ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
260# endif 287# endif
261#endif 288#endif
262 289
263#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
264# include <sys/inotify.h> 291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
265#endif 297#endif
266 298
267#if EV_SELECT_IS_WINSOCKET 299#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 300# include <winsock.h>
269#endif 301#endif
279} 311}
280# endif 312# endif
281#endif 313#endif
282 314
283/**/ 315/**/
316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
284 322
285/* 323/*
286 * This is used to avoid floating point rounding problems. 324 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 325 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 326 * to ensure progress, time-wise, even when rounding
422 W w; 460 W w;
423 int events; 461 int events;
424} ANPENDING; 462} ANPENDING;
425 463
426#if EV_USE_INOTIFY 464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
427typedef struct 466typedef struct
428{ 467{
429 WL head; 468 WL head;
430} ANFS; 469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
431#endif 488#endif
432 489
433#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
434 491
435 struct ev_loop 492 struct ev_loop
513 struct timeval tv; 570 struct timeval tv;
514 571
515 tv.tv_sec = (time_t)delay; 572 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
518 select (0, 0, 0, 0, &tv); 578 select (0, 0, 0, 0, &tv);
519#endif 579#endif
520 } 580 }
521} 581}
522 582
656 events |= (unsigned char)w->events; 716 events |= (unsigned char)w->events;
657 717
658#if EV_SELECT_IS_WINSOCKET 718#if EV_SELECT_IS_WINSOCKET
659 if (events) 719 if (events)
660 { 720 {
661 unsigned long argp; 721 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 722 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 724 #else
665 anfd->handle = _get_osfhandle (fd); 725 anfd->handle = _get_osfhandle (fd);
666 #endif 726 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 728 }
669#endif 729#endif
670 730
671 { 731 {
672 unsigned char o_events = anfd->events; 732 unsigned char o_events = anfd->events;
725{ 785{
726 int fd; 786 int fd;
727 787
728 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 789 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
732} 792}
733 793
734/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 795static void noinline
760} 820}
761 821
762/*****************************************************************************/ 822/*****************************************************************************/
763 823
764/* 824/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree.
828 */
829
830/*
765 * at the moment we allow libev the luxury of two heaps, 831 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 833 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 834 * the difference is about 5% with 50000+ watchers.
769 */ 835 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 836#if EV_USE_4HEAP
772 837
838#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
842
843/* away from the root */
844void inline_speed
845downheap (ANHE *heap, int N, int k)
846{
847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
849
850 for (;;)
851 {
852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
855
856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
858 {
859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
872 break;
873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
883 heap [k] = he;
884 ev_active (ANHE_w (he)) = k;
885}
886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
894void inline_speed
895downheap (ANHE *heap, int N, int k)
896{
897 ANHE he = heap [k];
898
899 for (;;)
900 {
901 int c = k << 1;
902
903 if (c > N + HEAP0 - 1)
904 break;
905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
912 heap [k] = heap [c];
913 ev_active (ANHE_w (heap [k])) = k;
914
915 k = c;
916 }
917
918 heap [k] = he;
919 ev_active (ANHE_w (he)) = k;
920}
921#endif
774 922
775/* towards the root */ 923/* towards the root */
776void inline_speed 924void inline_speed
777upheap (WT *heap, int k) 925upheap (ANHE *heap, int k)
778{ 926{
779 WT w = heap [k]; 927 ANHE he = heap [k];
780 928
781 for (;;) 929 for (;;)
782 { 930 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0; 931 int p = HPARENT (k);
784 932
785 if (p >= HEAP0 || heap [p]->at <= w->at) 933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
786 break; 934 break;
787 935
788 heap [k] = heap [p]; 936 heap [k] = heap [p];
789 ev_active (heap [k]) = k; 937 ev_active (ANHE_w (heap [k])) = k;
790 k = p; 938 k = p;
791 } 939 }
792 940
793 heap [k] = w; 941 heap [k] = he;
794 ev_active (heap [k]) = k; 942 ev_active (ANHE_w (he)) = k;
795} 943}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
809
810 // find minimum child
811 if (expect_true (pos +3 < E))
812 {
813 (minpos = pos + 0), (minat = (*minpos)->at);
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
817 }
818 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break;
831
832 ev_active (*minpos) = k;
833 heap [k] = *minpos;
834
835 k = minpos - heap;
836 }
837
838 heap [k] = w;
839 ev_active (heap [k]) = k;
840}
841
842#else // 4HEAP
843
844#define HEAP0 1
845
846/* towards the root */
847void inline_speed
848upheap (WT *heap, int k)
849{
850 WT w = heap [k];
851
852 for (;;)
853 {
854 int p = k >> 1;
855
856 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at)
858 break;
859
860 heap [k] = heap [p];
861 ev_active (heap [k]) = k;
862 k = p;
863 }
864
865 heap [k] = w;
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break;
881
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c];
889 ((W)heap [k])->active = k;
890
891 k = c;
892 }
893
894 heap [k] = w;
895 ev_active (heap [k]) = k;
896}
897#endif
898 944
899void inline_size 945void inline_size
900adjustheap (WT *heap, int N, int k) 946adjustheap (ANHE *heap, int N, int k)
901{ 947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 949 upheap (heap, k);
950 else
903 downheap (heap, N, k); 951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
904} 964}
905 965
906/*****************************************************************************/ 966/*****************************************************************************/
907 967
908typedef struct 968typedef struct
932 992
933void inline_speed 993void inline_speed
934fd_intern (int fd) 994fd_intern (int fd)
935{ 995{
936#ifdef _WIN32 996#ifdef _WIN32
937 int arg = 1; 997 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else 999#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 1001 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 1002#endif
1426 1486
1427 postfork = 0; 1487 postfork = 0;
1428} 1488}
1429 1489
1430#if EV_MULTIPLICITY 1490#if EV_MULTIPLICITY
1491
1431struct ev_loop * 1492struct ev_loop *
1432ev_loop_new (unsigned int flags) 1493ev_loop_new (unsigned int flags)
1433{ 1494{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1496
1453void 1514void
1454ev_loop_fork (EV_P) 1515ev_loop_fork (EV_P)
1455{ 1516{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1517 postfork = 1; /* must be in line with ev_default_fork */
1457} 1518}
1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1458#endif 1615# endif
1616#endif
1617}
1618
1619#endif /* multiplicity */
1459 1620
1460#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
1461struct ev_loop * 1622struct ev_loop *
1462ev_default_loop_init (unsigned int flags) 1623ev_default_loop_init (unsigned int flags)
1463#else 1624#else
1539 { 1700 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541 1702
1542 p->w->pending = 0; 1703 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1704 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK;
1544 } 1706 }
1545 } 1707 }
1546} 1708}
1547 1709
1548#if EV_IDLE_ENABLE 1710#if EV_IDLE_ENABLE
1569#endif 1731#endif
1570 1732
1571void inline_size 1733void inline_size
1572timers_reify (EV_P) 1734timers_reify (EV_P)
1573{ 1735{
1736 EV_FREQUENT_CHECK;
1737
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1739 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1577 1741
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579 1743
1580 /* first reschedule or stop timer */ 1744 /* first reschedule or stop timer */
1581 if (w->repeat) 1745 if (w->repeat)
1582 { 1746 {
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584
1585 ev_at (w) += w->repeat; 1747 ev_at (w) += w->repeat;
1586 if (ev_at (w) < mn_now) 1748 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now; 1749 ev_at (w) = mn_now;
1588 1750
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752
1753 ANHE_at_cache (timers [HEAP0]);
1589 downheap (timers, timercnt, HEAP0); 1754 downheap (timers, timercnt, HEAP0);
1590 } 1755 }
1591 else 1756 else
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1758
1759 EV_FREQUENT_CHECK;
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1595 } 1761 }
1596} 1762}
1597 1763
1598#if EV_PERIODIC_ENABLE 1764#if EV_PERIODIC_ENABLE
1599void inline_size 1765void inline_size
1600periodics_reify (EV_P) 1766periodics_reify (EV_P)
1601{ 1767{
1768 EV_FREQUENT_CHECK;
1769
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1771 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1605 1773
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1607 1775
1608 /* first reschedule or stop timer */ 1776 /* first reschedule or stop timer */
1609 if (w->reschedule_cb) 1777 if (w->reschedule_cb)
1610 { 1778 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1784 downheap (periodics, periodiccnt, HEAP0);
1614 } 1785 }
1615 else if (w->interval) 1786 else if (w->interval)
1616 { 1787 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1620 downheap (periodics, periodiccnt, HEAP0); 1803 downheap (periodics, periodiccnt, HEAP0);
1621 } 1804 }
1622 else 1805 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1807
1808 EV_FREQUENT_CHECK;
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1626 } 1810 }
1627} 1811}
1628 1812
1629static void noinline 1813static void noinline
1630periodics_reschedule (EV_P) 1814periodics_reschedule (EV_P)
1631{ 1815{
1632 int i; 1816 int i;
1633 1817
1634 /* adjust periodics after time jump */ 1818 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1820 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1822
1639 if (w->reschedule_cb) 1823 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1825 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 }
1644 1827
1645 /* now rebuild the heap */ 1828 ANHE_at_cache (periodics [i]);
1646 for (i = periodiccnt >> 1; --i; ) 1829 }
1830
1647 downheap (periodics, periodiccnt, i + HEAP0); 1831 reheap (periodics, periodiccnt);
1648} 1832}
1649#endif 1833#endif
1650 1834
1651void inline_speed 1835void inline_speed
1652time_update (EV_P_ ev_tstamp max_block) 1836time_update (EV_P_ ev_tstamp max_block)
1706 { 1890 {
1707#if EV_PERIODIC_ENABLE 1891#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 1892 periodics_reschedule (EV_A);
1709#endif 1893#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */ 1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i) 1895 for (i = 0; i < timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now; 1896 {
1897 ANHE *he = timers + i + HEAP0;
1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1713 } 1901 }
1714 1902
1715 mn_now = ev_rt_now; 1903 mn_now = ev_rt_now;
1716 } 1904 }
1717} 1905}
1726ev_unref (EV_P) 1914ev_unref (EV_P)
1727{ 1915{
1728 --activecnt; 1916 --activecnt;
1729} 1917}
1730 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1731static int loop_done; 1925static int loop_done;
1732 1926
1733void 1927void
1734ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
1735{ 1929{
1737 1931
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739 1933
1740 do 1934 do
1741 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1742#ifndef _WIN32 1940#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 1941 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 1942 if (expect_false (getpid () != curpid))
1745 { 1943 {
1746 curpid = getpid (); 1944 curpid = getpid ();
1787 1985
1788 waittime = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1789 1987
1790 if (timercnt) 1988 if (timercnt)
1791 { 1989 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 1991 if (waittime > to) waittime = to;
1794 } 1992 }
1795 1993
1796#if EV_PERIODIC_ENABLE 1994#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 1995 if (periodiccnt)
1798 { 1996 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 1998 if (waittime > to) waittime = to;
1801 } 1999 }
1802#endif 2000#endif
1803 2001
1804 if (expect_false (waittime < timeout_blocktime)) 2002 if (expect_false (waittime < timeout_blocktime))
1941 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1942 return; 2140 return;
1943 2141
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1945 2143
2144 EV_FREQUENT_CHECK;
2145
1946 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1948 wlist_add (&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1949 2149
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET; 2151 w->events &= ~EV_IOFDSET;
2152
2153 EV_FREQUENT_CHECK;
1952} 2154}
1953 2155
1954void noinline 2156void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1956{ 2158{
1957 clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1959 return; 2161 return;
1960 2162
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164
2165 EV_FREQUENT_CHECK;
1962 2166
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1965 2169
1966 fd_change (EV_A_ w->fd, 1); 2170 fd_change (EV_A_ w->fd, 1);
2171
2172 EV_FREQUENT_CHECK;
1967} 2173}
1968 2174
1969void noinline 2175void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1971{ 2177{
1974 2180
1975 ev_at (w) += mn_now; 2181 ev_at (w) += mn_now;
1976 2182
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
2191 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2192 upheap (timers, ev_active (w));
1983 2193
2194 EV_FREQUENT_CHECK;
2195
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2197}
1986 2198
1987void noinline 2199void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2201{
1990 clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2203 if (expect_false (!ev_is_active (w)))
1992 return; 2204 return;
1993 2205
2206 EV_FREQUENT_CHECK;
2207
1994 { 2208 {
1995 int active = ev_active (w); 2209 int active = ev_active (w);
1996 2210
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2212
2213 --timercnt;
2214
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2215 if (expect_true (active < timercnt + HEAP0))
2000 { 2216 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2217 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2218 adjustheap (timers, timercnt, active);
2003 } 2219 }
2004
2005 --timercnt;
2006 } 2220 }
2221
2222 EV_FREQUENT_CHECK;
2007 2223
2008 ev_at (w) -= mn_now; 2224 ev_at (w) -= mn_now;
2009 2225
2010 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
2011} 2227}
2012 2228
2013void noinline 2229void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
2015{ 2231{
2232 EV_FREQUENT_CHECK;
2233
2016 if (ev_is_active (w)) 2234 if (ev_is_active (w))
2017 { 2235 {
2018 if (w->repeat) 2236 if (w->repeat)
2019 { 2237 {
2020 ev_at (w) = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
2239 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2240 adjustheap (timers, timercnt, ev_active (w));
2022 } 2241 }
2023 else 2242 else
2024 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
2025 } 2244 }
2026 else if (w->repeat) 2245 else if (w->repeat)
2027 { 2246 {
2028 ev_at (w) = w->repeat; 2247 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
2030 } 2249 }
2250
2251 EV_FREQUENT_CHECK;
2031} 2252}
2032 2253
2033#if EV_PERIODIC_ENABLE 2254#if EV_PERIODIC_ENABLE
2034void noinline 2255void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2268 }
2048 else 2269 else
2049 ev_at (w) = w->offset; 2270 ev_at (w) = w->offset;
2050 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2278 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2279 upheap (periodics, ev_active (w));
2055 2280
2281 EV_FREQUENT_CHECK;
2282
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2284}
2058 2285
2059void noinline 2286void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2288{
2062 clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
2064 return; 2291 return;
2065 2292
2293 EV_FREQUENT_CHECK;
2294
2066 { 2295 {
2067 int active = ev_active (w); 2296 int active = ev_active (w);
2068 2297
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2299
2300 --periodiccnt;
2301
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2302 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2303 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2305 adjustheap (periodics, periodiccnt, active);
2075 } 2306 }
2076
2077 --periodiccnt;
2078 } 2307 }
2308
2309 EV_FREQUENT_CHECK;
2079 2310
2080 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
2081} 2312}
2082 2313
2083void noinline 2314void noinline
2103 return; 2334 return;
2104 2335
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2106 2337
2107 evpipe_init (EV_A); 2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
2108 2341
2109 { 2342 {
2110#ifndef _WIN32 2343#ifndef _WIN32
2111 sigset_t full, prev; 2344 sigset_t full, prev;
2112 sigfillset (&full); 2345 sigfillset (&full);
2133 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
2136#endif 2369#endif
2137 } 2370 }
2371
2372 EV_FREQUENT_CHECK;
2138} 2373}
2139 2374
2140void noinline 2375void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2377{
2143 clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
2145 return; 2380 return;
2146 2381
2382 EV_FREQUENT_CHECK;
2383
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
2149 2386
2150 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
2389
2390 EV_FREQUENT_CHECK;
2152} 2391}
2153 2392
2154void 2393void
2155ev_child_start (EV_P_ ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
2156{ 2395{
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2398#endif
2160 if (expect_false (ev_is_active (w))) 2399 if (expect_false (ev_is_active (w)))
2161 return; 2400 return;
2162 2401
2402 EV_FREQUENT_CHECK;
2403
2163 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2406
2407 EV_FREQUENT_CHECK;
2165} 2408}
2166 2409
2167void 2410void
2168ev_child_stop (EV_P_ ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
2169{ 2412{
2170 clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
2172 return; 2415 return;
2173 2416
2417 EV_FREQUENT_CHECK;
2418
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
2176} 2423}
2177 2424
2178#if EV_STAT_ENABLE 2425#if EV_STAT_ENABLE
2179 2426
2180# ifdef _WIN32 2427# ifdef _WIN32
2335 } 2582 }
2336 2583
2337 } 2584 }
2338} 2585}
2339 2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 2593#endif
2341 2594
2342void 2595void
2343ev_stat_stat (EV_P_ ev_stat *w) 2596ev_stat_stat (EV_P_ ev_stat *w)
2344{ 2597{
2408 else 2661 else
2409#endif 2662#endif
2410 ev_timer_start (EV_A_ &w->timer); 2663 ev_timer_start (EV_A_ &w->timer);
2411 2664
2412 ev_start (EV_A_ (W)w, 1); 2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
2413} 2668}
2414 2669
2415void 2670void
2416ev_stat_stop (EV_P_ ev_stat *w) 2671ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2672{
2418 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2420 return; 2675 return;
2421 2676
2677 EV_FREQUENT_CHECK;
2678
2422#if EV_USE_INOTIFY 2679#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2680 infy_del (EV_A_ w);
2424#endif 2681#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2682 ev_timer_stop (EV_A_ &w->timer);
2426 2683
2427 ev_stop (EV_A_ (W)w); 2684 ev_stop (EV_A_ (W)w);
2685
2686 EV_FREQUENT_CHECK;
2428} 2687}
2429#endif 2688#endif
2430 2689
2431#if EV_IDLE_ENABLE 2690#if EV_IDLE_ENABLE
2432void 2691void
2434{ 2693{
2435 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2436 return; 2695 return;
2437 2696
2438 pri_adjust (EV_A_ (W)w); 2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2439 2700
2440 { 2701 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2702 int active = ++idlecnt [ABSPRI (w)];
2442 2703
2443 ++idleall; 2704 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2705 ev_start (EV_A_ (W)w, active);
2445 2706
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2708 idles [ABSPRI (w)][active - 1] = w;
2448 } 2709 }
2710
2711 EV_FREQUENT_CHECK;
2449} 2712}
2450 2713
2451void 2714void
2452ev_idle_stop (EV_P_ ev_idle *w) 2715ev_idle_stop (EV_P_ ev_idle *w)
2453{ 2716{
2454 clear_pending (EV_A_ (W)w); 2717 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2718 if (expect_false (!ev_is_active (w)))
2456 return; 2719 return;
2457 2720
2721 EV_FREQUENT_CHECK;
2722
2458 { 2723 {
2459 int active = ev_active (w); 2724 int active = ev_active (w);
2460 2725
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 2728
2464 ev_stop (EV_A_ (W)w); 2729 ev_stop (EV_A_ (W)w);
2465 --idleall; 2730 --idleall;
2466 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2467} 2734}
2468#endif 2735#endif
2469 2736
2470void 2737void
2471ev_prepare_start (EV_P_ ev_prepare *w) 2738ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 2739{
2473 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
2474 return; 2741 return;
2742
2743 EV_FREQUENT_CHECK;
2475 2744
2476 ev_start (EV_A_ (W)w, ++preparecnt); 2745 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
2479} 2750}
2480 2751
2481void 2752void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 2753ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 2754{
2484 clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
2486 return; 2757 return;
2487 2758
2759 EV_FREQUENT_CHECK;
2760
2488 { 2761 {
2489 int active = ev_active (w); 2762 int active = ev_active (w);
2490 2763
2491 prepares [active - 1] = prepares [--preparecnt]; 2764 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 2765 ev_active (prepares [active - 1]) = active;
2493 } 2766 }
2494 2767
2495 ev_stop (EV_A_ (W)w); 2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
2496} 2771}
2497 2772
2498void 2773void
2499ev_check_start (EV_P_ ev_check *w) 2774ev_check_start (EV_P_ ev_check *w)
2500{ 2775{
2501 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
2502 return; 2777 return;
2778
2779 EV_FREQUENT_CHECK;
2503 2780
2504 ev_start (EV_A_ (W)w, ++checkcnt); 2781 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
2507} 2786}
2508 2787
2509void 2788void
2510ev_check_stop (EV_P_ ev_check *w) 2789ev_check_stop (EV_P_ ev_check *w)
2511{ 2790{
2512 clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
2514 return; 2793 return;
2515 2794
2795 EV_FREQUENT_CHECK;
2796
2516 { 2797 {
2517 int active = ev_active (w); 2798 int active = ev_active (w);
2518 2799
2519 checks [active - 1] = checks [--checkcnt]; 2800 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 2801 ev_active (checks [active - 1]) = active;
2521 } 2802 }
2522 2803
2523 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2524} 2807}
2525 2808
2526#if EV_EMBED_ENABLE 2809#if EV_EMBED_ENABLE
2527void noinline 2810void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 2811ev_embed_sweep (EV_P_ ev_embed *w)
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 2839 }
2557 } 2840 }
2558} 2841}
2559 2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2560#if 0 2855#if 0
2561static void 2856static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 2858{
2564 ev_idle_stop (EV_A_ idle); 2859 ev_idle_stop (EV_A_ idle);
2575 struct ev_loop *loop = w->other; 2870 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 2873 }
2579 2874
2875 EV_FREQUENT_CHECK;
2876
2580 ev_set_priority (&w->io, ev_priority (w)); 2877 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 2878 ev_io_start (EV_A_ &w->io);
2582 2879
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 2881 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 2882 ev_prepare_start (EV_A_ &w->prepare);
2586 2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 2888
2589 ev_start (EV_A_ (W)w, 1); 2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
2590} 2892}
2591 2893
2592void 2894void
2593ev_embed_stop (EV_P_ ev_embed *w) 2895ev_embed_stop (EV_P_ ev_embed *w)
2594{ 2896{
2595 clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
2597 return; 2899 return;
2598 2900
2901 EV_FREQUENT_CHECK;
2902
2599 ev_io_stop (EV_A_ &w->io); 2903 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2601 2906
2602 ev_stop (EV_A_ (W)w); 2907 EV_FREQUENT_CHECK;
2603} 2908}
2604#endif 2909#endif
2605 2910
2606#if EV_FORK_ENABLE 2911#if EV_FORK_ENABLE
2607void 2912void
2608ev_fork_start (EV_P_ ev_fork *w) 2913ev_fork_start (EV_P_ ev_fork *w)
2609{ 2914{
2610 if (expect_false (ev_is_active (w))) 2915 if (expect_false (ev_is_active (w)))
2611 return; 2916 return;
2917
2918 EV_FREQUENT_CHECK;
2612 2919
2613 ev_start (EV_A_ (W)w, ++forkcnt); 2920 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2616} 2925}
2617 2926
2618void 2927void
2619ev_fork_stop (EV_P_ ev_fork *w) 2928ev_fork_stop (EV_P_ ev_fork *w)
2620{ 2929{
2621 clear_pending (EV_A_ (W)w); 2930 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 2931 if (expect_false (!ev_is_active (w)))
2623 return; 2932 return;
2624 2933
2934 EV_FREQUENT_CHECK;
2935
2625 { 2936 {
2626 int active = ev_active (w); 2937 int active = ev_active (w);
2627 2938
2628 forks [active - 1] = forks [--forkcnt]; 2939 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 2940 ev_active (forks [active - 1]) = active;
2630 } 2941 }
2631 2942
2632 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2633} 2946}
2634#endif 2947#endif
2635 2948
2636#if EV_ASYNC_ENABLE 2949#if EV_ASYNC_ENABLE
2637void 2950void
2639{ 2952{
2640 if (expect_false (ev_is_active (w))) 2953 if (expect_false (ev_is_active (w)))
2641 return; 2954 return;
2642 2955
2643 evpipe_init (EV_A); 2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2644 2959
2645 ev_start (EV_A_ (W)w, ++asynccnt); 2960 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2648} 2965}
2649 2966
2650void 2967void
2651ev_async_stop (EV_P_ ev_async *w) 2968ev_async_stop (EV_P_ ev_async *w)
2652{ 2969{
2653 clear_pending (EV_A_ (W)w); 2970 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 2971 if (expect_false (!ev_is_active (w)))
2655 return; 2972 return;
2656 2973
2974 EV_FREQUENT_CHECK;
2975
2657 { 2976 {
2658 int active = ev_active (w); 2977 int active = ev_active (w);
2659 2978
2660 asyncs [active - 1] = asyncs [--asynccnt]; 2979 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 2980 ev_active (asyncs [active - 1]) = active;
2662 } 2981 }
2663 2982
2664 ev_stop (EV_A_ (W)w); 2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2665} 2986}
2666 2987
2667void 2988void
2668ev_async_send (EV_P_ ev_async *w) 2989ev_async_send (EV_P_ ev_async *w)
2669{ 2990{
2686once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3008{
2688 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3010 void *arg = once->arg;
2690 3011
2691 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3014 ev_free (once);
2694 3015
2695 cb (revents, arg); 3016 cb (revents, arg);
2696} 3017}
2697 3018
2698static void 3019static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3021{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3025}
2703 3026
2704static void 3027static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3029{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3033}
2709 3034
2710void 3035void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3037{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines