ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.308 by root, Sun Jul 19 20:39:54 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
169# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
170#endif 232#endif
171 233
172#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 236#endif
175 237
176#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
177# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
178#endif 244#endif
179 245
180#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
182#endif 248#endif
235# else 301# else
236# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
237# endif 303# endif
238#endif 304#endif
239 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 347
242#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 365# include <sys/select.h>
260# endif 366# endif
261#endif 367#endif
262 368
263#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
264# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
265#endif 378#endif
266 379
267#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 381# include <winsock.h>
269#endif 382#endif
270 383
271#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
274# ifdef __cplusplus 393# ifdef __cplusplus
275extern "C" { 394extern "C" {
276# endif 395# endif
277int eventfd (unsigned int initval, int flags); 396int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus 397# ifdef __cplusplus
279} 398}
280# endif 399# endif
281#endif 400#endif
282 401
402#if EV_USE_SIGNALFD
403# include <sys/signalfd.h>
404#endif
405
283/**/ 406/**/
407
408#if EV_VERIFY >= 3
409# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
410#else
411# define EV_FREQUENT_CHECK do { } while (0)
412#endif
284 413
285/* 414/*
286 * This is used to avoid floating point rounding problems. 415 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 416 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 417 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 444# define inline_speed static noinline
316#else 445#else
317# define inline_speed static inline 446# define inline_speed static inline
318#endif 447#endif
319 448
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
322 456
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 457#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 458#define EMPTY2(a,b) /* used to suppress some warnings */
325 459
326typedef ev_watcher *W; 460typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 462typedef ev_watcher_time *WT;
329 463
330#define ev_active(w) ((W)(w))->active 464#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 465#define ev_at(w) ((WT)(w))->at
332 466
333#if EV_USE_MONOTONIC 467#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 468/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 469/* giving it a reasonably high chance of working on typical architetcures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif
472
473#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 475#endif
338 476
339#ifdef _WIN32 477#ifdef _WIN32
340# include "ev_win32.c" 478# include "ev_win32.c"
349{ 487{
350 syserr_cb = cb; 488 syserr_cb = cb;
351} 489}
352 490
353static void noinline 491static void noinline
354syserr (const char *msg) 492ev_syserr (const char *msg)
355{ 493{
356 if (!msg) 494 if (!msg)
357 msg = "(libev) system error"; 495 msg = "(libev) system error";
358 496
359 if (syserr_cb) 497 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 543#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 544#define ev_free(ptr) ev_realloc ((ptr), 0)
407 545
408/*****************************************************************************/ 546/*****************************************************************************/
409 547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
410typedef struct 552typedef struct
411{ 553{
412 WL head; 554 WL head;
413 unsigned char events; 555 unsigned char events; /* the events watched for */
556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 558 unsigned char unused;
559#if EV_USE_EPOLL
560 unsigned int egen; /* generation counter to counter epoll bugs */
561#endif
415#if EV_SELECT_IS_WINSOCKET 562#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 563 SOCKET handle;
417#endif 564#endif
418} ANFD; 565} ANFD;
419 566
567/* stores the pending event set for a given watcher */
420typedef struct 568typedef struct
421{ 569{
422 W w; 570 W w;
423 int events; 571 int events; /* the pending event set for the given watcher */
424} ANPENDING; 572} ANPENDING;
425 573
426#if EV_USE_INOTIFY 574#if EV_USE_INOTIFY
575/* hash table entry per inotify-id */
427typedef struct 576typedef struct
428{ 577{
429 WL head; 578 WL head;
430} ANFS; 579} ANFS;
580#endif
581
582/* Heap Entry */
583#if EV_HEAP_CACHE_AT
584 /* a heap element */
585 typedef struct {
586 ev_tstamp at;
587 WT w;
588 } ANHE;
589
590 #define ANHE_w(he) (he).w /* access watcher, read-write */
591 #define ANHE_at(he) (he).at /* access cached at, read-only */
592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
593#else
594 /* a heap element */
595 typedef WT ANHE;
596
597 #define ANHE_w(he) (he)
598 #define ANHE_at(he) (he)->at
599 #define ANHE_at_cache(he)
431#endif 600#endif
432 601
433#if EV_MULTIPLICITY 602#if EV_MULTIPLICITY
434 603
435 struct ev_loop 604 struct ev_loop
454 623
455 static int ev_default_loop_ptr; 624 static int ev_default_loop_ptr;
456 625
457#endif 626#endif
458 627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
639
459/*****************************************************************************/ 640/*****************************************************************************/
460 641
642#ifndef EV_HAVE_EV_TIME
461ev_tstamp 643ev_tstamp
462ev_time (void) 644ev_time (void)
463{ 645{
464#if EV_USE_REALTIME 646#if EV_USE_REALTIME
647 if (expect_true (have_realtime))
648 {
465 struct timespec ts; 649 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 650 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 651 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 652 }
653#endif
654
469 struct timeval tv; 655 struct timeval tv;
470 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 658}
659#endif
474 660
475ev_tstamp inline_size 661inline_size ev_tstamp
476get_clock (void) 662get_clock (void)
477{ 663{
478#if EV_USE_MONOTONIC 664#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 665 if (expect_true (have_monotonic))
480 { 666 {
513 struct timeval tv; 699 struct timeval tv;
514 700
515 tv.tv_sec = (time_t)delay; 701 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 703
704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
705 /* something not guaranteed by newer posix versions, but guaranteed */
706 /* by older ones */
518 select (0, 0, 0, 0, &tv); 707 select (0, 0, 0, 0, &tv);
519#endif 708#endif
520 } 709 }
521} 710}
522 711
523/*****************************************************************************/ 712/*****************************************************************************/
524 713
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 715
527int inline_size 716/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */
718inline_size int
528array_nextsize (int elem, int cur, int cnt) 719array_nextsize (int elem, int cur, int cnt)
529{ 720{
530 int ncur = cur + 1; 721 int ncur = cur + 1;
531 722
532 do 723 do
549array_realloc (int elem, void *base, int *cur, int cnt) 740array_realloc (int elem, void *base, int *cur, int cnt)
550{ 741{
551 *cur = array_nextsize (elem, *cur, cnt); 742 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 743 return ev_realloc (base, elem * *cur);
553} 744}
745
746#define array_init_zero(base,count) \
747 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 748
555#define array_needsize(type,base,cur,cnt,init) \ 749#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 750 if (expect_false ((cnt) > (cur))) \
557 { \ 751 { \
558 int ocur_ = (cur); \ 752 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 764 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 765 }
572#endif 766#endif
573 767
574#define array_free(stem, idx) \ 768#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 770
577/*****************************************************************************/ 771/*****************************************************************************/
772
773/* dummy callback for pending events */
774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
776{
777}
578 778
579void noinline 779void noinline
580ev_feed_event (EV_P_ void *w, int revents) 780ev_feed_event (EV_P_ void *w, int revents)
581{ 781{
582 W w_ = (W)w; 782 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 791 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 792 pendings [pri][w_->pending - 1].events = revents;
593 } 793 }
594} 794}
595 795
596void inline_speed 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 812queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 813{
599 int i; 814 int i;
600 815
601 for (i = 0; i < eventcnt; ++i) 816 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 817 ev_feed_event (EV_A_ events [i], type);
603} 818}
604 819
605/*****************************************************************************/ 820/*****************************************************************************/
606 821
607void inline_size 822inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 823fd_event_nc (EV_P_ int fd, int revents)
622{ 824{
623 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
624 ev_io *w; 826 ev_io *w;
625 827
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 832 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
632 } 834 }
633} 835}
634 836
837/* do not submit kernel events for fds that have reify set */
838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
841{
842 ANFD *anfd = anfds + fd;
843
844 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents);
846}
847
635void 848void
636ev_feed_fd_event (EV_P_ int fd, int revents) 849ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 850{
638 if (fd >= 0 && fd < anfdmax) 851 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 852 fd_event_nc (EV_A_ fd, revents);
640} 853}
641 854
642void inline_size 855/* make sure the external fd watch events are in-sync */
856/* with the kernel/libev internal state */
857inline_size void
643fd_reify (EV_P) 858fd_reify (EV_P)
644{ 859{
645 int i; 860 int i;
646 861
647 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 871 events |= (unsigned char)w->events;
657 872
658#if EV_SELECT_IS_WINSOCKET 873#if EV_SELECT_IS_WINSOCKET
659 if (events) 874 if (events)
660 { 875 {
661 unsigned long argp; 876 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 877 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 879 #else
665 anfd->handle = _get_osfhandle (fd); 880 anfd->handle = _get_osfhandle (fd);
666 #endif 881 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 883 }
669#endif 884#endif
670 885
671 { 886 {
672 unsigned char o_events = anfd->events; 887 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 888 unsigned char o_reify = anfd->reify;
674 889
675 anfd->reify = 0; 890 anfd->reify = 0;
676 anfd->events = events; 891 anfd->events = events;
677 892
678 if (o_events != events || o_reify & EV_IOFDSET) 893 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 894 backend_modify (EV_A_ fd, o_events, events);
680 } 895 }
681 } 896 }
682 897
683 fdchangecnt = 0; 898 fdchangecnt = 0;
684} 899}
685 900
686void inline_size 901/* something about the given fd changed */
902inline_size void
687fd_change (EV_P_ int fd, int flags) 903fd_change (EV_P_ int fd, int flags)
688{ 904{
689 unsigned char reify = anfds [fd].reify; 905 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 906 anfds [fd].reify |= flags;
691 907
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 912 fdchanges [fdchangecnt - 1] = fd;
697 } 913 }
698} 914}
699 915
700void inline_speed 916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
701fd_kill (EV_P_ int fd) 918fd_kill (EV_P_ int fd)
702{ 919{
703 ev_io *w; 920 ev_io *w;
704 921
705 while ((w = (ev_io *)anfds [fd].head)) 922 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 924 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 926 }
710} 927}
711 928
712int inline_size 929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
713fd_valid (int fd) 931fd_valid (int fd)
714{ 932{
715#ifdef _WIN32 933#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 934 return _get_osfhandle (fd) != -1;
717#else 935#else
725{ 943{
726 int fd; 944 int fd;
727 945
728 for (fd = 0; fd < anfdmax; ++fd) 946 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 947 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 948 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 949 fd_kill (EV_A_ fd);
732} 950}
733 951
734/* called on ENOMEM in select/poll to kill some fds and retry */ 952/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 953static void noinline
739 957
740 for (fd = anfdmax; fd--; ) 958 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 959 if (anfds [fd].events)
742 { 960 {
743 fd_kill (EV_A_ fd); 961 fd_kill (EV_A_ fd);
744 return; 962 break;
745 } 963 }
746} 964}
747 965
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 966/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 967static void noinline
753 971
754 for (fd = 0; fd < anfdmax; ++fd) 972 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 973 if (anfds [fd].events)
756 { 974 {
757 anfds [fd].events = 0; 975 anfds [fd].events = 0;
976 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 978 }
760} 979}
761 980
762/*****************************************************************************/ 981/*****************************************************************************/
982
983/*
984 * the heap functions want a real array index. array index 0 uis guaranteed to not
985 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
986 * the branching factor of the d-tree.
987 */
763 988
764/* 989/*
765 * at the moment we allow libev the luxury of two heaps, 990 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 991 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 992 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 993 * the difference is about 5% with 50000+ watchers.
769 */ 994 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 995#if EV_USE_4HEAP
772 996
997#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1000#define UPHEAP_DONE(p,k) ((p) == (k))
774 1001
775/* towards the root */ 1002/* away from the root */
776void inline_speed 1003inline_speed void
777upheap (WT *heap, int k) 1004downheap (ANHE *heap, int N, int k)
778{ 1005{
779 WT w = heap [k]; 1006 ANHE he = heap [k];
1007 ANHE *E = heap + N + HEAP0;
780 1008
781 for (;;) 1009 for (;;)
782 { 1010 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 1011 ev_tstamp minat;
807 WT *minpos; 1012 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 1013 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 1014
810 // find minimum child 1015 /* find minimum child */
811 if (expect_true (pos +3 < E)) 1016 if (expect_true (pos + DHEAP - 1 < E))
812 { 1017 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 1018 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1019 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1020 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1021 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1022 }
1023 else if (pos < E)
1024 {
1025 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 1029 }
818 else 1030 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 1031 break;
831 1032
832 ev_active (*minpos) = k; 1033 if (ANHE_at (he) <= minat)
1034 break;
1035
833 heap [k] = *minpos; 1036 heap [k] = *minpos;
1037 ev_active (ANHE_w (*minpos)) = k;
834 1038
835 k = minpos - heap; 1039 k = minpos - heap;
836 } 1040 }
837 1041
838 heap [k] = w; 1042 heap [k] = he;
839 ev_active (heap [k]) = k; 1043 ev_active (ANHE_w (he)) = k;
840} 1044}
841 1045
842#else // 4HEAP 1046#else /* 4HEAP */
843 1047
844#define HEAP0 1 1048#define HEAP0 1
1049#define HPARENT(k) ((k) >> 1)
1050#define UPHEAP_DONE(p,k) (!(p))
845 1051
846/* towards the root */ 1052/* away from the root */
847void inline_speed 1053inline_speed void
848upheap (WT *heap, int k) 1054downheap (ANHE *heap, int N, int k)
849{ 1055{
850 WT w = heap [k]; 1056 ANHE he = heap [k];
851 1057
852 for (;;) 1058 for (;;)
853 { 1059 {
854 int p = k >> 1; 1060 int c = k << 1;
855 1061
856 /* maybe we could use a dummy element at heap [0]? */ 1062 if (c > N + HEAP0 - 1)
857 if (!p || heap [p]->at <= w->at)
858 break; 1063 break;
859 1064
860 heap [k] = heap [p]; 1065 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 1066 ? 1 : 0;
862 k = p;
863 }
864 1067
865 heap [k] = w; 1068 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 1069 break;
881 1070
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 1071 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 1072 ev_active (ANHE_w (heap [k])) = k;
890 1073
891 k = c; 1074 k = c;
892 } 1075 }
893 1076
894 heap [k] = w; 1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080#endif
1081
1082/* towards the root */
1083inline_speed void
1084upheap (ANHE *heap, int k)
1085{
1086 ANHE he = heap [k];
1087
1088 for (;;)
1089 {
1090 int p = HPARENT (k);
1091
1092 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1093 break;
1094
1095 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1096 ev_active (ANHE_w (heap [k])) = k;
896} 1097 k = p;
897#endif 1098 }
898 1099
899void inline_size 1100 heap [k] = he;
1101 ev_active (ANHE_w (he)) = k;
1102}
1103
1104/* move an element suitably so it is in a correct place */
1105inline_size void
900adjustheap (WT *heap, int N, int k) 1106adjustheap (ANHE *heap, int N, int k)
901{ 1107{
1108 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 1109 upheap (heap, k);
1110 else
903 downheap (heap, N, k); 1111 downheap (heap, N, k);
1112}
1113
1114/* rebuild the heap: this function is used only once and executed rarely */
1115inline_size void
1116reheap (ANHE *heap, int N)
1117{
1118 int i;
1119
1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1121 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1122 for (i = 0; i < N; ++i)
1123 upheap (heap, i + HEAP0);
904} 1124}
905 1125
906/*****************************************************************************/ 1126/*****************************************************************************/
907 1127
1128/* associate signal watchers to a signal signal */
908typedef struct 1129typedef struct
909{ 1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
910 WL head; 1135 WL head;
911 EV_ATOMIC_T gotsig;
912} ANSIG; 1136} ANSIG;
913 1137
914static ANSIG *signals; 1138static ANSIG signals [EV_NSIG - 1];
915static int signalmax;
916
917static EV_ATOMIC_T gotsig;
918
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930 1139
931/*****************************************************************************/ 1140/*****************************************************************************/
932 1141
933void inline_speed 1142/* used to prepare libev internal fd's */
1143/* this is not fork-safe */
1144inline_speed void
934fd_intern (int fd) 1145fd_intern (int fd)
935{ 1146{
936#ifdef _WIN32 1147#ifdef _WIN32
937 int arg = 1; 1148 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else 1150#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 1151 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 1152 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 1153#endif
943} 1154}
944 1155
945static void noinline 1156static void noinline
946evpipe_init (EV_P) 1157evpipe_init (EV_P)
947{ 1158{
948 if (!ev_is_active (&pipeev)) 1159 if (!ev_is_active (&pipe_w))
949 { 1160 {
950#if EV_USE_EVENTFD 1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
951 if ((evfd = eventfd (0, 0)) >= 0) 1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
952 { 1167 {
953 evpipe [0] = -1; 1168 evpipe [0] = -1;
954 fd_intern (evfd); 1169 fd_intern (evfd); /* doing it twice doesn't hurt */
955 ev_io_set (&pipeev, evfd, EV_READ); 1170 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1171 }
957 else 1172 else
958#endif 1173#endif
959 { 1174 {
960 while (pipe (evpipe)) 1175 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1176 ev_syserr ("(libev) error creating signal/async pipe");
962 1177
963 fd_intern (evpipe [0]); 1178 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1179 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1181 }
967 1182
968 ev_io_start (EV_A_ &pipeev); 1183 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1184 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1185 }
971} 1186}
972 1187
973void inline_size 1188inline_size void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1190{
976 if (!*flag) 1191 if (!*flag)
977 { 1192 {
978 int old_errno = errno; /* save errno because write might clobber it */ 1193 int old_errno = errno; /* save errno because write might clobber it */
991 1206
992 errno = old_errno; 1207 errno = old_errno;
993 } 1208 }
994} 1209}
995 1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
996static void 1213static void
997pipecb (EV_P_ ev_io *iow, int revents) 1214pipecb (EV_P_ ev_io *iow, int revents)
998{ 1215{
1216 int i;
1217
999#if EV_USE_EVENTFD 1218#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1219 if (evfd >= 0)
1001 { 1220 {
1002 uint64_t counter; 1221 uint64_t counter;
1003 read (evfd, &counter, sizeof (uint64_t)); 1222 read (evfd, &counter, sizeof (uint64_t));
1007 { 1226 {
1008 char dummy; 1227 char dummy;
1009 read (evpipe [0], &dummy, 1); 1228 read (evpipe [0], &dummy, 1);
1010 } 1229 }
1011 1230
1012 if (gotsig && ev_is_default_loop (EV_A)) 1231 if (sig_pending)
1013 { 1232 {
1014 int signum; 1233 sig_pending = 0;
1015 gotsig = 0;
1016 1234
1017 for (signum = signalmax; signum--; ) 1235 for (i = EV_NSIG - 1; i--; )
1018 if (signals [signum].gotsig) 1236 if (expect_false (signals [i].pending))
1019 ev_feed_signal_event (EV_A_ signum + 1); 1237 ev_feed_signal_event (EV_A_ i + 1);
1020 } 1238 }
1021 1239
1022#if EV_ASYNC_ENABLE 1240#if EV_ASYNC_ENABLE
1023 if (gotasync) 1241 if (async_pending)
1024 { 1242 {
1025 int i; 1243 async_pending = 0;
1026 gotasync = 0;
1027 1244
1028 for (i = asynccnt; i--; ) 1245 for (i = asynccnt; i--; )
1029 if (asyncs [i]->sent) 1246 if (asyncs [i]->sent)
1030 { 1247 {
1031 asyncs [i]->sent = 0; 1248 asyncs [i]->sent = 0;
1039 1256
1040static void 1257static void
1041ev_sighandler (int signum) 1258ev_sighandler (int signum)
1042{ 1259{
1043#if EV_MULTIPLICITY 1260#if EV_MULTIPLICITY
1044 struct ev_loop *loop = &default_loop_struct; 1261 EV_P = signals [signum - 1].loop;
1045#endif 1262#endif
1046 1263
1047#if _WIN32 1264#if _WIN32
1048 signal (signum, ev_sighandler); 1265 signal (signum, ev_sighandler);
1049#endif 1266#endif
1050 1267
1051 signals [signum - 1].gotsig = 1; 1268 signals [signum - 1].pending = 1;
1052 evpipe_write (EV_A_ &gotsig); 1269 evpipe_write (EV_A_ &sig_pending);
1053} 1270}
1054 1271
1055void noinline 1272void noinline
1056ev_feed_signal_event (EV_P_ int signum) 1273ev_feed_signal_event (EV_P_ int signum)
1057{ 1274{
1058 WL w; 1275 WL w;
1059 1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
1060#if EV_MULTIPLICITY 1282#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1283 /* it is permissible to try to feed a signal to the wrong loop */
1062#endif 1284 /* or, likely more useful, feeding a signal nobody is waiting for */
1063 1285
1064 --signum; 1286 if (expect_false (signals [signum].loop != EV_A))
1065
1066 if (signum < 0 || signum >= signalmax)
1067 return; 1287 return;
1288#endif
1068 1289
1069 signals [signum].gotsig = 0; 1290 signals [signum].pending = 0;
1070 1291
1071 for (w = signals [signum].head; w; w = w->next) 1292 for (w = signals [signum].head; w; w = w->next)
1072 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1073} 1294}
1074 1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
1075/*****************************************************************************/ 1316/*****************************************************************************/
1076 1317
1077static WL childs [EV_PID_HASHSIZE]; 1318static WL childs [EV_PID_HASHSIZE];
1078 1319
1079#ifndef _WIN32 1320#ifndef _WIN32
1082 1323
1083#ifndef WIFCONTINUED 1324#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 1325# define WIFCONTINUED(status) 0
1085#endif 1326#endif
1086 1327
1087void inline_speed 1328/* handle a single child status event */
1329inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 1330child_reap (EV_P_ int chain, int pid, int status)
1089{ 1331{
1090 ev_child *w; 1332 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 1334
1105 1347
1106#ifndef WCONTINUED 1348#ifndef WCONTINUED
1107# define WCONTINUED 0 1349# define WCONTINUED 0
1108#endif 1350#endif
1109 1351
1352/* called on sigchld etc., calls waitpid */
1110static void 1353static void
1111childcb (EV_P_ ev_signal *sw, int revents) 1354childcb (EV_P_ ev_signal *sw, int revents)
1112{ 1355{
1113 int pid, status; 1356 int pid, status;
1114 1357
1195 /* kqueue is borked on everything but netbsd apparently */ 1438 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 1439 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 1440 flags &= ~EVBACKEND_KQUEUE;
1198#endif 1441#endif
1199#ifdef __APPLE__ 1442#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 1443 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1202#endif 1446#endif
1203 1447
1204 return flags; 1448 return flags;
1205} 1449}
1206 1450
1220ev_backend (EV_P) 1464ev_backend (EV_P)
1221{ 1465{
1222 return backend; 1466 return backend;
1223} 1467}
1224 1468
1469#if EV_MINIMAL < 2
1225unsigned int 1470unsigned int
1226ev_loop_count (EV_P) 1471ev_loop_count (EV_P)
1227{ 1472{
1228 return loop_count; 1473 return loop_count;
1229} 1474}
1230 1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
1231void 1482void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{ 1484{
1234 io_blocktime = interval; 1485 io_blocktime = interval;
1235} 1486}
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{ 1490{
1240 timeout_blocktime = interval; 1491 timeout_blocktime = interval;
1241} 1492}
1242 1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
1243static void noinline 1519static void noinline
1244loop_init (EV_P_ unsigned int flags) 1520loop_init (EV_P_ unsigned int flags)
1245{ 1521{
1246 if (!backend) 1522 if (!backend)
1247 { 1523 {
1524#if EV_USE_REALTIME
1525 if (!have_realtime)
1526 {
1527 struct timespec ts;
1528
1529 if (!clock_gettime (CLOCK_REALTIME, &ts))
1530 have_realtime = 1;
1531 }
1532#endif
1533
1248#if EV_USE_MONOTONIC 1534#if EV_USE_MONOTONIC
1535 if (!have_monotonic)
1249 { 1536 {
1250 struct timespec ts; 1537 struct timespec ts;
1538
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 1540 have_monotonic = 1;
1253 } 1541 }
1254#endif 1542#endif
1543
1544 /* pid check not overridable via env */
1545#ifndef _WIN32
1546 if (flags & EVFLAG_FORKCHECK)
1547 curpid = getpid ();
1548#endif
1549
1550 if (!(flags & EVFLAG_NOENV)
1551 && !enable_secure ()
1552 && getenv ("LIBEV_FLAGS"))
1553 flags = atoi (getenv ("LIBEV_FLAGS"));
1255 1554
1256 ev_rt_now = ev_time (); 1555 ev_rt_now = ev_time ();
1257 mn_now = get_clock (); 1556 mn_now = get_clock ();
1258 now_floor = mn_now; 1557 now_floor = mn_now;
1259 rtmn_diff = ev_rt_now - mn_now; 1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1260 1562
1261 io_blocktime = 0.; 1563 io_blocktime = 0.;
1262 timeout_blocktime = 0.; 1564 timeout_blocktime = 0.;
1263 backend = 0; 1565 backend = 0;
1264 backend_fd = -1; 1566 backend_fd = -1;
1265 gotasync = 0; 1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1266#if EV_USE_INOTIFY 1571#if EV_USE_INOTIFY
1267 fs_fd = -2; 1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1268#endif 1573#endif
1269 1574#if EV_USE_SIGNALFD
1270 /* pid check not overridable via env */ 1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1271#ifndef _WIN32
1272 if (flags & EVFLAG_FORKCHECK)
1273 curpid = getpid ();
1274#endif 1576#endif
1275
1276 if (!(flags & EVFLAG_NOENV)
1277 && !enable_secure ()
1278 && getenv ("LIBEV_FLAGS"))
1279 flags = atoi (getenv ("LIBEV_FLAGS"));
1280 1577
1281 if (!(flags & 0x0000ffffU)) 1578 if (!(flags & 0x0000ffffU))
1282 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
1283 1580
1284#if EV_USE_PORT 1581#if EV_USE_PORT
1295#endif 1592#endif
1296#if EV_USE_SELECT 1593#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 1595#endif
1299 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1300 ev_init (&pipeev, pipecb); 1599 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1302 } 1601 }
1303} 1602}
1304 1603
1604/* free up a loop structure */
1305static void noinline 1605static void noinline
1306loop_destroy (EV_P) 1606loop_destroy (EV_P)
1307{ 1607{
1308 int i; 1608 int i;
1309 1609
1310 if (ev_is_active (&pipeev)) 1610 if (ev_is_active (&pipe_w))
1311 { 1611 {
1312 ev_ref (EV_A); /* signal watcher */ 1612 /*ev_ref (EV_A);*/
1313 ev_io_stop (EV_A_ &pipeev); 1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1314 1614
1315#if EV_USE_EVENTFD 1615#if EV_USE_EVENTFD
1316 if (evfd >= 0) 1616 if (evfd >= 0)
1317 close (evfd); 1617 close (evfd);
1318#endif 1618#endif
1322 close (evpipe [0]); 1622 close (evpipe [0]);
1323 close (evpipe [1]); 1623 close (evpipe [1]);
1324 } 1624 }
1325 } 1625 }
1326 1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1327#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
1328 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
1329 close (fs_fd); 1639 close (fs_fd);
1330#endif 1640#endif
1331 1641
1354#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1355 array_free (idle, [i]); 1665 array_free (idle, [i]);
1356#endif 1666#endif
1357 } 1667 }
1358 1668
1359 ev_free (anfds); anfdmax = 0; 1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1360 1670
1361 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1366#endif 1677#endif
1375 1686
1376 backend = 0; 1687 backend = 0;
1377} 1688}
1378 1689
1379#if EV_USE_INOTIFY 1690#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1381#endif 1692#endif
1382 1693
1383void inline_size 1694inline_size void
1384loop_fork (EV_P) 1695loop_fork (EV_P)
1385{ 1696{
1386#if EV_USE_PORT 1697#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 1699#endif
1394#endif 1705#endif
1395#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 1707 infy_fork (EV_A);
1397#endif 1708#endif
1398 1709
1399 if (ev_is_active (&pipeev)) 1710 if (ev_is_active (&pipe_w))
1400 { 1711 {
1401 /* this "locks" the handlers against writing to the pipe */ 1712 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */ 1713 /* while we modify the fd vars */
1403 gotsig = 1; 1714 sig_pending = 1;
1404#if EV_ASYNC_ENABLE 1715#if EV_ASYNC_ENABLE
1405 gotasync = 1; 1716 async_pending = 1;
1406#endif 1717#endif
1407 1718
1408 ev_ref (EV_A); 1719 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 1720 ev_io_stop (EV_A_ &pipe_w);
1410 1721
1411#if EV_USE_EVENTFD 1722#if EV_USE_EVENTFD
1412 if (evfd >= 0) 1723 if (evfd >= 0)
1413 close (evfd); 1724 close (evfd);
1414#endif 1725#endif
1419 close (evpipe [1]); 1730 close (evpipe [1]);
1420 } 1731 }
1421 1732
1422 evpipe_init (EV_A); 1733 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 1734 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 1735 pipecb (EV_A_ &pipe_w, EV_READ);
1425 } 1736 }
1426 1737
1427 postfork = 0; 1738 postfork = 0;
1428} 1739}
1429 1740
1430#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
1431struct ev_loop * 1743struct ev_loop *
1432ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1433{ 1745{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1747
1436 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (EV_A, 0, sizeof (struct ev_loop));
1437
1438 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1439 1750
1440 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1441 return loop; 1752 return EV_A;
1442 1753
1443 return 0; 1754 return 0;
1444} 1755}
1445 1756
1446void 1757void
1452 1763
1453void 1764void
1454ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1455{ 1766{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1767 postfork = 1; /* must be in line with ev_default_fork */
1768}
1769#endif /* multiplicity */
1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1867# endif
1868#endif
1457} 1869}
1458#endif 1870#endif
1459 1871
1460#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1461struct ev_loop * 1873struct ev_loop *
1466#endif 1878#endif
1467{ 1879{
1468 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1469 { 1881 {
1470#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1471 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
1472#else 1884#else
1473 ev_default_loop_ptr = 1; 1885 ev_default_loop_ptr = 1;
1474#endif 1886#endif
1475 1887
1476 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1493 1905
1494void 1906void
1495ev_default_destroy (void) 1907ev_default_destroy (void)
1496{ 1908{
1497#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr; 1910 EV_P = ev_default_loop_ptr;
1499#endif 1911#endif
1912
1913 ev_default_loop_ptr = 0;
1500 1914
1501#ifndef _WIN32 1915#ifndef _WIN32
1502 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1504#endif 1918#endif
1508 1922
1509void 1923void
1510ev_default_fork (void) 1924ev_default_fork (void)
1511{ 1925{
1512#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr; 1927 EV_P = ev_default_loop_ptr;
1514#endif 1928#endif
1515 1929
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 1930 postfork = 1; /* must be in line with ev_loop_fork */
1518} 1931}
1519 1932
1520/*****************************************************************************/ 1933/*****************************************************************************/
1521 1934
1522void 1935void
1523ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1524{ 1937{
1525 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1526} 1939}
1527 1940
1528void inline_speed 1941unsigned int
1529call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1530{ 1955{
1531 int pri; 1956 int pri;
1532 1957
1533 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1535 { 1960 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 1962
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1541 1965
1542 p->w->pending = 0; 1966 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1544 } 1968 EV_FREQUENT_CHECK;
1545 } 1969 }
1546} 1970}
1547 1971
1548#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1549void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1550idle_reify (EV_P) 1976idle_reify (EV_P)
1551{ 1977{
1552 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1553 { 1979 {
1554 int pri; 1980 int pri;
1566 } 1992 }
1567 } 1993 }
1568} 1994}
1569#endif 1995#endif
1570 1996
1571void inline_size 1997/* make timers pending */
1998inline_size void
1572timers_reify (EV_P) 1999timers_reify (EV_P)
1573{ 2000{
2001 EV_FREQUENT_CHECK;
2002
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 2004 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 2005 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 2019
1585 ev_at (w) += w->repeat; 2020 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
1590 } 2028 }
1591 else 2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 2030
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
1595 } 2032 }
1596} 2033}
1597 2034
1598#if EV_PERIODIC_ENABLE 2035#if EV_PERIODIC_ENABLE
1599void inline_size 2036/* make periodics pending */
2037inline_size void
1600periodics_reify (EV_P) 2038periodics_reify (EV_P)
1601{ 2039{
2040 EV_FREQUENT_CHECK;
2041
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 2043 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2044 int feed_count = 0;
1605 2045
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2046 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
1614 } 2086 }
1615 else if (w->interval) 2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 2088
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2089 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 2090 }
1627} 2091}
1628 2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1629static void noinline 2095static void noinline
1630periodics_reschedule (EV_P) 2096periodics_reschedule (EV_P)
1631{ 2097{
1632 int i; 2098 int i;
1633 2099
1634 /* adjust periodics after time jump */ 2100 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 2102 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 2104
1639 if (w->reschedule_cb) 2105 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 2107 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
1643 } 2124 {
1644 2125 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 2126 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 2127 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 2128 }
1648} 2129}
1649#endif
1650 2130
1651void inline_speed 2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 2134time_update (EV_P_ ev_tstamp max_block)
1653{ 2135{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1658 { 2138 {
2139 int i;
1659 ev_tstamp odiff = rtmn_diff; 2140 ev_tstamp odiff = rtmn_diff;
1660 2141
1661 mn_now = get_clock (); 2142 mn_now = get_clock ();
1662 2143
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2171 mn_now = get_clock ();
1691 now_floor = mn_now; 2172 now_floor = mn_now;
1692 } 2173 }
1693 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1696# endif 2179# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2180 }
1700 else 2181 else
1701#endif 2182#endif
1702 { 2183 {
1703 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1704 2185
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1709#endif 2192#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2193 }
1714 2194
1715 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1716 } 2196 }
1717} 2197}
1718 2198
1719void 2199void
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1735{ 2201{
2202#if EV_MINIMAL < 2
2203 ++loop_depth;
2204#endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
1736 loop_done = EVUNLOOP_CANCEL; 2208 loop_done = EVUNLOOP_CANCEL;
1737 2209
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1739 2211
1740 do 2212 do
1741 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
1742#ifndef _WIN32 2218#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2219 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2220 if (expect_false (getpid () != curpid))
1745 { 2221 {
1746 curpid = getpid (); 2222 curpid = getpid ();
1752 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1754 if (forkcnt) 2230 if (forkcnt)
1755 { 2231 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1758 } 2234 }
1759#endif 2235#endif
1760 2236
1761 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1762 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1763 { 2239 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1766 } 2242 }
1767 2243
1768 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1769 break; 2245 break;
1770 2246
1771 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1773 loop_fork (EV_A); 2249 loop_fork (EV_A);
1780 ev_tstamp waittime = 0.; 2256 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 2257 ev_tstamp sleeptime = 0.;
1782 2258
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1784 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1785 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100); 2265 time_update (EV_A_ 1e100);
1787 2266
1788 waittime = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1789 2268
1790 if (timercnt) 2269 if (timercnt)
1791 { 2270 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 2272 if (waittime > to) waittime = to;
1794 } 2273 }
1795 2274
1796#if EV_PERIODIC_ENABLE 2275#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 2276 if (periodiccnt)
1798 { 2277 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 2279 if (waittime > to) waittime = to;
1801 } 2280 }
1802#endif 2281#endif
1803 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 2284 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 2285 waittime = timeout_blocktime;
1806 2286
1807 sleeptime = waittime - backend_fudge; 2287 /* extra check because io_blocktime is commonly 0 */
1808
1809 if (expect_true (sleeptime > io_blocktime)) 2288 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
1814 ev_sleep (sleeptime); 2297 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 2298 waittime -= sleeptime;
2299 }
1816 } 2300 }
1817 } 2301 }
1818 2302
2303#if EV_MINIMAL < 2
1819 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1820 backend_poll (EV_A_ waittime); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1821 2309
1822 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
1823 time_update (EV_A_ waittime + sleeptime); 2311 time_update (EV_A_ waittime + sleeptime);
1824 } 2312 }
1825 2313
1836 2324
1837 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1838 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1840 2328
1841 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1842 } 2330 }
1843 while (expect_true ( 2331 while (expect_true (
1844 activecnt 2332 activecnt
1845 && !loop_done 2333 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 )); 2335 ));
1848 2336
1849 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1851} 2343}
1852 2344
1853void 2345void
1854ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1855{ 2347{
1856 loop_done = how; 2348 loop_done = how;
1857} 2349}
1858 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1859/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1860 2390
1861void inline_size 2391inline_size void
1862wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1863{ 2393{
1864 elem->next = *head; 2394 elem->next = *head;
1865 *head = elem; 2395 *head = elem;
1866} 2396}
1867 2397
1868void inline_size 2398inline_size void
1869wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1870{ 2400{
1871 while (*head) 2401 while (*head)
1872 { 2402 {
1873 if (*head == elem) 2403 if (expect_true (*head == elem))
1874 { 2404 {
1875 *head = elem->next; 2405 *head = elem->next;
1876 return; 2406 break;
1877 } 2407 }
1878 2408
1879 head = &(*head)->next; 2409 head = &(*head)->next;
1880 } 2410 }
1881} 2411}
1882 2412
1883void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
1884clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1885{ 2416{
1886 if (w->pending) 2417 if (w->pending)
1887 { 2418 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 2420 w->pending = 0;
1890 } 2421 }
1891} 2422}
1892 2423
1893int 2424int
1897 int pending = w_->pending; 2428 int pending = w_->pending;
1898 2429
1899 if (expect_true (pending)) 2430 if (expect_true (pending))
1900 { 2431 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
1902 w_->pending = 0; 2434 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 2435 return p->events;
1905 } 2436 }
1906 else 2437 else
1907 return 0; 2438 return 0;
1908} 2439}
1909 2440
1910void inline_size 2441inline_size void
1911pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
1912{ 2443{
1913 int pri = w->priority; 2444 int pri = ev_priority (w);
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 2447 ev_set_priority (w, pri);
1917} 2448}
1918 2449
1919void inline_speed 2450inline_speed void
1920ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1921{ 2452{
1922 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
1923 w->active = active; 2454 w->active = active;
1924 ev_ref (EV_A); 2455 ev_ref (EV_A);
1925} 2456}
1926 2457
1927void inline_size 2458inline_size void
1928ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1929{ 2460{
1930 ev_unref (EV_A); 2461 ev_unref (EV_A);
1931 w->active = 0; 2462 w->active = 0;
1932} 2463}
1939 int fd = w->fd; 2470 int fd = w->fd;
1940 2471
1941 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1942 return; 2473 return;
1943 2474
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1945 2479
1946 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1949 2483
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1951 w->events &= ~EV_IOFDSET; 2485 w->events &= ~EV__IOFDSET;
2486
2487 EV_FREQUENT_CHECK;
1952} 2488}
1953 2489
1954void noinline 2490void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1956{ 2492{
1957 clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1959 return; 2495 return;
1960 2496
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498
2499 EV_FREQUENT_CHECK;
1962 2500
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1965 2503
1966 fd_change (EV_A_ w->fd, 1); 2504 fd_change (EV_A_ w->fd, 1);
2505
2506 EV_FREQUENT_CHECK;
1967} 2507}
1968 2508
1969void noinline 2509void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1971{ 2511{
1972 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1973 return; 2513 return;
1974 2514
1975 ev_at (w) += mn_now; 2515 ev_at (w) += mn_now;
1976 2516
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
2525 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2526 upheap (timers, ev_active (w));
1983 2527
2528 EV_FREQUENT_CHECK;
2529
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2531}
1986 2532
1987void noinline 2533void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2535{
1990 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1992 return; 2538 return;
1993 2539
2540 EV_FREQUENT_CHECK;
2541
1994 { 2542 {
1995 int active = ev_active (w); 2543 int active = ev_active (w);
1996 2544
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2546
2547 --timercnt;
2548
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2549 if (expect_true (active < timercnt + HEAP0))
2000 { 2550 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2551 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2552 adjustheap (timers, timercnt, active);
2003 } 2553 }
2004
2005 --timercnt;
2006 } 2554 }
2555
2556 EV_FREQUENT_CHECK;
2007 2557
2008 ev_at (w) -= mn_now; 2558 ev_at (w) -= mn_now;
2009 2559
2010 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2011} 2561}
2012 2562
2013void noinline 2563void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
2015{ 2565{
2566 EV_FREQUENT_CHECK;
2567
2016 if (ev_is_active (w)) 2568 if (ev_is_active (w))
2017 { 2569 {
2018 if (w->repeat) 2570 if (w->repeat)
2019 { 2571 {
2020 ev_at (w) = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2574 adjustheap (timers, timercnt, ev_active (w));
2022 } 2575 }
2023 else 2576 else
2024 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
2025 } 2578 }
2026 else if (w->repeat) 2579 else if (w->repeat)
2027 { 2580 {
2028 ev_at (w) = w->repeat; 2581 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
2030 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2031} 2592}
2032 2593
2033#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
2034void noinline 2595void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
2039 2600
2040 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 2603 else if (w->interval)
2043 { 2604 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2608 }
2048 else 2609 else
2049 ev_at (w) = w->offset; 2610 ev_at (w) = w->offset;
2050 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2618 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2619 upheap (periodics, ev_active (w));
2055 2620
2621 EV_FREQUENT_CHECK;
2622
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2624}
2058 2625
2059void noinline 2626void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2628{
2062 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2064 return; 2631 return;
2065 2632
2633 EV_FREQUENT_CHECK;
2634
2066 { 2635 {
2067 int active = ev_active (w); 2636 int active = ev_active (w);
2068 2637
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2639
2640 --periodiccnt;
2641
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2642 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2643 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2645 adjustheap (periodics, periodiccnt, active);
2075 } 2646 }
2076
2077 --periodiccnt;
2078 } 2647 }
2648
2649 EV_FREQUENT_CHECK;
2079 2650
2080 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
2081} 2652}
2082 2653
2083void noinline 2654void noinline
2094#endif 2665#endif
2095 2666
2096void noinline 2667void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
2098{ 2669{
2099#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif
2102 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
2103 return; 2671 return;
2104 2672
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2106 2674
2107 evpipe_init (EV_A); 2675#if EV_MULTIPLICITY
2676 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2108 2678
2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
2109 { 2686 {
2110#ifndef _WIN32 2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2111 sigset_t full, prev; 2688 if (sigfd < 0 && errno == EINVAL)
2112 sigfillset (&full); 2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2113 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif
2115 2690
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2691 if (sigfd >= 0)
2692 {
2693 fd_intern (sigfd); /* doing it twice will not hurt */
2117 2694
2118#ifndef _WIN32 2695 sigemptyset (&sigfd_set);
2119 sigprocmask (SIG_SETMASK, &prev, 0); 2696
2120#endif 2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
2121 } 2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
2122 2713
2123 ev_start (EV_A_ (W)w, 1); 2714 ev_start (EV_A_ (W)w, 1);
2124 wlist_add (&signals [w->signum - 1].head, (WL)w); 2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
2125 2716
2126 if (!((WL)w)->next) 2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
2720# endif
2127 { 2721 {
2128#if _WIN32 2722# if _WIN32
2129 signal (w->signum, ev_sighandler); 2723 signal (w->signum, ev_sighandler);
2130#else 2724# else
2131 struct sigaction sa; 2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
2132 sa.sa_handler = ev_sighandler; 2729 sa.sa_handler = ev_sighandler;
2133 sigfillset (&sa.sa_mask); 2730 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2136#endif 2737#endif
2137 } 2738 }
2739
2740 EV_FREQUENT_CHECK;
2138} 2741}
2139 2742
2140void noinline 2743void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2744ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2745{
2143 clear_pending (EV_A_ (W)w); 2746 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2747 if (expect_false (!ev_is_active (w)))
2145 return; 2748 return;
2146 2749
2750 EV_FREQUENT_CHECK;
2751
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2149 2754
2150 if (!signals [w->signum - 1].head) 2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
2768 }
2769 else
2770#endif
2151 signal (w->signum, SIG_DFL); 2771 signal (w->signum, SIG_DFL);
2772 }
2773
2774 EV_FREQUENT_CHECK;
2152} 2775}
2153 2776
2154void 2777void
2155ev_child_start (EV_P_ ev_child *w) 2778ev_child_start (EV_P_ ev_child *w)
2156{ 2779{
2157#if EV_MULTIPLICITY 2780#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2782#endif
2160 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
2161 return; 2784 return;
2162 2785
2786 EV_FREQUENT_CHECK;
2787
2163 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2789 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2790
2791 EV_FREQUENT_CHECK;
2165} 2792}
2166 2793
2167void 2794void
2168ev_child_stop (EV_P_ ev_child *w) 2795ev_child_stop (EV_P_ ev_child *w)
2169{ 2796{
2170 clear_pending (EV_A_ (W)w); 2797 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2798 if (expect_false (!ev_is_active (w)))
2172 return; 2799 return;
2173 2800
2801 EV_FREQUENT_CHECK;
2802
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2803 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2176} 2807}
2177 2808
2178#if EV_STAT_ENABLE 2809#if EV_STAT_ENABLE
2179 2810
2180# ifdef _WIN32 2811# ifdef _WIN32
2181# undef lstat 2812# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 2813# define lstat(a,b) _stati64 (a,b)
2183# endif 2814# endif
2184 2815
2185#define DEF_STAT_INTERVAL 5.0074891 2816#define DEF_STAT_INTERVAL 5.0074891
2817#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 2818#define MIN_STAT_INTERVAL 0.1074891
2187 2819
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 2821
2190#if EV_USE_INOTIFY 2822#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 2823# define EV_INOTIFY_BUFSIZE 8192
2195{ 2827{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 2829
2198 if (w->wd < 0) 2830 if (w->wd < 0)
2199 { 2831 {
2832 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2833 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2201 2834
2202 /* monitor some parent directory for speedup hints */ 2835 /* monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2836 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 2837 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 2839 {
2207 char path [4096]; 2840 char path [4096];
2208 strcpy (path, w->path); 2841 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 2847
2215 char *pend = strrchr (path, '/'); 2848 char *pend = strrchr (path, '/');
2216 2849
2217 if (!pend) 2850 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 2851 break;
2219 2852
2220 *pend = 0; 2853 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 2854 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 2855 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 2857 }
2225 } 2858 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 2859
2229 if (w->wd >= 0) 2860 if (w->wd >= 0)
2861 {
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2862 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2863
2864 /* now local changes will be tracked by inotify, but remote changes won't */
2865 /* unless the filesystem it known to be local, we therefore still poll */
2866 /* also do poll on <2.6.25, but with normal frequency */
2867 struct statfs sfs;
2868
2869 if (fs_2625 && !statfs (w->path, &sfs))
2870 if (sfs.f_type == 0x1373 /* devfs */
2871 || sfs.f_type == 0xEF53 /* ext2/3 */
2872 || sfs.f_type == 0x3153464a /* jfs */
2873 || sfs.f_type == 0x52654973 /* reiser3 */
2874 || sfs.f_type == 0x01021994 /* tempfs */
2875 || sfs.f_type == 0x58465342 /* xfs */)
2876 return;
2877
2878 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2879 ev_timer_again (EV_A_ &w->timer);
2880 }
2231} 2881}
2232 2882
2233static void noinline 2883static void noinline
2234infy_del (EV_P_ ev_stat *w) 2884infy_del (EV_P_ ev_stat *w)
2235{ 2885{
2249 2899
2250static void noinline 2900static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2901infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 2902{
2253 if (slot < 0) 2903 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 2904 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2905 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 2906 infy_wd (EV_A_ slot, wd, ev);
2257 else 2907 else
2258 { 2908 {
2259 WL w_; 2909 WL w_;
2265 2915
2266 if (w->wd == wd || wd == -1) 2916 if (w->wd == wd || wd == -1)
2267 { 2917 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2918 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 2919 {
2920 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2270 w->wd = -1; 2921 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 2922 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 2923 }
2273 2924
2274 stat_timer_cb (EV_A_ &w->timer, 0); 2925 stat_timer_cb (EV_A_ &w->timer, 0);
2287 2938
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2290} 2941}
2291 2942
2292void inline_size 2943inline_size void
2944check_2625 (EV_P)
2945{
2946 /* kernels < 2.6.25 are borked
2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2948 */
2949 struct utsname buf;
2950 int major, minor, micro;
2951
2952 if (uname (&buf))
2953 return;
2954
2955 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2956 return;
2957
2958 if (major < 2
2959 || (major == 2 && minor < 6)
2960 || (major == 2 && minor == 6 && micro < 25))
2961 return;
2962
2963 fs_2625 = 1;
2964}
2965
2966inline_size void
2293infy_init (EV_P) 2967infy_init (EV_P)
2294{ 2968{
2295 if (fs_fd != -2) 2969 if (fs_fd != -2)
2296 return; 2970 return;
2971
2972 fs_fd = -1;
2973
2974 check_2625 (EV_A);
2297 2975
2298 fs_fd = inotify_init (); 2976 fs_fd = inotify_init ();
2299 2977
2300 if (fs_fd >= 0) 2978 if (fs_fd >= 0)
2301 { 2979 {
2303 ev_set_priority (&fs_w, EV_MAXPRI); 2981 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 2982 ev_io_start (EV_A_ &fs_w);
2305 } 2983 }
2306} 2984}
2307 2985
2308void inline_size 2986inline_size void
2309infy_fork (EV_P) 2987infy_fork (EV_P)
2310{ 2988{
2311 int slot; 2989 int slot;
2312 2990
2313 if (fs_fd < 0) 2991 if (fs_fd < 0)
2329 w->wd = -1; 3007 w->wd = -1;
2330 3008
2331 if (fs_fd >= 0) 3009 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 3010 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 3011 else
2334 ev_timer_start (EV_A_ &w->timer); 3012 ev_timer_again (EV_A_ &w->timer);
2335 } 3013 }
2336
2337 } 3014 }
2338} 3015}
2339 3016
3017#endif
3018
3019#ifdef _WIN32
3020# define EV_LSTAT(p,b) _stati64 (p, b)
3021#else
3022# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 3023#endif
2341 3024
2342void 3025void
2343ev_stat_stat (EV_P_ ev_stat *w) 3026ev_stat_stat (EV_P_ ev_stat *w)
2344{ 3027{
2371 || w->prev.st_atime != w->attr.st_atime 3054 || w->prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 3055 || w->prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 3056 || w->prev.st_ctime != w->attr.st_ctime
2374 ) { 3057 ) {
2375 #if EV_USE_INOTIFY 3058 #if EV_USE_INOTIFY
3059 if (fs_fd >= 0)
3060 {
2376 infy_del (EV_A_ w); 3061 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 3062 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 3063 ev_stat_stat (EV_A_ w); /* avoid race... */
3064 }
2379 #endif 3065 #endif
2380 3066
2381 ev_feed_event (EV_A_ w, EV_STAT); 3067 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 3068 }
2383} 3069}
2386ev_stat_start (EV_P_ ev_stat *w) 3072ev_stat_start (EV_P_ ev_stat *w)
2387{ 3073{
2388 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2389 return; 3075 return;
2390 3076
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 3077 ev_stat_stat (EV_A_ w);
2396 3078
3079 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 3080 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 3081
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3082 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 3083 ev_set_priority (&w->timer, ev_priority (w));
2402 3084
2403#if EV_USE_INOTIFY 3085#if EV_USE_INOTIFY
2404 infy_init (EV_A); 3086 infy_init (EV_A);
2405 3087
2406 if (fs_fd >= 0) 3088 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 3089 infy_add (EV_A_ w);
2408 else 3090 else
2409#endif 3091#endif
2410 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
2411 3093
2412 ev_start (EV_A_ (W)w, 1); 3094 ev_start (EV_A_ (W)w, 1);
3095
3096 EV_FREQUENT_CHECK;
2413} 3097}
2414 3098
2415void 3099void
2416ev_stat_stop (EV_P_ ev_stat *w) 3100ev_stat_stop (EV_P_ ev_stat *w)
2417{ 3101{
2418 clear_pending (EV_A_ (W)w); 3102 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 3103 if (expect_false (!ev_is_active (w)))
2420 return; 3104 return;
2421 3105
3106 EV_FREQUENT_CHECK;
3107
2422#if EV_USE_INOTIFY 3108#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 3109 infy_del (EV_A_ w);
2424#endif 3110#endif
2425 ev_timer_stop (EV_A_ &w->timer); 3111 ev_timer_stop (EV_A_ &w->timer);
2426 3112
2427 ev_stop (EV_A_ (W)w); 3113 ev_stop (EV_A_ (W)w);
3114
3115 EV_FREQUENT_CHECK;
2428} 3116}
2429#endif 3117#endif
2430 3118
2431#if EV_IDLE_ENABLE 3119#if EV_IDLE_ENABLE
2432void 3120void
2434{ 3122{
2435 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2436 return; 3124 return;
2437 3125
2438 pri_adjust (EV_A_ (W)w); 3126 pri_adjust (EV_A_ (W)w);
3127
3128 EV_FREQUENT_CHECK;
2439 3129
2440 { 3130 {
2441 int active = ++idlecnt [ABSPRI (w)]; 3131 int active = ++idlecnt [ABSPRI (w)];
2442 3132
2443 ++idleall; 3133 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 3134 ev_start (EV_A_ (W)w, active);
2445 3135
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3136 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 3137 idles [ABSPRI (w)][active - 1] = w;
2448 } 3138 }
3139
3140 EV_FREQUENT_CHECK;
2449} 3141}
2450 3142
2451void 3143void
2452ev_idle_stop (EV_P_ ev_idle *w) 3144ev_idle_stop (EV_P_ ev_idle *w)
2453{ 3145{
2454 clear_pending (EV_A_ (W)w); 3146 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3147 if (expect_false (!ev_is_active (w)))
2456 return; 3148 return;
2457 3149
3150 EV_FREQUENT_CHECK;
3151
2458 { 3152 {
2459 int active = ev_active (w); 3153 int active = ev_active (w);
2460 3154
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3155 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3156 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 3157
2464 ev_stop (EV_A_ (W)w); 3158 ev_stop (EV_A_ (W)w);
2465 --idleall; 3159 --idleall;
2466 } 3160 }
3161
3162 EV_FREQUENT_CHECK;
2467} 3163}
2468#endif 3164#endif
2469 3165
2470void 3166void
2471ev_prepare_start (EV_P_ ev_prepare *w) 3167ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 3168{
2473 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
2474 return; 3170 return;
3171
3172 EV_FREQUENT_CHECK;
2475 3173
2476 ev_start (EV_A_ (W)w, ++preparecnt); 3174 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3175 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 3176 prepares [preparecnt - 1] = w;
3177
3178 EV_FREQUENT_CHECK;
2479} 3179}
2480 3180
2481void 3181void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 3182ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 3183{
2484 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2486 return; 3186 return;
2487 3187
3188 EV_FREQUENT_CHECK;
3189
2488 { 3190 {
2489 int active = ev_active (w); 3191 int active = ev_active (w);
2490 3192
2491 prepares [active - 1] = prepares [--preparecnt]; 3193 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 3194 ev_active (prepares [active - 1]) = active;
2493 } 3195 }
2494 3196
2495 ev_stop (EV_A_ (W)w); 3197 ev_stop (EV_A_ (W)w);
3198
3199 EV_FREQUENT_CHECK;
2496} 3200}
2497 3201
2498void 3202void
2499ev_check_start (EV_P_ ev_check *w) 3203ev_check_start (EV_P_ ev_check *w)
2500{ 3204{
2501 if (expect_false (ev_is_active (w))) 3205 if (expect_false (ev_is_active (w)))
2502 return; 3206 return;
3207
3208 EV_FREQUENT_CHECK;
2503 3209
2504 ev_start (EV_A_ (W)w, ++checkcnt); 3210 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3211 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 3212 checks [checkcnt - 1] = w;
3213
3214 EV_FREQUENT_CHECK;
2507} 3215}
2508 3216
2509void 3217void
2510ev_check_stop (EV_P_ ev_check *w) 3218ev_check_stop (EV_P_ ev_check *w)
2511{ 3219{
2512 clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
2514 return; 3222 return;
2515 3223
3224 EV_FREQUENT_CHECK;
3225
2516 { 3226 {
2517 int active = ev_active (w); 3227 int active = ev_active (w);
2518 3228
2519 checks [active - 1] = checks [--checkcnt]; 3229 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 3230 ev_active (checks [active - 1]) = active;
2521 } 3231 }
2522 3232
2523 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
2524} 3236}
2525 3237
2526#if EV_EMBED_ENABLE 3238#if EV_EMBED_ENABLE
2527void noinline 3239void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 3240ev_embed_sweep (EV_P_ ev_embed *w)
2545embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2546{ 3258{
2547 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2548 3260
2549 { 3261 {
2550 struct ev_loop *loop = w->other; 3262 EV_P = w->other;
2551 3263
2552 while (fdchangecnt) 3264 while (fdchangecnt)
2553 { 3265 {
2554 fd_reify (EV_A); 3266 fd_reify (EV_A);
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 3268 }
2557 } 3269 }
2558} 3270}
2559 3271
3272static void
3273embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3274{
3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3276
3277 ev_embed_stop (EV_A_ w);
3278
3279 {
3280 EV_P = w->other;
3281
3282 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3284 }
3285
3286 ev_embed_start (EV_A_ w);
3287}
3288
2560#if 0 3289#if 0
2561static void 3290static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3291embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 3292{
2564 ev_idle_stop (EV_A_ idle); 3293 ev_idle_stop (EV_A_ idle);
2570{ 3299{
2571 if (expect_false (ev_is_active (w))) 3300 if (expect_false (ev_is_active (w)))
2572 return; 3301 return;
2573 3302
2574 { 3303 {
2575 struct ev_loop *loop = w->other; 3304 EV_P = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 3307 }
3308
3309 EV_FREQUENT_CHECK;
2579 3310
2580 ev_set_priority (&w->io, ev_priority (w)); 3311 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 3312 ev_io_start (EV_A_ &w->io);
2582 3313
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 3314 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 3315 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 3316 ev_prepare_start (EV_A_ &w->prepare);
2586 3317
3318 ev_fork_init (&w->fork, embed_fork_cb);
3319 ev_fork_start (EV_A_ &w->fork);
3320
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 3322
2589 ev_start (EV_A_ (W)w, 1); 3323 ev_start (EV_A_ (W)w, 1);
3324
3325 EV_FREQUENT_CHECK;
2590} 3326}
2591 3327
2592void 3328void
2593ev_embed_stop (EV_P_ ev_embed *w) 3329ev_embed_stop (EV_P_ ev_embed *w)
2594{ 3330{
2595 clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
2597 return; 3333 return;
2598 3334
3335 EV_FREQUENT_CHECK;
3336
2599 ev_io_stop (EV_A_ &w->io); 3337 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 3338 ev_prepare_stop (EV_A_ &w->prepare);
3339 ev_fork_stop (EV_A_ &w->fork);
2601 3340
2602 ev_stop (EV_A_ (W)w); 3341 EV_FREQUENT_CHECK;
2603} 3342}
2604#endif 3343#endif
2605 3344
2606#if EV_FORK_ENABLE 3345#if EV_FORK_ENABLE
2607void 3346void
2608ev_fork_start (EV_P_ ev_fork *w) 3347ev_fork_start (EV_P_ ev_fork *w)
2609{ 3348{
2610 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
2611 return; 3350 return;
3351
3352 EV_FREQUENT_CHECK;
2612 3353
2613 ev_start (EV_A_ (W)w, ++forkcnt); 3354 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3355 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 3356 forks [forkcnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
2616} 3359}
2617 3360
2618void 3361void
2619ev_fork_stop (EV_P_ ev_fork *w) 3362ev_fork_stop (EV_P_ ev_fork *w)
2620{ 3363{
2621 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2623 return; 3366 return;
2624 3367
3368 EV_FREQUENT_CHECK;
3369
2625 { 3370 {
2626 int active = ev_active (w); 3371 int active = ev_active (w);
2627 3372
2628 forks [active - 1] = forks [--forkcnt]; 3373 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 3374 ev_active (forks [active - 1]) = active;
2630 } 3375 }
2631 3376
2632 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
2633} 3380}
2634#endif 3381#endif
2635 3382
2636#if EV_ASYNC_ENABLE 3383#if EV_ASYNC_ENABLE
2637void 3384void
2639{ 3386{
2640 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2641 return; 3388 return;
2642 3389
2643 evpipe_init (EV_A); 3390 evpipe_init (EV_A);
3391
3392 EV_FREQUENT_CHECK;
2644 3393
2645 ev_start (EV_A_ (W)w, ++asynccnt); 3394 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3395 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 3396 asyncs [asynccnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
2648} 3399}
2649 3400
2650void 3401void
2651ev_async_stop (EV_P_ ev_async *w) 3402ev_async_stop (EV_P_ ev_async *w)
2652{ 3403{
2653 clear_pending (EV_A_ (W)w); 3404 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3405 if (expect_false (!ev_is_active (w)))
2655 return; 3406 return;
2656 3407
3408 EV_FREQUENT_CHECK;
3409
2657 { 3410 {
2658 int active = ev_active (w); 3411 int active = ev_active (w);
2659 3412
2660 asyncs [active - 1] = asyncs [--asynccnt]; 3413 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 3414 ev_active (asyncs [active - 1]) = active;
2662 } 3415 }
2663 3416
2664 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2665} 3420}
2666 3421
2667void 3422void
2668ev_async_send (EV_P_ ev_async *w) 3423ev_async_send (EV_P_ ev_async *w)
2669{ 3424{
2670 w->sent = 1; 3425 w->sent = 1;
2671 evpipe_write (EV_A_ &gotasync); 3426 evpipe_write (EV_A_ &async_pending);
2672} 3427}
2673#endif 3428#endif
2674 3429
2675/*****************************************************************************/ 3430/*****************************************************************************/
2676 3431
2686once_cb (EV_P_ struct ev_once *once, int revents) 3441once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3442{
2688 void (*cb)(int revents, void *arg) = once->cb; 3443 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3444 void *arg = once->arg;
2690 3445
2691 ev_io_stop (EV_A_ &once->io); 3446 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3447 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3448 ev_free (once);
2694 3449
2695 cb (revents, arg); 3450 cb (revents, arg);
2696} 3451}
2697 3452
2698static void 3453static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3454once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3455{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3456 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3457
3458 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3459}
2703 3460
2704static void 3461static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3462once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3463{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3464 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3465
3466 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3467}
2709 3468
2710void 3469void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3470ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3471{
2734 ev_timer_set (&once->to, timeout, 0.); 3493 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 3494 ev_timer_start (EV_A_ &once->to);
2736 } 3495 }
2737} 3496}
2738 3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
3510 {
3511 wn = wl->next;
3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
3531 }
3532
3533 if (types & (EV_TIMER | EV_STAT))
3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3538 {
3539 if (types & EV_STAT)
3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3541 }
3542 else
3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3546
3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
3552
3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
3559
3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif
3572
3573 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]);
3579
3580 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]);
3583
3584 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; )
3587 {
3588 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn;
3591 }
3592
3593 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; )
3595 for (wl = childs [i]; wl; )
3596 {
3597 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn;
3600 }
3601/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3603}
3604#endif
3605
2739#if EV_MULTIPLICITY 3606#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 3607 #include "ev_wrap.h"
2741#endif 3608#endif
2742 3609
2743#ifdef __cplusplus 3610#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines