ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.259 by root, Mon Sep 8 13:14:23 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
422 W w; 455 W w;
423 int events; 456 int events;
424} ANPENDING; 457} ANPENDING;
425 458
426#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
427typedef struct 461typedef struct
428{ 462{
429 WL head; 463 WL head;
430} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
431#endif 483#endif
432 484
433#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
434 486
435 struct ev_loop 487 struct ev_loop
513 struct timeval tv; 565 struct timeval tv;
514 566
515 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
518 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
519#endif 574#endif
520 } 575 }
521} 576}
522 577
656 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
657 712
658#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
659 if (events) 714 if (events)
660 { 715 {
661 unsigned long argp; 716 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 719 #else
665 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
666 #endif 721 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 723 }
669#endif 724#endif
670 725
671 { 726 {
672 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
725{ 780{
726 int fd; 781 int fd;
727 782
728 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 784 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
732} 787}
733 788
734/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 790static void noinline
760} 815}
761 816
762/*****************************************************************************/ 817/*****************************************************************************/
763 818
764/* 819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
765 * at the moment we allow libev the luxury of two heaps, 826 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 828 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 829 * the difference is about 5% with 50000+ watchers.
769 */ 830 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 831#if EV_USE_4HEAP
772 832
833#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
839void inline_speed
840downheap (ANHE *heap, int N, int k)
841{
842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
844
845 for (;;)
846 {
847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
850
851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
867 break;
868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
774 917
775/* towards the root */ 918/* towards the root */
776void inline_speed 919void inline_speed
777upheap (WT *heap, int k) 920upheap (ANHE *heap, int k)
778{ 921{
779 WT w = heap [k]; 922 ANHE he = heap [k];
780 923
781 for (;;) 924 for (;;)
782 { 925 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0; 926 int p = HPARENT (k);
784 927
785 if (p >= HEAP0 || heap [p]->at <= w->at) 928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
786 break; 929 break;
787 930
788 heap [k] = heap [p]; 931 heap [k] = heap [p];
789 ev_active (heap [k]) = k; 932 ev_active (ANHE_w (heap [k])) = k;
790 k = p; 933 k = p;
791 } 934 }
792 935
793 heap [k] = w; 936 heap [k] = he;
794 ev_active (heap [k]) = k; 937 ev_active (ANHE_w (he)) = k;
795} 938}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
809
810 // find minimum child
811 if (expect_true (pos +3 < E))
812 {
813 (minpos = pos + 0), (minat = (*minpos)->at);
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
817 }
818 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break;
831
832 ev_active (*minpos) = k;
833 heap [k] = *minpos;
834
835 k = minpos - heap;
836 }
837
838 heap [k] = w;
839 ev_active (heap [k]) = k;
840}
841
842#else // 4HEAP
843
844#define HEAP0 1
845
846/* towards the root */
847void inline_speed
848upheap (WT *heap, int k)
849{
850 WT w = heap [k];
851
852 for (;;)
853 {
854 int p = k >> 1;
855
856 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at)
858 break;
859
860 heap [k] = heap [p];
861 ev_active (heap [k]) = k;
862 k = p;
863 }
864
865 heap [k] = w;
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break;
881
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c];
889 ((W)heap [k])->active = k;
890
891 k = c;
892 }
893
894 heap [k] = w;
895 ev_active (heap [k]) = k;
896}
897#endif
898 939
899void inline_size 940void inline_size
900adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
901{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 944 upheap (heap, k);
945 else
903 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
904} 959}
905 960
906/*****************************************************************************/ 961/*****************************************************************************/
907 962
908typedef struct 963typedef struct
932 987
933void inline_speed 988void inline_speed
934fd_intern (int fd) 989fd_intern (int fd)
935{ 990{
936#ifdef _WIN32 991#ifdef _WIN32
937 int arg = 1; 992 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else 994#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 997#endif
1426 1481
1427 postfork = 0; 1482 postfork = 0;
1428} 1483}
1429 1484
1430#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1431struct ev_loop * 1487struct ev_loop *
1432ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1433{ 1489{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1491
1453void 1509void
1454ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1455{ 1511{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1457} 1513}
1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1458#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1459 1615
1460#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1461struct ev_loop * 1617struct ev_loop *
1462ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1463#else 1619#else
1539 { 1695 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541 1697
1542 p->w->pending = 0; 1698 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1544 } 1701 }
1545 } 1702 }
1546} 1703}
1547 1704
1548#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1569#endif 1726#endif
1570 1727
1571void inline_size 1728void inline_size
1572timers_reify (EV_P) 1729timers_reify (EV_P)
1573{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1734 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1577 1736
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579 1738
1580 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1581 if (w->repeat) 1740 if (w->repeat)
1582 { 1741 {
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584
1585 ev_at (w) += w->repeat; 1742 ev_at (w) += w->repeat;
1586 if (ev_at (w) < mn_now) 1743 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now; 1744 ev_at (w) = mn_now;
1588 1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1589 downheap (timers, timercnt, HEAP0); 1749 downheap (timers, timercnt, HEAP0);
1590 } 1750 }
1591 else 1751 else
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1753
1754 EV_FREQUENT_CHECK;
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1595 } 1756 }
1596} 1757}
1597 1758
1598#if EV_PERIODIC_ENABLE 1759#if EV_PERIODIC_ENABLE
1599void inline_size 1760void inline_size
1600periodics_reify (EV_P) 1761periodics_reify (EV_P)
1601{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1766 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1605 1768
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1607 1770
1608 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1609 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1610 { 1773 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1779 downheap (periodics, periodiccnt, HEAP0);
1614 } 1780 }
1615 else if (w->interval) 1781 else if (w->interval)
1616 { 1782 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1620 downheap (periodics, periodiccnt, HEAP0); 1798 downheap (periodics, periodiccnt, HEAP0);
1621 } 1799 }
1622 else 1800 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1802
1803 EV_FREQUENT_CHECK;
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1626 } 1805 }
1627} 1806}
1628 1807
1629static void noinline 1808static void noinline
1630periodics_reschedule (EV_P) 1809periodics_reschedule (EV_P)
1631{ 1810{
1632 int i; 1811 int i;
1633 1812
1634 /* adjust periodics after time jump */ 1813 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1815 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1817
1639 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1820 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 }
1644 1822
1645 /* now rebuild the heap */ 1823 ANHE_at_cache (periodics [i]);
1646 for (i = periodiccnt >> 1; --i; ) 1824 }
1825
1647 downheap (periodics, periodiccnt, i + HEAP0); 1826 reheap (periodics, periodiccnt);
1648} 1827}
1649#endif 1828#endif
1650 1829
1651void inline_speed 1830void inline_speed
1652time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1706 { 1885 {
1707#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1709#endif 1888#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now; 1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1713 } 1896 }
1714 1897
1715 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1716 } 1899 }
1717} 1900}
1737 1920
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739 1922
1740 do 1923 do
1741 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1742#ifndef _WIN32 1929#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 1930 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 1931 if (expect_false (getpid () != curpid))
1745 { 1932 {
1746 curpid = getpid (); 1933 curpid = getpid ();
1787 1974
1788 waittime = MAX_BLOCKTIME; 1975 waittime = MAX_BLOCKTIME;
1789 1976
1790 if (timercnt) 1977 if (timercnt)
1791 { 1978 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 1980 if (waittime > to) waittime = to;
1794 } 1981 }
1795 1982
1796#if EV_PERIODIC_ENABLE 1983#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 1984 if (periodiccnt)
1798 { 1985 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 1987 if (waittime > to) waittime = to;
1801 } 1988 }
1802#endif 1989#endif
1803 1990
1804 if (expect_false (waittime < timeout_blocktime)) 1991 if (expect_false (waittime < timeout_blocktime))
1941 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1942 return; 2129 return;
1943 2130
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1945 2132
2133 EV_FREQUENT_CHECK;
2134
1946 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1948 wlist_add (&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1949 2138
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET; 2140 w->events &= ~EV_IOFDSET;
2141
2142 EV_FREQUENT_CHECK;
1952} 2143}
1953 2144
1954void noinline 2145void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1956{ 2147{
1957 clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1959 return; 2150 return;
1960 2151
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153
2154 EV_FREQUENT_CHECK;
1962 2155
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1965 2158
1966 fd_change (EV_A_ w->fd, 1); 2159 fd_change (EV_A_ w->fd, 1);
2160
2161 EV_FREQUENT_CHECK;
1967} 2162}
1968 2163
1969void noinline 2164void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
1971{ 2166{
1974 2169
1975 ev_at (w) += mn_now; 2170 ev_at (w) += mn_now;
1976 2171
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
2180 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2181 upheap (timers, ev_active (w));
1983 2182
2183 EV_FREQUENT_CHECK;
2184
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2186}
1986 2187
1987void noinline 2188void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2189ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2190{
1990 clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
1992 return; 2193 return;
1993 2194
2195 EV_FREQUENT_CHECK;
2196
1994 { 2197 {
1995 int active = ev_active (w); 2198 int active = ev_active (w);
1996 2199
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2201
2202 --timercnt;
2203
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2204 if (expect_true (active < timercnt + HEAP0))
2000 { 2205 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2206 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
2003 } 2208 }
2004
2005 --timercnt;
2006 } 2209 }
2210
2211 EV_FREQUENT_CHECK;
2007 2212
2008 ev_at (w) -= mn_now; 2213 ev_at (w) -= mn_now;
2009 2214
2010 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
2011} 2216}
2012 2217
2013void noinline 2218void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
2015{ 2220{
2221 EV_FREQUENT_CHECK;
2222
2016 if (ev_is_active (w)) 2223 if (ev_is_active (w))
2017 { 2224 {
2018 if (w->repeat) 2225 if (w->repeat)
2019 { 2226 {
2020 ev_at (w) = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2228 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2229 adjustheap (timers, timercnt, ev_active (w));
2022 } 2230 }
2023 else 2231 else
2024 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
2025 } 2233 }
2026 else if (w->repeat) 2234 else if (w->repeat)
2027 { 2235 {
2028 ev_at (w) = w->repeat; 2236 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
2030 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
2031} 2241}
2032 2242
2033#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
2034void noinline 2244void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2257 }
2048 else 2258 else
2049 ev_at (w) = w->offset; 2259 ev_at (w) = w->offset;
2050 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2267 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2268 upheap (periodics, ev_active (w));
2055 2269
2270 EV_FREQUENT_CHECK;
2271
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2273}
2058 2274
2059void noinline 2275void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2276ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2277{
2062 clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
2064 return; 2280 return;
2065 2281
2282 EV_FREQUENT_CHECK;
2283
2066 { 2284 {
2067 int active = ev_active (w); 2285 int active = ev_active (w);
2068 2286
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2288
2289 --periodiccnt;
2290
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2291 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2292 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
2075 } 2295 }
2076
2077 --periodiccnt;
2078 } 2296 }
2297
2298 EV_FREQUENT_CHECK;
2079 2299
2080 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
2081} 2301}
2082 2302
2083void noinline 2303void noinline
2103 return; 2323 return;
2104 2324
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2106 2326
2107 evpipe_init (EV_A); 2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
2108 2330
2109 { 2331 {
2110#ifndef _WIN32 2332#ifndef _WIN32
2111 sigset_t full, prev; 2333 sigset_t full, prev;
2112 sigfillset (&full); 2334 sigfillset (&full);
2133 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
2136#endif 2358#endif
2137 } 2359 }
2360
2361 EV_FREQUENT_CHECK;
2138} 2362}
2139 2363
2140void noinline 2364void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2366{
2143 clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
2145 return; 2369 return;
2146 2370
2371 EV_FREQUENT_CHECK;
2372
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
2149 2375
2150 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
2152} 2380}
2153 2381
2154void 2382void
2155ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
2156{ 2384{
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2387#endif
2160 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
2161 return; 2389 return;
2162 2390
2391 EV_FREQUENT_CHECK;
2392
2163 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
2165} 2397}
2166 2398
2167void 2399void
2168ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
2169{ 2401{
2170 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
2172 return; 2404 return;
2173 2405
2406 EV_FREQUENT_CHECK;
2407
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
2176} 2412}
2177 2413
2178#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
2179 2415
2180# ifdef _WIN32 2416# ifdef _WIN32
2335 } 2571 }
2336 2572
2337 } 2573 }
2338} 2574}
2339 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 2582#endif
2341 2583
2342void 2584void
2343ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
2344{ 2586{
2408 else 2650 else
2409#endif 2651#endif
2410 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
2411 2653
2412 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2413} 2657}
2414 2658
2415void 2659void
2416ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2661{
2418 clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
2420 return; 2664 return;
2421 2665
2666 EV_FREQUENT_CHECK;
2667
2422#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
2424#endif 2670#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
2426 2672
2427 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2428} 2676}
2429#endif 2677#endif
2430 2678
2431#if EV_IDLE_ENABLE 2679#if EV_IDLE_ENABLE
2432void 2680void
2434{ 2682{
2435 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
2436 return; 2684 return;
2437 2685
2438 pri_adjust (EV_A_ (W)w); 2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2439 2689
2440 { 2690 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2691 int active = ++idlecnt [ABSPRI (w)];
2442 2692
2443 ++idleall; 2693 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2694 ev_start (EV_A_ (W)w, active);
2445 2695
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2448 } 2698 }
2699
2700 EV_FREQUENT_CHECK;
2449} 2701}
2450 2702
2451void 2703void
2452ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
2453{ 2705{
2454 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
2456 return; 2708 return;
2457 2709
2710 EV_FREQUENT_CHECK;
2711
2458 { 2712 {
2459 int active = ev_active (w); 2713 int active = ev_active (w);
2460 2714
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 2717
2464 ev_stop (EV_A_ (W)w); 2718 ev_stop (EV_A_ (W)w);
2465 --idleall; 2719 --idleall;
2466 } 2720 }
2721
2722 EV_FREQUENT_CHECK;
2467} 2723}
2468#endif 2724#endif
2469 2725
2470void 2726void
2471ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 2728{
2473 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2474 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
2475 2733
2476 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2479} 2739}
2480 2740
2481void 2741void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 2743{
2484 clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2486 return; 2746 return;
2487 2747
2748 EV_FREQUENT_CHECK;
2749
2488 { 2750 {
2489 int active = ev_active (w); 2751 int active = ev_active (w);
2490 2752
2491 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 2754 ev_active (prepares [active - 1]) = active;
2493 } 2755 }
2494 2756
2495 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2496} 2760}
2497 2761
2498void 2762void
2499ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2500{ 2764{
2501 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2502 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2503 2769
2504 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2507} 2775}
2508 2776
2509void 2777void
2510ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2511{ 2779{
2512 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2514 return; 2782 return;
2515 2783
2784 EV_FREQUENT_CHECK;
2785
2516 { 2786 {
2517 int active = ev_active (w); 2787 int active = ev_active (w);
2518 2788
2519 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 2790 ev_active (checks [active - 1]) = active;
2521 } 2791 }
2522 2792
2523 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2524} 2796}
2525 2797
2526#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2527void noinline 2799void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2575 struct ev_loop *loop = w->other; 2847 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 2850 }
2579 2851
2852 EV_FREQUENT_CHECK;
2853
2580 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2582 2856
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 2858 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 2859 ev_prepare_start (EV_A_ &w->prepare);
2586 2860
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 2862
2589 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2590} 2866}
2591 2867
2592void 2868void
2593ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2594{ 2870{
2595 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2597 return; 2873 return;
2598 2874
2875 EV_FREQUENT_CHECK;
2876
2599 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 2878 ev_prepare_stop (EV_A_ &w->prepare);
2601 2879
2602 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2603} 2883}
2604#endif 2884#endif
2605 2885
2606#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2607void 2887void
2608ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2609{ 2889{
2610 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2611 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2612 2894
2613 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2616} 2900}
2617 2901
2618void 2902void
2619ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2620{ 2904{
2621 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2623 return; 2907 return;
2624 2908
2909 EV_FREQUENT_CHECK;
2910
2625 { 2911 {
2626 int active = ev_active (w); 2912 int active = ev_active (w);
2627 2913
2628 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 2915 ev_active (forks [active - 1]) = active;
2630 } 2916 }
2631 2917
2632 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2633} 2921}
2634#endif 2922#endif
2635 2923
2636#if EV_ASYNC_ENABLE 2924#if EV_ASYNC_ENABLE
2637void 2925void
2639{ 2927{
2640 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2641 return; 2929 return;
2642 2930
2643 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2644 2934
2645 ev_start (EV_A_ (W)w, ++asynccnt); 2935 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2648} 2940}
2649 2941
2650void 2942void
2651ev_async_stop (EV_P_ ev_async *w) 2943ev_async_stop (EV_P_ ev_async *w)
2652{ 2944{
2653 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2655 return; 2947 return;
2656 2948
2949 EV_FREQUENT_CHECK;
2950
2657 { 2951 {
2658 int active = ev_active (w); 2952 int active = ev_active (w);
2659 2953
2660 asyncs [active - 1] = asyncs [--asynccnt]; 2954 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 2955 ev_active (asyncs [active - 1]) = active;
2662 } 2956 }
2663 2957
2664 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2665} 2961}
2666 2962
2667void 2963void
2668ev_async_send (EV_P_ ev_async *w) 2964ev_async_send (EV_P_ ev_async *w)
2669{ 2965{
2686once_cb (EV_P_ struct ev_once *once, int revents) 2982once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 2983{
2688 void (*cb)(int revents, void *arg) = once->cb; 2984 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 2985 void *arg = once->arg;
2690 2986
2691 ev_io_stop (EV_A_ &once->io); 2987 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 2988 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 2989 ev_free (once);
2694 2990
2695 cb (revents, arg); 2991 cb (revents, arg);
2696} 2992}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines