ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 242# define EV_USE_EVENTFD 1
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 264#endif
239 265
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 267
242#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
279} 305}
280# endif 306# endif
281#endif 307#endif
282 308
283/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
284 316
285/* 317/*
286 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
422 W w; 454 W w;
423 int events; 455 int events;
424} ANPENDING; 456} ANPENDING;
425 457
426#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
427typedef struct 460typedef struct
428{ 461{
429 WL head; 462 WL head;
430} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
431#endif 482#endif
432 483
433#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
434 485
435 struct ev_loop 486 struct ev_loop
656 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
657 708
658#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
659 if (events) 710 if (events)
660 { 711 {
661 unsigned long argp; 712 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 713 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 715 #else
665 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
666 #endif 717 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 719 }
669#endif 720#endif
670 721
671 { 722 {
672 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
725{ 776{
726 int fd; 777 int fd;
727 778
728 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 780 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
732} 783}
733 784
734/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 786static void noinline
760} 811}
761 812
762/*****************************************************************************/ 813/*****************************************************************************/
763 814
764/* 815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
765 * at the moment we allow libev the luxury of two heaps, 822 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 824 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 825 * the difference is about 5% with 50000+ watchers.
769 */ 826 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 827#if EV_USE_4HEAP
772 828
829#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
835void inline_speed
836downheap (ANHE *heap, int N, int k)
837{
838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
840
841 for (;;)
842 {
843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
846
847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
863 break;
864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
774 913
775/* towards the root */ 914/* towards the root */
776void inline_speed 915void inline_speed
777upheap (WT *heap, int k) 916upheap (ANHE *heap, int k)
778{ 917{
779 WT w = heap [k]; 918 ANHE he = heap [k];
780 919
781 for (;;) 920 for (;;)
782 { 921 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0; 922 int p = HPARENT (k);
784 923
785 if (p >= HEAP0 || heap [p]->at <= w->at) 924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
786 break; 925 break;
787 926
788 heap [k] = heap [p]; 927 heap [k] = heap [p];
789 ev_active (heap [k]) = k; 928 ev_active (ANHE_w (heap [k])) = k;
790 k = p; 929 k = p;
791 } 930 }
792 931
793 heap [k] = w; 932 heap [k] = he;
794 ev_active (heap [k]) = k; 933 ev_active (ANHE_w (he)) = k;
795} 934}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
809
810 // find minimum child
811 if (expect_true (pos +3 < E))
812 {
813 (minpos = pos + 0), (minat = (*minpos)->at);
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
817 }
818 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break;
831
832 ev_active (*minpos) = k;
833 heap [k] = *minpos;
834
835 k = minpos - heap;
836 }
837
838 heap [k] = w;
839 ev_active (heap [k]) = k;
840}
841
842#else // 4HEAP
843
844#define HEAP0 1
845
846/* towards the root */
847void inline_speed
848upheap (WT *heap, int k)
849{
850 WT w = heap [k];
851
852 for (;;)
853 {
854 int p = k >> 1;
855
856 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at)
858 break;
859
860 heap [k] = heap [p];
861 ev_active (heap [k]) = k;
862 k = p;
863 }
864
865 heap [k] = w;
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break;
881
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c];
889 ((W)heap [k])->active = k;
890
891 k = c;
892 }
893
894 heap [k] = w;
895 ev_active (heap [k]) = k;
896}
897#endif
898 935
899void inline_size 936void inline_size
900adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
901{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 940 upheap (heap, k);
941 else
903 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
904} 955}
905 956
906/*****************************************************************************/ 957/*****************************************************************************/
907 958
908typedef struct 959typedef struct
932 983
933void inline_speed 984void inline_speed
934fd_intern (int fd) 985fd_intern (int fd)
935{ 986{
936#ifdef _WIN32 987#ifdef _WIN32
937 int arg = 1; 988 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else 990#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 993#endif
1426 1477
1427 postfork = 0; 1478 postfork = 0;
1428} 1479}
1429 1480
1430#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1431struct ev_loop * 1483struct ev_loop *
1432ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1433{ 1485{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1487
1453void 1505void
1454ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1455{ 1507{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1457} 1509}
1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1458#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1459 1611
1460#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1461struct ev_loop * 1613struct ev_loop *
1462ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1463#else 1615#else
1539 { 1691 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541 1693
1542 p->w->pending = 0; 1694 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1544 } 1697 }
1545 } 1698 }
1546} 1699}
1547 1700
1548#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1569#endif 1722#endif
1570 1723
1571void inline_size 1724void inline_size
1572timers_reify (EV_P) 1725timers_reify (EV_P)
1573{ 1726{
1727 EV_FREQUENT_CHECK;
1728
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1730 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1577 1732
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579 1734
1580 /* first reschedule or stop timer */ 1735 /* first reschedule or stop timer */
1581 if (w->repeat) 1736 if (w->repeat)
1582 { 1737 {
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584
1585 ev_at (w) += w->repeat; 1738 ev_at (w) += w->repeat;
1586 if (ev_at (w) < mn_now) 1739 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now; 1740 ev_at (w) = mn_now;
1588 1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1589 downheap (timers, timercnt, HEAP0); 1745 downheap (timers, timercnt, HEAP0);
1590 } 1746 }
1591 else 1747 else
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1749
1750 EV_FREQUENT_CHECK;
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1595 } 1752 }
1596} 1753}
1597 1754
1598#if EV_PERIODIC_ENABLE 1755#if EV_PERIODIC_ENABLE
1599void inline_size 1756void inline_size
1600periodics_reify (EV_P) 1757periodics_reify (EV_P)
1601{ 1758{
1759 EV_FREQUENT_CHECK;
1760
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1762 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1605 1764
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1607 1766
1608 /* first reschedule or stop timer */ 1767 /* first reschedule or stop timer */
1609 if (w->reschedule_cb) 1768 if (w->reschedule_cb)
1610 { 1769 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1775 downheap (periodics, periodiccnt, HEAP0);
1614 } 1776 }
1615 else if (w->interval) 1777 else if (w->interval)
1616 { 1778 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1620 downheap (periodics, periodiccnt, HEAP0); 1794 downheap (periodics, periodiccnt, HEAP0);
1621 } 1795 }
1622 else 1796 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1798
1799 EV_FREQUENT_CHECK;
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1626 } 1801 }
1627} 1802}
1628 1803
1629static void noinline 1804static void noinline
1630periodics_reschedule (EV_P) 1805periodics_reschedule (EV_P)
1631{ 1806{
1632 int i; 1807 int i;
1633 1808
1634 /* adjust periodics after time jump */ 1809 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1811 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1813
1639 if (w->reschedule_cb) 1814 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1816 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 }
1644 1818
1645 /* now rebuild the heap */ 1819 ANHE_at_cache (periodics [i]);
1646 for (i = periodiccnt >> 1; --i; ) 1820 }
1821
1647 downheap (periodics, periodiccnt, i + HEAP0); 1822 reheap (periodics, periodiccnt);
1648} 1823}
1649#endif 1824#endif
1650 1825
1651void inline_speed 1826void inline_speed
1652time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1706 { 1881 {
1707#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1709#endif 1884#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now; 1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1713 } 1892 }
1714 1893
1715 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1716 } 1895 }
1717} 1896}
1737 1916
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739 1918
1740 do 1919 do
1741 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1742#ifndef _WIN32 1925#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1745 { 1928 {
1746 curpid = getpid (); 1929 curpid = getpid ();
1787 1970
1788 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1789 1972
1790 if (timercnt) 1973 if (timercnt)
1791 { 1974 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1794 } 1977 }
1795 1978
1796#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 1980 if (periodiccnt)
1798 { 1981 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1801 } 1984 }
1802#endif 1985#endif
1803 1986
1804 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1941 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1942 return; 2125 return;
1943 2126
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1945 2128
2129 EV_FREQUENT_CHECK;
2130
1946 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1948 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1949 2134
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1952} 2139}
1953 2140
1954void noinline 2141void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1956{ 2143{
1957 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1959 return; 2146 return;
1960 2147
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1962 2151
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1965 2154
1966 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1967} 2158}
1968 2159
1969void noinline 2160void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1971{ 2162{
1974 2165
1975 ev_at (w) += mn_now; 2166 ev_at (w) += mn_now;
1976 2167
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
2176 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2177 upheap (timers, ev_active (w));
1983 2178
2179 EV_FREQUENT_CHECK;
2180
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2182}
1986 2183
1987void noinline 2184void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2186{
1990 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1992 return; 2189 return;
1993 2190
2191 EV_FREQUENT_CHECK;
2192
1994 { 2193 {
1995 int active = ev_active (w); 2194 int active = ev_active (w);
1996 2195
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2197
2198 --timercnt;
2199
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2200 if (expect_true (active < timercnt + HEAP0))
2000 { 2201 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2202 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
2003 } 2204 }
2004
2005 --timercnt;
2006 } 2205 }
2206
2207 EV_FREQUENT_CHECK;
2007 2208
2008 ev_at (w) -= mn_now; 2209 ev_at (w) -= mn_now;
2009 2210
2010 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
2011} 2212}
2012 2213
2013void noinline 2214void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
2015{ 2216{
2217 EV_FREQUENT_CHECK;
2218
2016 if (ev_is_active (w)) 2219 if (ev_is_active (w))
2017 { 2220 {
2018 if (w->repeat) 2221 if (w->repeat)
2019 { 2222 {
2020 ev_at (w) = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2225 adjustheap (timers, timercnt, ev_active (w));
2022 } 2226 }
2023 else 2227 else
2024 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
2025 } 2229 }
2026 else if (w->repeat) 2230 else if (w->repeat)
2027 { 2231 {
2028 ev_at (w) = w->repeat; 2232 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
2030 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
2031} 2237}
2032 2238
2033#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
2034void noinline 2240void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2253 }
2048 else 2254 else
2049 ev_at (w) = w->offset; 2255 ev_at (w) = w->offset;
2050 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2263 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2264 upheap (periodics, ev_active (w));
2055 2265
2266 EV_FREQUENT_CHECK;
2267
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2269}
2058 2270
2059void noinline 2271void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2273{
2062 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
2064 return; 2276 return;
2065 2277
2278 EV_FREQUENT_CHECK;
2279
2066 { 2280 {
2067 int active = ev_active (w); 2281 int active = ev_active (w);
2068 2282
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2284
2285 --periodiccnt;
2286
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2287 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2288 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
2075 } 2291 }
2076
2077 --periodiccnt;
2078 } 2292 }
2293
2294 EV_FREQUENT_CHECK;
2079 2295
2080 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
2081} 2297}
2082 2298
2083void noinline 2299void noinline
2103 return; 2319 return;
2104 2320
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2106 2322
2107 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2108 2326
2109 { 2327 {
2110#ifndef _WIN32 2328#ifndef _WIN32
2111 sigset_t full, prev; 2329 sigset_t full, prev;
2112 sigfillset (&full); 2330 sigfillset (&full);
2133 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2136#endif 2354#endif
2137 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2138} 2358}
2139 2359
2140void noinline 2360void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2362{
2143 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2145 return; 2365 return;
2146 2366
2367 EV_FREQUENT_CHECK;
2368
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2149 2371
2150 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2152} 2376}
2153 2377
2154void 2378void
2155ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2156{ 2380{
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2383#endif
2160 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2161 return; 2385 return;
2162 2386
2387 EV_FREQUENT_CHECK;
2388
2163 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2165} 2393}
2166 2394
2167void 2395void
2168ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2169{ 2397{
2170 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2172 return; 2400 return;
2173 2401
2402 EV_FREQUENT_CHECK;
2403
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2176} 2408}
2177 2409
2178#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2179 2411
2180# ifdef _WIN32 2412# ifdef _WIN32
2335 } 2567 }
2336 2568
2337 } 2569 }
2338} 2570}
2339 2571
2572#endif
2573
2574#ifdef _WIN32
2575# define EV_LSTAT(p,b) _stati64 (p, b)
2576#else
2577# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 2578#endif
2341 2579
2342void 2580void
2343ev_stat_stat (EV_P_ ev_stat *w) 2581ev_stat_stat (EV_P_ ev_stat *w)
2344{ 2582{
2408 else 2646 else
2409#endif 2647#endif
2410 ev_timer_start (EV_A_ &w->timer); 2648 ev_timer_start (EV_A_ &w->timer);
2411 2649
2412 ev_start (EV_A_ (W)w, 1); 2650 ev_start (EV_A_ (W)w, 1);
2651
2652 EV_FREQUENT_CHECK;
2413} 2653}
2414 2654
2415void 2655void
2416ev_stat_stop (EV_P_ ev_stat *w) 2656ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2657{
2418 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2420 return; 2660 return;
2421 2661
2662 EV_FREQUENT_CHECK;
2663
2422#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2665 infy_del (EV_A_ w);
2424#endif 2666#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2667 ev_timer_stop (EV_A_ &w->timer);
2426 2668
2427 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670
2671 EV_FREQUENT_CHECK;
2428} 2672}
2429#endif 2673#endif
2430 2674
2431#if EV_IDLE_ENABLE 2675#if EV_IDLE_ENABLE
2432void 2676void
2434{ 2678{
2435 if (expect_false (ev_is_active (w))) 2679 if (expect_false (ev_is_active (w)))
2436 return; 2680 return;
2437 2681
2438 pri_adjust (EV_A_ (W)w); 2682 pri_adjust (EV_A_ (W)w);
2683
2684 EV_FREQUENT_CHECK;
2439 2685
2440 { 2686 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2687 int active = ++idlecnt [ABSPRI (w)];
2442 2688
2443 ++idleall; 2689 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2690 ev_start (EV_A_ (W)w, active);
2445 2691
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2692 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2693 idles [ABSPRI (w)][active - 1] = w;
2448 } 2694 }
2695
2696 EV_FREQUENT_CHECK;
2449} 2697}
2450 2698
2451void 2699void
2452ev_idle_stop (EV_P_ ev_idle *w) 2700ev_idle_stop (EV_P_ ev_idle *w)
2453{ 2701{
2454 clear_pending (EV_A_ (W)w); 2702 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2703 if (expect_false (!ev_is_active (w)))
2456 return; 2704 return;
2457 2705
2706 EV_FREQUENT_CHECK;
2707
2458 { 2708 {
2459 int active = ev_active (w); 2709 int active = ev_active (w);
2460 2710
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2711 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2712 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 2713
2464 ev_stop (EV_A_ (W)w); 2714 ev_stop (EV_A_ (W)w);
2465 --idleall; 2715 --idleall;
2466 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2467} 2719}
2468#endif 2720#endif
2469 2721
2470void 2722void
2471ev_prepare_start (EV_P_ ev_prepare *w) 2723ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 2724{
2473 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2474 return; 2726 return;
2727
2728 EV_FREQUENT_CHECK;
2475 2729
2476 ev_start (EV_A_ (W)w, ++preparecnt); 2730 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2731 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 2732 prepares [preparecnt - 1] = w;
2733
2734 EV_FREQUENT_CHECK;
2479} 2735}
2480 2736
2481void 2737void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 2738ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 2739{
2484 clear_pending (EV_A_ (W)w); 2740 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 2741 if (expect_false (!ev_is_active (w)))
2486 return; 2742 return;
2487 2743
2744 EV_FREQUENT_CHECK;
2745
2488 { 2746 {
2489 int active = ev_active (w); 2747 int active = ev_active (w);
2490 2748
2491 prepares [active - 1] = prepares [--preparecnt]; 2749 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 2750 ev_active (prepares [active - 1]) = active;
2493 } 2751 }
2494 2752
2495 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2754
2755 EV_FREQUENT_CHECK;
2496} 2756}
2497 2757
2498void 2758void
2499ev_check_start (EV_P_ ev_check *w) 2759ev_check_start (EV_P_ ev_check *w)
2500{ 2760{
2501 if (expect_false (ev_is_active (w))) 2761 if (expect_false (ev_is_active (w)))
2502 return; 2762 return;
2763
2764 EV_FREQUENT_CHECK;
2503 2765
2504 ev_start (EV_A_ (W)w, ++checkcnt); 2766 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2767 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 2768 checks [checkcnt - 1] = w;
2769
2770 EV_FREQUENT_CHECK;
2507} 2771}
2508 2772
2509void 2773void
2510ev_check_stop (EV_P_ ev_check *w) 2774ev_check_stop (EV_P_ ev_check *w)
2511{ 2775{
2512 clear_pending (EV_A_ (W)w); 2776 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2777 if (expect_false (!ev_is_active (w)))
2514 return; 2778 return;
2515 2779
2780 EV_FREQUENT_CHECK;
2781
2516 { 2782 {
2517 int active = ev_active (w); 2783 int active = ev_active (w);
2518 2784
2519 checks [active - 1] = checks [--checkcnt]; 2785 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 2786 ev_active (checks [active - 1]) = active;
2521 } 2787 }
2522 2788
2523 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
2790
2791 EV_FREQUENT_CHECK;
2524} 2792}
2525 2793
2526#if EV_EMBED_ENABLE 2794#if EV_EMBED_ENABLE
2527void noinline 2795void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 2796ev_embed_sweep (EV_P_ ev_embed *w)
2575 struct ev_loop *loop = w->other; 2843 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 2846 }
2579 2847
2848 EV_FREQUENT_CHECK;
2849
2580 ev_set_priority (&w->io, ev_priority (w)); 2850 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 2851 ev_io_start (EV_A_ &w->io);
2582 2852
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 2853 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 2854 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 2855 ev_prepare_start (EV_A_ &w->prepare);
2586 2856
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 2858
2589 ev_start (EV_A_ (W)w, 1); 2859 ev_start (EV_A_ (W)w, 1);
2860
2861 EV_FREQUENT_CHECK;
2590} 2862}
2591 2863
2592void 2864void
2593ev_embed_stop (EV_P_ ev_embed *w) 2865ev_embed_stop (EV_P_ ev_embed *w)
2594{ 2866{
2595 clear_pending (EV_A_ (W)w); 2867 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 2868 if (expect_false (!ev_is_active (w)))
2597 return; 2869 return;
2598 2870
2871 EV_FREQUENT_CHECK;
2872
2599 ev_io_stop (EV_A_ &w->io); 2873 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 2874 ev_prepare_stop (EV_A_ &w->prepare);
2601 2875
2602 ev_stop (EV_A_ (W)w); 2876 ev_stop (EV_A_ (W)w);
2877
2878 EV_FREQUENT_CHECK;
2603} 2879}
2604#endif 2880#endif
2605 2881
2606#if EV_FORK_ENABLE 2882#if EV_FORK_ENABLE
2607void 2883void
2608ev_fork_start (EV_P_ ev_fork *w) 2884ev_fork_start (EV_P_ ev_fork *w)
2609{ 2885{
2610 if (expect_false (ev_is_active (w))) 2886 if (expect_false (ev_is_active (w)))
2611 return; 2887 return;
2888
2889 EV_FREQUENT_CHECK;
2612 2890
2613 ev_start (EV_A_ (W)w, ++forkcnt); 2891 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2892 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 2893 forks [forkcnt - 1] = w;
2894
2895 EV_FREQUENT_CHECK;
2616} 2896}
2617 2897
2618void 2898void
2619ev_fork_stop (EV_P_ ev_fork *w) 2899ev_fork_stop (EV_P_ ev_fork *w)
2620{ 2900{
2621 clear_pending (EV_A_ (W)w); 2901 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 2902 if (expect_false (!ev_is_active (w)))
2623 return; 2903 return;
2624 2904
2905 EV_FREQUENT_CHECK;
2906
2625 { 2907 {
2626 int active = ev_active (w); 2908 int active = ev_active (w);
2627 2909
2628 forks [active - 1] = forks [--forkcnt]; 2910 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 2911 ev_active (forks [active - 1]) = active;
2630 } 2912 }
2631 2913
2632 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
2915
2916 EV_FREQUENT_CHECK;
2633} 2917}
2634#endif 2918#endif
2635 2919
2636#if EV_ASYNC_ENABLE 2920#if EV_ASYNC_ENABLE
2637void 2921void
2639{ 2923{
2640 if (expect_false (ev_is_active (w))) 2924 if (expect_false (ev_is_active (w)))
2641 return; 2925 return;
2642 2926
2643 evpipe_init (EV_A); 2927 evpipe_init (EV_A);
2928
2929 EV_FREQUENT_CHECK;
2644 2930
2645 ev_start (EV_A_ (W)w, ++asynccnt); 2931 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2932 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 2933 asyncs [asynccnt - 1] = w;
2934
2935 EV_FREQUENT_CHECK;
2648} 2936}
2649 2937
2650void 2938void
2651ev_async_stop (EV_P_ ev_async *w) 2939ev_async_stop (EV_P_ ev_async *w)
2652{ 2940{
2653 clear_pending (EV_A_ (W)w); 2941 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 2942 if (expect_false (!ev_is_active (w)))
2655 return; 2943 return;
2656 2944
2945 EV_FREQUENT_CHECK;
2946
2657 { 2947 {
2658 int active = ev_active (w); 2948 int active = ev_active (w);
2659 2949
2660 asyncs [active - 1] = asyncs [--asynccnt]; 2950 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 2951 ev_active (asyncs [active - 1]) = active;
2662 } 2952 }
2663 2953
2664 ev_stop (EV_A_ (W)w); 2954 ev_stop (EV_A_ (W)w);
2955
2956 EV_FREQUENT_CHECK;
2665} 2957}
2666 2958
2667void 2959void
2668ev_async_send (EV_P_ ev_async *w) 2960ev_async_send (EV_P_ ev_async *w)
2669{ 2961{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines