ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
330#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
332 413
333#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 422#endif
338 423
339#ifdef _WIN32 424#ifdef _WIN32
340# include "ev_win32.c" 425# include "ev_win32.c"
349{ 434{
350 syserr_cb = cb; 435 syserr_cb = cb;
351} 436}
352 437
353static void noinline 438static void noinline
354syserr (const char *msg) 439ev_syserr (const char *msg)
355{ 440{
356 if (!msg) 441 if (!msg)
357 msg = "(libev) system error"; 442 msg = "(libev) system error";
358 443
359 if (syserr_cb) 444 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
407 492
408/*****************************************************************************/ 493/*****************************************************************************/
409 494
495/* file descriptor info structure */
410typedef struct 496typedef struct
411{ 497{
412 WL head; 498 WL head;
413 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
415#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 507 SOCKET handle;
417#endif 508#endif
418} ANFD; 509} ANFD;
419 510
511/* stores the pending event set for a given watcher */
420typedef struct 512typedef struct
421{ 513{
422 W w; 514 W w;
423 int events; 515 int events; /* the pending event set for the given watcher */
424} ANPENDING; 516} ANPENDING;
425 517
426#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
427typedef struct 520typedef struct
428{ 521{
429 WL head; 522 WL head;
430} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
431#endif 544#endif
432 545
433#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
434 547
435 struct ev_loop 548 struct ev_loop
454 567
455 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
456 569
457#endif 570#endif
458 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
459/*****************************************************************************/ 582/*****************************************************************************/
460 583
584#ifndef EV_HAVE_EV_TIME
461ev_tstamp 585ev_tstamp
462ev_time (void) 586ev_time (void)
463{ 587{
464#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
465 struct timespec ts; 591 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 594 }
595#endif
596
469 struct timeval tv; 597 struct timeval tv;
470 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 600}
601#endif
474 602
475ev_tstamp inline_size 603inline_size ev_tstamp
476get_clock (void) 604get_clock (void)
477{ 605{
478#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
480 { 608 {
513 struct timeval tv; 641 struct timeval tv;
514 642
515 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
518 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
519#endif 650#endif
520 } 651 }
521} 652}
522 653
523/*****************************************************************************/ 654/*****************************************************************************/
524 655
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 657
527int inline_size 658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
528array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
529{ 662{
530 int ncur = cur + 1; 663 int ncur = cur + 1;
531 664
532 do 665 do
549array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
550{ 683{
551 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
553} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 690
555#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
557 { \ 693 { \
558 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 707 }
572#endif 708#endif
573 709
574#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 712
577/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
578 720
579void noinline 721void noinline
580ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
581{ 723{
582 W w_ = (W)w; 724 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
593 } 735 }
594} 736}
595 737
596void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 755{
599 int i; 756 int i;
600 757
601 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
603} 760}
604 761
605/*****************************************************************************/ 762/*****************************************************************************/
606 763
607void inline_size 764inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
622{ 766{
623 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
624 ev_io *w; 768 ev_io *w;
625 769
637{ 781{
638 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
640} 784}
641 785
642void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
643fd_reify (EV_P) 789fd_reify (EV_P)
644{ 790{
645 int i; 791 int i;
646 792
647 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
657 803
658#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
659 if (events) 805 if (events)
660 { 806 {
661 unsigned long argp; 807 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 808 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 810 #else
665 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
666 #endif 812 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 814 }
669#endif 815#endif
670 816
671 { 817 {
672 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
674 820
675 anfd->reify = 0; 821 anfd->reify = 0;
676 anfd->events = events; 822 anfd->events = events;
677 823
678 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
680 } 826 }
681 } 827 }
682 828
683 fdchangecnt = 0; 829 fdchangecnt = 0;
684} 830}
685 831
686void inline_size 832/* something about the given fd changed */
833inline_size void
687fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
688{ 835{
689 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
691 838
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
697 } 844 }
698} 845}
699 846
700void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
701fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
702{ 850{
703 ev_io *w; 851 ev_io *w;
704 852
705 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 857 }
710} 858}
711 859
712int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
713fd_valid (int fd) 862fd_valid (int fd)
714{ 863{
715#ifdef _WIN32 864#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
717#else 866#else
725{ 874{
726 int fd; 875 int fd;
727 876
728 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 878 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
732} 881}
733 882
734/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 884static void noinline
753 902
754 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 904 if (anfds [fd].events)
756 { 905 {
757 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
759 } 909 }
760} 910}
761 911
762/*****************************************************************************/ 912/*****************************************************************************/
913
914/*
915 * the heap functions want a real array index. array index 0 uis guaranteed to not
916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
917 * the branching factor of the d-tree.
918 */
763 919
764/* 920/*
765 * at the moment we allow libev the luxury of two heaps, 921 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 923 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 924 * the difference is about 5% with 50000+ watchers.
769 */ 925 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 926#if EV_USE_4HEAP
772 927
928#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931#define UPHEAP_DONE(p,k) ((p) == (k))
774 932
775/* towards the root */ 933/* away from the root */
776void inline_speed 934inline_speed void
777upheap (WT *heap, int k) 935downheap (ANHE *heap, int N, int k)
778{ 936{
779 WT w = heap [k]; 937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
780 939
781 for (;;) 940 for (;;)
782 { 941 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 942 ev_tstamp minat;
807 WT *minpos; 943 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 945
810 // find minimum child 946 /* find minimum child */
811 if (expect_true (pos +3 < E)) 947 if (expect_true (pos + DHEAP - 1 < E))
812 { 948 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 960 }
818 else 961 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 962 break;
831 963
832 ev_active (*minpos) = k; 964 if (ANHE_at (he) <= minat)
965 break;
966
833 heap [k] = *minpos; 967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
834 969
835 k = minpos - heap; 970 k = minpos - heap;
836 } 971 }
837 972
838 heap [k] = w; 973 heap [k] = he;
839 ev_active (heap [k]) = k; 974 ev_active (ANHE_w (he)) = k;
840} 975}
841 976
842#else // 4HEAP 977#else /* 4HEAP */
843 978
844#define HEAP0 1 979#define HEAP0 1
980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
845 982
846/* towards the root */ 983/* away from the root */
847void inline_speed 984inline_speed void
848upheap (WT *heap, int k) 985downheap (ANHE *heap, int N, int k)
849{ 986{
850 WT w = heap [k]; 987 ANHE he = heap [k];
851 988
852 for (;;) 989 for (;;)
853 { 990 {
854 int p = k >> 1; 991 int c = k << 1;
855 992
856 /* maybe we could use a dummy element at heap [0]? */ 993 if (c > N + HEAP0 - 1)
857 if (!p || heap [p]->at <= w->at)
858 break; 994 break;
859 995
860 heap [k] = heap [p]; 996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 997 ? 1 : 0;
862 k = p;
863 }
864 998
865 heap [k] = w; 999 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 1000 break;
881 1001
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 1002 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 1003 ev_active (ANHE_w (heap [k])) = k;
890 1004
891 k = c; 1005 k = c;
892 } 1006 }
893 1007
894 heap [k] = w; 1008 heap [k] = he;
1009 ev_active (ANHE_w (he)) = k;
1010}
1011#endif
1012
1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
1026 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1027 ev_active (ANHE_w (heap [k])) = k;
896} 1028 k = p;
897#endif 1029 }
898 1030
899void inline_size 1031 heap [k] = he;
1032 ev_active (ANHE_w (he)) = k;
1033}
1034
1035/* move an element suitably so it is in a correct place */
1036inline_size void
900adjustheap (WT *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
901{ 1038{
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 1040 upheap (heap, k);
1041 else
903 downheap (heap, N, k); 1042 downheap (heap, N, k);
1043}
1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
904} 1055}
905 1056
906/*****************************************************************************/ 1057/*****************************************************************************/
907 1058
1059/* associate signal watchers to a signal signal */
908typedef struct 1060typedef struct
909{ 1061{
910 WL head; 1062 WL head;
911 EV_ATOMIC_T gotsig; 1063 EV_ATOMIC_T gotsig;
912} ANSIG; 1064} ANSIG;
914static ANSIG *signals; 1066static ANSIG *signals;
915static int signalmax; 1067static int signalmax;
916 1068
917static EV_ATOMIC_T gotsig; 1069static EV_ATOMIC_T gotsig;
918 1070
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930
931/*****************************************************************************/ 1071/*****************************************************************************/
932 1072
933void inline_speed 1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
934fd_intern (int fd) 1076fd_intern (int fd)
935{ 1077{
936#ifdef _WIN32 1078#ifdef _WIN32
937 int arg = 1; 1079 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else 1081#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 1084#endif
943} 1085}
944 1086
945static void noinline 1087static void noinline
946evpipe_init (EV_P) 1088evpipe_init (EV_P)
947{ 1089{
948 if (!ev_is_active (&pipeev)) 1090 if (!ev_is_active (&pipe_w))
949 { 1091 {
950#if EV_USE_EVENTFD 1092#if EV_USE_EVENTFD
951 if ((evfd = eventfd (0, 0)) >= 0) 1093 if ((evfd = eventfd (0, 0)) >= 0)
952 { 1094 {
953 evpipe [0] = -1; 1095 evpipe [0] = -1;
954 fd_intern (evfd); 1096 fd_intern (evfd);
955 ev_io_set (&pipeev, evfd, EV_READ); 1097 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1098 }
957 else 1099 else
958#endif 1100#endif
959 { 1101 {
960 while (pipe (evpipe)) 1102 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1103 ev_syserr ("(libev) error creating signal/async pipe");
962 1104
963 fd_intern (evpipe [0]); 1105 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1106 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1108 }
967 1109
968 ev_io_start (EV_A_ &pipeev); 1110 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1112 }
971} 1113}
972 1114
973void inline_size 1115inline_size void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1117{
976 if (!*flag) 1118 if (!*flag)
977 { 1119 {
978 int old_errno = errno; /* save errno because write might clobber it */ 1120 int old_errno = errno; /* save errno because write might clobber it */
991 1133
992 errno = old_errno; 1134 errno = old_errno;
993 } 1135 }
994} 1136}
995 1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
996static void 1140static void
997pipecb (EV_P_ ev_io *iow, int revents) 1141pipecb (EV_P_ ev_io *iow, int revents)
998{ 1142{
999#if EV_USE_EVENTFD 1143#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1144 if (evfd >= 0)
1056ev_feed_signal_event (EV_P_ int signum) 1200ev_feed_signal_event (EV_P_ int signum)
1057{ 1201{
1058 WL w; 1202 WL w;
1059 1203
1060#if EV_MULTIPLICITY 1204#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1062#endif 1206#endif
1063 1207
1064 --signum; 1208 --signum;
1065 1209
1066 if (signum < 0 || signum >= signalmax) 1210 if (signum < 0 || signum >= signalmax)
1082 1226
1083#ifndef WIFCONTINUED 1227#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 1228# define WIFCONTINUED(status) 0
1085#endif 1229#endif
1086 1230
1087void inline_speed 1231/* handle a single child status event */
1232inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
1089{ 1234{
1090 ev_child *w; 1235 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 1237
1105 1250
1106#ifndef WCONTINUED 1251#ifndef WCONTINUED
1107# define WCONTINUED 0 1252# define WCONTINUED 0
1108#endif 1253#endif
1109 1254
1255/* called on sigchld etc., calls waitpid */
1110static void 1256static void
1111childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
1112{ 1258{
1113 int pid, status; 1259 int pid, status;
1114 1260
1195 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
1198#endif 1344#endif
1199#ifdef __APPLE__ 1345#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1202#endif 1349#endif
1203 1350
1204 return flags; 1351 return flags;
1205} 1352}
1206 1353
1220ev_backend (EV_P) 1367ev_backend (EV_P)
1221{ 1368{
1222 return backend; 1369 return backend;
1223} 1370}
1224 1371
1372#if EV_MINIMAL < 2
1225unsigned int 1373unsigned int
1226ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1227{ 1375{
1228 return loop_count; 1376 return loop_count;
1229} 1377}
1230 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1231void 1385void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{ 1387{
1234 io_blocktime = interval; 1388 io_blocktime = interval;
1235} 1389}
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{ 1393{
1240 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1241} 1395}
1242 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1243static void noinline 1422static void noinline
1244loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1245{ 1424{
1246 if (!backend) 1425 if (!backend)
1247 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1248#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1249 { 1439 {
1250 struct timespec ts; 1440 struct timespec ts;
1441
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 1443 have_monotonic = 1;
1253 } 1444 }
1254#endif 1445#endif
1255 1446
1256 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1257 mn_now = get_clock (); 1448 mn_now = get_clock ();
1258 now_floor = mn_now; 1449 now_floor = mn_now;
1259 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1260 1454
1261 io_blocktime = 0.; 1455 io_blocktime = 0.;
1262 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1263 backend = 0; 1457 backend = 0;
1264 backend_fd = -1; 1458 backend_fd = -1;
1295#endif 1489#endif
1296#if EV_USE_SELECT 1490#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 1492#endif
1299 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1300 ev_init (&pipeev, pipecb); 1496 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1302 } 1498 }
1303} 1499}
1304 1500
1501/* free up a loop structure */
1305static void noinline 1502static void noinline
1306loop_destroy (EV_P) 1503loop_destroy (EV_P)
1307{ 1504{
1308 int i; 1505 int i;
1309 1506
1310 if (ev_is_active (&pipeev)) 1507 if (ev_is_active (&pipe_w))
1311 { 1508 {
1312 ev_ref (EV_A); /* signal watcher */ 1509 ev_ref (EV_A); /* signal watcher */
1313 ev_io_stop (EV_A_ &pipeev); 1510 ev_io_stop (EV_A_ &pipe_w);
1314 1511
1315#if EV_USE_EVENTFD 1512#if EV_USE_EVENTFD
1316 if (evfd >= 0) 1513 if (evfd >= 0)
1317 close (evfd); 1514 close (evfd);
1318#endif 1515#endif
1357 } 1554 }
1358 1555
1359 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1360 1557
1361 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1366#endif 1564#endif
1375 1573
1376 backend = 0; 1574 backend = 0;
1377} 1575}
1378 1576
1379#if EV_USE_INOTIFY 1577#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1381#endif 1579#endif
1382 1580
1383void inline_size 1581inline_size void
1384loop_fork (EV_P) 1582loop_fork (EV_P)
1385{ 1583{
1386#if EV_USE_PORT 1584#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 1586#endif
1394#endif 1592#endif
1395#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 1594 infy_fork (EV_A);
1397#endif 1595#endif
1398 1596
1399 if (ev_is_active (&pipeev)) 1597 if (ev_is_active (&pipe_w))
1400 { 1598 {
1401 /* this "locks" the handlers against writing to the pipe */ 1599 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */ 1600 /* while we modify the fd vars */
1403 gotsig = 1; 1601 gotsig = 1;
1404#if EV_ASYNC_ENABLE 1602#if EV_ASYNC_ENABLE
1405 gotasync = 1; 1603 gotasync = 1;
1406#endif 1604#endif
1407 1605
1408 ev_ref (EV_A); 1606 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 1607 ev_io_stop (EV_A_ &pipe_w);
1410 1608
1411#if EV_USE_EVENTFD 1609#if EV_USE_EVENTFD
1412 if (evfd >= 0) 1610 if (evfd >= 0)
1413 close (evfd); 1611 close (evfd);
1414#endif 1612#endif
1419 close (evpipe [1]); 1617 close (evpipe [1]);
1420 } 1618 }
1421 1619
1422 evpipe_init (EV_A); 1620 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 1621 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 1622 pipecb (EV_A_ &pipe_w, EV_READ);
1425 } 1623 }
1426 1624
1427 postfork = 0; 1625 postfork = 0;
1428} 1626}
1429 1627
1430#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
1431struct ev_loop * 1630struct ev_loop *
1432ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
1433{ 1632{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1634
1452 1651
1453void 1652void
1454ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1455{ 1654{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1655 postfork = 1; /* must be in line with ev_default_fork */
1656}
1657#endif /* multiplicity */
1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724#endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
1735
1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739#endif
1740
1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755# endif
1756#endif
1457} 1757}
1458#endif 1758#endif
1459 1759
1460#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1461struct ev_loop * 1761struct ev_loop *
1496{ 1796{
1497#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1499#endif 1799#endif
1500 1800
1801 ev_default_loop_ptr = 0;
1802
1501#ifndef _WIN32 1803#ifndef _WIN32
1502 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1504#endif 1806#endif
1505 1807
1511{ 1813{
1512#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1514#endif 1816#endif
1515 1817
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 1818 postfork = 1; /* must be in line with ev_loop_fork */
1518} 1819}
1519 1820
1520/*****************************************************************************/ 1821/*****************************************************************************/
1521 1822
1522void 1823void
1523ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1524{ 1825{
1525 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1526} 1827}
1527 1828
1528void inline_speed 1829void noinline
1529call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1530{ 1831{
1531 int pri; 1832 int pri;
1532 1833
1533 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1535 { 1836 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 1838
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1541 1841
1542 p->w->pending = 0; 1842 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1544 } 1844 EV_FREQUENT_CHECK;
1545 } 1845 }
1546} 1846}
1547 1847
1548#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1549void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1550idle_reify (EV_P) 1852idle_reify (EV_P)
1551{ 1853{
1552 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1553 { 1855 {
1554 int pri; 1856 int pri;
1566 } 1868 }
1567 } 1869 }
1568} 1870}
1569#endif 1871#endif
1570 1872
1571void inline_size 1873/* make timers pending */
1874inline_size void
1572timers_reify (EV_P) 1875timers_reify (EV_P)
1573{ 1876{
1877 EV_FREQUENT_CHECK;
1878
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1880 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1881 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 1895
1585 ev_at (w) += w->repeat; 1896 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1590 } 1904 }
1591 else 1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1906
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1595 } 1908 }
1596} 1909}
1597 1910
1598#if EV_PERIODIC_ENABLE 1911#if EV_PERIODIC_ENABLE
1599void inline_size 1912/* make periodics pending */
1913inline_size void
1600periodics_reify (EV_P) 1914periodics_reify (EV_P)
1601{ 1915{
1916 EV_FREQUENT_CHECK;
1917
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1919 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1920 int feed_count = 0;
1605 1921
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1922 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1614 } 1962 }
1615 else if (w->interval) 1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1964
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 1966 }
1627} 1967}
1628 1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1629static void noinline 1971static void noinline
1630periodics_reschedule (EV_P) 1972periodics_reschedule (EV_P)
1631{ 1973{
1632 int i; 1974 int i;
1633 1975
1634 /* adjust periodics after time jump */ 1976 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1978 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1980
1639 if (w->reschedule_cb) 1981 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1983 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
1643 } 2000 {
1644 2001 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 2002 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 2003 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 2004 }
1648} 2005}
1649#endif
1650 2006
1651void inline_speed 2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1653{ 2011{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1658 { 2014 {
2015 int i;
1659 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1660 2017
1661 mn_now = get_clock (); 2018 mn_now = get_clock ();
1662 2019
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2047 mn_now = get_clock ();
1691 now_floor = mn_now; 2048 now_floor = mn_now;
1692 } 2049 }
1693 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1696# endif 2055# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2056 }
1700 else 2057 else
1701#endif 2058#endif
1702 { 2059 {
1703 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1704 2061
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1709#endif 2068#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2069 }
1714 2070
1715 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1716 } 2072 }
1717} 2073}
1718 2074
1719void 2075void
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1735{ 2077{
2078#if EV_MINIMAL < 2
2079 ++loop_depth;
2080#endif
2081
1736 loop_done = EVUNLOOP_CANCEL; 2082 loop_done = EVUNLOOP_CANCEL;
1737 2083
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1739 2085
1740 do 2086 do
1741 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
1742#ifndef _WIN32 2092#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2093 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2094 if (expect_false (getpid () != curpid))
1745 { 2095 {
1746 curpid = getpid (); 2096 curpid = getpid ();
1752 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1754 if (forkcnt) 2104 if (forkcnt)
1755 { 2105 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1758 } 2108 }
1759#endif 2109#endif
1760 2110
1761 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1762 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1763 { 2113 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1766 } 2116 }
1767
1768 if (expect_false (!activecnt))
1769 break;
1770 2117
1771 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1773 loop_fork (EV_A); 2120 loop_fork (EV_A);
1774 2121
1780 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1782 2129
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1784 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1785 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1787 2137
1788 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1789 2139
1790 if (timercnt) 2140 if (timercnt)
1791 { 2141 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 2143 if (waittime > to) waittime = to;
1794 } 2144 }
1795 2145
1796#if EV_PERIODIC_ENABLE 2146#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 2147 if (periodiccnt)
1798 { 2148 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1801 } 2151 }
1802#endif 2152#endif
1803 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1806 2157
1807 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1808
1809 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1814 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1816 } 2171 }
1817 } 2172 }
1818 2173
2174#if EV_MINIMAL < 2
1819 ++loop_count; 2175 ++loop_count;
2176#endif
1820 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
1821 2178
1822 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1823 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
1824 } 2181 }
1836 2193
1837 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1838 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1840 2197
1841 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1842 } 2199 }
1843 while (expect_true ( 2200 while (expect_true (
1844 activecnt 2201 activecnt
1845 && !loop_done 2202 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 )); 2204 ));
1848 2205
1849 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1851} 2212}
1852 2213
1853void 2214void
1854ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1855{ 2216{
1856 loop_done = how; 2217 loop_done = how;
1857} 2218}
1858 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1859/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1860 2259
1861void inline_size 2260inline_size void
1862wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1863{ 2262{
1864 elem->next = *head; 2263 elem->next = *head;
1865 *head = elem; 2264 *head = elem;
1866} 2265}
1867 2266
1868void inline_size 2267inline_size void
1869wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1870{ 2269{
1871 while (*head) 2270 while (*head)
1872 { 2271 {
1873 if (*head == elem) 2272 if (*head == elem)
1878 2277
1879 head = &(*head)->next; 2278 head = &(*head)->next;
1880 } 2279 }
1881} 2280}
1882 2281
1883void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
1884clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1885{ 2285{
1886 if (w->pending) 2286 if (w->pending)
1887 { 2287 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 2289 w->pending = 0;
1890 } 2290 }
1891} 2291}
1892 2292
1893int 2293int
1897 int pending = w_->pending; 2297 int pending = w_->pending;
1898 2298
1899 if (expect_true (pending)) 2299 if (expect_true (pending))
1900 { 2300 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
1902 w_->pending = 0; 2303 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 2304 return p->events;
1905 } 2305 }
1906 else 2306 else
1907 return 0; 2307 return 0;
1908} 2308}
1909 2309
1910void inline_size 2310inline_size void
1911pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
1912{ 2312{
1913 int pri = w->priority; 2313 int pri = ev_priority (w);
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 2316 ev_set_priority (w, pri);
1917} 2317}
1918 2318
1919void inline_speed 2319inline_speed void
1920ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1921{ 2321{
1922 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
1923 w->active = active; 2323 w->active = active;
1924 ev_ref (EV_A); 2324 ev_ref (EV_A);
1925} 2325}
1926 2326
1927void inline_size 2327inline_size void
1928ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1929{ 2329{
1930 ev_unref (EV_A); 2330 ev_unref (EV_A);
1931 w->active = 0; 2331 w->active = 0;
1932} 2332}
1939 int fd = w->fd; 2339 int fd = w->fd;
1940 2340
1941 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
1942 return; 2342 return;
1943 2343
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
1945 2348
1946 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
1949 2352
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2355
2356 EV_FREQUENT_CHECK;
1952} 2357}
1953 2358
1954void noinline 2359void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
1956{ 2361{
1957 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
1959 return; 2364 return;
1960 2365
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
1962 2369
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1965 2372
1966 fd_change (EV_A_ w->fd, 1); 2373 fd_change (EV_A_ w->fd, 1);
2374
2375 EV_FREQUENT_CHECK;
1967} 2376}
1968 2377
1969void noinline 2378void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
1971{ 2380{
1972 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1973 return; 2382 return;
1974 2383
1975 ev_at (w) += mn_now; 2384 ev_at (w) += mn_now;
1976 2385
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
2394 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2395 upheap (timers, ev_active (w));
1983 2396
2397 EV_FREQUENT_CHECK;
2398
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2400}
1986 2401
1987void noinline 2402void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2404{
1990 clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2406 if (expect_false (!ev_is_active (w)))
1992 return; 2407 return;
1993 2408
2409 EV_FREQUENT_CHECK;
2410
1994 { 2411 {
1995 int active = ev_active (w); 2412 int active = ev_active (w);
1996 2413
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2415
2416 --timercnt;
2417
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2418 if (expect_true (active < timercnt + HEAP0))
2000 { 2419 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2420 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2421 adjustheap (timers, timercnt, active);
2003 } 2422 }
2004
2005 --timercnt;
2006 } 2423 }
2424
2425 EV_FREQUENT_CHECK;
2007 2426
2008 ev_at (w) -= mn_now; 2427 ev_at (w) -= mn_now;
2009 2428
2010 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
2011} 2430}
2012 2431
2013void noinline 2432void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
2015{ 2434{
2435 EV_FREQUENT_CHECK;
2436
2016 if (ev_is_active (w)) 2437 if (ev_is_active (w))
2017 { 2438 {
2018 if (w->repeat) 2439 if (w->repeat)
2019 { 2440 {
2020 ev_at (w) = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
2442 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2443 adjustheap (timers, timercnt, ev_active (w));
2022 } 2444 }
2023 else 2445 else
2024 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
2025 } 2447 }
2026 else if (w->repeat) 2448 else if (w->repeat)
2027 { 2449 {
2028 ev_at (w) = w->repeat; 2450 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
2030 } 2452 }
2453
2454 EV_FREQUENT_CHECK;
2031} 2455}
2032 2456
2033#if EV_PERIODIC_ENABLE 2457#if EV_PERIODIC_ENABLE
2034void noinline 2458void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
2039 2463
2040 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 2466 else if (w->interval)
2043 { 2467 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2471 }
2048 else 2472 else
2049 ev_at (w) = w->offset; 2473 ev_at (w) = w->offset;
2050 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2481 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2482 upheap (periodics, ev_active (w));
2055 2483
2484 EV_FREQUENT_CHECK;
2485
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2487}
2058 2488
2059void noinline 2489void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2491{
2062 clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2493 if (expect_false (!ev_is_active (w)))
2064 return; 2494 return;
2065 2495
2496 EV_FREQUENT_CHECK;
2497
2066 { 2498 {
2067 int active = ev_active (w); 2499 int active = ev_active (w);
2068 2500
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2502
2503 --periodiccnt;
2504
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2505 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2506 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2508 adjustheap (periodics, periodiccnt, active);
2075 } 2509 }
2076
2077 --periodiccnt;
2078 } 2510 }
2511
2512 EV_FREQUENT_CHECK;
2079 2513
2080 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
2081} 2515}
2082 2516
2083void noinline 2517void noinline
2095 2529
2096void noinline 2530void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
2098{ 2532{
2099#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif 2535#endif
2102 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
2103 return; 2537 return;
2104 2538
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2106 2540
2107 evpipe_init (EV_A); 2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
2108 2544
2109 { 2545 {
2110#ifndef _WIN32 2546#ifndef _WIN32
2111 sigset_t full, prev; 2547 sigset_t full, prev;
2112 sigfillset (&full); 2548 sigfillset (&full);
2113 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif 2550#endif
2115 2551
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2117 2553
2118#ifndef _WIN32 2554#ifndef _WIN32
2119 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
2120#endif 2556#endif
2121 } 2557 }
2133 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
2136#endif 2572#endif
2137 } 2573 }
2574
2575 EV_FREQUENT_CHECK;
2138} 2576}
2139 2577
2140void noinline 2578void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2580{
2143 clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2582 if (expect_false (!ev_is_active (w)))
2145 return; 2583 return;
2146 2584
2585 EV_FREQUENT_CHECK;
2586
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
2149 2589
2150 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
2592
2593 EV_FREQUENT_CHECK;
2152} 2594}
2153 2595
2154void 2596void
2155ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
2156{ 2598{
2157#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2601#endif
2160 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
2161 return; 2603 return;
2162 2604
2605 EV_FREQUENT_CHECK;
2606
2163 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2609
2610 EV_FREQUENT_CHECK;
2165} 2611}
2166 2612
2167void 2613void
2168ev_child_stop (EV_P_ ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
2169{ 2615{
2170 clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
2172 return; 2618 return;
2173 2619
2620 EV_FREQUENT_CHECK;
2621
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
2176} 2626}
2177 2627
2178#if EV_STAT_ENABLE 2628#if EV_STAT_ENABLE
2179 2629
2180# ifdef _WIN32 2630# ifdef _WIN32
2181# undef lstat 2631# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
2183# endif 2633# endif
2184 2634
2185#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
2187 2638
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 2640
2190#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
2195{ 2646{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 2648
2198 if (w->wd < 0) 2649 if (w->wd < 0)
2199 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2201 2653
2202 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 2656 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 2658 {
2207 char path [4096]; 2659 char path [4096];
2208 strcpy (path, w->path); 2660 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 2666
2215 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
2216 2668
2217 if (!pend) 2669 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 2670 break;
2219 2671
2220 *pend = 0; 2672 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 2674 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 2676 }
2225 } 2677 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 2678
2229 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2231} 2700}
2232 2701
2233static void noinline 2702static void noinline
2234infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
2235{ 2704{
2249 2718
2250static void noinline 2719static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 2721{
2253 if (slot < 0) 2722 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
2257 else 2726 else
2258 { 2727 {
2259 WL w_; 2728 WL w_;
2265 2734
2266 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2267 { 2736 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2270 w->wd = -1; 2740 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 2742 }
2273 2743
2274 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2287 2757
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2290} 2760}
2291 2761
2292void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2293infy_init (EV_P) 2786infy_init (EV_P)
2294{ 2787{
2295 if (fs_fd != -2) 2788 if (fs_fd != -2)
2296 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2297 2794
2298 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2299 2796
2300 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2301 { 2798 {
2303 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2305 } 2802 }
2306} 2803}
2307 2804
2308void inline_size 2805inline_size void
2309infy_fork (EV_P) 2806infy_fork (EV_P)
2310{ 2807{
2311 int slot; 2808 int slot;
2312 2809
2313 if (fs_fd < 0) 2810 if (fs_fd < 0)
2329 w->wd = -1; 2826 w->wd = -1;
2330 2827
2331 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 2830 else
2334 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2335 } 2832 }
2336
2337 } 2833 }
2338} 2834}
2339 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 2842#endif
2341 2843
2342void 2844void
2343ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2344{ 2846{
2371 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2374 ) { 2876 ) {
2375 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2376 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2379 #endif 2884 #endif
2380 2885
2381 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 2887 }
2383} 2888}
2386ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2387{ 2892{
2388 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2389 return; 2894 return;
2390 2895
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2396 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 2900
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2402 2903
2403#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2404 infy_init (EV_A); 2905 infy_init (EV_A);
2405 2906
2406 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2408 else 2909 else
2409#endif 2910#endif
2410 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2411 2912
2412 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2413} 2916}
2414 2917
2415void 2918void
2416ev_stat_stop (EV_P_ ev_stat *w) 2919ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2920{
2418 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2420 return; 2923 return;
2421 2924
2925 EV_FREQUENT_CHECK;
2926
2422#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2928 infy_del (EV_A_ w);
2424#endif 2929#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2930 ev_timer_stop (EV_A_ &w->timer);
2426 2931
2427 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2428} 2935}
2429#endif 2936#endif
2430 2937
2431#if EV_IDLE_ENABLE 2938#if EV_IDLE_ENABLE
2432void 2939void
2434{ 2941{
2435 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2436 return; 2943 return;
2437 2944
2438 pri_adjust (EV_A_ (W)w); 2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2439 2948
2440 { 2949 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2950 int active = ++idlecnt [ABSPRI (w)];
2442 2951
2443 ++idleall; 2952 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2953 ev_start (EV_A_ (W)w, active);
2445 2954
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2956 idles [ABSPRI (w)][active - 1] = w;
2448 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2449} 2960}
2450 2961
2451void 2962void
2452ev_idle_stop (EV_P_ ev_idle *w) 2963ev_idle_stop (EV_P_ ev_idle *w)
2453{ 2964{
2454 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2456 return; 2967 return;
2457 2968
2969 EV_FREQUENT_CHECK;
2970
2458 { 2971 {
2459 int active = ev_active (w); 2972 int active = ev_active (w);
2460 2973
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 2976
2464 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2465 --idleall; 2978 --idleall;
2466 } 2979 }
2980
2981 EV_FREQUENT_CHECK;
2467} 2982}
2468#endif 2983#endif
2469 2984
2470void 2985void
2471ev_prepare_start (EV_P_ ev_prepare *w) 2986ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 2987{
2473 if (expect_false (ev_is_active (w))) 2988 if (expect_false (ev_is_active (w)))
2474 return; 2989 return;
2990
2991 EV_FREQUENT_CHECK;
2475 2992
2476 ev_start (EV_A_ (W)w, ++preparecnt); 2993 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2479} 2998}
2480 2999
2481void 3000void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 3001ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 3002{
2484 clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
2486 return; 3005 return;
2487 3006
3007 EV_FREQUENT_CHECK;
3008
2488 { 3009 {
2489 int active = ev_active (w); 3010 int active = ev_active (w);
2490 3011
2491 prepares [active - 1] = prepares [--preparecnt]; 3012 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 3013 ev_active (prepares [active - 1]) = active;
2493 } 3014 }
2494 3015
2495 ev_stop (EV_A_ (W)w); 3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
2496} 3019}
2497 3020
2498void 3021void
2499ev_check_start (EV_P_ ev_check *w) 3022ev_check_start (EV_P_ ev_check *w)
2500{ 3023{
2501 if (expect_false (ev_is_active (w))) 3024 if (expect_false (ev_is_active (w)))
2502 return; 3025 return;
3026
3027 EV_FREQUENT_CHECK;
2503 3028
2504 ev_start (EV_A_ (W)w, ++checkcnt); 3029 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
2507} 3034}
2508 3035
2509void 3036void
2510ev_check_stop (EV_P_ ev_check *w) 3037ev_check_stop (EV_P_ ev_check *w)
2511{ 3038{
2512 clear_pending (EV_A_ (W)w); 3039 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3040 if (expect_false (!ev_is_active (w)))
2514 return; 3041 return;
2515 3042
3043 EV_FREQUENT_CHECK;
3044
2516 { 3045 {
2517 int active = ev_active (w); 3046 int active = ev_active (w);
2518 3047
2519 checks [active - 1] = checks [--checkcnt]; 3048 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 3049 ev_active (checks [active - 1]) = active;
2521 } 3050 }
2522 3051
2523 ev_stop (EV_A_ (W)w); 3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
2524} 3055}
2525 3056
2526#if EV_EMBED_ENABLE 3057#if EV_EMBED_ENABLE
2527void noinline 3058void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 3059ev_embed_sweep (EV_P_ ev_embed *w)
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 3087 }
2557 } 3088 }
2558} 3089}
2559 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2560#if 0 3108#if 0
2561static void 3109static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 3111{
2564 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2571 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2572 return; 3120 return;
2573 3121
2574 { 3122 {
2575 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 3126 }
3127
3128 EV_FREQUENT_CHECK;
2579 3129
2580 ev_set_priority (&w->io, ev_priority (w)); 3130 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 3131 ev_io_start (EV_A_ &w->io);
2582 3132
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2586 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 3141
2589 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
2590} 3145}
2591 3146
2592void 3147void
2593ev_embed_stop (EV_P_ ev_embed *w) 3148ev_embed_stop (EV_P_ ev_embed *w)
2594{ 3149{
2595 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2597 return; 3152 return;
2598 3153
3154 EV_FREQUENT_CHECK;
3155
2599 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
2601 3159
2602 ev_stop (EV_A_ (W)w); 3160 EV_FREQUENT_CHECK;
2603} 3161}
2604#endif 3162#endif
2605 3163
2606#if EV_FORK_ENABLE 3164#if EV_FORK_ENABLE
2607void 3165void
2608ev_fork_start (EV_P_ ev_fork *w) 3166ev_fork_start (EV_P_ ev_fork *w)
2609{ 3167{
2610 if (expect_false (ev_is_active (w))) 3168 if (expect_false (ev_is_active (w)))
2611 return; 3169 return;
3170
3171 EV_FREQUENT_CHECK;
2612 3172
2613 ev_start (EV_A_ (W)w, ++forkcnt); 3173 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
2616} 3178}
2617 3179
2618void 3180void
2619ev_fork_stop (EV_P_ ev_fork *w) 3181ev_fork_stop (EV_P_ ev_fork *w)
2620{ 3182{
2621 clear_pending (EV_A_ (W)w); 3183 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 3184 if (expect_false (!ev_is_active (w)))
2623 return; 3185 return;
2624 3186
3187 EV_FREQUENT_CHECK;
3188
2625 { 3189 {
2626 int active = ev_active (w); 3190 int active = ev_active (w);
2627 3191
2628 forks [active - 1] = forks [--forkcnt]; 3192 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 3193 ev_active (forks [active - 1]) = active;
2630 } 3194 }
2631 3195
2632 ev_stop (EV_A_ (W)w); 3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
2633} 3199}
2634#endif 3200#endif
2635 3201
2636#if EV_ASYNC_ENABLE 3202#if EV_ASYNC_ENABLE
2637void 3203void
2639{ 3205{
2640 if (expect_false (ev_is_active (w))) 3206 if (expect_false (ev_is_active (w)))
2641 return; 3207 return;
2642 3208
2643 evpipe_init (EV_A); 3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
2644 3212
2645 ev_start (EV_A_ (W)w, ++asynccnt); 3213 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
2648} 3218}
2649 3219
2650void 3220void
2651ev_async_stop (EV_P_ ev_async *w) 3221ev_async_stop (EV_P_ ev_async *w)
2652{ 3222{
2653 clear_pending (EV_A_ (W)w); 3223 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3224 if (expect_false (!ev_is_active (w)))
2655 return; 3225 return;
2656 3226
3227 EV_FREQUENT_CHECK;
3228
2657 { 3229 {
2658 int active = ev_active (w); 3230 int active = ev_active (w);
2659 3231
2660 asyncs [active - 1] = asyncs [--asynccnt]; 3232 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 3233 ev_active (asyncs [active - 1]) = active;
2662 } 3234 }
2663 3235
2664 ev_stop (EV_A_ (W)w); 3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
2665} 3239}
2666 3240
2667void 3241void
2668ev_async_send (EV_P_ ev_async *w) 3242ev_async_send (EV_P_ ev_async *w)
2669{ 3243{
2686once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3261{
2688 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3263 void *arg = once->arg;
2690 3264
2691 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3267 ev_free (once);
2694 3268
2695 cb (revents, arg); 3269 cb (revents, arg);
2696} 3270}
2697 3271
2698static void 3272static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3274{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3278}
2703 3279
2704static void 3280static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3282{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3286}
2709 3287
2710void 3288void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3290{
2734 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
2736 } 3314 }
2737} 3315}
2738 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
2739#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
2741#endif 3427#endif
2742 3428
2743#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines