ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
422 W w; 430 W w;
423 int events; 431 int events;
424} ANPENDING; 432} ANPENDING;
425 433
426#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
427typedef struct 436typedef struct
428{ 437{
429 WL head; 438 WL head;
430} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
431#endif 458#endif
432 459
433#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
434 461
435 struct ev_loop 462 struct ev_loop
760} 787}
761 788
762/*****************************************************************************/ 789/*****************************************************************************/
763 790
764/* 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
765 * at the moment we allow libev the luxury of two heaps, 798 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 800 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 801 * the difference is about 5% with 50000+ watchers.
769 */ 802 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 803#if EV_USE_4HEAP
772 804
805#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
774 807
775/* towards the root */ 808/* towards the root */
776void inline_speed 809void inline_speed
777upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
778{ 811{
779 WT w = heap [k]; 812 ANHE he = heap [k];
780 813
781 for (;;) 814 for (;;)
782 { 815 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0; 816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
784 817
785 if (p >= HEAP0 || heap [p]->at <= w->at) 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
786 break; 819 break;
787 820
788 heap [k] = heap [p]; 821 heap [k] = heap [p];
789 ev_active (heap [k]) = k; 822 ev_active (ANHE_w (heap [k])) = k;
790 k = p; 823 k = p;
791 } 824 }
792 825
826 ev_active (ANHE_w (he)) = k;
793 heap [k] = w; 827 heap [k] = he;
794 ev_active (heap [k]) = k;
795} 828}
796 829
797/* away from the root */ 830/* away from the root */
798void inline_speed 831void inline_speed
799downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
800{ 833{
801 WT w = heap [k]; 834 ANHE he = heap [k];
802 WT *E = heap + N + HEAP0; 835 ANHE *E = heap + N + HEAP0;
803 836
804 for (;;) 837 for (;;)
805 { 838 {
806 ev_tstamp minat; 839 ev_tstamp minat;
807 WT *minpos; 840 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
809 842
810 // find minimum child 843 // find minimum child
811 if (expect_true (pos +3 < E)) 844 if (expect_true (pos + DHEAP - 1 < E))
812 { 845 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 857 }
818 else 858 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 859 break;
831 860
861 if (ANHE_at (he) <= minat)
862 break;
863
832 ev_active (*minpos) = k; 864 ev_active (ANHE_w (*minpos)) = k;
833 heap [k] = *minpos; 865 heap [k] = *minpos;
834 866
835 k = minpos - heap; 867 k = minpos - heap;
836 } 868 }
837 869
870 ev_active (ANHE_w (he)) = k;
838 heap [k] = w; 871 heap [k] = he;
839 ev_active (heap [k]) = k;
840} 872}
841 873
842#else // 4HEAP 874#else // 4HEAP
843 875
844#define HEAP0 1 876#define HEAP0 1
845 877
846/* towards the root */ 878/* towards the root */
847void inline_speed 879void inline_speed
848upheap (WT *heap, int k) 880upheap (ANHE *heap, int k)
849{ 881{
850 WT w = heap [k]; 882 ANHE he = heap [k];
851 883
852 for (;;) 884 for (;;)
853 { 885 {
854 int p = k >> 1; 886 int p = k >> 1;
855 887
856 /* maybe we could use a dummy element at heap [0]? */ 888 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at) 889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
858 break; 890 break;
859 891
860 heap [k] = heap [p]; 892 heap [k] = heap [p];
861 ev_active (heap [k]) = k; 893 ev_active (ANHE_w (heap [k])) = k;
862 k = p; 894 k = p;
863 } 895 }
864 896
865 heap [k] = w; 897 heap [k] = he;
866 ev_active (heap [k]) = k; 898 ev_active (ANHE_w (heap [k])) = k;
867} 899}
868 900
869/* away from the root */ 901/* away from the root */
870void inline_speed 902void inline_speed
871downheap (WT *heap, int N, int k) 903downheap (ANHE *heap, int N, int k)
872{ 904{
873 WT w = heap [k]; 905 ANHE he = heap [k];
874 906
875 for (;;) 907 for (;;)
876 { 908 {
877 int c = k << 1; 909 int c = k << 1;
878 910
879 if (c > N) 911 if (c > N)
880 break; 912 break;
881 913
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
883 ? 1 : 0; 915 ? 1 : 0;
884 916
885 if (w->at <= heap [c]->at) 917 if (ANHE_at (he) <= ANHE_at (heap [c]))
886 break; 918 break;
887 919
888 heap [k] = heap [c]; 920 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 921 ev_active (ANHE_w (heap [k])) = k;
890 922
891 k = c; 923 k = c;
892 } 924 }
893 925
894 heap [k] = w; 926 heap [k] = he;
895 ev_active (heap [k]) = k; 927 ev_active (ANHE_w (he)) = k;
896} 928}
897#endif 929#endif
898 930
899void inline_size 931void inline_size
900adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
901{ 933{
902 upheap (heap, k); 934 upheap (heap, k);
903 downheap (heap, N, k); 935 downheap (heap, N, k);
904} 936}
905 937
1569#endif 1601#endif
1570 1602
1571void inline_size 1603void inline_size
1572timers_reify (EV_P) 1604timers_reify (EV_P)
1573{ 1605{
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1607 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1577 1609
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579 1611
1580 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1581 if (w->repeat) 1613 if (w->repeat)
1582 { 1614 {
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584
1585 ev_at (w) += w->repeat; 1615 ev_at (w) += w->repeat;
1586 if (ev_at (w) < mn_now) 1616 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now; 1617 ev_at (w) = mn_now;
1588 1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1589 downheap (timers, timercnt, HEAP0); 1622 downheap (timers, timercnt, HEAP0);
1590 } 1623 }
1591 else 1624 else
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1626
1597 1630
1598#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1599void inline_size 1632void inline_size
1600periodics_reify (EV_P) 1633periodics_reify (EV_P)
1601{ 1634{
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1636 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1605 1638
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1607 1640
1608 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1609 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1610 { 1643 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1649 downheap (periodics, periodiccnt, HEAP0);
1614 } 1650 }
1615 else if (w->interval) 1651 else if (w->interval)
1616 { 1652 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1620 downheap (periodics, periodiccnt, HEAP0); 1659 downheap (periodics, periodiccnt, HEAP0);
1621 } 1660 }
1622 else 1661 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1663
1630periodics_reschedule (EV_P) 1669periodics_reschedule (EV_P)
1631{ 1670{
1632 int i; 1671 int i;
1633 1672
1634 /* adjust periodics after time jump */ 1673 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1674 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1675 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1677
1639 if (w->reschedule_cb) 1678 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1680 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 }
1644 1682
1645 /* now rebuild the heap */ 1683 ANHE_at_set (periodics [i]);
1646 for (i = periodiccnt >> 1; --i; ) 1684 }
1685
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1688 for (i = 0; i < periodiccnt; ++i)
1647 downheap (periodics, periodiccnt, i + HEAP0); 1689 upheap (periodics, i + HEAP0);
1648} 1690}
1649#endif 1691#endif
1650 1692
1651void inline_speed 1693void inline_speed
1652time_update (EV_P_ ev_tstamp max_block) 1694time_update (EV_P_ ev_tstamp max_block)
1706 { 1748 {
1707#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1709#endif 1751#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */ 1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i) 1753 for (i = 0; i < timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now; 1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1713 } 1759 }
1714 1760
1715 mn_now = ev_rt_now; 1761 mn_now = ev_rt_now;
1716 } 1762 }
1717} 1763}
1787 1833
1788 waittime = MAX_BLOCKTIME; 1834 waittime = MAX_BLOCKTIME;
1789 1835
1790 if (timercnt) 1836 if (timercnt)
1791 { 1837 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 1839 if (waittime > to) waittime = to;
1794 } 1840 }
1795 1841
1796#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 1843 if (periodiccnt)
1798 { 1844 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 1846 if (waittime > to) waittime = to;
1801 } 1847 }
1802#endif 1848#endif
1803 1849
1804 if (expect_false (waittime < timeout_blocktime)) 1850 if (expect_false (waittime < timeout_blocktime))
1956{ 2002{
1957 clear_pending (EV_A_ (W)w); 2003 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2004 if (expect_false (!ev_is_active (w)))
1959 return; 2005 return;
1960 2006
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1962 2008
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2009 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1965 2011
1966 fd_change (EV_A_ w->fd, 1); 2012 fd_change (EV_A_ w->fd, 1);
1975 ev_at (w) += mn_now; 2021 ev_at (w) += mn_now;
1976 2022
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2024
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2027 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2029 upheap (timers, ev_active (w));
1983 2030
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2032}
1986 2033
1987void noinline 2034void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2035ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2036{
1992 return; 2039 return;
1993 2040
1994 { 2041 {
1995 int active = ev_active (w); 2042 int active = ev_active (w);
1996 2043
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2045
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2046 if (expect_true (active < timercnt + HEAP0 - 1))
2000 { 2047 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2048 timers [active] = timers [timercnt + HEAP0 - 1];
2002 adjustheap (timers, timercnt, active); 2049 adjustheap (timers, timercnt, active);
2016 if (ev_is_active (w)) 2063 if (ev_is_active (w))
2017 { 2064 {
2018 if (w->repeat) 2065 if (w->repeat)
2019 { 2066 {
2020 ev_at (w) = mn_now + w->repeat; 2067 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2069 adjustheap (timers, timercnt, ev_active (w));
2022 } 2070 }
2023 else 2071 else
2024 ev_timer_stop (EV_A_ w); 2072 ev_timer_stop (EV_A_ w);
2025 } 2073 }
2047 } 2095 }
2048 else 2096 else
2049 ev_at (w) = w->offset; 2097 ev_at (w) = w->offset;
2050 2098
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2101 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2103 upheap (periodics, ev_active (w));
2055 2104
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2106}
2058 2107
2059void noinline 2108void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2109ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2110{
2064 return; 2113 return;
2065 2114
2066 { 2115 {
2067 int active = ev_active (w); 2116 int active = ev_active (w);
2068 2117
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2119
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2120 if (expect_true (active < periodiccnt + HEAP0 - 1))
2072 { 2121 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2074 adjustheap (periodics, periodiccnt, active); 2123 adjustheap (periodics, periodiccnt, active);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines