ int how)
1296{ 1855{
1297 loop_done = how; 1856 loop_done = how;
1298} 1857}
1299 1858
1300/*****************************************************************************/ 1859/*****************************************************************************/
1301 1860
1302inline void 1861void inline_size
1303wlist_add (WL *head, WL elem) 1862wlist_add (WL *head, WL elem)
1304{ 1863{
1305 elem->next = *head; 1864 elem->next = *head;
1306 *head = elem; 1865 *head = elem;
1307} 1866}
1308 1867
1309inline void 1868void inline_size
1310wlist_del (WL *head, WL elem) 1869wlist_del (WL *head, WL elem)
1311{ 1870{
1312 while (*head) 1871 while (*head)
1313 { 1872 {
1314 if (*head == elem) 1873 if (*head == elem)
1319 1878
1320 head = &(*head)->next; 1879 head = &(*head)->next;
1321 } 1880 }
1322} 1881}
1323 1882
1324inline void 1883void inline_speed
1325ev_clear_pending (EV_P_ W w) 1884clear_pending (EV_P_ W w)
1326{ 1885{
1327 if (w->pending) 1886 if (w->pending)
1328 { 1887 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1888 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 1889 w->pending = 0;
1331 } 1890 }
1332} 1891}
1333 1892
1334inline void 1893int
1894ev_clear_pending (EV_P_ void *w)
1895{
1896 W w_ = (W)w;
1897 int pending = w_->pending;
1898
1899 if (expect_true (pending))
1900 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1902 w_->pending = 0;
1903 p->w = 0;
1904 return p->events;
1905 }
1906 else
1907 return 0;
1908}
1909
1910void inline_size
1911pri_adjust (EV_P_ W w)
1912{
1913 int pri = w->priority;
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri;
1917}
1918
1919void inline_speed
1335ev_start (EV_P_ W w, int active) 1920ev_start (EV_P_ W w, int active)
1336{ 1921{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1922 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 1923 w->active = active;
1341 ev_ref (EV_A); 1924 ev_ref (EV_A);
1342} 1925}
1343 1926
1344inline void 1927void inline_size
1345ev_stop (EV_P_ W w) 1928ev_stop (EV_P_ W w)
1346{ 1929{
1347 ev_unref (EV_A); 1930 ev_unref (EV_A);
1348 w->active = 0; 1931 w->active = 0;
1349} 1932}
1350 1933
1351/*****************************************************************************/ 1934/*****************************************************************************/
1352 1935
1353void 1936void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 1937ev_io_start (EV_P_ ev_io *w)
1355{ 1938{
1356 int fd = w->fd; 1939 int fd = w->fd;
1357 1940
1358 if (expect_false (ev_is_active (w))) 1941 if (expect_false (ev_is_active (w)))
1359 return; 1942 return;
1360 1943
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 1944 assert (("ev_io_start called with negative fd", fd >= 0));
1362 1945
1363 ev_start (EV_A_ (W)w, 1); 1946 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1948 wlist_add (&anfds[fd].head, (WL)w);
1366 1949
1367 fd_change (EV_A_ fd); 1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET;
1368} 1952}
1369 1953
1370void 1954void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 1955ev_io_stop (EV_P_ ev_io *w)
1372{ 1956{
1373 ev_clear_pending (EV_A_ (W)w); 1957 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 1958 if (expect_false (!ev_is_active (w)))
1375 return; 1959 return;
1376 1960
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 1962
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1963 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 1964 ev_stop (EV_A_ (W)w);
1381 1965
1382 fd_change (EV_A_ w->fd); 1966 fd_change (EV_A_ w->fd, 1);
1383} 1967}
1384 1968
1385void 1969void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 1970ev_timer_start (EV_P_ ev_timer *w)
1387{ 1971{
1388 if (expect_false (ev_is_active (w))) 1972 if (expect_false (ev_is_active (w)))
1389 return; 1973 return;
1390 1974
1391 ((WT)w)->at += mn_now; 1975 ev_at (w) += mn_now;
1392 1976
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 1978
1395 ev_start (EV_A_ (W)w, ++timercnt); 1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1397 timers [timercnt - 1] = w; 1981 timers [ev_active (w)] = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 1982 upheap (timers, ev_active (w));
1399 1983
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1401} 1985}
1402 1986
1403void 1987void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 1988ev_timer_stop (EV_P_ ev_timer *w)
1405{ 1989{
1406 ev_clear_pending (EV_A_ (W)w); 1990 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1991 if (expect_false (!ev_is_active (w)))
1408 return; 1992 return;
1409 1993
1994 {
1995 int active = ev_active (w);
1996
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1997 assert (("internal timer heap corruption", timers [active] == (WT)w));
1411 1998
1412 if (expect_true (((W)w)->active < timercnt--)) 1999 if (expect_true (active < timercnt + HEAP0 - 1))
1413 { 2000 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2001 timers [active] = timers [timercnt + HEAP0 - 1];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2002 adjustheap (timers, timercnt, active);
1416 } 2003 }
1417 2004
1418 ((WT)w)->at -= mn_now; 2005 --timercnt;
2006 }
2007
2008 ev_at (w) -= mn_now;
1419 2009
1420 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1421} 2011}
1422 2012
1423void 2013void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2014ev_timer_again (EV_P_ ev_timer *w)
1425{ 2015{
1426 if (ev_is_active (w)) 2016 if (ev_is_active (w))
1427 { 2017 {
1428 if (w->repeat) 2018 if (w->repeat)
1429 { 2019 {
1430 ((WT)w)->at = mn_now + w->repeat; 2020 ev_at (w) = mn_now + w->repeat;
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2021 adjustheap (timers, timercnt, ev_active (w));
1432 } 2022 }
1433 else 2023 else
1434 ev_timer_stop (EV_A_ w); 2024 ev_timer_stop (EV_A_ w);
1435 } 2025 }
1436 else if (w->repeat) 2026 else if (w->repeat)
1437 { 2027 {
1438 w->at = w->repeat; 2028 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2029 ev_timer_start (EV_A_ w);
1440 } 2030 }
1441} 2031}
1442 2032
1443#if EV_PERIODICS 2033#if EV_PERIODIC_ENABLE
1444void 2034void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2035ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2036{
1447 if (expect_false (ev_is_active (w))) 2037 if (expect_false (ev_is_active (w)))
1448 return; 2038 return;
1449 2039
1450 if (w->reschedule_cb) 2040 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2042 else if (w->interval)
1453 { 2043 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2045 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2047 }
2048 else
2049 ev_at (w) = w->offset;
1458 2050
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2053 periodics [ev_active (w)] = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2054 upheap (periodics, ev_active (w));
1463 2055
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1465} 2057}
1466 2058
1467void 2059void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2060ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2061{
1470 ev_clear_pending (EV_A_ (W)w); 2062 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2063 if (expect_false (!ev_is_active (w)))
1472 return; 2064 return;
1473 2065
2066 {
2067 int active = ev_active (w);
2068
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1475 2070
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2071 if (expect_true (active < periodiccnt + HEAP0 - 1))
1477 { 2072 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2074 adjustheap (periodics, periodiccnt, active);
1480 } 2075 }
2076
2077 --periodiccnt;
2078 }
1481 2079
1482 ev_stop (EV_A_ (W)w); 2080 ev_stop (EV_A_ (W)w);
1483} 2081}
1484 2082
1485void 2083void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2084ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2085{
1488 /* TODO: use adjustheap and recalculation */ 2086 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2087 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2088 ev_periodic_start (EV_A_ w);
1491} 2089}
1492#endif 2090#endif
1493 2091
1494void 2092#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2093# define SA_RESTART 0
2094#endif
2095
2096void noinline
2097ev_signal_start (EV_P_ ev_signal *w)
1496{ 2098{
2099#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif
1497 if (expect_false (ev_is_active (w))) 2102 if (expect_false (ev_is_active (w)))
1498 return; 2103 return;
1499 2104
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART
1561# define SA_RESTART 0
1562#endif
1563
1564void
1565ev_signal_start (EV_P_ struct ev_signal *w)
1566{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1574 2106
2107 evpipe_init (EV_A);
2108
2109 {
2110#ifndef _WIN32
2111 sigset_t full, prev;
2112 sigfillset (&full);
2113 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif
2115
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2117
2118#ifndef _WIN32
2119 sigprocmask (SIG_SETMASK, &prev, 0);
2120#endif
2121 }
2122
1575 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2124 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 2125
1579 if (!((WL)w)->next) 2126 if (!((WL)w)->next)
1580 { 2127 {
1581#if _WIN32 2128#if _WIN32
1582 signal (w->signum, sighandler); 2129 signal (w->signum, ev_sighandler);
1583#else 2130#else
1584 struct sigaction sa; 2131 struct sigaction sa;
1585 sa.sa_handler = sighandler; 2132 sa.sa_handler = ev_sighandler;
1586 sigfillset (&sa.sa_mask); 2133 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0); 2135 sigaction (w->signum, &sa, 0);
1589#endif 2136#endif
1590 } 2137 }
1591} 2138}
1592 2139
1593void 2140void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 2141ev_signal_stop (EV_P_ ev_signal *w)
1595{ 2142{
1596 ev_clear_pending (EV_A_ (W)w); 2143 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2144 if (expect_false (!ev_is_active (w)))
1598 return; 2145 return;
1599 2146
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2147 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 2148 ev_stop (EV_A_ (W)w);
1602 2149
1603 if (!signals [w->signum - 1].head) 2150 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 2151 signal (w->signum, SIG_DFL);
1605} 2152}
1606 2153
1607void 2154void
1608ev_child_start (EV_P_ struct ev_child *w) 2155ev_child_start (EV_P_ ev_child *w)
1609{ 2156{
1610#if EV_MULTIPLICITY 2157#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 2159#endif
1613 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1614 return; 2161 return;
1615 2162
1616 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618} 2165}
1619 2166
1620void 2167void
1621ev_child_stop (EV_P_ struct ev_child *w) 2168ev_child_stop (EV_P_ ev_child *w)
1622{ 2169{
1623 ev_clear_pending (EV_A_ (W)w); 2170 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2171 if (expect_false (!ev_is_active (w)))
1625 return; 2172 return;
1626 2173
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 2175 ev_stop (EV_A_ (W)w);
1629} 2176}
1630 2177
2178#if EV_STAT_ENABLE
2179
2180# ifdef _WIN32
2181# undef lstat
2182# define lstat(a,b) _stati64 (a,b)
2183# endif
2184
2185#define DEF_STAT_INTERVAL 5.0074891
2186#define MIN_STAT_INTERVAL 0.1074891
2187
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189
2190#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192
2192
2193static void noinline
2194infy_add (EV_P_ ev_stat *w)
2195{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197
2198 if (w->wd < 0)
2199 {
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2201
2202 /* monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */
2204 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 {
2207 char path [4096];
2208 strcpy (path, w->path);
2209
2210 do
2211 {
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214
2215 char *pend = strrchr (path, '/');
2216
2217 if (!pend)
2218 break; /* whoops, no '/', complain to your admin */
2219
2220 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 }
2225 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228
2229 if (w->wd >= 0)
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2231}
2232
2233static void noinline
2234infy_del (EV_P_ ev_stat *w)
2235{
2236 int slot;
2237 int wd = w->wd;
2238
2239 if (wd < 0)
2240 return;
2241
2242 w->wd = -2;
2243 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2244 wlist_del (&fs_hash [slot].head, (WL)w);
2245
2246 /* remove this watcher, if others are watching it, they will rearm */
2247 inotify_rm_watch (fs_fd, wd);
2248}
2249
2250static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{
2253 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev);
2257 else
2258 {
2259 WL w_;
2260
2261 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2262 {
2263 ev_stat *w = (ev_stat *)w_;
2264 w_ = w_->next; /* lets us remove this watcher and all before it */
2265
2266 if (w->wd == wd || wd == -1)
2267 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 {
2270 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */
2272 }
2273
2274 stat_timer_cb (EV_A_ &w->timer, 0);
2275 }
2276 }
2277 }
2278}
2279
2280static void
2281infy_cb (EV_P_ ev_io *w, int revents)
2282{
2283 char buf [EV_INOTIFY_BUFSIZE];
2284 struct inotify_event *ev = (struct inotify_event *)buf;
2285 int ofs;
2286 int len = read (fs_fd, buf, sizeof (buf));
2287
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2290}
2291
2292void inline_size
2293infy_init (EV_P)
2294{
2295 if (fs_fd != -2)
2296 return;
2297
2298 fs_fd = inotify_init ();
2299
2300 if (fs_fd >= 0)
2301 {
2302 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2303 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w);
2305 }
2306}
2307
2308void inline_size
2309infy_fork (EV_P)
2310{
2311 int slot;
2312
2313 if (fs_fd < 0)
2314 return;
2315
2316 close (fs_fd);
2317 fs_fd = inotify_init ();
2318
2319 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2320 {
2321 WL w_ = fs_hash [slot].head;
2322 fs_hash [slot].head = 0;
2323
2324 while (w_)
2325 {
2326 ev_stat *w = (ev_stat *)w_;
2327 w_ = w_->next; /* lets us add this watcher */
2328
2329 w->wd = -1;
2330
2331 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else
2334 ev_timer_start (EV_A_ &w->timer);
2335 }
2336
2337 }
2338}
2339
2340#endif
2341
2342void
2343ev_stat_stat (EV_P_ ev_stat *w)
2344{
2345 if (lstat (w->path, &w->attr) < 0)
2346 w->attr.st_nlink = 0;
2347 else if (!w->attr.st_nlink)
2348 w->attr.st_nlink = 1;
2349}
2350
2351static void noinline
2352stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2353{
2354 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2355
2356 /* we copy this here each the time so that */
2357 /* prev has the old value when the callback gets invoked */
2358 w->prev = w->attr;
2359 ev_stat_stat (EV_A_ w);
2360
2361 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2362 if (
2363 w->prev.st_dev != w->attr.st_dev
2364 || w->prev.st_ino != w->attr.st_ino
2365 || w->prev.st_mode != w->attr.st_mode
2366 || w->prev.st_nlink != w->attr.st_nlink
2367 || w->prev.st_uid != w->attr.st_uid
2368 || w->prev.st_gid != w->attr.st_gid
2369 || w->prev.st_rdev != w->attr.st_rdev
2370 || w->prev.st_size != w->attr.st_size
2371 || w->prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime
2374 ) {
2375 #if EV_USE_INOTIFY
2376 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */
2379 #endif
2380
2381 ev_feed_event (EV_A_ w, EV_STAT);
2382 }
2383}
2384
2385void
2386ev_stat_start (EV_P_ ev_stat *w)
2387{
2388 if (expect_false (ev_is_active (w)))
2389 return;
2390
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w);
2396
2397 if (w->interval < MIN_STAT_INTERVAL)
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2401 ev_set_priority (&w->timer, ev_priority (w));
2402
2403#if EV_USE_INOTIFY
2404 infy_init (EV_A);
2405
2406 if (fs_fd >= 0)
2407 infy_add (EV_A_ w);
2408 else
2409#endif
2410 ev_timer_start (EV_A_ &w->timer);
2411
2412 ev_start (EV_A_ (W)w, 1);
2413}
2414
2415void
2416ev_stat_stop (EV_P_ ev_stat *w)
2417{
2418 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w)))
2420 return;
2421
2422#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w);
2424#endif
2425 ev_timer_stop (EV_A_ &w->timer);
2426
2427 ev_stop (EV_A_ (W)w);
2428}
2429#endif
2430
2431#if EV_IDLE_ENABLE
2432void
2433ev_idle_start (EV_P_ ev_idle *w)
2434{
2435 if (expect_false (ev_is_active (w)))
2436 return;
2437
2438 pri_adjust (EV_A_ (W)w);
2439
2440 {
2441 int active = ++idlecnt [ABSPRI (w)];
2442
2443 ++idleall;
2444 ev_start (EV_A_ (W)w, active);
2445
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w;
2448 }
2449}
2450
2451void
2452ev_idle_stop (EV_P_ ev_idle *w)
2453{
2454 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w)))
2456 return;
2457
2458 {
2459 int active = ev_active (w);
2460
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463
2464 ev_stop (EV_A_ (W)w);
2465 --idleall;
2466 }
2467}
2468#endif
2469
2470void
2471ev_prepare_start (EV_P_ ev_prepare *w)
2472{
2473 if (expect_false (ev_is_active (w)))
2474 return;
2475
2476 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w;
2479}
2480
2481void
2482ev_prepare_stop (EV_P_ ev_prepare *w)
2483{
2484 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w)))
2486 return;
2487
2488 {
2489 int active = ev_active (w);
2490
2491 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active;
2493 }
2494
2495 ev_stop (EV_A_ (W)w);
2496}
2497
2498void
2499ev_check_start (EV_P_ ev_check *w)
2500{
2501 if (expect_false (ev_is_active (w)))
2502 return;
2503
2504 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w;
2507}
2508
2509void
2510ev_check_stop (EV_P_ ev_check *w)
2511{
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 {
2517 int active = ev_active (w);
2518
2519 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active;
2521 }
2522
2523 ev_stop (EV_A_ (W)w);
2524}
2525
2526#if EV_EMBED_ENABLE
2527void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w)
2529{
2530 ev_loop (w->other, EVLOOP_NONBLOCK);
2531}
2532
2533static void
2534embed_io_cb (EV_P_ ev_io *io, int revents)
2535{
2536 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2537
2538 if (ev_cb (w))
2539 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2540 else
2541 ev_loop (w->other, EVLOOP_NONBLOCK);
2542}
2543
2544static void
2545embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2546{
2547 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2548
2549 {
2550 struct ev_loop *loop = w->other;
2551
2552 while (fdchangecnt)
2553 {
2554 fd_reify (EV_A);
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 }
2557 }
2558}
2559
2560#if 0
2561static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{
2564 ev_idle_stop (EV_A_ idle);
2565}
2566#endif
2567
2568void
2569ev_embed_start (EV_P_ ev_embed *w)
2570{
2571 if (expect_false (ev_is_active (w)))
2572 return;
2573
2574 {
2575 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 }
2579
2580 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io);
2582
2583 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare);
2586
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588
2589 ev_start (EV_A_ (W)w, 1);
2590}
2591
2592void
2593ev_embed_stop (EV_P_ ev_embed *w)
2594{
2595 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w)))
2597 return;
2598
2599 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare);
2601
2602 ev_stop (EV_A_ (W)w);
2603}
2604#endif
2605
2606#if EV_FORK_ENABLE
2607void
2608ev_fork_start (EV_P_ ev_fork *w)
2609{
2610 if (expect_false (ev_is_active (w)))
2611 return;
2612
2613 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w;
2616}
2617
2618void
2619ev_fork_stop (EV_P_ ev_fork *w)
2620{
2621 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w)))
2623 return;
2624
2625 {
2626 int active = ev_active (w);
2627
2628 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active;
2630 }
2631
2632 ev_stop (EV_A_ (W)w);
2633}
2634#endif
2635
2636#if EV_ASYNC_ENABLE
2637void
2638ev_async_start (EV_P_ ev_async *w)
2639{
2640 if (expect_false (ev_is_active (w)))
2641 return;
2642
2643 evpipe_init (EV_A);
2644
2645 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w;
2648}
2649
2650void
2651ev_async_stop (EV_P_ ev_async *w)
2652{
2653 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w)))
2655 return;
2656
2657 {
2658 int active = ev_active (w);
2659
2660 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active;
2662 }
2663
2664 ev_stop (EV_A_ (W)w);
2665}
2666
2667void
2668ev_async_send (EV_P_ ev_async *w)
2669{
2670 w->sent = 1;
2671 evpipe_write (EV_A_ &gotasync);
2672}
2673#endif
2674
1631/*****************************************************************************/ 2675/*****************************************************************************/
1632 2676
1633struct ev_once 2677struct ev_once
1634{ 2678{
1635 struct ev_io io; 2679 ev_io io;
1636 struct ev_timer to; 2680 ev_timer to;
1637 void (*cb)(int revents, void *arg); 2681 void (*cb)(int revents, void *arg);
1638 void *arg; 2682 void *arg;
1639}; 2683};
1640 2684
1641static void 2685static void
1650 2694
1651 cb (revents, arg); 2695 cb (revents, arg);
1652} 2696}
1653 2697
1654static void 2698static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 2699once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 2700{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1658} 2702}
1659 2703
1660static void 2704static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 2705once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 2706{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1664} 2708}
1665 2709
1666void 2710void
1690 ev_timer_set (&once->to, timeout, 0.); 2734 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 2735 ev_timer_start (EV_A_ &once->to);
1692 } 2736 }
1693} 2737}
1694 2738
2739#if EV_MULTIPLICITY
2740 #include "ev_wrap.h"
2741#endif
2742
1695#ifdef __cplusplus 2743#ifdef __cplusplus
1696} 2744}
1697#endif 2745#endif
1698 2746

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines