ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
328typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
329 405
330#define ev_active(w) ((W)(w))->active 406#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 407#define ev_at(w) ((WT)(w))->at
332 408
333#if EV_USE_MONOTONIC 409#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 417#endif
338 418
339#ifdef _WIN32 419#ifdef _WIN32
340# include "ev_win32.c" 420# include "ev_win32.c"
349{ 429{
350 syserr_cb = cb; 430 syserr_cb = cb;
351} 431}
352 432
353static void noinline 433static void noinline
354syserr (const char *msg) 434ev_syserr (const char *msg)
355{ 435{
356 if (!msg) 436 if (!msg)
357 msg = "(libev) system error"; 437 msg = "(libev) system error";
358 438
359 if (syserr_cb) 439 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
407 487
408/*****************************************************************************/ 488/*****************************************************************************/
409 489
490/* file descriptor info structure */
410typedef struct 491typedef struct
411{ 492{
412 WL head; 493 WL head;
413 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
415#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 502 SOCKET handle;
417#endif 503#endif
418} ANFD; 504} ANFD;
419 505
506/* stores the pending event set for a given watcher */
420typedef struct 507typedef struct
421{ 508{
422 W w; 509 W w;
423 int events; 510 int events; /* the pending event set for the given watcher */
424} ANPENDING; 511} ANPENDING;
425 512
426#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
427typedef struct 515typedef struct
428{ 516{
429 WL head; 517 WL head;
430} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
431#endif 539#endif
432 540
433#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
434 542
435 struct ev_loop 543 struct ev_loop
456 564
457#endif 565#endif
458 566
459/*****************************************************************************/ 567/*****************************************************************************/
460 568
569#ifndef EV_HAVE_EV_TIME
461ev_tstamp 570ev_tstamp
462ev_time (void) 571ev_time (void)
463{ 572{
464#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
465 struct timespec ts; 576 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 579 }
580#endif
581
469 struct timeval tv; 582 struct timeval tv;
470 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 585}
586#endif
474 587
475ev_tstamp inline_size 588inline_size ev_tstamp
476get_clock (void) 589get_clock (void)
477{ 590{
478#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
480 { 593 {
513 struct timeval tv; 626 struct timeval tv;
514 627
515 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
518 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
519#endif 635#endif
520 } 636 }
521} 637}
522 638
523/*****************************************************************************/ 639/*****************************************************************************/
524 640
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 642
527int inline_size 643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
528array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
529{ 647{
530 int ncur = cur + 1; 648 int ncur = cur + 1;
531 649
532 do 650 do
549array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
550{ 668{
551 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
553} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 675
555#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
557 { \ 678 { \
558 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 692 }
572#endif 693#endif
573 694
574#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 697
577/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
578 705
579void noinline 706void noinline
580ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
581{ 708{
582 W w_ = (W)w; 709 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
593 } 720 }
594} 721}
595 722
596void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 740{
599 int i; 741 int i;
600 742
601 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
603} 745}
604 746
605/*****************************************************************************/ 747/*****************************************************************************/
606 748
607void inline_size 749inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
622{ 751{
623 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
624 ev_io *w; 753 ev_io *w;
625 754
637{ 766{
638 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
640} 769}
641 770
642void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
643fd_reify (EV_P) 774fd_reify (EV_P)
644{ 775{
645 int i; 776 int i;
646 777
647 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 787 events |= (unsigned char)w->events;
657 788
658#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
659 if (events) 790 if (events)
660 { 791 {
661 unsigned long argp; 792 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 795 #else
665 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
666 #endif 797 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 799 }
669#endif 800#endif
670 801
671 { 802 {
672 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
674 805
675 anfd->reify = 0; 806 anfd->reify = 0;
676 anfd->events = events; 807 anfd->events = events;
677 808
678 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
680 } 811 }
681 } 812 }
682 813
683 fdchangecnt = 0; 814 fdchangecnt = 0;
684} 815}
685 816
686void inline_size 817/* something about the given fd changed */
818inline_size void
687fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
688{ 820{
689 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
691 823
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
697 } 829 }
698} 830}
699 831
700void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
701fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
702{ 835{
703 ev_io *w; 836 ev_io *w;
704 837
705 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 842 }
710} 843}
711 844
712int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
713fd_valid (int fd) 847fd_valid (int fd)
714{ 848{
715#ifdef _WIN32 849#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
717#else 851#else
725{ 859{
726 int fd; 860 int fd;
727 861
728 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 863 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
732} 866}
733 867
734/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 869static void noinline
753 887
754 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 889 if (anfds [fd].events)
756 { 890 {
757 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
759 } 894 }
760} 895}
761 896
762/*****************************************************************************/ 897/*****************************************************************************/
898
899/*
900 * the heap functions want a real array index. array index 0 uis guaranteed to not
901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
902 * the branching factor of the d-tree.
903 */
763 904
764/* 905/*
765 * at the moment we allow libev the luxury of two heaps, 906 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 908 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 909 * the difference is about 5% with 50000+ watchers.
769 */ 910 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 911#if EV_USE_4HEAP
772 912
913#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
774 917
775/* towards the root */ 918/* away from the root */
776void inline_speed 919inline_speed void
777upheap (WT *heap, int k) 920downheap (ANHE *heap, int N, int k)
778{ 921{
779 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
780 924
781 for (;;) 925 for (;;)
782 { 926 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 927 ev_tstamp minat;
807 WT *minpos; 928 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 930
810 // find minimum child 931 /* find minimum child */
811 if (expect_true (pos +3 < E)) 932 if (expect_true (pos + DHEAP - 1 < E))
812 { 933 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 945 }
818 else 946 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 947 break;
831 948
832 ev_active (*minpos) = k; 949 if (ANHE_at (he) <= minat)
950 break;
951
833 heap [k] = *minpos; 952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
834 954
835 k = minpos - heap; 955 k = minpos - heap;
836 } 956 }
837 957
838 heap [k] = w; 958 heap [k] = he;
839 ev_active (heap [k]) = k; 959 ev_active (ANHE_w (he)) = k;
840} 960}
841 961
842#else // 4HEAP 962#else /* 4HEAP */
843 963
844#define HEAP0 1 964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
845 967
846/* towards the root */ 968/* away from the root */
847void inline_speed 969inline_speed void
848upheap (WT *heap, int k) 970downheap (ANHE *heap, int N, int k)
849{ 971{
850 WT w = heap [k]; 972 ANHE he = heap [k];
851 973
852 for (;;) 974 for (;;)
853 { 975 {
854 int p = k >> 1; 976 int c = k << 1;
855 977
856 /* maybe we could use a dummy element at heap [0]? */ 978 if (c > N + HEAP0 - 1)
857 if (!p || heap [p]->at <= w->at)
858 break; 979 break;
859 980
860 heap [k] = heap [p]; 981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 982 ? 1 : 0;
862 k = p;
863 }
864 983
865 heap [k] = w; 984 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 985 break;
881 986
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 987 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 988 ev_active (ANHE_w (heap [k])) = k;
890 989
891 k = c; 990 k = c;
892 } 991 }
893 992
894 heap [k] = w; 993 heap [k] = he;
994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1012 ev_active (ANHE_w (heap [k])) = k;
896} 1013 k = p;
897#endif 1014 }
898 1015
899void inline_size 1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
900adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
901{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 1025 upheap (heap, k);
1026 else
903 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
904} 1040}
905 1041
906/*****************************************************************************/ 1042/*****************************************************************************/
907 1043
1044/* associate signal watchers to a signal signal */
908typedef struct 1045typedef struct
909{ 1046{
910 WL head; 1047 WL head;
911 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
912} ANSIG; 1049} ANSIG;
914static ANSIG *signals; 1051static ANSIG *signals;
915static int signalmax; 1052static int signalmax;
916 1053
917static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
918 1055
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930
931/*****************************************************************************/ 1056/*****************************************************************************/
932 1057
933void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
934fd_intern (int fd) 1061fd_intern (int fd)
935{ 1062{
936#ifdef _WIN32 1063#ifdef _WIN32
937 int arg = 1; 1064 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else 1066#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 1069#endif
943} 1070}
944 1071
945static void noinline 1072static void noinline
946evpipe_init (EV_P) 1073evpipe_init (EV_P)
947{ 1074{
948 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
949 { 1076 {
950#if EV_USE_EVENTFD 1077#if EV_USE_EVENTFD
951 if ((evfd = eventfd (0, 0)) >= 0) 1078 if ((evfd = eventfd (0, 0)) >= 0)
952 { 1079 {
953 evpipe [0] = -1; 1080 evpipe [0] = -1;
954 fd_intern (evfd); 1081 fd_intern (evfd);
955 ev_io_set (&pipeev, evfd, EV_READ); 1082 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1083 }
957 else 1084 else
958#endif 1085#endif
959 { 1086 {
960 while (pipe (evpipe)) 1087 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
962 1089
963 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1093 }
967 1094
968 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1097 }
971} 1098}
972 1099
973void inline_size 1100inline_size void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1102{
976 if (!*flag) 1103 if (!*flag)
977 { 1104 {
978 int old_errno = errno; /* save errno because write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
991 1118
992 errno = old_errno; 1119 errno = old_errno;
993 } 1120 }
994} 1121}
995 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
996static void 1125static void
997pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
998{ 1127{
999#if EV_USE_EVENTFD 1128#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1129 if (evfd >= 0)
1056ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
1057{ 1186{
1058 WL w; 1187 WL w;
1059 1188
1060#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1062#endif 1191#endif
1063 1192
1064 --signum; 1193 --signum;
1065 1194
1066 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
1082 1211
1083#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
1085#endif 1214#endif
1086 1215
1087void inline_speed 1216/* handle a single child status event */
1217inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
1089{ 1219{
1090 ev_child *w; 1220 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 1222
1105 1235
1106#ifndef WCONTINUED 1236#ifndef WCONTINUED
1107# define WCONTINUED 0 1237# define WCONTINUED 0
1108#endif 1238#endif
1109 1239
1240/* called on sigchld etc., calls waitpid */
1110static void 1241static void
1111childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
1112{ 1243{
1113 int pid, status; 1244 int pid, status;
1114 1245
1195 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1198#endif 1329#endif
1199#ifdef __APPLE__ 1330#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1202#endif 1334#endif
1203 1335
1204 return flags; 1336 return flags;
1205} 1337}
1206 1338
1226ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
1227{ 1359{
1228 return loop_count; 1360 return loop_count;
1229} 1361}
1230 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1231void 1369void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{ 1371{
1234 io_blocktime = interval; 1372 io_blocktime = interval;
1235} 1373}
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{ 1377{
1240 timeout_blocktime = interval; 1378 timeout_blocktime = interval;
1241} 1379}
1242 1380
1381/* initialise a loop structure, must be zero-initialised */
1243static void noinline 1382static void noinline
1244loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
1245{ 1384{
1246 if (!backend) 1385 if (!backend)
1247 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
1248#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1249 { 1399 {
1250 struct timespec ts; 1400 struct timespec ts;
1401
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 1403 have_monotonic = 1;
1253 } 1404 }
1254#endif 1405#endif
1255 1406
1256 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
1257 mn_now = get_clock (); 1408 mn_now = get_clock ();
1258 now_floor = mn_now; 1409 now_floor = mn_now;
1295#endif 1446#endif
1296#if EV_USE_SELECT 1447#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 1449#endif
1299 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1300 ev_init (&pipeev, pipecb); 1453 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1302 } 1455 }
1303} 1456}
1304 1457
1458/* free up a loop structure */
1305static void noinline 1459static void noinline
1306loop_destroy (EV_P) 1460loop_destroy (EV_P)
1307{ 1461{
1308 int i; 1462 int i;
1309 1463
1310 if (ev_is_active (&pipeev)) 1464 if (ev_is_active (&pipe_w))
1311 { 1465 {
1312 ev_ref (EV_A); /* signal watcher */ 1466 ev_ref (EV_A); /* signal watcher */
1313 ev_io_stop (EV_A_ &pipeev); 1467 ev_io_stop (EV_A_ &pipe_w);
1314 1468
1315#if EV_USE_EVENTFD 1469#if EV_USE_EVENTFD
1316 if (evfd >= 0) 1470 if (evfd >= 0)
1317 close (evfd); 1471 close (evfd);
1318#endif 1472#endif
1357 } 1511 }
1358 1512
1359 ev_free (anfds); anfdmax = 0; 1513 ev_free (anfds); anfdmax = 0;
1360 1514
1361 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 1517 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 1518 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 1520 array_free (periodic, EMPTY);
1366#endif 1521#endif
1375 1530
1376 backend = 0; 1531 backend = 0;
1377} 1532}
1378 1533
1379#if EV_USE_INOTIFY 1534#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1381#endif 1536#endif
1382 1537
1383void inline_size 1538inline_size void
1384loop_fork (EV_P) 1539loop_fork (EV_P)
1385{ 1540{
1386#if EV_USE_PORT 1541#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 1543#endif
1394#endif 1549#endif
1395#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 1551 infy_fork (EV_A);
1397#endif 1552#endif
1398 1553
1399 if (ev_is_active (&pipeev)) 1554 if (ev_is_active (&pipe_w))
1400 { 1555 {
1401 /* this "locks" the handlers against writing to the pipe */ 1556 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */ 1557 /* while we modify the fd vars */
1403 gotsig = 1; 1558 gotsig = 1;
1404#if EV_ASYNC_ENABLE 1559#if EV_ASYNC_ENABLE
1405 gotasync = 1; 1560 gotasync = 1;
1406#endif 1561#endif
1407 1562
1408 ev_ref (EV_A); 1563 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 1564 ev_io_stop (EV_A_ &pipe_w);
1410 1565
1411#if EV_USE_EVENTFD 1566#if EV_USE_EVENTFD
1412 if (evfd >= 0) 1567 if (evfd >= 0)
1413 close (evfd); 1568 close (evfd);
1414#endif 1569#endif
1419 close (evpipe [1]); 1574 close (evpipe [1]);
1420 } 1575 }
1421 1576
1422 evpipe_init (EV_A); 1577 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 1578 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 1579 pipecb (EV_A_ &pipe_w, EV_READ);
1425 } 1580 }
1426 1581
1427 postfork = 0; 1582 postfork = 0;
1428} 1583}
1429 1584
1430#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
1586
1431struct ev_loop * 1587struct ev_loop *
1432ev_loop_new (unsigned int flags) 1588ev_loop_new (unsigned int flags)
1433{ 1589{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1591
1453void 1609void
1454ev_loop_fork (EV_P) 1610ev_loop_fork (EV_P)
1455{ 1611{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1612 postfork = 1; /* must be in line with ev_default_fork */
1457} 1613}
1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
1667 {
1668 verify_watcher (EV_A_ (W)w);
1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676#if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679#endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
1690
1691#if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694#endif
1695
1696#if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1458#endif 1710# endif
1711#endif
1712}
1713
1714#endif /* multiplicity */
1459 1715
1460#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
1461struct ev_loop * 1717struct ev_loop *
1462ev_default_loop_init (unsigned int flags) 1718ev_default_loop_init (unsigned int flags)
1463#else 1719#else
1496{ 1752{
1497#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr; 1754 struct ev_loop *loop = ev_default_loop_ptr;
1499#endif 1755#endif
1500 1756
1757 ev_default_loop_ptr = 0;
1758
1501#ifndef _WIN32 1759#ifndef _WIN32
1502 ev_ref (EV_A); /* child watcher */ 1760 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev); 1761 ev_signal_stop (EV_A_ &childev);
1504#endif 1762#endif
1505 1763
1511{ 1769{
1512#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr; 1771 struct ev_loop *loop = ev_default_loop_ptr;
1514#endif 1772#endif
1515 1773
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 1774 postfork = 1; /* must be in line with ev_loop_fork */
1518} 1775}
1519 1776
1520/*****************************************************************************/ 1777/*****************************************************************************/
1521 1778
1522void 1779void
1523ev_invoke (EV_P_ void *w, int revents) 1780ev_invoke (EV_P_ void *w, int revents)
1524{ 1781{
1525 EV_CB_INVOKE ((W)w, revents); 1782 EV_CB_INVOKE ((W)w, revents);
1526} 1783}
1527 1784
1528void inline_speed 1785inline_speed void
1529call_pending (EV_P) 1786call_pending (EV_P)
1530{ 1787{
1531 int pri; 1788 int pri;
1532 1789
1533 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1535 { 1792 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 1794
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1541 1797
1542 p->w->pending = 0; 1798 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1544 } 1800 EV_FREQUENT_CHECK;
1545 } 1801 }
1546} 1802}
1547 1803
1548#if EV_IDLE_ENABLE 1804#if EV_IDLE_ENABLE
1549void inline_size 1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1550idle_reify (EV_P) 1808idle_reify (EV_P)
1551{ 1809{
1552 if (expect_false (idleall)) 1810 if (expect_false (idleall))
1553 { 1811 {
1554 int pri; 1812 int pri;
1566 } 1824 }
1567 } 1825 }
1568} 1826}
1569#endif 1827#endif
1570 1828
1571void inline_size 1829/* make timers pending */
1830inline_size void
1572timers_reify (EV_P) 1831timers_reify (EV_P)
1573{ 1832{
1833 EV_FREQUENT_CHECK;
1834
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1836 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1837 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 1851
1585 ev_at (w) += w->repeat; 1852 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1590 } 1860 }
1591 else 1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1862
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1595 } 1864 }
1596} 1865}
1597 1866
1598#if EV_PERIODIC_ENABLE 1867#if EV_PERIODIC_ENABLE
1599void inline_size 1868/* make periodics pending */
1869inline_size void
1600periodics_reify (EV_P) 1870periodics_reify (EV_P)
1601{ 1871{
1872 EV_FREQUENT_CHECK;
1873
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1875 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1876 int feed_count = 0;
1605 1877
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1878 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1614 } 1918 }
1615 else if (w->interval) 1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1920
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 1922 }
1627} 1923}
1628 1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1629static void noinline 1927static void noinline
1630periodics_reschedule (EV_P) 1928periodics_reschedule (EV_P)
1631{ 1929{
1632 int i; 1930 int i;
1633 1931
1634 /* adjust periodics after time jump */ 1932 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1934 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1936
1639 if (w->reschedule_cb) 1937 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1939 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1643 } 1956 {
1644 1957 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 1958 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 1959 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 1960 }
1648} 1961}
1649#endif
1650 1962
1651void inline_speed 1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 1966time_update (EV_P_ ev_tstamp max_block)
1653{ 1967{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 1968#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 1969 if (expect_true (have_monotonic))
1658 { 1970 {
1971 int i;
1659 ev_tstamp odiff = rtmn_diff; 1972 ev_tstamp odiff = rtmn_diff;
1660 1973
1661 mn_now = get_clock (); 1974 mn_now = get_clock ();
1662 1975
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2003 mn_now = get_clock ();
1691 now_floor = mn_now; 2004 now_floor = mn_now;
1692 } 2005 }
1693 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1696# endif 2011# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2012 }
1700 else 2013 else
1701#endif 2014#endif
1702 { 2015 {
1703 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1704 2017
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1709#endif 2024#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2025 }
1714 2026
1715 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1716 } 2028 }
1717} 2029}
1718 2030
1719void 2031void
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1735{ 2033{
2034 ++loop_depth;
2035
1736 loop_done = EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1737 2037
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739 2039
1740 do 2040 do
1741 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
1742#ifndef _WIN32 2046#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2047 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2048 if (expect_false (getpid () != curpid))
1745 { 2049 {
1746 curpid = getpid (); 2050 curpid = getpid ();
1763 { 2067 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2069 call_pending (EV_A);
1766 } 2070 }
1767 2071
1768 if (expect_false (!activecnt))
1769 break;
1770
1771 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1773 loop_fork (EV_A); 2074 loop_fork (EV_A);
1774 2075
1775 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1780 ev_tstamp waittime = 0.; 2081 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 2082 ev_tstamp sleeptime = 0.;
1782 2083
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1784 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1785 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100); 2090 time_update (EV_A_ 1e100);
1787 2091
1788 waittime = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1789 2093
1790 if (timercnt) 2094 if (timercnt)
1791 { 2095 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 2097 if (waittime > to) waittime = to;
1794 } 2098 }
1795 2099
1796#if EV_PERIODIC_ENABLE 2100#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 2101 if (periodiccnt)
1798 { 2102 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 2104 if (waittime > to) waittime = to;
1801 } 2105 }
1802#endif 2106#endif
1803 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 2109 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 2110 waittime = timeout_blocktime;
1806 2111
1807 sleeptime = waittime - backend_fudge; 2112 /* extra check because io_blocktime is commonly 0 */
1808
1809 if (expect_true (sleeptime > io_blocktime)) 2113 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
1814 ev_sleep (sleeptime); 2122 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 2123 waittime -= sleeptime;
2124 }
1816 } 2125 }
1817 } 2126 }
1818 2127
1819 ++loop_count; 2128 ++loop_count;
1820 backend_poll (EV_A_ waittime); 2129 backend_poll (EV_A_ waittime);
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 )); 2156 ));
1848 2157
1849 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
1851} 2162}
1852 2163
1853void 2164void
1854ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
1855{ 2166{
1856 loop_done = how; 2167 loop_done = how;
1857} 2168}
1858 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
1859/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
1860 2209
1861void inline_size 2210inline_size void
1862wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
1863{ 2212{
1864 elem->next = *head; 2213 elem->next = *head;
1865 *head = elem; 2214 *head = elem;
1866} 2215}
1867 2216
1868void inline_size 2217inline_size void
1869wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
1870{ 2219{
1871 while (*head) 2220 while (*head)
1872 { 2221 {
1873 if (*head == elem) 2222 if (*head == elem)
1878 2227
1879 head = &(*head)->next; 2228 head = &(*head)->next;
1880 } 2229 }
1881} 2230}
1882 2231
1883void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
1884clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
1885{ 2235{
1886 if (w->pending) 2236 if (w->pending)
1887 { 2237 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 2239 w->pending = 0;
1890 } 2240 }
1891} 2241}
1892 2242
1893int 2243int
1897 int pending = w_->pending; 2247 int pending = w_->pending;
1898 2248
1899 if (expect_true (pending)) 2249 if (expect_true (pending))
1900 { 2250 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
1902 w_->pending = 0; 2253 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 2254 return p->events;
1905 } 2255 }
1906 else 2256 else
1907 return 0; 2257 return 0;
1908} 2258}
1909 2259
1910void inline_size 2260inline_size void
1911pri_adjust (EV_P_ W w) 2261pri_adjust (EV_P_ W w)
1912{ 2262{
1913 int pri = w->priority; 2263 int pri = w->priority;
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 2266 w->priority = pri;
1917} 2267}
1918 2268
1919void inline_speed 2269inline_speed void
1920ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
1921{ 2271{
1922 pri_adjust (EV_A_ w); 2272 pri_adjust (EV_A_ w);
1923 w->active = active; 2273 w->active = active;
1924 ev_ref (EV_A); 2274 ev_ref (EV_A);
1925} 2275}
1926 2276
1927void inline_size 2277inline_size void
1928ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
1929{ 2279{
1930 ev_unref (EV_A); 2280 ev_unref (EV_A);
1931 w->active = 0; 2281 w->active = 0;
1932} 2282}
1939 int fd = w->fd; 2289 int fd = w->fd;
1940 2290
1941 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
1942 return; 2292 return;
1943 2293
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
1945 2298
1946 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
1949 2302
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET; 2304 w->events &= ~EV__IOFDSET;
2305
2306 EV_FREQUENT_CHECK;
1952} 2307}
1953 2308
1954void noinline 2309void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
1956{ 2311{
1957 clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
1959 return; 2314 return;
1960 2315
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2317
2318 EV_FREQUENT_CHECK;
1962 2319
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
1965 2322
1966 fd_change (EV_A_ w->fd, 1); 2323 fd_change (EV_A_ w->fd, 1);
2324
2325 EV_FREQUENT_CHECK;
1967} 2326}
1968 2327
1969void noinline 2328void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
1971{ 2330{
1972 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
1973 return; 2332 return;
1974 2333
1975 ev_at (w) += mn_now; 2334 ev_at (w) += mn_now;
1976 2335
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
2344 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2345 upheap (timers, ev_active (w));
1983 2346
2347 EV_FREQUENT_CHECK;
2348
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2350}
1986 2351
1987void noinline 2352void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2354{
1990 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1992 return; 2357 return;
1993 2358
2359 EV_FREQUENT_CHECK;
2360
1994 { 2361 {
1995 int active = ev_active (w); 2362 int active = ev_active (w);
1996 2363
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2365
2366 --timercnt;
2367
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2368 if (expect_true (active < timercnt + HEAP0))
2000 { 2369 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2370 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2371 adjustheap (timers, timercnt, active);
2003 } 2372 }
2004
2005 --timercnt;
2006 } 2373 }
2374
2375 EV_FREQUENT_CHECK;
2007 2376
2008 ev_at (w) -= mn_now; 2377 ev_at (w) -= mn_now;
2009 2378
2010 ev_stop (EV_A_ (W)w); 2379 ev_stop (EV_A_ (W)w);
2011} 2380}
2012 2381
2013void noinline 2382void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
2015{ 2384{
2385 EV_FREQUENT_CHECK;
2386
2016 if (ev_is_active (w)) 2387 if (ev_is_active (w))
2017 { 2388 {
2018 if (w->repeat) 2389 if (w->repeat)
2019 { 2390 {
2020 ev_at (w) = mn_now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
2392 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2393 adjustheap (timers, timercnt, ev_active (w));
2022 } 2394 }
2023 else 2395 else
2024 ev_timer_stop (EV_A_ w); 2396 ev_timer_stop (EV_A_ w);
2025 } 2397 }
2026 else if (w->repeat) 2398 else if (w->repeat)
2027 { 2399 {
2028 ev_at (w) = w->repeat; 2400 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2401 ev_timer_start (EV_A_ w);
2030 } 2402 }
2403
2404 EV_FREQUENT_CHECK;
2031} 2405}
2032 2406
2033#if EV_PERIODIC_ENABLE 2407#if EV_PERIODIC_ENABLE
2034void noinline 2408void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
2039 2413
2040 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 2416 else if (w->interval)
2043 { 2417 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2421 }
2048 else 2422 else
2049 ev_at (w) = w->offset; 2423 ev_at (w) = w->offset;
2050 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2431 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2432 upheap (periodics, ev_active (w));
2055 2433
2434 EV_FREQUENT_CHECK;
2435
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2437}
2058 2438
2059void noinline 2439void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2441{
2062 clear_pending (EV_A_ (W)w); 2442 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2443 if (expect_false (!ev_is_active (w)))
2064 return; 2444 return;
2065 2445
2446 EV_FREQUENT_CHECK;
2447
2066 { 2448 {
2067 int active = ev_active (w); 2449 int active = ev_active (w);
2068 2450
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2452
2453 --periodiccnt;
2454
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2455 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2456 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2458 adjustheap (periodics, periodiccnt, active);
2075 } 2459 }
2076
2077 --periodiccnt;
2078 } 2460 }
2461
2462 EV_FREQUENT_CHECK;
2079 2463
2080 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
2081} 2465}
2082 2466
2083void noinline 2467void noinline
2095 2479
2096void noinline 2480void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
2098{ 2482{
2099#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif 2485#endif
2102 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
2103 return; 2487 return;
2104 2488
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2106 2490
2107 evpipe_init (EV_A); 2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
2108 2494
2109 { 2495 {
2110#ifndef _WIN32 2496#ifndef _WIN32
2111 sigset_t full, prev; 2497 sigset_t full, prev;
2112 sigfillset (&full); 2498 sigfillset (&full);
2113 sigprocmask (SIG_SETMASK, &full, &prev); 2499 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif 2500#endif
2115 2501
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2117 2503
2118#ifndef _WIN32 2504#ifndef _WIN32
2119 sigprocmask (SIG_SETMASK, &prev, 0); 2505 sigprocmask (SIG_SETMASK, &prev, 0);
2120#endif 2506#endif
2121 } 2507 }
2133 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
2136#endif 2522#endif
2137 } 2523 }
2524
2525 EV_FREQUENT_CHECK;
2138} 2526}
2139 2527
2140void noinline 2528void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2530{
2143 clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
2145 return; 2533 return;
2146 2534
2535 EV_FREQUENT_CHECK;
2536
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
2149 2539
2150 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
2542
2543 EV_FREQUENT_CHECK;
2152} 2544}
2153 2545
2154void 2546void
2155ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
2156{ 2548{
2157#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2551#endif
2160 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
2161 return; 2553 return;
2162 2554
2555 EV_FREQUENT_CHECK;
2556
2163 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
2165} 2561}
2166 2562
2167void 2563void
2168ev_child_stop (EV_P_ ev_child *w) 2564ev_child_stop (EV_P_ ev_child *w)
2169{ 2565{
2170 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
2172 return; 2568 return;
2173 2569
2570 EV_FREQUENT_CHECK;
2571
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
2176} 2576}
2177 2577
2178#if EV_STAT_ENABLE 2578#if EV_STAT_ENABLE
2179 2579
2180# ifdef _WIN32 2580# ifdef _WIN32
2181# undef lstat 2581# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 2582# define lstat(a,b) _stati64 (a,b)
2183# endif 2583# endif
2184 2584
2185#define DEF_STAT_INTERVAL 5.0074891 2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 2587#define MIN_STAT_INTERVAL 0.1074891
2187 2588
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 2590
2190#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 2592# define EV_INOTIFY_BUFSIZE 8192
2195{ 2596{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 2598
2198 if (w->wd < 0) 2599 if (w->wd < 0)
2199 { 2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2201 2603
2202 /* monitor some parent directory for speedup hints */ 2604 /* monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 2606 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 2608 {
2207 char path [4096]; 2609 char path [4096];
2208 strcpy (path, w->path); 2610 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 2616
2215 char *pend = strrchr (path, '/'); 2617 char *pend = strrchr (path, '/');
2216 2618
2217 if (!pend) 2619 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 2620 break;
2219 2621
2220 *pend = 0; 2622 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 2624 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 2626 }
2225 } 2627 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 2628
2229 if (w->wd >= 0) 2629 if (w->wd >= 0)
2630 {
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
2231} 2650}
2232 2651
2233static void noinline 2652static void noinline
2234infy_del (EV_P_ ev_stat *w) 2653infy_del (EV_P_ ev_stat *w)
2235{ 2654{
2249 2668
2250static void noinline 2669static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 2671{
2253 if (slot < 0) 2672 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 2673 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 2675 infy_wd (EV_A_ slot, wd, ev);
2257 else 2676 else
2258 { 2677 {
2259 WL w_; 2678 WL w_;
2265 2684
2266 if (w->wd == wd || wd == -1) 2685 if (w->wd == wd || wd == -1)
2267 { 2686 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2270 w->wd = -1; 2690 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 2691 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 2692 }
2273 2693
2274 stat_timer_cb (EV_A_ &w->timer, 0); 2694 stat_timer_cb (EV_A_ &w->timer, 0);
2287 2707
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2290} 2710}
2291 2711
2292void inline_size 2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
2293infy_init (EV_P) 2736infy_init (EV_P)
2294{ 2737{
2295 if (fs_fd != -2) 2738 if (fs_fd != -2)
2296 return; 2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
2297 2744
2298 fs_fd = inotify_init (); 2745 fs_fd = inotify_init ();
2299 2746
2300 if (fs_fd >= 0) 2747 if (fs_fd >= 0)
2301 { 2748 {
2303 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
2305 } 2752 }
2306} 2753}
2307 2754
2308void inline_size 2755inline_size void
2309infy_fork (EV_P) 2756infy_fork (EV_P)
2310{ 2757{
2311 int slot; 2758 int slot;
2312 2759
2313 if (fs_fd < 0) 2760 if (fs_fd < 0)
2329 w->wd = -1; 2776 w->wd = -1;
2330 2777
2331 if (fs_fd >= 0) 2778 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 2779 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 2780 else
2334 ev_timer_start (EV_A_ &w->timer); 2781 ev_timer_again (EV_A_ &w->timer);
2335 } 2782 }
2336
2337 } 2783 }
2338} 2784}
2339 2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 2792#endif
2341 2793
2342void 2794void
2343ev_stat_stat (EV_P_ ev_stat *w) 2795ev_stat_stat (EV_P_ ev_stat *w)
2344{ 2796{
2371 || w->prev.st_atime != w->attr.st_atime 2823 || w->prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 2824 || w->prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 2825 || w->prev.st_ctime != w->attr.st_ctime
2374 ) { 2826 ) {
2375 #if EV_USE_INOTIFY 2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
2376 infy_del (EV_A_ w); 2830 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 2831 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
2379 #endif 2834 #endif
2380 2835
2381 ev_feed_event (EV_A_ w, EV_STAT); 2836 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 2837 }
2383} 2838}
2386ev_stat_start (EV_P_ ev_stat *w) 2841ev_stat_start (EV_P_ ev_stat *w)
2387{ 2842{
2388 if (expect_false (ev_is_active (w))) 2843 if (expect_false (ev_is_active (w)))
2389 return; 2844 return;
2390 2845
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 2846 ev_stat_stat (EV_A_ w);
2396 2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 2849 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 2850
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 2852 ev_set_priority (&w->timer, ev_priority (w));
2402 2853
2403#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
2404 infy_init (EV_A); 2855 infy_init (EV_A);
2405 2856
2406 if (fs_fd >= 0) 2857 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 2858 infy_add (EV_A_ w);
2408 else 2859 else
2409#endif 2860#endif
2410 ev_timer_start (EV_A_ &w->timer); 2861 ev_timer_again (EV_A_ &w->timer);
2411 2862
2412 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2413} 2866}
2414 2867
2415void 2868void
2416ev_stat_stop (EV_P_ ev_stat *w) 2869ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2870{
2418 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2420 return; 2873 return;
2421 2874
2875 EV_FREQUENT_CHECK;
2876
2422#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2878 infy_del (EV_A_ w);
2424#endif 2879#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2880 ev_timer_stop (EV_A_ &w->timer);
2426 2881
2427 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2428} 2885}
2429#endif 2886#endif
2430 2887
2431#if EV_IDLE_ENABLE 2888#if EV_IDLE_ENABLE
2432void 2889void
2434{ 2891{
2435 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2436 return; 2893 return;
2437 2894
2438 pri_adjust (EV_A_ (W)w); 2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2439 2898
2440 { 2899 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2900 int active = ++idlecnt [ABSPRI (w)];
2442 2901
2443 ++idleall; 2902 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2903 ev_start (EV_A_ (W)w, active);
2445 2904
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2906 idles [ABSPRI (w)][active - 1] = w;
2448 } 2907 }
2908
2909 EV_FREQUENT_CHECK;
2449} 2910}
2450 2911
2451void 2912void
2452ev_idle_stop (EV_P_ ev_idle *w) 2913ev_idle_stop (EV_P_ ev_idle *w)
2453{ 2914{
2454 clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
2456 return; 2917 return;
2457 2918
2919 EV_FREQUENT_CHECK;
2920
2458 { 2921 {
2459 int active = ev_active (w); 2922 int active = ev_active (w);
2460 2923
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 2926
2464 ev_stop (EV_A_ (W)w); 2927 ev_stop (EV_A_ (W)w);
2465 --idleall; 2928 --idleall;
2466 } 2929 }
2930
2931 EV_FREQUENT_CHECK;
2467} 2932}
2468#endif 2933#endif
2469 2934
2470void 2935void
2471ev_prepare_start (EV_P_ ev_prepare *w) 2936ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 2937{
2473 if (expect_false (ev_is_active (w))) 2938 if (expect_false (ev_is_active (w)))
2474 return; 2939 return;
2940
2941 EV_FREQUENT_CHECK;
2475 2942
2476 ev_start (EV_A_ (W)w, ++preparecnt); 2943 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2479} 2948}
2480 2949
2481void 2950void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 2951ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 2952{
2484 clear_pending (EV_A_ (W)w); 2953 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 2954 if (expect_false (!ev_is_active (w)))
2486 return; 2955 return;
2487 2956
2957 EV_FREQUENT_CHECK;
2958
2488 { 2959 {
2489 int active = ev_active (w); 2960 int active = ev_active (w);
2490 2961
2491 prepares [active - 1] = prepares [--preparecnt]; 2962 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 2963 ev_active (prepares [active - 1]) = active;
2493 } 2964 }
2494 2965
2495 ev_stop (EV_A_ (W)w); 2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2496} 2969}
2497 2970
2498void 2971void
2499ev_check_start (EV_P_ ev_check *w) 2972ev_check_start (EV_P_ ev_check *w)
2500{ 2973{
2501 if (expect_false (ev_is_active (w))) 2974 if (expect_false (ev_is_active (w)))
2502 return; 2975 return;
2976
2977 EV_FREQUENT_CHECK;
2503 2978
2504 ev_start (EV_A_ (W)w, ++checkcnt); 2979 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2507} 2984}
2508 2985
2509void 2986void
2510ev_check_stop (EV_P_ ev_check *w) 2987ev_check_stop (EV_P_ ev_check *w)
2511{ 2988{
2512 clear_pending (EV_A_ (W)w); 2989 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2990 if (expect_false (!ev_is_active (w)))
2514 return; 2991 return;
2515 2992
2993 EV_FREQUENT_CHECK;
2994
2516 { 2995 {
2517 int active = ev_active (w); 2996 int active = ev_active (w);
2518 2997
2519 checks [active - 1] = checks [--checkcnt]; 2998 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 2999 ev_active (checks [active - 1]) = active;
2521 } 3000 }
2522 3001
2523 ev_stop (EV_A_ (W)w); 3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
2524} 3005}
2525 3006
2526#if EV_EMBED_ENABLE 3007#if EV_EMBED_ENABLE
2527void noinline 3008void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 3009ev_embed_sweep (EV_P_ ev_embed *w)
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 3037 }
2557 } 3038 }
2558} 3039}
2559 3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
2560#if 0 3058#if 0
2561static void 3059static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 3061{
2564 ev_idle_stop (EV_A_ idle); 3062 ev_idle_stop (EV_A_ idle);
2571 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2572 return; 3070 return;
2573 3071
2574 { 3072 {
2575 struct ev_loop *loop = w->other; 3073 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 3076 }
3077
3078 EV_FREQUENT_CHECK;
2579 3079
2580 ev_set_priority (&w->io, ev_priority (w)); 3080 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 3081 ev_io_start (EV_A_ &w->io);
2582 3082
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 3084 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 3085 ev_prepare_start (EV_A_ &w->prepare);
2586 3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 3091
2589 ev_start (EV_A_ (W)w, 1); 3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
2590} 3095}
2591 3096
2592void 3097void
2593ev_embed_stop (EV_P_ ev_embed *w) 3098ev_embed_stop (EV_P_ ev_embed *w)
2594{ 3099{
2595 clear_pending (EV_A_ (W)w); 3100 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 3101 if (expect_false (!ev_is_active (w)))
2597 return; 3102 return;
2598 3103
3104 EV_FREQUENT_CHECK;
3105
2599 ev_io_stop (EV_A_ &w->io); 3106 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
2601 3109
2602 ev_stop (EV_A_ (W)w); 3110 EV_FREQUENT_CHECK;
2603} 3111}
2604#endif 3112#endif
2605 3113
2606#if EV_FORK_ENABLE 3114#if EV_FORK_ENABLE
2607void 3115void
2608ev_fork_start (EV_P_ ev_fork *w) 3116ev_fork_start (EV_P_ ev_fork *w)
2609{ 3117{
2610 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2611 return; 3119 return;
3120
3121 EV_FREQUENT_CHECK;
2612 3122
2613 ev_start (EV_A_ (W)w, ++forkcnt); 3123 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
2616} 3128}
2617 3129
2618void 3130void
2619ev_fork_stop (EV_P_ ev_fork *w) 3131ev_fork_stop (EV_P_ ev_fork *w)
2620{ 3132{
2621 clear_pending (EV_A_ (W)w); 3133 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 3134 if (expect_false (!ev_is_active (w)))
2623 return; 3135 return;
2624 3136
3137 EV_FREQUENT_CHECK;
3138
2625 { 3139 {
2626 int active = ev_active (w); 3140 int active = ev_active (w);
2627 3141
2628 forks [active - 1] = forks [--forkcnt]; 3142 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 3143 ev_active (forks [active - 1]) = active;
2630 } 3144 }
2631 3145
2632 ev_stop (EV_A_ (W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
2633} 3149}
2634#endif 3150#endif
2635 3151
2636#if EV_ASYNC_ENABLE 3152#if EV_ASYNC_ENABLE
2637void 3153void
2639{ 3155{
2640 if (expect_false (ev_is_active (w))) 3156 if (expect_false (ev_is_active (w)))
2641 return; 3157 return;
2642 3158
2643 evpipe_init (EV_A); 3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
2644 3162
2645 ev_start (EV_A_ (W)w, ++asynccnt); 3163 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
2648} 3168}
2649 3169
2650void 3170void
2651ev_async_stop (EV_P_ ev_async *w) 3171ev_async_stop (EV_P_ ev_async *w)
2652{ 3172{
2653 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2655 return; 3175 return;
2656 3176
3177 EV_FREQUENT_CHECK;
3178
2657 { 3179 {
2658 int active = ev_active (w); 3180 int active = ev_active (w);
2659 3181
2660 asyncs [active - 1] = asyncs [--asynccnt]; 3182 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 3183 ev_active (asyncs [active - 1]) = active;
2662 } 3184 }
2663 3185
2664 ev_stop (EV_A_ (W)w); 3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
2665} 3189}
2666 3190
2667void 3191void
2668ev_async_send (EV_P_ ev_async *w) 3192ev_async_send (EV_P_ ev_async *w)
2669{ 3193{
2686once_cb (EV_P_ struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3211{
2688 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3213 void *arg = once->arg;
2690 3214
2691 ev_io_stop (EV_A_ &once->io); 3215 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3216 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3217 ev_free (once);
2694 3218
2695 cb (revents, arg); 3219 cb (revents, arg);
2696} 3220}
2697 3221
2698static void 3222static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3224{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3228}
2703 3229
2704static void 3230static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3232{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3236}
2709 3237
2710void 3238void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3240{
2734 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
2736 } 3264 }
2737} 3265}
2738 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
2739#if EV_MULTIPLICITY 3375#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 3376 #include "ev_wrap.h"
2741#endif 3377#endif
2742 3378
2743#ifdef __cplusplus 3379#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines