ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.207 by root, Thu Jan 31 13:10:56 2008 UTC vs.
Revision 1.236 by root, Wed May 7 14:46:22 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 241
217#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
220#endif 245#endif
239# include <sys/inotify.h> 264# include <sys/inotify.h>
240#endif 265#endif
241 266
242#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
244#endif 281#endif
245 282
246/**/ 283/**/
247 284
248/* 285/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
265#else 302#else
266# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
267# define noinline 304# define noinline
268# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 306# define inline
270# endif 307# endif
271#endif 308#endif
272 309
273#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
288 325
289typedef ev_watcher *W; 326typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
292 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
293#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 337#endif
323 perror (msg); 363 perror (msg);
324 abort (); 364 abort ();
325 } 365 }
326} 366}
327 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
328static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 384
330void 385void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 387{
333 alloc = cb; 388 alloc = cb;
334} 389}
335 390
336inline_speed void * 391inline_speed void *
337ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
338{ 393{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
340 395
341 if (!ptr && size) 396 if (!ptr && size)
342 { 397 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 399 abort ();
451 ts.tv_sec = (time_t)delay; 506 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 508
454 nanosleep (&ts, 0); 509 nanosleep (&ts, 0);
455#elif defined(_WIN32) 510#elif defined(_WIN32)
456 Sleep (delay * 1e3); 511 Sleep ((unsigned long)(delay * 1e3));
457#else 512#else
458 struct timeval tv; 513 struct timeval tv;
459 514
460 tv.tv_sec = (time_t)delay; 515 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 519#endif
465 } 520 }
466} 521}
467 522
468/*****************************************************************************/ 523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 526
470int inline_size 527int inline_size
471array_nextsize (int elem, int cur, int cnt) 528array_nextsize (int elem, int cur, int cnt)
472{ 529{
473 int ncur = cur + 1; 530 int ncur = cur + 1;
474 531
475 do 532 do
476 ncur <<= 1; 533 ncur <<= 1;
477 while (cnt > ncur); 534 while (cnt > ncur);
478 535
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 538 {
482 ncur *= elem; 539 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 541 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 542 ncur /= elem;
486 } 543 }
487 544
488 return ncur; 545 return ncur;
702 } 759 }
703} 760}
704 761
705/*****************************************************************************/ 762/*****************************************************************************/
706 763
764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define HEAP0 3 /* index of first element in heap */
774
775/* towards the root */
707void inline_speed 776void inline_speed
708upheap (WT *heap, int k) 777upheap (WT *heap, int k)
709{ 778{
710 WT w = heap [k]; 779 WT w = heap [k];
711 780
712 while (k) 781 for (;;)
713 { 782 {
714 int p = (k - 1) >> 1; 783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
715 784
716 if (heap [p]->at <= w->at) 785 if (p >= HEAP0 || heap [p]->at <= w->at)
717 break; 786 break;
718 787
719 heap [k] = heap [p]; 788 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 789 ev_active (heap [k]) = k;
721 k = p; 790 k = p;
722 } 791 }
723 792
724 heap [k] = w; 793 heap [k] = w;
725 ((W)heap [k])->active = k + 1; 794 ev_active (heap [k]) = k;
726} 795}
727 796
797/* away from the root */
728void inline_speed 798void inline_speed
729downheap (WT *heap, int N, int k) 799downheap (WT *heap, int N, int k)
730{ 800{
731 WT w = heap [k]; 801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
732 803
733 for (;;) 804 for (;;)
734 { 805 {
806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
809
810 // find minimum child
811 if (expect_true (pos +3 < E))
812 {
813 /* fast path */
814 (minpos = pos + 0), (minat = (*minpos)->at);
815 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
816 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
817 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
818 }
819 else
820 {
821 /* slow path */
822 if (pos >= E)
823 break;
824 (minpos = pos + 0), (minat = (*minpos)->at);
825 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
826 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
827 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
828 }
829
830 if (w->at <= minat)
831 break;
832
833 ev_active (*minpos) = k;
834 heap [k] = *minpos;
835
836 k = minpos - heap;
837 }
838
839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
735 int c = (k << 1) + 1; 878 int c = k << 1;
736 879
737 if (c >= N) 880 if (c > N)
738 break; 881 break;
739 882
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0; 884 ? 1 : 0;
742 885
743 if (w->at <= heap [c]->at) 886 if (w->at <= heap [c]->at)
744 break; 887 break;
745 888
746 heap [k] = heap [c]; 889 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 890 ((W)heap [k])->active = k;
748 891
749 k = c; 892 k = c;
750 } 893 }
751 894
752 heap [k] = w; 895 heap [k] = w;
753 ((W)heap [k])->active = k + 1; 896 ev_active (heap [k]) = k;
754} 897}
898#endif
755 899
756void inline_size 900void inline_size
757adjustheap (WT *heap, int N, int k) 901adjustheap (WT *heap, int N, int k)
758{ 902{
759 upheap (heap, k); 903 upheap (heap, k);
802static void noinline 946static void noinline
803evpipe_init (EV_P) 947evpipe_init (EV_P)
804{ 948{
805 if (!ev_is_active (&pipeev)) 949 if (!ev_is_active (&pipeev))
806 { 950 {
951#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0)
953 {
954 evpipe [0] = -1;
955 fd_intern (evfd);
956 ev_io_set (&pipeev, evfd, EV_READ);
957 }
958 else
959#endif
960 {
807 while (pipe (evpipe)) 961 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 962 syserr ("(libev) error creating signal/async pipe");
809 963
810 fd_intern (evpipe [0]); 964 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 965 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 966 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 }
968
814 ev_io_start (EV_A_ &pipeev); 969 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 970 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 971 }
817} 972}
818 973
819void inline_size 974void inline_size
820evpipe_write (EV_P_ int sig, int async) 975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 976{
822 if (!(gotasync || gotsig)) 977 if (!*flag)
823 { 978 {
824 int old_errno = errno; 979 int old_errno = errno; /* save errno because write might clobber it */
825 980
826 if (sig) gotsig = 1; 981 *flag = 1;
827 if (async) gotasync = 1;
828 982
983#if EV_USE_EVENTFD
984 if (evfd >= 0)
985 {
986 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t));
988 }
989 else
990#endif
829 write (evpipe [1], &old_errno, 1); 991 write (evpipe [1], &old_errno, 1);
992
830 errno = old_errno; 993 errno = old_errno;
831 } 994 }
832} 995}
833 996
834static void 997static void
835pipecb (EV_P_ ev_io *iow, int revents) 998pipecb (EV_P_ ev_io *iow, int revents)
836{ 999{
1000#if EV_USE_EVENTFD
1001 if (evfd >= 0)
837 { 1002 {
838 int dummy; 1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy;
839 read (evpipe [0], &dummy, 1); 1010 read (evpipe [0], &dummy, 1);
840 } 1011 }
841 1012
842 if (gotsig) 1013 if (gotsig && ev_is_default_loop (EV_A))
843 { 1014 {
844 int signum; 1015 int signum;
845 gotsig = 0; 1016 gotsig = 0;
846 1017
847 for (signum = signalmax; signum--; ) 1018 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig) 1019 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1); 1020 ev_feed_signal_event (EV_A_ signum + 1);
850 } 1021 }
851 1022
1023#if EV_ASYNC_ENABLE
852 if (gotasync) 1024 if (gotasync)
853 { 1025 {
854 int i; 1026 int i;
855 gotasync = 0; 1027 gotasync = 0;
856 1028
859 { 1031 {
860 asyncs [i]->sent = 0; 1032 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 1034 }
863 } 1035 }
1036#endif
864} 1037}
865 1038
866/*****************************************************************************/ 1039/*****************************************************************************/
867 1040
868static void 1041static void
869sighandler (int signum) 1042ev_sighandler (int signum)
870{ 1043{
871#if EV_MULTIPLICITY 1044#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct; 1045 struct ev_loop *loop = &default_loop_struct;
873#endif 1046#endif
874 1047
875#if _WIN32 1048#if _WIN32
876 signal (signum, sighandler); 1049 signal (signum, ev_sighandler);
877#endif 1050#endif
878 1051
879 signals [signum - 1].gotsig = 1; 1052 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0); 1053 evpipe_write (EV_A_ &gotsig);
881} 1054}
882 1055
883void noinline 1056void noinline
884ev_feed_signal_event (EV_P_ int signum) 1057ev_feed_signal_event (EV_P_ int signum)
885{ 1058{
911#ifndef WIFCONTINUED 1084#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0 1085# define WIFCONTINUED(status) 0
913#endif 1086#endif
914 1087
915void inline_speed 1088void inline_speed
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1089child_reap (EV_P_ int chain, int pid, int status)
917{ 1090{
918 ev_child *w; 1091 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920 1093
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 { 1095 {
923 if ((w->pid == pid || !w->pid) 1096 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1))) 1097 && (!traced || (w->flags & 1)))
925 { 1098 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
927 w->rpid = pid; 1100 w->rpid = pid;
928 w->rstatus = status; 1101 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1102 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 } 1103 }
931 } 1104 }
945 if (!WCONTINUED 1118 if (!WCONTINUED
946 || errno != EINVAL 1119 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1120 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return; 1121 return;
949 1122
950 /* make sure we are called again until all childs have been reaped */ 1123 /* make sure we are called again until all children have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */ 1124 /* we need to do it this way so that the callback gets called before we continue */
952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
953 1126
954 child_reap (EV_A_ sw, pid, pid, status); 1127 child_reap (EV_A_ pid, pid, status);
955 if (EV_PID_HASHSIZE > 1) 1128 if (EV_PID_HASHSIZE > 1)
956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
957} 1130}
958 1131
959#endif 1132#endif
960 1133
961/*****************************************************************************/ 1134/*****************************************************************************/
1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1080 have_monotonic = 1; 1253 have_monotonic = 1;
1081 } 1254 }
1082#endif 1255#endif
1083 1256
1084 ev_rt_now = ev_time (); 1257 ev_rt_now = ev_time ();
1085 mn_now = get_clock (); 1258 mn_now = get_clock ();
1086 now_floor = mn_now; 1259 now_floor = mn_now;
1087 rtmn_diff = ev_rt_now - mn_now; 1260 rtmn_diff = ev_rt_now - mn_now;
1088 1261
1089 io_blocktime = 0.; 1262 io_blocktime = 0.;
1090 timeout_blocktime = 0.; 1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif
1091 1270
1092 /* pid check not overridable via env */ 1271 /* pid check not overridable via env */
1093#ifndef _WIN32 1272#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK) 1273 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid (); 1274 curpid = getpid ();
1098 if (!(flags & EVFLAG_NOENV) 1277 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure () 1278 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS")) 1279 && getenv ("LIBEV_FLAGS"))
1101 flags = atoi (getenv ("LIBEV_FLAGS")); 1280 flags = atoi (getenv ("LIBEV_FLAGS"));
1102 1281
1103 if (!(flags & 0x0000ffffUL)) 1282 if (!(flags & 0x0000ffffU))
1104 flags |= ev_recommended_backends (); 1283 flags |= ev_recommended_backends ();
1105
1106 backend = 0;
1107 backend_fd = -1;
1108#if EV_USE_INOTIFY
1109 fs_fd = -2;
1110#endif
1111 1284
1112#if EV_USE_PORT 1285#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1114#endif 1287#endif
1115#if EV_USE_KQUEUE 1288#if EV_USE_KQUEUE
1138 if (ev_is_active (&pipeev)) 1311 if (ev_is_active (&pipeev))
1139 { 1312 {
1140 ev_ref (EV_A); /* signal watcher */ 1313 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev); 1314 ev_io_stop (EV_A_ &pipeev);
1142 1315
1143 close (evpipe [0]); evpipe [0] = 0; 1316#if EV_USE_EVENTFD
1144 close (evpipe [1]); evpipe [1] = 0; 1317 if (evfd >= 0)
1318 close (evfd);
1319#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1145 } 1326 }
1146 1327
1147#if EV_USE_INOTIFY 1328#if EV_USE_INOTIFY
1148 if (fs_fd >= 0) 1329 if (fs_fd >= 0)
1149 close (fs_fd); 1330 close (fs_fd);
1187#if EV_FORK_ENABLE 1368#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY); 1369 array_free (fork, EMPTY);
1189#endif 1370#endif
1190 array_free (prepare, EMPTY); 1371 array_free (prepare, EMPTY);
1191 array_free (check, EMPTY); 1372 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY);
1375#endif
1192 1376
1193 backend = 0; 1377 backend = 0;
1194} 1378}
1195 1379
1380#if EV_USE_INOTIFY
1196void inline_size infy_fork (EV_P); 1381void inline_size infy_fork (EV_P);
1382#endif
1197 1383
1198void inline_size 1384void inline_size
1199loop_fork (EV_P) 1385loop_fork (EV_P)
1200{ 1386{
1201#if EV_USE_PORT 1387#if EV_USE_PORT
1212#endif 1398#endif
1213 1399
1214 if (ev_is_active (&pipeev)) 1400 if (ev_is_active (&pipeev))
1215 { 1401 {
1216 /* this "locks" the handlers against writing to the pipe */ 1402 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1217 gotsig = gotasync = 1; 1406 gotasync = 1;
1407#endif
1218 1408
1219 ev_ref (EV_A); 1409 ev_ref (EV_A);
1220 ev_io_stop (EV_A_ &pipeev); 1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
1221 close (evpipe [0]); 1419 close (evpipe [0]);
1222 close (evpipe [1]); 1420 close (evpipe [1]);
1421 }
1223 1422
1224 evpipe_init (EV_A); 1423 evpipe_init (EV_A);
1225 /* now iterate over everything */ 1424 /* now iterate over everything, in case we missed something */
1226 evcb (EV_A_ &pipeev, EV_READ); 1425 pipecb (EV_A_ &pipeev, EV_READ);
1227 } 1426 }
1228 1427
1229 postfork = 0; 1428 postfork = 0;
1230} 1429}
1231 1430
1255void 1454void
1256ev_loop_fork (EV_P) 1455ev_loop_fork (EV_P)
1257{ 1456{
1258 postfork = 1; /* must be in line with ev_default_fork */ 1457 postfork = 1; /* must be in line with ev_default_fork */
1259} 1458}
1260
1261#endif 1459#endif
1262 1460
1263#if EV_MULTIPLICITY 1461#if EV_MULTIPLICITY
1264struct ev_loop * 1462struct ev_loop *
1265ev_default_loop_init (unsigned int flags) 1463ev_default_loop_init (unsigned int flags)
1346 EV_CB_INVOKE (p->w, p->events); 1544 EV_CB_INVOKE (p->w, p->events);
1347 } 1545 }
1348 } 1546 }
1349} 1547}
1350 1548
1351void inline_size
1352timers_reify (EV_P)
1353{
1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1355 {
1356 ev_timer *w = (ev_timer *)timers [0];
1357
1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1359
1360 /* first reschedule or stop timer */
1361 if (w->repeat)
1362 {
1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1364
1365 ((WT)w)->at += w->repeat;
1366 if (((WT)w)->at < mn_now)
1367 ((WT)w)->at = mn_now;
1368
1369 downheap (timers, timercnt, 0);
1370 }
1371 else
1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1373
1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1375 }
1376}
1377
1378#if EV_PERIODIC_ENABLE
1379void inline_size
1380periodics_reify (EV_P)
1381{
1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1383 {
1384 ev_periodic *w = (ev_periodic *)periodics [0];
1385
1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1387
1388 /* first reschedule or stop timer */
1389 if (w->reschedule_cb)
1390 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0);
1394 }
1395 else if (w->interval)
1396 {
1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1400 downheap (periodics, periodiccnt, 0);
1401 }
1402 else
1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1404
1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1406 }
1407}
1408
1409static void noinline
1410periodics_reschedule (EV_P)
1411{
1412 int i;
1413
1414 /* adjust periodics after time jump */
1415 for (i = 0; i < periodiccnt; ++i)
1416 {
1417 ev_periodic *w = (ev_periodic *)periodics [i];
1418
1419 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1421 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 }
1424
1425 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i);
1428}
1429#endif
1430
1431#if EV_IDLE_ENABLE 1549#if EV_IDLE_ENABLE
1432void inline_size 1550void inline_size
1433idle_reify (EV_P) 1551idle_reify (EV_P)
1434{ 1552{
1435 if (expect_false (idleall)) 1553 if (expect_false (idleall))
1446 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1564 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1447 break; 1565 break;
1448 } 1566 }
1449 } 1567 }
1450 } 1568 }
1569}
1570#endif
1571
1572void inline_size
1573timers_reify (EV_P)
1574{
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1576 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0];
1578
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580
1581 /* first reschedule or stop timer */
1582 if (w->repeat)
1583 {
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585
1586 ev_at (w) += w->repeat;
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
1590 downheap (timers, timercnt, HEAP0);
1591 }
1592 else
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1596 }
1597}
1598
1599#if EV_PERIODIC_ENABLE
1600void inline_size
1601periodics_reify (EV_P)
1602{
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1604 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1606
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1608
1609 /* first reschedule or stop timer */
1610 if (w->reschedule_cb)
1611 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1614 downheap (periodics, periodiccnt, 1);
1615 }
1616 else if (w->interval)
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
1622 }
1623 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1627 }
1628}
1629
1630static void noinline
1631periodics_reschedule (EV_P)
1632{
1633 int i;
1634
1635 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i)
1637 {
1638 ev_periodic *w = (ev_periodic *)periodics [i];
1639
1640 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1644 }
1645
1646 /* now rebuild the heap */
1647 for (i = periodiccnt >> 1; --i; )
1648 downheap (periodics, periodiccnt, i + HEAP0);
1451} 1649}
1452#endif 1650#endif
1453 1651
1454void inline_speed 1652void inline_speed
1455time_update (EV_P_ ev_tstamp max_block) 1653time_update (EV_P_ ev_tstamp max_block)
1484 */ 1682 */
1485 for (i = 4; --i; ) 1683 for (i = 4; --i; )
1486 { 1684 {
1487 rtmn_diff = ev_rt_now - mn_now; 1685 rtmn_diff = ev_rt_now - mn_now;
1488 1686
1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1490 return; /* all is well */ 1688 return; /* all is well */
1491 1689
1492 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1493 mn_now = get_clock (); 1691 mn_now = get_clock ();
1494 now_floor = mn_now; 1692 now_floor = mn_now;
1509 { 1707 {
1510#if EV_PERIODIC_ENABLE 1708#if EV_PERIODIC_ENABLE
1511 periodics_reschedule (EV_A); 1709 periodics_reschedule (EV_A);
1512#endif 1710#endif
1513 /* adjust timers. this is easy, as the offset is the same for all of them */ 1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i) 1712 for (i = 1; i <= timercnt; ++i)
1515 ((WT)timers [i])->at += ev_rt_now - mn_now; 1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1516 } 1714 }
1517 1715
1518 mn_now = ev_rt_now; 1716 mn_now = ev_rt_now;
1519 } 1717 }
1520} 1718}
1534static int loop_done; 1732static int loop_done;
1535 1733
1536void 1734void
1537ev_loop (EV_P_ int flags) 1735ev_loop (EV_P_ int flags)
1538{ 1736{
1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1737 loop_done = EVUNLOOP_CANCEL;
1540 ? EVUNLOOP_ONE
1541 : EVUNLOOP_CANCEL;
1542 1738
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1544 1740
1545 do 1741 do
1546 { 1742 {
1592 1788
1593 waittime = MAX_BLOCKTIME; 1789 waittime = MAX_BLOCKTIME;
1594 1790
1595 if (timercnt) 1791 if (timercnt)
1596 { 1792 {
1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1598 if (waittime > to) waittime = to; 1794 if (waittime > to) waittime = to;
1599 } 1795 }
1600 1796
1601#if EV_PERIODIC_ENABLE 1797#if EV_PERIODIC_ENABLE
1602 if (periodiccnt) 1798 if (periodiccnt)
1603 { 1799 {
1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1605 if (waittime > to) waittime = to; 1801 if (waittime > to) waittime = to;
1606 } 1802 }
1607#endif 1803#endif
1608 1804
1609 if (expect_false (waittime < timeout_blocktime)) 1805 if (expect_false (waittime < timeout_blocktime))
1642 /* queue check watchers, to be executed first */ 1838 /* queue check watchers, to be executed first */
1643 if (expect_false (checkcnt)) 1839 if (expect_false (checkcnt))
1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1645 1841
1646 call_pending (EV_A); 1842 call_pending (EV_A);
1647
1648 } 1843 }
1649 while (expect_true (activecnt && !loop_done)); 1844 while (expect_true (
1845 activecnt
1846 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 ));
1650 1849
1651 if (loop_done == EVUNLOOP_ONE) 1850 if (loop_done == EVUNLOOP_ONE)
1652 loop_done = EVUNLOOP_CANCEL; 1851 loop_done = EVUNLOOP_CANCEL;
1653} 1852}
1654 1853
1772ev_timer_start (EV_P_ ev_timer *w) 1971ev_timer_start (EV_P_ ev_timer *w)
1773{ 1972{
1774 if (expect_false (ev_is_active (w))) 1973 if (expect_false (ev_is_active (w)))
1775 return; 1974 return;
1776 1975
1777 ((WT)w)->at += mn_now; 1976 ev_at (w) += mn_now;
1778 1977
1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1780 1979
1781 ev_start (EV_A_ (W)w, ++timercnt); 1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1783 timers [timercnt - 1] = (WT)w; 1982 timers [ev_active (w)] = (WT)w;
1784 upheap (timers, timercnt - 1); 1983 upheap (timers, ev_active (w));
1785 1984
1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1787} 1986}
1788 1987
1789void noinline 1988void noinline
1790ev_timer_stop (EV_P_ ev_timer *w) 1989ev_timer_stop (EV_P_ ev_timer *w)
1791{ 1990{
1792 clear_pending (EV_A_ (W)w); 1991 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 1992 if (expect_false (!ev_is_active (w)))
1794 return; 1993 return;
1795 1994
1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1797
1798 { 1995 {
1799 int active = ((W)w)->active; 1996 int active = ev_active (w);
1800 1997
1998 assert (("internal timer heap corruption", timers [active] == (WT)w));
1999
1801 if (expect_true (--active < --timercnt)) 2000 if (expect_true (active < timercnt + HEAP0 - 1))
1802 { 2001 {
1803 timers [active] = timers [timercnt]; 2002 timers [active] = timers [timercnt + HEAP0 - 1];
1804 adjustheap (timers, timercnt, active); 2003 adjustheap (timers, timercnt, active);
1805 } 2004 }
2005
2006 --timercnt;
1806 } 2007 }
1807 2008
1808 ((WT)w)->at -= mn_now; 2009 ev_at (w) -= mn_now;
1809 2010
1810 ev_stop (EV_A_ (W)w); 2011 ev_stop (EV_A_ (W)w);
1811} 2012}
1812 2013
1813void noinline 2014void noinline
1815{ 2016{
1816 if (ev_is_active (w)) 2017 if (ev_is_active (w))
1817 { 2018 {
1818 if (w->repeat) 2019 if (w->repeat)
1819 { 2020 {
1820 ((WT)w)->at = mn_now + w->repeat; 2021 ev_at (w) = mn_now + w->repeat;
1821 adjustheap (timers, timercnt, ((W)w)->active - 1); 2022 adjustheap (timers, timercnt, ev_active (w));
1822 } 2023 }
1823 else 2024 else
1824 ev_timer_stop (EV_A_ w); 2025 ev_timer_stop (EV_A_ w);
1825 } 2026 }
1826 else if (w->repeat) 2027 else if (w->repeat)
1827 { 2028 {
1828 w->at = w->repeat; 2029 ev_at (w) = w->repeat;
1829 ev_timer_start (EV_A_ w); 2030 ev_timer_start (EV_A_ w);
1830 } 2031 }
1831} 2032}
1832 2033
1833#if EV_PERIODIC_ENABLE 2034#if EV_PERIODIC_ENABLE
1836{ 2037{
1837 if (expect_false (ev_is_active (w))) 2038 if (expect_false (ev_is_active (w)))
1838 return; 2039 return;
1839 2040
1840 if (w->reschedule_cb) 2041 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 2043 else if (w->interval)
1843 { 2044 {
1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1845 /* this formula differs from the one in periodic_reify because we do not always round up */ 2046 /* this formula differs from the one in periodic_reify because we do not always round up */
1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 } 2048 }
1848 else 2049 else
1849 ((WT)w)->at = w->offset; 2050 ev_at (w) = w->offset;
1850 2051
1851 ev_start (EV_A_ (W)w, ++periodiccnt); 2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1853 periodics [periodiccnt - 1] = (WT)w; 2054 periodics [ev_active (w)] = (WT)w;
1854 upheap (periodics, periodiccnt - 1); 2055 upheap (periodics, ev_active (w));
1855 2056
1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1857} 2058}
1858 2059
1859void noinline 2060void noinline
1860ev_periodic_stop (EV_P_ ev_periodic *w) 2061ev_periodic_stop (EV_P_ ev_periodic *w)
1861{ 2062{
1862 clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1863 if (expect_false (!ev_is_active (w))) 2064 if (expect_false (!ev_is_active (w)))
1864 return; 2065 return;
1865 2066
1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1867
1868 { 2067 {
1869 int active = ((W)w)->active; 2068 int active = ev_active (w);
1870 2069
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2071
1871 if (expect_true (--active < --periodiccnt)) 2072 if (expect_true (active < periodiccnt + HEAP0 - 1))
1872 { 2073 {
1873 periodics [active] = periodics [periodiccnt]; 2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1874 adjustheap (periodics, periodiccnt, active); 2075 adjustheap (periodics, periodiccnt, active);
1875 } 2076 }
2077
2078 --periodiccnt;
1876 } 2079 }
1877 2080
1878 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1879} 2082}
1880 2083
1922 wlist_add (&signals [w->signum - 1].head, (WL)w); 2125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1923 2126
1924 if (!((WL)w)->next) 2127 if (!((WL)w)->next)
1925 { 2128 {
1926#if _WIN32 2129#if _WIN32
1927 signal (w->signum, sighandler); 2130 signal (w->signum, ev_sighandler);
1928#else 2131#else
1929 struct sigaction sa; 2132 struct sigaction sa;
1930 sa.sa_handler = sighandler; 2133 sa.sa_handler = ev_sighandler;
1931 sigfillset (&sa.sa_mask); 2134 sigfillset (&sa.sa_mask);
1932 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1933 sigaction (w->signum, &sa, 0); 2136 sigaction (w->signum, &sa, 0);
1934#endif 2137#endif
1935 } 2138 }
1996 if (w->wd < 0) 2199 if (w->wd < 0)
1997 { 2200 {
1998 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1999 2202
2000 /* monitor some parent directory for speedup hints */ 2203 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */
2205 /* but an efficiency issue only */
2001 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2002 { 2207 {
2003 char path [4096]; 2208 char path [4096];
2004 strcpy (path, w->path); 2209 strcpy (path, w->path);
2005 2210
2250 clear_pending (EV_A_ (W)w); 2455 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w))) 2456 if (expect_false (!ev_is_active (w)))
2252 return; 2457 return;
2253 2458
2254 { 2459 {
2255 int active = ((W)w)->active; 2460 int active = ev_active (w);
2256 2461
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2463 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2259 2464
2260 ev_stop (EV_A_ (W)w); 2465 ev_stop (EV_A_ (W)w);
2261 --idleall; 2466 --idleall;
2262 } 2467 }
2263} 2468}
2280 clear_pending (EV_A_ (W)w); 2485 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w))) 2486 if (expect_false (!ev_is_active (w)))
2282 return; 2487 return;
2283 2488
2284 { 2489 {
2285 int active = ((W)w)->active; 2490 int active = ev_active (w);
2491
2286 prepares [active - 1] = prepares [--preparecnt]; 2492 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active; 2493 ev_active (prepares [active - 1]) = active;
2288 } 2494 }
2289 2495
2290 ev_stop (EV_A_ (W)w); 2496 ev_stop (EV_A_ (W)w);
2291} 2497}
2292 2498
2307 clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 2514 if (expect_false (!ev_is_active (w)))
2309 return; 2515 return;
2310 2516
2311 { 2517 {
2312 int active = ((W)w)->active; 2518 int active = ev_active (w);
2519
2313 checks [active - 1] = checks [--checkcnt]; 2520 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active; 2521 ev_active (checks [active - 1]) = active;
2315 } 2522 }
2316 2523
2317 ev_stop (EV_A_ (W)w); 2524 ev_stop (EV_A_ (W)w);
2318} 2525}
2319 2526
2415 clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
2417 return; 2624 return;
2418 2625
2419 { 2626 {
2420 int active = ((W)w)->active; 2627 int active = ev_active (w);
2628
2421 forks [active - 1] = forks [--forkcnt]; 2629 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active; 2630 ev_active (forks [active - 1]) = active;
2423 } 2631 }
2424 2632
2425 ev_stop (EV_A_ (W)w); 2633 ev_stop (EV_A_ (W)w);
2426} 2634}
2427#endif 2635#endif
2446 clear_pending (EV_A_ (W)w); 2654 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w))) 2655 if (expect_false (!ev_is_active (w)))
2448 return; 2656 return;
2449 2657
2450 { 2658 {
2451 int active = ((W)w)->active; 2659 int active = ev_active (w);
2660
2452 asyncs [active - 1] = asyncs [--asynccnt]; 2661 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active; 2662 ev_active (asyncs [active - 1]) = active;
2454 } 2663 }
2455 2664
2456 ev_stop (EV_A_ (W)w); 2665 ev_stop (EV_A_ (W)w);
2457} 2666}
2458 2667
2459void 2668void
2460ev_async_send (EV_P_ ev_async *w) 2669ev_async_send (EV_P_ ev_async *w)
2461{ 2670{
2462 w->sent = 1; 2671 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1); 2672 evpipe_write (EV_A_ &gotasync);
2464} 2673}
2465#endif 2674#endif
2466 2675
2467/*****************************************************************************/ 2676/*****************************************************************************/
2468 2677

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines