ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.296 by root, Thu Jul 9 09:11:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
330#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
332 413
333#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 422#endif
338 423
339#ifdef _WIN32 424#ifdef _WIN32
340# include "ev_win32.c" 425# include "ev_win32.c"
349{ 434{
350 syserr_cb = cb; 435 syserr_cb = cb;
351} 436}
352 437
353static void noinline 438static void noinline
354syserr (const char *msg) 439ev_syserr (const char *msg)
355{ 440{
356 if (!msg) 441 if (!msg)
357 msg = "(libev) system error"; 442 msg = "(libev) system error";
358 443
359 if (syserr_cb) 444 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
407 492
408/*****************************************************************************/ 493/*****************************************************************************/
409 494
495/* file descriptor info structure */
410typedef struct 496typedef struct
411{ 497{
412 WL head; 498 WL head;
413 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
415#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 507 SOCKET handle;
417#endif 508#endif
418} ANFD; 509} ANFD;
419 510
511/* stores the pending event set for a given watcher */
420typedef struct 512typedef struct
421{ 513{
422 W w; 514 W w;
423 int events; 515 int events; /* the pending event set for the given watcher */
424} ANPENDING; 516} ANPENDING;
425 517
426#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
427typedef struct 520typedef struct
428{ 521{
429 WL head; 522 WL head;
430} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
431#endif 544#endif
432 545
433#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
434 547
435 struct ev_loop 548 struct ev_loop
456 569
457#endif 570#endif
458 571
459/*****************************************************************************/ 572/*****************************************************************************/
460 573
574#ifndef EV_HAVE_EV_TIME
461ev_tstamp 575ev_tstamp
462ev_time (void) 576ev_time (void)
463{ 577{
464#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
465 struct timespec ts; 581 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 584 }
585#endif
586
469 struct timeval tv; 587 struct timeval tv;
470 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 590}
591#endif
474 592
475ev_tstamp inline_size 593inline_size ev_tstamp
476get_clock (void) 594get_clock (void)
477{ 595{
478#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
480 { 598 {
513 struct timeval tv; 631 struct timeval tv;
514 632
515 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
518 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
519#endif 640#endif
520 } 641 }
521} 642}
522 643
523/*****************************************************************************/ 644/*****************************************************************************/
524 645
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 647
527int inline_size 648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
528array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
529{ 652{
530 int ncur = cur + 1; 653 int ncur = cur + 1;
531 654
532 do 655 do
549array_realloc (int elem, void *base, int *cur, int cnt) 672array_realloc (int elem, void *base, int *cur, int cnt)
550{ 673{
551 *cur = array_nextsize (elem, *cur, cnt); 674 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 675 return ev_realloc (base, elem * *cur);
553} 676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 680
555#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 682 if (expect_false ((cnt) > (cur))) \
557 { \ 683 { \
558 int ocur_ = (cur); \ 684 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 697 }
572#endif 698#endif
573 699
574#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 702
577/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
578 710
579void noinline 711void noinline
580ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
581{ 713{
582 W w_ = (W)w; 714 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
593 } 725 }
594} 726}
595 727
596void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 745{
599 int i; 746 int i;
600 747
601 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
603} 750}
604 751
605/*****************************************************************************/ 752/*****************************************************************************/
606 753
607void inline_size 754inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
622{ 756{
623 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
624 ev_io *w; 758 ev_io *w;
625 759
637{ 771{
638 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
640} 774}
641 775
642void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
643fd_reify (EV_P) 779fd_reify (EV_P)
644{ 780{
645 int i; 781 int i;
646 782
647 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 792 events |= (unsigned char)w->events;
657 793
658#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
659 if (events) 795 if (events)
660 { 796 {
661 unsigned long argp; 797 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 798 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 800 #else
665 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
666 #endif 802 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 804 }
669#endif 805#endif
670 806
671 { 807 {
672 unsigned char o_events = anfd->events; 808 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 809 unsigned char o_reify = anfd->reify;
674 810
675 anfd->reify = 0; 811 anfd->reify = 0;
676 anfd->events = events; 812 anfd->events = events;
677 813
678 if (o_events != events || o_reify & EV_IOFDSET) 814 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 815 backend_modify (EV_A_ fd, o_events, events);
680 } 816 }
681 } 817 }
682 818
683 fdchangecnt = 0; 819 fdchangecnt = 0;
684} 820}
685 821
686void inline_size 822/* something about the given fd changed */
823inline_size void
687fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
688{ 825{
689 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
691 828
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
697 } 834 }
698} 835}
699 836
700void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
701fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
702{ 840{
703 ev_io *w; 841 ev_io *w;
704 842
705 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 847 }
710} 848}
711 849
712int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
713fd_valid (int fd) 852fd_valid (int fd)
714{ 853{
715#ifdef _WIN32 854#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
717#else 856#else
725{ 864{
726 int fd; 865 int fd;
727 866
728 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 868 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
732} 871}
733 872
734/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 874static void noinline
753 892
754 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 894 if (anfds [fd].events)
756 { 895 {
757 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
759 } 899 }
760} 900}
761 901
762/*****************************************************************************/ 902/*****************************************************************************/
903
904/*
905 * the heap functions want a real array index. array index 0 uis guaranteed to not
906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
907 * the branching factor of the d-tree.
908 */
763 909
764/* 910/*
765 * at the moment we allow libev the luxury of two heaps, 911 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 913 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 914 * the difference is about 5% with 50000+ watchers.
769 */ 915 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 916#if EV_USE_4HEAP
772 917
918#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
774 922
775/* towards the root */ 923/* away from the root */
776void inline_speed 924inline_speed void
777upheap (WT *heap, int k) 925downheap (ANHE *heap, int N, int k)
778{ 926{
779 WT w = heap [k]; 927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
780 929
781 for (;;) 930 for (;;)
782 { 931 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 932 ev_tstamp minat;
807 WT *minpos; 933 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 935
810 // find minimum child 936 /* find minimum child */
811 if (expect_true (pos +3 < E)) 937 if (expect_true (pos + DHEAP - 1 < E))
812 { 938 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 950 }
818 else 951 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 952 break;
831 953
832 ev_active (*minpos) = k; 954 if (ANHE_at (he) <= minat)
955 break;
956
833 heap [k] = *minpos; 957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
834 959
835 k = minpos - heap; 960 k = minpos - heap;
836 } 961 }
837 962
838 heap [k] = w; 963 heap [k] = he;
839 ev_active (heap [k]) = k; 964 ev_active (ANHE_w (he)) = k;
840} 965}
841 966
842#else // 4HEAP 967#else /* 4HEAP */
843 968
844#define HEAP0 1 969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
845 972
846/* towards the root */ 973/* away from the root */
847void inline_speed 974inline_speed void
848upheap (WT *heap, int k) 975downheap (ANHE *heap, int N, int k)
849{ 976{
850 WT w = heap [k]; 977 ANHE he = heap [k];
851 978
852 for (;;) 979 for (;;)
853 { 980 {
854 int p = k >> 1; 981 int c = k << 1;
855 982
856 /* maybe we could use a dummy element at heap [0]? */ 983 if (c > N + HEAP0 - 1)
857 if (!p || heap [p]->at <= w->at)
858 break; 984 break;
859 985
860 heap [k] = heap [p]; 986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 987 ? 1 : 0;
862 k = p;
863 }
864 988
865 heap [k] = w; 989 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 990 break;
881 991
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 992 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 993 ev_active (ANHE_w (heap [k])) = k;
890 994
891 k = c; 995 k = c;
892 } 996 }
893 997
894 heap [k] = w; 998 heap [k] = he;
999 ev_active (ANHE_w (he)) = k;
1000}
1001#endif
1002
1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1017 ev_active (ANHE_w (heap [k])) = k;
896} 1018 k = p;
897#endif 1019 }
898 1020
899void inline_size 1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
1026inline_size void
900adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
901{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 1030 upheap (heap, k);
1031 else
903 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
904} 1045}
905 1046
906/*****************************************************************************/ 1047/*****************************************************************************/
907 1048
1049/* associate signal watchers to a signal signal */
908typedef struct 1050typedef struct
909{ 1051{
910 WL head; 1052 WL head;
911 EV_ATOMIC_T gotsig; 1053 EV_ATOMIC_T gotsig;
912} ANSIG; 1054} ANSIG;
914static ANSIG *signals; 1056static ANSIG *signals;
915static int signalmax; 1057static int signalmax;
916 1058
917static EV_ATOMIC_T gotsig; 1059static EV_ATOMIC_T gotsig;
918 1060
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930
931/*****************************************************************************/ 1061/*****************************************************************************/
932 1062
933void inline_speed 1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
934fd_intern (int fd) 1066fd_intern (int fd)
935{ 1067{
936#ifdef _WIN32 1068#ifdef _WIN32
937 int arg = 1; 1069 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else 1071#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 1074#endif
943} 1075}
944 1076
945static void noinline 1077static void noinline
946evpipe_init (EV_P) 1078evpipe_init (EV_P)
947{ 1079{
948 if (!ev_is_active (&pipeev)) 1080 if (!ev_is_active (&pipe_w))
949 { 1081 {
950#if EV_USE_EVENTFD 1082#if EV_USE_EVENTFD
951 if ((evfd = eventfd (0, 0)) >= 0) 1083 if ((evfd = eventfd (0, 0)) >= 0)
952 { 1084 {
953 evpipe [0] = -1; 1085 evpipe [0] = -1;
954 fd_intern (evfd); 1086 fd_intern (evfd);
955 ev_io_set (&pipeev, evfd, EV_READ); 1087 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1088 }
957 else 1089 else
958#endif 1090#endif
959 { 1091 {
960 while (pipe (evpipe)) 1092 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1093 ev_syserr ("(libev) error creating signal/async pipe");
962 1094
963 fd_intern (evpipe [0]); 1095 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1096 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1098 }
967 1099
968 ev_io_start (EV_A_ &pipeev); 1100 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1102 }
971} 1103}
972 1104
973void inline_size 1105inline_size void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1107{
976 if (!*flag) 1108 if (!*flag)
977 { 1109 {
978 int old_errno = errno; /* save errno because write might clobber it */ 1110 int old_errno = errno; /* save errno because write might clobber it */
991 1123
992 errno = old_errno; 1124 errno = old_errno;
993 } 1125 }
994} 1126}
995 1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
996static void 1130static void
997pipecb (EV_P_ ev_io *iow, int revents) 1131pipecb (EV_P_ ev_io *iow, int revents)
998{ 1132{
999#if EV_USE_EVENTFD 1133#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1134 if (evfd >= 0)
1056ev_feed_signal_event (EV_P_ int signum) 1190ev_feed_signal_event (EV_P_ int signum)
1057{ 1191{
1058 WL w; 1192 WL w;
1059 1193
1060#if EV_MULTIPLICITY 1194#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1062#endif 1196#endif
1063 1197
1064 --signum; 1198 --signum;
1065 1199
1066 if (signum < 0 || signum >= signalmax) 1200 if (signum < 0 || signum >= signalmax)
1082 1216
1083#ifndef WIFCONTINUED 1217#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 1218# define WIFCONTINUED(status) 0
1085#endif 1219#endif
1086 1220
1087void inline_speed 1221/* handle a single child status event */
1222inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
1089{ 1224{
1090 ev_child *w; 1225 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 1227
1105 1240
1106#ifndef WCONTINUED 1241#ifndef WCONTINUED
1107# define WCONTINUED 0 1242# define WCONTINUED 0
1108#endif 1243#endif
1109 1244
1245/* called on sigchld etc., calls waitpid */
1110static void 1246static void
1111childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
1112{ 1248{
1113 int pid, status; 1249 int pid, status;
1114 1250
1195 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
1198#endif 1334#endif
1199#ifdef __APPLE__ 1335#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1202#endif 1339#endif
1203 1340
1204 return flags; 1341 return flags;
1205} 1342}
1206 1343
1226ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1227{ 1364{
1228 return loop_count; 1365 return loop_count;
1229} 1366}
1230 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1231void 1374void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{ 1376{
1234 io_blocktime = interval; 1377 io_blocktime = interval;
1235} 1378}
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{ 1382{
1240 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1241} 1384}
1242 1385
1386/* initialise a loop structure, must be zero-initialised */
1243static void noinline 1387static void noinline
1244loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1245{ 1389{
1246 if (!backend) 1390 if (!backend)
1247 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
1248#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1249 { 1404 {
1250 struct timespec ts; 1405 struct timespec ts;
1406
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 1408 have_monotonic = 1;
1253 } 1409 }
1254#endif 1410#endif
1255 1411
1256 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
1257 mn_now = get_clock (); 1413 mn_now = get_clock ();
1258 now_floor = mn_now; 1414 now_floor = mn_now;
1259 rtmn_diff = ev_rt_now - mn_now; 1415 rtmn_diff = ev_rt_now - mn_now;
1416 invoke_cb = ev_invoke_pending;
1260 1417
1261 io_blocktime = 0.; 1418 io_blocktime = 0.;
1262 timeout_blocktime = 0.; 1419 timeout_blocktime = 0.;
1263 backend = 0; 1420 backend = 0;
1264 backend_fd = -1; 1421 backend_fd = -1;
1295#endif 1452#endif
1296#if EV_USE_SELECT 1453#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1454 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 1455#endif
1299 1456
1457 ev_prepare_init (&pending_w, pendingcb);
1458
1300 ev_init (&pipeev, pipecb); 1459 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 1460 ev_set_priority (&pipe_w, EV_MAXPRI);
1302 } 1461 }
1303} 1462}
1304 1463
1464/* free up a loop structure */
1305static void noinline 1465static void noinline
1306loop_destroy (EV_P) 1466loop_destroy (EV_P)
1307{ 1467{
1308 int i; 1468 int i;
1309 1469
1310 if (ev_is_active (&pipeev)) 1470 if (ev_is_active (&pipe_w))
1311 { 1471 {
1312 ev_ref (EV_A); /* signal watcher */ 1472 ev_ref (EV_A); /* signal watcher */
1313 ev_io_stop (EV_A_ &pipeev); 1473 ev_io_stop (EV_A_ &pipe_w);
1314 1474
1315#if EV_USE_EVENTFD 1475#if EV_USE_EVENTFD
1316 if (evfd >= 0) 1476 if (evfd >= 0)
1317 close (evfd); 1477 close (evfd);
1318#endif 1478#endif
1357 } 1517 }
1358 1518
1359 ev_free (anfds); anfdmax = 0; 1519 ev_free (anfds); anfdmax = 0;
1360 1520
1361 /* have to use the microsoft-never-gets-it-right macro */ 1521 /* have to use the microsoft-never-gets-it-right macro */
1522 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 1523 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 1524 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 1525#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 1526 array_free (periodic, EMPTY);
1366#endif 1527#endif
1375 1536
1376 backend = 0; 1537 backend = 0;
1377} 1538}
1378 1539
1379#if EV_USE_INOTIFY 1540#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 1541inline_size void infy_fork (EV_P);
1381#endif 1542#endif
1382 1543
1383void inline_size 1544inline_size void
1384loop_fork (EV_P) 1545loop_fork (EV_P)
1385{ 1546{
1386#if EV_USE_PORT 1547#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1548 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 1549#endif
1394#endif 1555#endif
1395#if EV_USE_INOTIFY 1556#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 1557 infy_fork (EV_A);
1397#endif 1558#endif
1398 1559
1399 if (ev_is_active (&pipeev)) 1560 if (ev_is_active (&pipe_w))
1400 { 1561 {
1401 /* this "locks" the handlers against writing to the pipe */ 1562 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */ 1563 /* while we modify the fd vars */
1403 gotsig = 1; 1564 gotsig = 1;
1404#if EV_ASYNC_ENABLE 1565#if EV_ASYNC_ENABLE
1405 gotasync = 1; 1566 gotasync = 1;
1406#endif 1567#endif
1407 1568
1408 ev_ref (EV_A); 1569 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 1570 ev_io_stop (EV_A_ &pipe_w);
1410 1571
1411#if EV_USE_EVENTFD 1572#if EV_USE_EVENTFD
1412 if (evfd >= 0) 1573 if (evfd >= 0)
1413 close (evfd); 1574 close (evfd);
1414#endif 1575#endif
1419 close (evpipe [1]); 1580 close (evpipe [1]);
1420 } 1581 }
1421 1582
1422 evpipe_init (EV_A); 1583 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 1584 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 1585 pipecb (EV_A_ &pipe_w, EV_READ);
1425 } 1586 }
1426 1587
1427 postfork = 0; 1588 postfork = 0;
1428} 1589}
1429 1590
1430#if EV_MULTIPLICITY 1591#if EV_MULTIPLICITY
1592
1431struct ev_loop * 1593struct ev_loop *
1432ev_loop_new (unsigned int flags) 1594ev_loop_new (unsigned int flags)
1433{ 1595{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1596 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1597
1453void 1615void
1454ev_loop_fork (EV_P) 1616ev_loop_fork (EV_P)
1455{ 1617{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1618 postfork = 1; /* must be in line with ev_default_fork */
1457} 1619}
1620
1621#if EV_VERIFY
1622static void noinline
1623verify_watcher (EV_P_ W w)
1624{
1625 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1626
1627 if (w->pending)
1628 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1629}
1630
1631static void noinline
1632verify_heap (EV_P_ ANHE *heap, int N)
1633{
1634 int i;
1635
1636 for (i = HEAP0; i < N + HEAP0; ++i)
1637 {
1638 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1639 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1640 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1641
1642 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1643 }
1644}
1645
1646static void noinline
1647array_verify (EV_P_ W *ws, int cnt)
1648{
1649 while (cnt--)
1650 {
1651 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1652 verify_watcher (EV_A_ ws [cnt]);
1653 }
1654}
1655#endif
1656
1657void
1658ev_loop_verify (EV_P)
1659{
1660#if EV_VERIFY
1661 int i;
1662 WL w;
1663
1664 assert (activecnt >= -1);
1665
1666 assert (fdchangemax >= fdchangecnt);
1667 for (i = 0; i < fdchangecnt; ++i)
1668 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1669
1670 assert (anfdmax >= 0);
1671 for (i = 0; i < anfdmax; ++i)
1672 for (w = anfds [i].head; w; w = w->next)
1673 {
1674 verify_watcher (EV_A_ (W)w);
1675 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1676 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1677 }
1678
1679 assert (timermax >= timercnt);
1680 verify_heap (EV_A_ timers, timercnt);
1681
1682#if EV_PERIODIC_ENABLE
1683 assert (periodicmax >= periodiccnt);
1684 verify_heap (EV_A_ periodics, periodiccnt);
1685#endif
1686
1687 for (i = NUMPRI; i--; )
1688 {
1689 assert (pendingmax [i] >= pendingcnt [i]);
1690#if EV_IDLE_ENABLE
1691 assert (idleall >= 0);
1692 assert (idlemax [i] >= idlecnt [i]);
1693 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1694#endif
1695 }
1696
1697#if EV_FORK_ENABLE
1698 assert (forkmax >= forkcnt);
1699 array_verify (EV_A_ (W *)forks, forkcnt);
1700#endif
1701
1702#if EV_ASYNC_ENABLE
1703 assert (asyncmax >= asynccnt);
1704 array_verify (EV_A_ (W *)asyncs, asynccnt);
1705#endif
1706
1707 assert (preparemax >= preparecnt);
1708 array_verify (EV_A_ (W *)prepares, preparecnt);
1709
1710 assert (checkmax >= checkcnt);
1711 array_verify (EV_A_ (W *)checks, checkcnt);
1712
1713# if 0
1714 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1715 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1458#endif 1716# endif
1717#endif
1718}
1719
1720#endif /* multiplicity */
1459 1721
1460#if EV_MULTIPLICITY 1722#if EV_MULTIPLICITY
1461struct ev_loop * 1723struct ev_loop *
1462ev_default_loop_init (unsigned int flags) 1724ev_default_loop_init (unsigned int flags)
1463#else 1725#else
1496{ 1758{
1497#if EV_MULTIPLICITY 1759#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr; 1760 struct ev_loop *loop = ev_default_loop_ptr;
1499#endif 1761#endif
1500 1762
1763 ev_default_loop_ptr = 0;
1764
1501#ifndef _WIN32 1765#ifndef _WIN32
1502 ev_ref (EV_A); /* child watcher */ 1766 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev); 1767 ev_signal_stop (EV_A_ &childev);
1504#endif 1768#endif
1505 1769
1511{ 1775{
1512#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr; 1777 struct ev_loop *loop = ev_default_loop_ptr;
1514#endif 1778#endif
1515 1779
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 1780 postfork = 1; /* must be in line with ev_loop_fork */
1518} 1781}
1519 1782
1520/*****************************************************************************/ 1783/*****************************************************************************/
1521 1784
1522void 1785void
1523ev_invoke (EV_P_ void *w, int revents) 1786ev_invoke (EV_P_ void *w, int revents)
1524{ 1787{
1525 EV_CB_INVOKE ((W)w, revents); 1788 EV_CB_INVOKE ((W)w, revents);
1526} 1789}
1527 1790
1528void inline_speed 1791void
1529call_pending (EV_P) 1792ev_invoke_pending (EV_P)
1530{ 1793{
1531 int pri; 1794 int pri;
1532 1795
1533 for (pri = NUMPRI; pri--; ) 1796 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 1797 while (pendingcnt [pri])
1535 { 1798 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1799 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 1800
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1801 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1802 /* ^ this is no longer true, as pending_w could be here */
1541 1803
1542 p->w->pending = 0; 1804 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1805 EV_CB_INVOKE (p->w, p->events);
1544 } 1806 EV_FREQUENT_CHECK;
1545 } 1807 }
1546} 1808}
1547 1809
1548#if EV_IDLE_ENABLE 1810#if EV_IDLE_ENABLE
1549void inline_size 1811/* make idle watchers pending. this handles the "call-idle */
1812/* only when higher priorities are idle" logic */
1813inline_size void
1550idle_reify (EV_P) 1814idle_reify (EV_P)
1551{ 1815{
1552 if (expect_false (idleall)) 1816 if (expect_false (idleall))
1553 { 1817 {
1554 int pri; 1818 int pri;
1566 } 1830 }
1567 } 1831 }
1568} 1832}
1569#endif 1833#endif
1570 1834
1571void inline_size 1835/* make timers pending */
1836inline_size void
1572timers_reify (EV_P) 1837timers_reify (EV_P)
1573{ 1838{
1839 EV_FREQUENT_CHECK;
1840
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1841 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1842 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1843 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 1844 {
1845 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1846
1847 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1848
1849 /* first reschedule or stop timer */
1850 if (w->repeat)
1851 {
1852 ev_at (w) += w->repeat;
1853 if (ev_at (w) < mn_now)
1854 ev_at (w) = mn_now;
1855
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1856 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 1857
1585 ev_at (w) += w->repeat; 1858 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 1859 downheap (timers, timercnt, HEAP0);
1860 }
1861 else
1862 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1863
1864 EV_FREQUENT_CHECK;
1865 feed_reverse (EV_A_ (W)w);
1590 } 1866 }
1591 else 1867 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1868
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1869 feed_reverse_done (EV_A_ EV_TIMEOUT);
1595 } 1870 }
1596} 1871}
1597 1872
1598#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1599void inline_size 1874/* make periodics pending */
1875inline_size void
1600periodics_reify (EV_P) 1876periodics_reify (EV_P)
1601{ 1877{
1878 EV_FREQUENT_CHECK;
1879
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1880 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1881 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1882 int feed_count = 0;
1605 1883
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1884 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 1885 {
1886 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1887
1888 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1889
1890 /* first reschedule or stop timer */
1891 if (w->reschedule_cb)
1892 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1893 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1894
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1895 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1896
1897 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1898 downheap (periodics, periodiccnt, HEAP0);
1899 }
1900 else if (w->interval)
1901 {
1902 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1903 /* if next trigger time is not sufficiently in the future, put it there */
1904 /* this might happen because of floating point inexactness */
1905 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1906 {
1907 ev_at (w) += w->interval;
1908
1909 /* if interval is unreasonably low we might still have a time in the past */
1910 /* so correct this. this will make the periodic very inexact, but the user */
1911 /* has effectively asked to get triggered more often than possible */
1912 if (ev_at (w) < ev_rt_now)
1913 ev_at (w) = ev_rt_now;
1914 }
1915
1916 ANHE_at_cache (periodics [HEAP0]);
1917 downheap (periodics, periodiccnt, HEAP0);
1918 }
1919 else
1920 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1921
1922 EV_FREQUENT_CHECK;
1923 feed_reverse (EV_A_ (W)w);
1614 } 1924 }
1615 else if (w->interval) 1925 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1926
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1927 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 1928 }
1627} 1929}
1628 1930
1931/* simply recalculate all periodics */
1932/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1629static void noinline 1933static void noinline
1630periodics_reschedule (EV_P) 1934periodics_reschedule (EV_P)
1631{ 1935{
1632 int i; 1936 int i;
1633 1937
1634 /* adjust periodics after time jump */ 1938 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1939 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1940 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1941 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1942
1639 if (w->reschedule_cb) 1943 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1944 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1945 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1946 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1947
1948 ANHE_at_cache (periodics [i]);
1949 }
1950
1951 reheap (periodics, periodiccnt);
1952}
1953#endif
1954
1955/* adjust all timers by a given offset */
1956static void noinline
1957timers_reschedule (EV_P_ ev_tstamp adjust)
1958{
1959 int i;
1960
1961 for (i = 0; i < timercnt; ++i)
1643 } 1962 {
1644 1963 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 1964 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 1965 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 1966 }
1648} 1967}
1649#endif
1650 1968
1651void inline_speed 1969/* fetch new monotonic and realtime times from the kernel */
1970/* also detetc if there was a timejump, and act accordingly */
1971inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 1972time_update (EV_P_ ev_tstamp max_block)
1653{ 1973{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 1974#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 1975 if (expect_true (have_monotonic))
1658 { 1976 {
1977 int i;
1659 ev_tstamp odiff = rtmn_diff; 1978 ev_tstamp odiff = rtmn_diff;
1660 1979
1661 mn_now = get_clock (); 1980 mn_now = get_clock ();
1662 1981
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1982 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2009 mn_now = get_clock ();
1691 now_floor = mn_now; 2010 now_floor = mn_now;
1692 } 2011 }
1693 2012
2013 /* no timer adjustment, as the monotonic clock doesn't jump */
2014 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2015# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2016 periodics_reschedule (EV_A);
1696# endif 2017# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2018 }
1700 else 2019 else
1701#endif 2020#endif
1702 { 2021 {
1703 ev_rt_now = ev_time (); 2022 ev_rt_now = ev_time ();
1704 2023
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2024 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2025 {
2026 /* adjust timers. this is easy, as the offset is the same for all of them */
2027 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2028#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2029 periodics_reschedule (EV_A);
1709#endif 2030#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2031 }
1714 2032
1715 mn_now = ev_rt_now; 2033 mn_now = ev_rt_now;
1716 } 2034 }
1717} 2035}
1718 2036
1719void 2037void
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2038ev_loop (EV_P_ int flags)
1735{ 2039{
2040 ++loop_depth;
2041
1736 loop_done = EVUNLOOP_CANCEL; 2042 loop_done = EVUNLOOP_CANCEL;
1737 2043
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2044 invoke_cb (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739 2045
1740 do 2046 do
1741 { 2047 {
2048#if EV_VERIFY >= 2
2049 ev_loop_verify (EV_A);
2050#endif
2051
1742#ifndef _WIN32 2052#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2053 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2054 if (expect_false (getpid () != curpid))
1745 { 2055 {
1746 curpid = getpid (); 2056 curpid = getpid ();
1752 /* we might have forked, so queue fork handlers */ 2062 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork)) 2063 if (expect_false (postfork))
1754 if (forkcnt) 2064 if (forkcnt)
1755 { 2065 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2066 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A); 2067 invoke_cb (EV_A);
1758 } 2068 }
1759#endif 2069#endif
1760 2070
1761 /* queue prepare watchers (and execute them) */ 2071 /* queue prepare watchers (and execute them) */
1762 if (expect_false (preparecnt)) 2072 if (expect_false (preparecnt))
1763 { 2073 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2074 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2075 invoke_cb (EV_A);
1766 } 2076 }
1767
1768 if (expect_false (!activecnt))
1769 break;
1770 2077
1771 /* we might have forked, so reify kernel state if necessary */ 2078 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2079 if (expect_false (postfork))
1773 loop_fork (EV_A); 2080 loop_fork (EV_A);
1774 2081
1780 ev_tstamp waittime = 0.; 2087 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 2088 ev_tstamp sleeptime = 0.;
1782 2089
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2090 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1784 { 2091 {
2092 /* remember old timestamp for io_blocktime calculation */
2093 ev_tstamp prev_mn_now = mn_now;
2094
1785 /* update time to cancel out callback processing overhead */ 2095 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100); 2096 time_update (EV_A_ 1e100);
1787 2097
1788 waittime = MAX_BLOCKTIME; 2098 waittime = MAX_BLOCKTIME;
1789 2099
1790 if (timercnt) 2100 if (timercnt)
1791 { 2101 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2102 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 2103 if (waittime > to) waittime = to;
1794 } 2104 }
1795 2105
1796#if EV_PERIODIC_ENABLE 2106#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 2107 if (periodiccnt)
1798 { 2108 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2109 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 2110 if (waittime > to) waittime = to;
1801 } 2111 }
1802#endif 2112#endif
1803 2113
2114 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 2115 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 2116 waittime = timeout_blocktime;
1806 2117
1807 sleeptime = waittime - backend_fudge; 2118 /* extra check because io_blocktime is commonly 0 */
1808
1809 if (expect_true (sleeptime > io_blocktime)) 2119 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 2120 {
2121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2122
2123 if (sleeptime > waittime - backend_fudge)
2124 sleeptime = waittime - backend_fudge;
2125
2126 if (expect_true (sleeptime > 0.))
2127 {
1814 ev_sleep (sleeptime); 2128 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 2129 waittime -= sleeptime;
2130 }
1816 } 2131 }
1817 } 2132 }
1818 2133
1819 ++loop_count; 2134 ++loop_count;
1820 backend_poll (EV_A_ waittime); 2135 backend_poll (EV_A_ waittime);
1836 2151
1837 /* queue check watchers, to be executed first */ 2152 /* queue check watchers, to be executed first */
1838 if (expect_false (checkcnt)) 2153 if (expect_false (checkcnt))
1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1840 2155
1841 call_pending (EV_A); 2156 invoke_cb (EV_A);
1842 } 2157 }
1843 while (expect_true ( 2158 while (expect_true (
1844 activecnt 2159 activecnt
1845 && !loop_done 2160 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2161 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 )); 2162 ));
1848 2163
1849 if (loop_done == EVUNLOOP_ONE) 2164 if (loop_done == EVUNLOOP_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 2165 loop_done = EVUNLOOP_CANCEL;
2166
2167 --loop_depth;
1851} 2168}
1852 2169
1853void 2170void
1854ev_unloop (EV_P_ int how) 2171ev_unloop (EV_P_ int how)
1855{ 2172{
1856 loop_done = how; 2173 loop_done = how;
1857} 2174}
1858 2175
2176void
2177ev_ref (EV_P)
2178{
2179 ++activecnt;
2180}
2181
2182void
2183ev_unref (EV_P)
2184{
2185 --activecnt;
2186}
2187
2188void
2189ev_now_update (EV_P)
2190{
2191 time_update (EV_A_ 1e100);
2192}
2193
2194void
2195ev_suspend (EV_P)
2196{
2197 ev_now_update (EV_A);
2198}
2199
2200void
2201ev_resume (EV_P)
2202{
2203 ev_tstamp mn_prev = mn_now;
2204
2205 ev_now_update (EV_A);
2206 timers_reschedule (EV_A_ mn_now - mn_prev);
2207#if EV_PERIODIC_ENABLE
2208 /* TODO: really do this? */
2209 periodics_reschedule (EV_A);
2210#endif
2211}
2212
1859/*****************************************************************************/ 2213/*****************************************************************************/
2214/* singly-linked list management, used when the expected list length is short */
1860 2215
1861void inline_size 2216inline_size void
1862wlist_add (WL *head, WL elem) 2217wlist_add (WL *head, WL elem)
1863{ 2218{
1864 elem->next = *head; 2219 elem->next = *head;
1865 *head = elem; 2220 *head = elem;
1866} 2221}
1867 2222
1868void inline_size 2223inline_size void
1869wlist_del (WL *head, WL elem) 2224wlist_del (WL *head, WL elem)
1870{ 2225{
1871 while (*head) 2226 while (*head)
1872 { 2227 {
1873 if (*head == elem) 2228 if (*head == elem)
1878 2233
1879 head = &(*head)->next; 2234 head = &(*head)->next;
1880 } 2235 }
1881} 2236}
1882 2237
1883void inline_speed 2238/* internal, faster, version of ev_clear_pending */
2239inline_speed void
1884clear_pending (EV_P_ W w) 2240clear_pending (EV_P_ W w)
1885{ 2241{
1886 if (w->pending) 2242 if (w->pending)
1887 { 2243 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2244 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 2245 w->pending = 0;
1890 } 2246 }
1891} 2247}
1892 2248
1893int 2249int
1897 int pending = w_->pending; 2253 int pending = w_->pending;
1898 2254
1899 if (expect_true (pending)) 2255 if (expect_true (pending))
1900 { 2256 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2257 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2258 p->w = (W)&pending_w;
1902 w_->pending = 0; 2259 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 2260 return p->events;
1905 } 2261 }
1906 else 2262 else
1907 return 0; 2263 return 0;
1908} 2264}
1909 2265
1910void inline_size 2266inline_size void
1911pri_adjust (EV_P_ W w) 2267pri_adjust (EV_P_ W w)
1912{ 2268{
1913 int pri = w->priority; 2269 int pri = ev_priority (w);
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2270 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2271 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 2272 ev_set_priority (w, pri);
1917} 2273}
1918 2274
1919void inline_speed 2275inline_speed void
1920ev_start (EV_P_ W w, int active) 2276ev_start (EV_P_ W w, int active)
1921{ 2277{
1922 pri_adjust (EV_A_ w); 2278 pri_adjust (EV_A_ w);
1923 w->active = active; 2279 w->active = active;
1924 ev_ref (EV_A); 2280 ev_ref (EV_A);
1925} 2281}
1926 2282
1927void inline_size 2283inline_size void
1928ev_stop (EV_P_ W w) 2284ev_stop (EV_P_ W w)
1929{ 2285{
1930 ev_unref (EV_A); 2286 ev_unref (EV_A);
1931 w->active = 0; 2287 w->active = 0;
1932} 2288}
1939 int fd = w->fd; 2295 int fd = w->fd;
1940 2296
1941 if (expect_false (ev_is_active (w))) 2297 if (expect_false (ev_is_active (w)))
1942 return; 2298 return;
1943 2299
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2300 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2301 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2302
2303 EV_FREQUENT_CHECK;
1945 2304
1946 ev_start (EV_A_ (W)w, 1); 2305 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2306 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 2307 wlist_add (&anfds[fd].head, (WL)w);
1949 2308
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2309 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET; 2310 w->events &= ~EV__IOFDSET;
2311
2312 EV_FREQUENT_CHECK;
1952} 2313}
1953 2314
1954void noinline 2315void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2316ev_io_stop (EV_P_ ev_io *w)
1956{ 2317{
1957 clear_pending (EV_A_ (W)w); 2318 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2319 if (expect_false (!ev_is_active (w)))
1959 return; 2320 return;
1960 2321
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2322 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2323
2324 EV_FREQUENT_CHECK;
1962 2325
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2326 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2327 ev_stop (EV_A_ (W)w);
1965 2328
1966 fd_change (EV_A_ w->fd, 1); 2329 fd_change (EV_A_ w->fd, 1);
2330
2331 EV_FREQUENT_CHECK;
1967} 2332}
1968 2333
1969void noinline 2334void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2335ev_timer_start (EV_P_ ev_timer *w)
1971{ 2336{
1972 if (expect_false (ev_is_active (w))) 2337 if (expect_false (ev_is_active (w)))
1973 return; 2338 return;
1974 2339
1975 ev_at (w) += mn_now; 2340 ev_at (w) += mn_now;
1976 2341
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2342 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2343
2344 EV_FREQUENT_CHECK;
2345
2346 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2347 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2348 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2349 ANHE_w (timers [ev_active (w)]) = (WT)w;
2350 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2351 upheap (timers, ev_active (w));
1983 2352
2353 EV_FREQUENT_CHECK;
2354
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2355 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2356}
1986 2357
1987void noinline 2358void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2359ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2360{
1990 clear_pending (EV_A_ (W)w); 2361 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2362 if (expect_false (!ev_is_active (w)))
1992 return; 2363 return;
1993 2364
2365 EV_FREQUENT_CHECK;
2366
1994 { 2367 {
1995 int active = ev_active (w); 2368 int active = ev_active (w);
1996 2369
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2370 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2371
2372 --timercnt;
2373
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2374 if (expect_true (active < timercnt + HEAP0))
2000 { 2375 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2376 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2377 adjustheap (timers, timercnt, active);
2003 } 2378 }
2004
2005 --timercnt;
2006 } 2379 }
2380
2381 EV_FREQUENT_CHECK;
2007 2382
2008 ev_at (w) -= mn_now; 2383 ev_at (w) -= mn_now;
2009 2384
2010 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
2011} 2386}
2012 2387
2013void noinline 2388void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2389ev_timer_again (EV_P_ ev_timer *w)
2015{ 2390{
2391 EV_FREQUENT_CHECK;
2392
2016 if (ev_is_active (w)) 2393 if (ev_is_active (w))
2017 { 2394 {
2018 if (w->repeat) 2395 if (w->repeat)
2019 { 2396 {
2020 ev_at (w) = mn_now + w->repeat; 2397 ev_at (w) = mn_now + w->repeat;
2398 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2399 adjustheap (timers, timercnt, ev_active (w));
2022 } 2400 }
2023 else 2401 else
2024 ev_timer_stop (EV_A_ w); 2402 ev_timer_stop (EV_A_ w);
2025 } 2403 }
2026 else if (w->repeat) 2404 else if (w->repeat)
2027 { 2405 {
2028 ev_at (w) = w->repeat; 2406 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2407 ev_timer_start (EV_A_ w);
2030 } 2408 }
2409
2410 EV_FREQUENT_CHECK;
2031} 2411}
2032 2412
2033#if EV_PERIODIC_ENABLE 2413#if EV_PERIODIC_ENABLE
2034void noinline 2414void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2415ev_periodic_start (EV_P_ ev_periodic *w)
2039 2419
2040 if (w->reschedule_cb) 2420 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2421 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 2422 else if (w->interval)
2043 { 2423 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2424 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 2425 /* this formula differs from the one in periodic_reify because we do not always round up */
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2426 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2427 }
2048 else 2428 else
2049 ev_at (w) = w->offset; 2429 ev_at (w) = w->offset;
2050 2430
2431 EV_FREQUENT_CHECK;
2432
2433 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2434 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2435 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2436 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2437 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2438 upheap (periodics, ev_active (w));
2055 2439
2440 EV_FREQUENT_CHECK;
2441
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2442 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2443}
2058 2444
2059void noinline 2445void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2446ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2447{
2062 clear_pending (EV_A_ (W)w); 2448 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2449 if (expect_false (!ev_is_active (w)))
2064 return; 2450 return;
2065 2451
2452 EV_FREQUENT_CHECK;
2453
2066 { 2454 {
2067 int active = ev_active (w); 2455 int active = ev_active (w);
2068 2456
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2457 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2458
2459 --periodiccnt;
2460
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2461 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2462 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2463 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2464 adjustheap (periodics, periodiccnt, active);
2075 } 2465 }
2076
2077 --periodiccnt;
2078 } 2466 }
2467
2468 EV_FREQUENT_CHECK;
2079 2469
2080 ev_stop (EV_A_ (W)w); 2470 ev_stop (EV_A_ (W)w);
2081} 2471}
2082 2472
2083void noinline 2473void noinline
2095 2485
2096void noinline 2486void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 2487ev_signal_start (EV_P_ ev_signal *w)
2098{ 2488{
2099#if EV_MULTIPLICITY 2489#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2490 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif 2491#endif
2102 if (expect_false (ev_is_active (w))) 2492 if (expect_false (ev_is_active (w)))
2103 return; 2493 return;
2104 2494
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2495 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2106 2496
2107 evpipe_init (EV_A); 2497 evpipe_init (EV_A);
2498
2499 EV_FREQUENT_CHECK;
2108 2500
2109 { 2501 {
2110#ifndef _WIN32 2502#ifndef _WIN32
2111 sigset_t full, prev; 2503 sigset_t full, prev;
2112 sigfillset (&full); 2504 sigfillset (&full);
2113 sigprocmask (SIG_SETMASK, &full, &prev); 2505 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif 2506#endif
2115 2507
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2508 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2117 2509
2118#ifndef _WIN32 2510#ifndef _WIN32
2119 sigprocmask (SIG_SETMASK, &prev, 0); 2511 sigprocmask (SIG_SETMASK, &prev, 0);
2120#endif 2512#endif
2121 } 2513 }
2133 sigfillset (&sa.sa_mask); 2525 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2527 sigaction (w->signum, &sa, 0);
2136#endif 2528#endif
2137 } 2529 }
2530
2531 EV_FREQUENT_CHECK;
2138} 2532}
2139 2533
2140void noinline 2534void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2535ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2536{
2143 clear_pending (EV_A_ (W)w); 2537 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2538 if (expect_false (!ev_is_active (w)))
2145 return; 2539 return;
2146 2540
2541 EV_FREQUENT_CHECK;
2542
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2543 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
2149 2545
2150 if (!signals [w->signum - 1].head) 2546 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2547 signal (w->signum, SIG_DFL);
2548
2549 EV_FREQUENT_CHECK;
2152} 2550}
2153 2551
2154void 2552void
2155ev_child_start (EV_P_ ev_child *w) 2553ev_child_start (EV_P_ ev_child *w)
2156{ 2554{
2157#if EV_MULTIPLICITY 2555#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2556 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2557#endif
2160 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
2161 return; 2559 return;
2162 2560
2561 EV_FREQUENT_CHECK;
2562
2163 ev_start (EV_A_ (W)w, 1); 2563 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2564 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2565
2566 EV_FREQUENT_CHECK;
2165} 2567}
2166 2568
2167void 2569void
2168ev_child_stop (EV_P_ ev_child *w) 2570ev_child_stop (EV_P_ ev_child *w)
2169{ 2571{
2170 clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
2172 return; 2574 return;
2173 2575
2576 EV_FREQUENT_CHECK;
2577
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2578 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
2580
2581 EV_FREQUENT_CHECK;
2176} 2582}
2177 2583
2178#if EV_STAT_ENABLE 2584#if EV_STAT_ENABLE
2179 2585
2180# ifdef _WIN32 2586# ifdef _WIN32
2181# undef lstat 2587# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 2588# define lstat(a,b) _stati64 (a,b)
2183# endif 2589# endif
2184 2590
2185#define DEF_STAT_INTERVAL 5.0074891 2591#define DEF_STAT_INTERVAL 5.0074891
2592#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 2593#define MIN_STAT_INTERVAL 0.1074891
2187 2594
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2595static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 2596
2190#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 2598# define EV_INOTIFY_BUFSIZE 8192
2195{ 2602{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2603 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 2604
2198 if (w->wd < 0) 2605 if (w->wd < 0)
2199 { 2606 {
2607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2608 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2201 2609
2202 /* monitor some parent directory for speedup hints */ 2610 /* monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2611 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 2612 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2613 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 2614 {
2207 char path [4096]; 2615 char path [4096];
2208 strcpy (path, w->path); 2616 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2620 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2621 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 2622
2215 char *pend = strrchr (path, '/'); 2623 char *pend = strrchr (path, '/');
2216 2624
2217 if (!pend) 2625 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 2626 break;
2219 2627
2220 *pend = 0; 2628 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 2629 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 2630 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2631 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 2632 }
2225 } 2633 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 2634
2229 if (w->wd >= 0) 2635 if (w->wd >= 0)
2636 {
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2637 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2638
2639 /* now local changes will be tracked by inotify, but remote changes won't */
2640 /* unless the filesystem it known to be local, we therefore still poll */
2641 /* also do poll on <2.6.25, but with normal frequency */
2642 struct statfs sfs;
2643
2644 if (fs_2625 && !statfs (w->path, &sfs))
2645 if (sfs.f_type == 0x1373 /* devfs */
2646 || sfs.f_type == 0xEF53 /* ext2/3 */
2647 || sfs.f_type == 0x3153464a /* jfs */
2648 || sfs.f_type == 0x52654973 /* reiser3 */
2649 || sfs.f_type == 0x01021994 /* tempfs */
2650 || sfs.f_type == 0x58465342 /* xfs */)
2651 return;
2652
2653 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2654 ev_timer_again (EV_A_ &w->timer);
2655 }
2231} 2656}
2232 2657
2233static void noinline 2658static void noinline
2234infy_del (EV_P_ ev_stat *w) 2659infy_del (EV_P_ ev_stat *w)
2235{ 2660{
2249 2674
2250static void noinline 2675static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2676infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 2677{
2253 if (slot < 0) 2678 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 2679 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2680 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 2681 infy_wd (EV_A_ slot, wd, ev);
2257 else 2682 else
2258 { 2683 {
2259 WL w_; 2684 WL w_;
2265 2690
2266 if (w->wd == wd || wd == -1) 2691 if (w->wd == wd || wd == -1)
2267 { 2692 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2693 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 2694 {
2695 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2270 w->wd = -1; 2696 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 2697 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 2698 }
2273 2699
2274 stat_timer_cb (EV_A_ &w->timer, 0); 2700 stat_timer_cb (EV_A_ &w->timer, 0);
2287 2713
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2714 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2715 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2290} 2716}
2291 2717
2292void inline_size 2718inline_size void
2719check_2625 (EV_P)
2720{
2721 /* kernels < 2.6.25 are borked
2722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2723 */
2724 struct utsname buf;
2725 int major, minor, micro;
2726
2727 if (uname (&buf))
2728 return;
2729
2730 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2731 return;
2732
2733 if (major < 2
2734 || (major == 2 && minor < 6)
2735 || (major == 2 && minor == 6 && micro < 25))
2736 return;
2737
2738 fs_2625 = 1;
2739}
2740
2741inline_size void
2293infy_init (EV_P) 2742infy_init (EV_P)
2294{ 2743{
2295 if (fs_fd != -2) 2744 if (fs_fd != -2)
2296 return; 2745 return;
2746
2747 fs_fd = -1;
2748
2749 check_2625 (EV_A);
2297 2750
2298 fs_fd = inotify_init (); 2751 fs_fd = inotify_init ();
2299 2752
2300 if (fs_fd >= 0) 2753 if (fs_fd >= 0)
2301 { 2754 {
2303 ev_set_priority (&fs_w, EV_MAXPRI); 2756 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 2757 ev_io_start (EV_A_ &fs_w);
2305 } 2758 }
2306} 2759}
2307 2760
2308void inline_size 2761inline_size void
2309infy_fork (EV_P) 2762infy_fork (EV_P)
2310{ 2763{
2311 int slot; 2764 int slot;
2312 2765
2313 if (fs_fd < 0) 2766 if (fs_fd < 0)
2329 w->wd = -1; 2782 w->wd = -1;
2330 2783
2331 if (fs_fd >= 0) 2784 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 2785 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 2786 else
2334 ev_timer_start (EV_A_ &w->timer); 2787 ev_timer_again (EV_A_ &w->timer);
2335 } 2788 }
2336
2337 } 2789 }
2338} 2790}
2339 2791
2792#endif
2793
2794#ifdef _WIN32
2795# define EV_LSTAT(p,b) _stati64 (p, b)
2796#else
2797# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 2798#endif
2341 2799
2342void 2800void
2343ev_stat_stat (EV_P_ ev_stat *w) 2801ev_stat_stat (EV_P_ ev_stat *w)
2344{ 2802{
2371 || w->prev.st_atime != w->attr.st_atime 2829 || w->prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 2830 || w->prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 2831 || w->prev.st_ctime != w->attr.st_ctime
2374 ) { 2832 ) {
2375 #if EV_USE_INOTIFY 2833 #if EV_USE_INOTIFY
2834 if (fs_fd >= 0)
2835 {
2376 infy_del (EV_A_ w); 2836 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 2837 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 2838 ev_stat_stat (EV_A_ w); /* avoid race... */
2839 }
2379 #endif 2840 #endif
2380 2841
2381 ev_feed_event (EV_A_ w, EV_STAT); 2842 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 2843 }
2383} 2844}
2386ev_stat_start (EV_P_ ev_stat *w) 2847ev_stat_start (EV_P_ ev_stat *w)
2387{ 2848{
2388 if (expect_false (ev_is_active (w))) 2849 if (expect_false (ev_is_active (w)))
2389 return; 2850 return;
2390 2851
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 2852 ev_stat_stat (EV_A_ w);
2396 2853
2854 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 2855 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 2856
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2857 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 2858 ev_set_priority (&w->timer, ev_priority (w));
2402 2859
2403#if EV_USE_INOTIFY 2860#if EV_USE_INOTIFY
2404 infy_init (EV_A); 2861 infy_init (EV_A);
2405 2862
2406 if (fs_fd >= 0) 2863 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 2864 infy_add (EV_A_ w);
2408 else 2865 else
2409#endif 2866#endif
2410 ev_timer_start (EV_A_ &w->timer); 2867 ev_timer_again (EV_A_ &w->timer);
2411 2868
2412 ev_start (EV_A_ (W)w, 1); 2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2413} 2872}
2414 2873
2415void 2874void
2416ev_stat_stop (EV_P_ ev_stat *w) 2875ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2876{
2418 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2420 return; 2879 return;
2421 2880
2881 EV_FREQUENT_CHECK;
2882
2422#if EV_USE_INOTIFY 2883#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2884 infy_del (EV_A_ w);
2424#endif 2885#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2886 ev_timer_stop (EV_A_ &w->timer);
2426 2887
2427 ev_stop (EV_A_ (W)w); 2888 ev_stop (EV_A_ (W)w);
2889
2890 EV_FREQUENT_CHECK;
2428} 2891}
2429#endif 2892#endif
2430 2893
2431#if EV_IDLE_ENABLE 2894#if EV_IDLE_ENABLE
2432void 2895void
2434{ 2897{
2435 if (expect_false (ev_is_active (w))) 2898 if (expect_false (ev_is_active (w)))
2436 return; 2899 return;
2437 2900
2438 pri_adjust (EV_A_ (W)w); 2901 pri_adjust (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2439 2904
2440 { 2905 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2906 int active = ++idlecnt [ABSPRI (w)];
2442 2907
2443 ++idleall; 2908 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2909 ev_start (EV_A_ (W)w, active);
2445 2910
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2911 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2912 idles [ABSPRI (w)][active - 1] = w;
2448 } 2913 }
2914
2915 EV_FREQUENT_CHECK;
2449} 2916}
2450 2917
2451void 2918void
2452ev_idle_stop (EV_P_ ev_idle *w) 2919ev_idle_stop (EV_P_ ev_idle *w)
2453{ 2920{
2454 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2456 return; 2923 return;
2457 2924
2925 EV_FREQUENT_CHECK;
2926
2458 { 2927 {
2459 int active = ev_active (w); 2928 int active = ev_active (w);
2460 2929
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2930 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2931 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 2932
2464 ev_stop (EV_A_ (W)w); 2933 ev_stop (EV_A_ (W)w);
2465 --idleall; 2934 --idleall;
2466 } 2935 }
2936
2937 EV_FREQUENT_CHECK;
2467} 2938}
2468#endif 2939#endif
2469 2940
2470void 2941void
2471ev_prepare_start (EV_P_ ev_prepare *w) 2942ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 2943{
2473 if (expect_false (ev_is_active (w))) 2944 if (expect_false (ev_is_active (w)))
2474 return; 2945 return;
2946
2947 EV_FREQUENT_CHECK;
2475 2948
2476 ev_start (EV_A_ (W)w, ++preparecnt); 2949 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 2951 prepares [preparecnt - 1] = w;
2952
2953 EV_FREQUENT_CHECK;
2479} 2954}
2480 2955
2481void 2956void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 2957ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 2958{
2484 clear_pending (EV_A_ (W)w); 2959 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 2960 if (expect_false (!ev_is_active (w)))
2486 return; 2961 return;
2487 2962
2963 EV_FREQUENT_CHECK;
2964
2488 { 2965 {
2489 int active = ev_active (w); 2966 int active = ev_active (w);
2490 2967
2491 prepares [active - 1] = prepares [--preparecnt]; 2968 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 2969 ev_active (prepares [active - 1]) = active;
2493 } 2970 }
2494 2971
2495 ev_stop (EV_A_ (W)w); 2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
2496} 2975}
2497 2976
2498void 2977void
2499ev_check_start (EV_P_ ev_check *w) 2978ev_check_start (EV_P_ ev_check *w)
2500{ 2979{
2501 if (expect_false (ev_is_active (w))) 2980 if (expect_false (ev_is_active (w)))
2502 return; 2981 return;
2982
2983 EV_FREQUENT_CHECK;
2503 2984
2504 ev_start (EV_A_ (W)w, ++checkcnt); 2985 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2986 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 2987 checks [checkcnt - 1] = w;
2988
2989 EV_FREQUENT_CHECK;
2507} 2990}
2508 2991
2509void 2992void
2510ev_check_stop (EV_P_ ev_check *w) 2993ev_check_stop (EV_P_ ev_check *w)
2511{ 2994{
2512 clear_pending (EV_A_ (W)w); 2995 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2996 if (expect_false (!ev_is_active (w)))
2514 return; 2997 return;
2515 2998
2999 EV_FREQUENT_CHECK;
3000
2516 { 3001 {
2517 int active = ev_active (w); 3002 int active = ev_active (w);
2518 3003
2519 checks [active - 1] = checks [--checkcnt]; 3004 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 3005 ev_active (checks [active - 1]) = active;
2521 } 3006 }
2522 3007
2523 ev_stop (EV_A_ (W)w); 3008 ev_stop (EV_A_ (W)w);
3009
3010 EV_FREQUENT_CHECK;
2524} 3011}
2525 3012
2526#if EV_EMBED_ENABLE 3013#if EV_EMBED_ENABLE
2527void noinline 3014void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 3015ev_embed_sweep (EV_P_ ev_embed *w)
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3042 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 3043 }
2557 } 3044 }
2558} 3045}
2559 3046
3047static void
3048embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3049{
3050 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3051
3052 ev_embed_stop (EV_A_ w);
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056
3057 ev_loop_fork (EV_A);
3058 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3059 }
3060
3061 ev_embed_start (EV_A_ w);
3062}
3063
2560#if 0 3064#if 0
2561static void 3065static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3066embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 3067{
2564 ev_idle_stop (EV_A_ idle); 3068 ev_idle_stop (EV_A_ idle);
2571 if (expect_false (ev_is_active (w))) 3075 if (expect_false (ev_is_active (w)))
2572 return; 3076 return;
2573 3077
2574 { 3078 {
2575 struct ev_loop *loop = w->other; 3079 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3080 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3081 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 3082 }
3083
3084 EV_FREQUENT_CHECK;
2579 3085
2580 ev_set_priority (&w->io, ev_priority (w)); 3086 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 3087 ev_io_start (EV_A_ &w->io);
2582 3088
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 3089 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 3090 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 3091 ev_prepare_start (EV_A_ &w->prepare);
2586 3092
3093 ev_fork_init (&w->fork, embed_fork_cb);
3094 ev_fork_start (EV_A_ &w->fork);
3095
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3096 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 3097
2589 ev_start (EV_A_ (W)w, 1); 3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
2590} 3101}
2591 3102
2592void 3103void
2593ev_embed_stop (EV_P_ ev_embed *w) 3104ev_embed_stop (EV_P_ ev_embed *w)
2594{ 3105{
2595 clear_pending (EV_A_ (W)w); 3106 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 3107 if (expect_false (!ev_is_active (w)))
2597 return; 3108 return;
2598 3109
3110 EV_FREQUENT_CHECK;
3111
2599 ev_io_stop (EV_A_ &w->io); 3112 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 3113 ev_prepare_stop (EV_A_ &w->prepare);
3114 ev_fork_stop (EV_A_ &w->fork);
2601 3115
2602 ev_stop (EV_A_ (W)w); 3116 EV_FREQUENT_CHECK;
2603} 3117}
2604#endif 3118#endif
2605 3119
2606#if EV_FORK_ENABLE 3120#if EV_FORK_ENABLE
2607void 3121void
2608ev_fork_start (EV_P_ ev_fork *w) 3122ev_fork_start (EV_P_ ev_fork *w)
2609{ 3123{
2610 if (expect_false (ev_is_active (w))) 3124 if (expect_false (ev_is_active (w)))
2611 return; 3125 return;
3126
3127 EV_FREQUENT_CHECK;
2612 3128
2613 ev_start (EV_A_ (W)w, ++forkcnt); 3129 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3130 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 3131 forks [forkcnt - 1] = w;
3132
3133 EV_FREQUENT_CHECK;
2616} 3134}
2617 3135
2618void 3136void
2619ev_fork_stop (EV_P_ ev_fork *w) 3137ev_fork_stop (EV_P_ ev_fork *w)
2620{ 3138{
2621 clear_pending (EV_A_ (W)w); 3139 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 3140 if (expect_false (!ev_is_active (w)))
2623 return; 3141 return;
2624 3142
3143 EV_FREQUENT_CHECK;
3144
2625 { 3145 {
2626 int active = ev_active (w); 3146 int active = ev_active (w);
2627 3147
2628 forks [active - 1] = forks [--forkcnt]; 3148 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 3149 ev_active (forks [active - 1]) = active;
2630 } 3150 }
2631 3151
2632 ev_stop (EV_A_ (W)w); 3152 ev_stop (EV_A_ (W)w);
3153
3154 EV_FREQUENT_CHECK;
2633} 3155}
2634#endif 3156#endif
2635 3157
2636#if EV_ASYNC_ENABLE 3158#if EV_ASYNC_ENABLE
2637void 3159void
2639{ 3161{
2640 if (expect_false (ev_is_active (w))) 3162 if (expect_false (ev_is_active (w)))
2641 return; 3163 return;
2642 3164
2643 evpipe_init (EV_A); 3165 evpipe_init (EV_A);
3166
3167 EV_FREQUENT_CHECK;
2644 3168
2645 ev_start (EV_A_ (W)w, ++asynccnt); 3169 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3170 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 3171 asyncs [asynccnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
2648} 3174}
2649 3175
2650void 3176void
2651ev_async_stop (EV_P_ ev_async *w) 3177ev_async_stop (EV_P_ ev_async *w)
2652{ 3178{
2653 clear_pending (EV_A_ (W)w); 3179 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3180 if (expect_false (!ev_is_active (w)))
2655 return; 3181 return;
2656 3182
3183 EV_FREQUENT_CHECK;
3184
2657 { 3185 {
2658 int active = ev_active (w); 3186 int active = ev_active (w);
2659 3187
2660 asyncs [active - 1] = asyncs [--asynccnt]; 3188 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 3189 ev_active (asyncs [active - 1]) = active;
2662 } 3190 }
2663 3191
2664 ev_stop (EV_A_ (W)w); 3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
2665} 3195}
2666 3196
2667void 3197void
2668ev_async_send (EV_P_ ev_async *w) 3198ev_async_send (EV_P_ ev_async *w)
2669{ 3199{
2686once_cb (EV_P_ struct ev_once *once, int revents) 3216once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3217{
2688 void (*cb)(int revents, void *arg) = once->cb; 3218 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3219 void *arg = once->arg;
2690 3220
2691 ev_io_stop (EV_A_ &once->io); 3221 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3222 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3223 ev_free (once);
2694 3224
2695 cb (revents, arg); 3225 cb (revents, arg);
2696} 3226}
2697 3227
2698static void 3228static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3229once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3230{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3231 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3232
3233 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3234}
2703 3235
2704static void 3236static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3237once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3238{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3239 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3240
3241 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3242}
2709 3243
2710void 3244void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3245ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3246{
2734 ev_timer_set (&once->to, timeout, 0.); 3268 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 3269 ev_timer_start (EV_A_ &once->to);
2736 } 3270 }
2737} 3271}
2738 3272
3273/*****************************************************************************/
3274
3275#if EV_WALK_ENABLE
3276void
3277ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3278{
3279 int i, j;
3280 ev_watcher_list *wl, *wn;
3281
3282 if (types & (EV_IO | EV_EMBED))
3283 for (i = 0; i < anfdmax; ++i)
3284 for (wl = anfds [i].head; wl; )
3285 {
3286 wn = wl->next;
3287
3288#if EV_EMBED_ENABLE
3289 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3290 {
3291 if (types & EV_EMBED)
3292 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3293 }
3294 else
3295#endif
3296#if EV_USE_INOTIFY
3297 if (ev_cb ((ev_io *)wl) == infy_cb)
3298 ;
3299 else
3300#endif
3301 if ((ev_io *)wl != &pipe_w)
3302 if (types & EV_IO)
3303 cb (EV_A_ EV_IO, wl);
3304
3305 wl = wn;
3306 }
3307
3308 if (types & (EV_TIMER | EV_STAT))
3309 for (i = timercnt + HEAP0; i-- > HEAP0; )
3310#if EV_STAT_ENABLE
3311 /*TODO: timer is not always active*/
3312 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3313 {
3314 if (types & EV_STAT)
3315 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3316 }
3317 else
3318#endif
3319 if (types & EV_TIMER)
3320 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3321
3322#if EV_PERIODIC_ENABLE
3323 if (types & EV_PERIODIC)
3324 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3325 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3326#endif
3327
3328#if EV_IDLE_ENABLE
3329 if (types & EV_IDLE)
3330 for (j = NUMPRI; i--; )
3331 for (i = idlecnt [j]; i--; )
3332 cb (EV_A_ EV_IDLE, idles [j][i]);
3333#endif
3334
3335#if EV_FORK_ENABLE
3336 if (types & EV_FORK)
3337 for (i = forkcnt; i--; )
3338 if (ev_cb (forks [i]) != embed_fork_cb)
3339 cb (EV_A_ EV_FORK, forks [i]);
3340#endif
3341
3342#if EV_ASYNC_ENABLE
3343 if (types & EV_ASYNC)
3344 for (i = asynccnt; i--; )
3345 cb (EV_A_ EV_ASYNC, asyncs [i]);
3346#endif
3347
3348 if (types & EV_PREPARE)
3349 for (i = preparecnt; i--; )
3350#if EV_EMBED_ENABLE
3351 if (ev_cb (prepares [i]) != embed_prepare_cb)
3352#endif
3353 cb (EV_A_ EV_PREPARE, prepares [i]);
3354
3355 if (types & EV_CHECK)
3356 for (i = checkcnt; i--; )
3357 cb (EV_A_ EV_CHECK, checks [i]);
3358
3359 if (types & EV_SIGNAL)
3360 for (i = 0; i < signalmax; ++i)
3361 for (wl = signals [i].head; wl; )
3362 {
3363 wn = wl->next;
3364 cb (EV_A_ EV_SIGNAL, wl);
3365 wl = wn;
3366 }
3367
3368 if (types & EV_CHILD)
3369 for (i = EV_PID_HASHSIZE; i--; )
3370 for (wl = childs [i]; wl; )
3371 {
3372 wn = wl->next;
3373 cb (EV_A_ EV_CHILD, wl);
3374 wl = wn;
3375 }
3376/* EV_STAT 0x00001000 /* stat data changed */
3377/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3378}
3379#endif
3380
2739#if EV_MULTIPLICITY 3381#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 3382 #include "ev_wrap.h"
2741#endif 3383#endif
2742 3384
2743#ifdef __cplusplus 3385#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines