ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
422 W w; 446 W w;
423 int events; 447 int events;
424} ANPENDING; 448} ANPENDING;
425 449
426#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
427typedef struct 452typedef struct
428{ 453{
429 WL head; 454 WL head;
430} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
431#endif 474#endif
432 475
433#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
434 477
435 struct ev_loop 478 struct ev_loop
760} 803}
761 804
762/*****************************************************************************/ 805/*****************************************************************************/
763 806
764/* 807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
765 * at the moment we allow libev the luxury of two heaps, 814 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 816 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 817 * the difference is about 5% with 50000+ watchers.
769 */ 818 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 819#if EV_USE_4HEAP
772 820
821#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
774 905
775/* towards the root */ 906/* towards the root */
776void inline_speed 907void inline_speed
777upheap (WT *heap, int k) 908upheap (ANHE *heap, int k)
778{ 909{
779 WT w = heap [k]; 910 ANHE he = heap [k];
780 911
781 for (;;) 912 for (;;)
782 { 913 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0; 914 int p = HPARENT (k);
784 915
785 if (p >= HEAP0 || heap [p]->at <= w->at) 916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
786 break; 917 break;
787 918
788 heap [k] = heap [p]; 919 heap [k] = heap [p];
789 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (heap [k])) = k;
790 k = p; 921 k = p;
791 } 922 }
792 923
793 heap [k] = w; 924 heap [k] = he;
794 ev_active (heap [k]) = k; 925 ev_active (ANHE_w (he)) = k;
795} 926}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
809
810 // find minimum child
811 if (expect_true (pos +3 < E))
812 {
813 (minpos = pos + 0), (minat = (*minpos)->at);
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
817 }
818 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break;
831
832 ev_active (*minpos) = k;
833 heap [k] = *minpos;
834
835 k = minpos - heap;
836 }
837
838 heap [k] = w;
839 ev_active (heap [k]) = k;
840}
841
842#else // 4HEAP
843
844#define HEAP0 1
845
846/* towards the root */
847void inline_speed
848upheap (WT *heap, int k)
849{
850 WT w = heap [k];
851
852 for (;;)
853 {
854 int p = k >> 1;
855
856 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at)
858 break;
859
860 heap [k] = heap [p];
861 ev_active (heap [k]) = k;
862 k = p;
863 }
864
865 heap [k] = w;
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break;
881
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c];
889 ((W)heap [k])->active = k;
890
891 k = c;
892 }
893
894 heap [k] = w;
895 ev_active (heap [k]) = k;
896}
897#endif
898 927
899void inline_size 928void inline_size
900adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
901{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 932 upheap (heap, k);
933 else
903 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
904} 947}
905 948
906/*****************************************************************************/ 949/*****************************************************************************/
907 950
908typedef struct 951typedef struct
1426 1469
1427 postfork = 0; 1470 postfork = 0;
1428} 1471}
1429 1472
1430#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1431struct ev_loop * 1475struct ev_loop *
1432ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1433{ 1477{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1479
1453void 1497void
1454ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1455{ 1499{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1457} 1501}
1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1458#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1459 1603
1460#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1461struct ev_loop * 1605struct ev_loop *
1462ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1463#else 1607#else
1539 { 1683 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541 1685
1542 p->w->pending = 0; 1686 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1544 } 1689 }
1545 } 1690 }
1546} 1691}
1547 1692
1548#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1569#endif 1714#endif
1570 1715
1571void inline_size 1716void inline_size
1572timers_reify (EV_P) 1717timers_reify (EV_P)
1573{ 1718{
1719 EV_FREQUENT_CHECK;
1720
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1722 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1577 1724
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579 1726
1580 /* first reschedule or stop timer */ 1727 /* first reschedule or stop timer */
1581 if (w->repeat) 1728 if (w->repeat)
1582 { 1729 {
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584
1585 ev_at (w) += w->repeat; 1730 ev_at (w) += w->repeat;
1586 if (ev_at (w) < mn_now) 1731 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now; 1732 ev_at (w) = mn_now;
1588 1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1589 downheap (timers, timercnt, HEAP0); 1737 downheap (timers, timercnt, HEAP0);
1590 } 1738 }
1591 else 1739 else
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1741
1742 EV_FREQUENT_CHECK;
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1595 } 1744 }
1596} 1745}
1597 1746
1598#if EV_PERIODIC_ENABLE 1747#if EV_PERIODIC_ENABLE
1599void inline_size 1748void inline_size
1600periodics_reify (EV_P) 1749periodics_reify (EV_P)
1601{ 1750{
1751 EV_FREQUENT_CHECK;
1752
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1754 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1605 1756
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1607 1758
1608 /* first reschedule or stop timer */ 1759 /* first reschedule or stop timer */
1609 if (w->reschedule_cb) 1760 if (w->reschedule_cb)
1610 { 1761 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1767 downheap (periodics, periodiccnt, HEAP0);
1614 } 1768 }
1615 else if (w->interval) 1769 else if (w->interval)
1616 { 1770 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1620 downheap (periodics, periodiccnt, HEAP0); 1786 downheap (periodics, periodiccnt, HEAP0);
1621 } 1787 }
1622 else 1788 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1790
1791 EV_FREQUENT_CHECK;
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1626 } 1793 }
1627} 1794}
1628 1795
1629static void noinline 1796static void noinline
1630periodics_reschedule (EV_P) 1797periodics_reschedule (EV_P)
1631{ 1798{
1632 int i; 1799 int i;
1633 1800
1634 /* adjust periodics after time jump */ 1801 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1803 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1805
1639 if (w->reschedule_cb) 1806 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1808 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 }
1644 1810
1645 /* now rebuild the heap */ 1811 ANHE_at_cache (periodics [i]);
1646 for (i = periodiccnt >> 1; --i; ) 1812 }
1813
1647 downheap (periodics, periodiccnt, i + HEAP0); 1814 reheap (periodics, periodiccnt);
1648} 1815}
1649#endif 1816#endif
1650 1817
1651void inline_speed 1818void inline_speed
1652time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1706 { 1873 {
1707#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1709#endif 1876#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now; 1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1713 } 1884 }
1714 1885
1715 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1716 } 1887 }
1717} 1888}
1737 1908
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739 1910
1740 do 1911 do
1741 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1742#ifndef _WIN32 1917#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1745 { 1920 {
1746 curpid = getpid (); 1921 curpid = getpid ();
1787 1962
1788 waittime = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1789 1964
1790 if (timercnt) 1965 if (timercnt)
1791 { 1966 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 1968 if (waittime > to) waittime = to;
1794 } 1969 }
1795 1970
1796#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 1972 if (periodiccnt)
1798 { 1973 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1801 } 1976 }
1802#endif 1977#endif
1803 1978
1804 if (expect_false (waittime < timeout_blocktime)) 1979 if (expect_false (waittime < timeout_blocktime))
1941 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1942 return; 2117 return;
1943 2118
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1945 2120
2121 EV_FREQUENT_CHECK;
2122
1946 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1948 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1949 2126
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1952} 2131}
1953 2132
1954void noinline 2133void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1956{ 2135{
1957 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1959 return; 2138 return;
1960 2139
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
1962 2143
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1965 2146
1966 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1967} 2150}
1968 2151
1969void noinline 2152void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1971{ 2154{
1974 2157
1975 ev_at (w) += mn_now; 2158 ev_at (w) += mn_now;
1976 2159
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
2168 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2169 upheap (timers, ev_active (w));
1983 2170
2171 EV_FREQUENT_CHECK;
2172
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2174}
1986 2175
1987void noinline 2176void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2178{
1990 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1992 return; 2181 return;
1993 2182
2183 EV_FREQUENT_CHECK;
2184
1994 { 2185 {
1995 int active = ev_active (w); 2186 int active = ev_active (w);
1996 2187
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2189
2190 --timercnt;
2191
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2192 if (expect_true (active < timercnt + HEAP0))
2000 { 2193 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2194 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
2003 } 2196 }
2004
2005 --timercnt;
2006 } 2197 }
2198
2199 EV_FREQUENT_CHECK;
2007 2200
2008 ev_at (w) -= mn_now; 2201 ev_at (w) -= mn_now;
2009 2202
2010 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
2011} 2204}
2012 2205
2013void noinline 2206void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
2015{ 2208{
2209 EV_FREQUENT_CHECK;
2210
2016 if (ev_is_active (w)) 2211 if (ev_is_active (w))
2017 { 2212 {
2018 if (w->repeat) 2213 if (w->repeat)
2019 { 2214 {
2020 ev_at (w) = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2217 adjustheap (timers, timercnt, ev_active (w));
2022 } 2218 }
2023 else 2219 else
2024 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
2025 } 2221 }
2026 else if (w->repeat) 2222 else if (w->repeat)
2027 { 2223 {
2028 ev_at (w) = w->repeat; 2224 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
2030 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
2031} 2229}
2032 2230
2033#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
2034void noinline 2232void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2245 }
2048 else 2246 else
2049 ev_at (w) = w->offset; 2247 ev_at (w) = w->offset;
2050 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2255 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2256 upheap (periodics, ev_active (w));
2055 2257
2258 EV_FREQUENT_CHECK;
2259
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2261}
2058 2262
2059void noinline 2263void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2265{
2062 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
2064 return; 2268 return;
2065 2269
2270 EV_FREQUENT_CHECK;
2271
2066 { 2272 {
2067 int active = ev_active (w); 2273 int active = ev_active (w);
2068 2274
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2276
2277 --periodiccnt;
2278
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2279 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2280 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
2075 } 2283 }
2076
2077 --periodiccnt;
2078 } 2284 }
2285
2286 EV_FREQUENT_CHECK;
2079 2287
2080 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
2081} 2289}
2082 2290
2083void noinline 2291void noinline
2103 return; 2311 return;
2104 2312
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2106 2314
2107 evpipe_init (EV_A); 2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2108 2318
2109 { 2319 {
2110#ifndef _WIN32 2320#ifndef _WIN32
2111 sigset_t full, prev; 2321 sigset_t full, prev;
2112 sigfillset (&full); 2322 sigfillset (&full);
2133 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
2136#endif 2346#endif
2137 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
2138} 2350}
2139 2351
2140void noinline 2352void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2354{
2143 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
2145 return; 2357 return;
2146 2358
2359 EV_FREQUENT_CHECK;
2360
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
2149 2363
2150 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
2152} 2368}
2153 2369
2154void 2370void
2155ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
2156{ 2372{
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2375#endif
2160 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
2161 return; 2377 return;
2162 2378
2379 EV_FREQUENT_CHECK;
2380
2163 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
2165} 2385}
2166 2386
2167void 2387void
2168ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
2169{ 2389{
2170 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
2172 return; 2392 return;
2173 2393
2394 EV_FREQUENT_CHECK;
2395
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
2176} 2400}
2177 2401
2178#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
2179 2403
2180# ifdef _WIN32 2404# ifdef _WIN32
2408 else 2632 else
2409#endif 2633#endif
2410 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2411 2635
2412 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2413} 2639}
2414 2640
2415void 2641void
2416ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2643{
2418 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2420 return; 2646 return;
2421 2647
2648 EV_FREQUENT_CHECK;
2649
2422#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2424#endif 2652#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2426 2654
2427 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2428} 2658}
2429#endif 2659#endif
2430 2660
2431#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2432void 2662void
2434{ 2664{
2435 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2436 return; 2666 return;
2437 2667
2438 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2439 2671
2440 { 2672 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2442 2674
2443 ++idleall; 2675 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2445 2677
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2448 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2449} 2683}
2450 2684
2451void 2685void
2452ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2453{ 2687{
2454 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2456 return; 2690 return;
2457 2691
2692 EV_FREQUENT_CHECK;
2693
2458 { 2694 {
2459 int active = ev_active (w); 2695 int active = ev_active (w);
2460 2696
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 2699
2464 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2465 --idleall; 2701 --idleall;
2466 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2467} 2705}
2468#endif 2706#endif
2469 2707
2470void 2708void
2471ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 2710{
2473 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2474 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2475 2715
2476 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2479} 2721}
2480 2722
2481void 2723void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 2725{
2484 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2486 return; 2728 return;
2487 2729
2730 EV_FREQUENT_CHECK;
2731
2488 { 2732 {
2489 int active = ev_active (w); 2733 int active = ev_active (w);
2490 2734
2491 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 2736 ev_active (prepares [active - 1]) = active;
2493 } 2737 }
2494 2738
2495 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2496} 2742}
2497 2743
2498void 2744void
2499ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2500{ 2746{
2501 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2502 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2503 2751
2504 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2507} 2757}
2508 2758
2509void 2759void
2510ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2511{ 2761{
2512 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2514 return; 2764 return;
2515 2765
2766 EV_FREQUENT_CHECK;
2767
2516 { 2768 {
2517 int active = ev_active (w); 2769 int active = ev_active (w);
2518 2770
2519 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 2772 ev_active (checks [active - 1]) = active;
2521 } 2773 }
2522 2774
2523 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2524} 2778}
2525 2779
2526#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2527void noinline 2781void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2575 struct ev_loop *loop = w->other; 2829 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 2832 }
2579 2833
2834 EV_FREQUENT_CHECK;
2835
2580 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2582 2838
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 2840 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 2841 ev_prepare_start (EV_A_ &w->prepare);
2586 2842
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 2844
2589 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2590} 2848}
2591 2849
2592void 2850void
2593ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2594{ 2852{
2595 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2597 return; 2855 return;
2598 2856
2857 EV_FREQUENT_CHECK;
2858
2599 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 2860 ev_prepare_stop (EV_A_ &w->prepare);
2601 2861
2602 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2603} 2865}
2604#endif 2866#endif
2605 2867
2606#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2607void 2869void
2608ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2609{ 2871{
2610 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2611 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2612 2876
2613 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2616} 2882}
2617 2883
2618void 2884void
2619ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2620{ 2886{
2621 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2623 return; 2889 return;
2624 2890
2891 EV_FREQUENT_CHECK;
2892
2625 { 2893 {
2626 int active = ev_active (w); 2894 int active = ev_active (w);
2627 2895
2628 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 2897 ev_active (forks [active - 1]) = active;
2630 } 2898 }
2631 2899
2632 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2633} 2903}
2634#endif 2904#endif
2635 2905
2636#if EV_ASYNC_ENABLE 2906#if EV_ASYNC_ENABLE
2637void 2907void
2639{ 2909{
2640 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2641 return; 2911 return;
2642 2912
2643 evpipe_init (EV_A); 2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2644 2916
2645 ev_start (EV_A_ (W)w, ++asynccnt); 2917 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2648} 2922}
2649 2923
2650void 2924void
2651ev_async_stop (EV_P_ ev_async *w) 2925ev_async_stop (EV_P_ ev_async *w)
2652{ 2926{
2653 clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
2655 return; 2929 return;
2656 2930
2931 EV_FREQUENT_CHECK;
2932
2657 { 2933 {
2658 int active = ev_active (w); 2934 int active = ev_active (w);
2659 2935
2660 asyncs [active - 1] = asyncs [--asynccnt]; 2936 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 2937 ev_active (asyncs [active - 1]) = active;
2662 } 2938 }
2663 2939
2664 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2665} 2943}
2666 2944
2667void 2945void
2668ev_async_send (EV_P_ ev_async *w) 2946ev_async_send (EV_P_ ev_async *w)
2669{ 2947{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines