ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.236 by root, Wed May 7 14:46:22 2008 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
422 W w; 446 W w;
423 int events; 447 int events;
424} ANPENDING; 448} ANPENDING;
425 449
426#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
427typedef struct 452typedef struct
428{ 453{
429 WL head; 454 WL head;
430} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
431#endif 474#endif
432 475
433#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
434 477
435 struct ev_loop 478 struct ev_loop
760} 803}
761 804
762/*****************************************************************************/ 805/*****************************************************************************/
763 806
764/* 807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
765 * at the moment we allow libev the luxury of two heaps, 814 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 816 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 817 * the difference is about 5% with 50000+ watchers.
769 */ 818 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 819#if EV_USE_4HEAP
772 820
821#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
774 905
775/* towards the root */ 906/* towards the root */
776void inline_speed 907void inline_speed
777upheap (WT *heap, int k) 908upheap (ANHE *heap, int k)
778{ 909{
779 WT w = heap [k]; 910 ANHE he = heap [k];
780 911
781 for (;;) 912 for (;;)
782 { 913 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0; 914 int p = HPARENT (k);
784 915
785 if (p >= HEAP0 || heap [p]->at <= w->at) 916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
786 break; 917 break;
787 918
788 heap [k] = heap [p]; 919 heap [k] = heap [p];
789 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (heap [k])) = k;
790 k = p; 921 k = p;
791 } 922 }
792 923
793 heap [k] = w; 924 heap [k] = he;
794 ev_active (heap [k]) = k; 925 ev_active (ANHE_w (he)) = k;
795} 926}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
809
810 // find minimum child
811 if (expect_true (pos +3 < E))
812 {
813 /* fast path */
814 (minpos = pos + 0), (minat = (*minpos)->at);
815 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
816 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
817 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
818 }
819 else
820 {
821 /* slow path */
822 if (pos >= E)
823 break;
824 (minpos = pos + 0), (minat = (*minpos)->at);
825 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
826 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
827 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
828 }
829
830 if (w->at <= minat)
831 break;
832
833 ev_active (*minpos) = k;
834 heap [k] = *minpos;
835
836 k = minpos - heap;
837 }
838
839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
890 ((W)heap [k])->active = k;
891
892 k = c;
893 }
894
895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899 927
900void inline_size 928void inline_size
901adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
902{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
903 upheap (heap, k); 932 upheap (heap, k);
933 else
904 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
905} 947}
906 948
907/*****************************************************************************/ 949/*****************************************************************************/
908 950
909typedef struct 951typedef struct
1427 1469
1428 postfork = 0; 1470 postfork = 0;
1429} 1471}
1430 1472
1431#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1432struct ev_loop * 1475struct ev_loop *
1433ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1434{ 1477{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 1479
1454void 1497void
1455ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1456{ 1499{
1457 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1458} 1501}
1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1459#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1460 1603
1461#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1462struct ev_loop * 1605struct ev_loop *
1463ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1464#else 1607#else
1540 { 1683 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542 1685
1543 p->w->pending = 0; 1686 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1545 } 1689 }
1546 } 1690 }
1547} 1691}
1548 1692
1549#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1570#endif 1714#endif
1571 1715
1572void inline_size 1716void inline_size
1573timers_reify (EV_P) 1717timers_reify (EV_P)
1574{ 1718{
1719 EV_FREQUENT_CHECK;
1720
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 1722 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1578 1724
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580 1726
1581 /* first reschedule or stop timer */ 1727 /* first reschedule or stop timer */
1582 if (w->repeat) 1728 if (w->repeat)
1583 { 1729 {
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585
1586 ev_at (w) += w->repeat; 1730 ev_at (w) += w->repeat;
1587 if (ev_at (w) < mn_now) 1731 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now; 1732 ev_at (w) = mn_now;
1589 1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1590 downheap (timers, timercnt, HEAP0); 1737 downheap (timers, timercnt, HEAP0);
1591 } 1738 }
1592 else 1739 else
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 1741
1742 EV_FREQUENT_CHECK;
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1596 } 1744 }
1597} 1745}
1598 1746
1599#if EV_PERIODIC_ENABLE 1747#if EV_PERIODIC_ENABLE
1600void inline_size 1748void inline_size
1601periodics_reify (EV_P) 1749periodics_reify (EV_P)
1602{ 1750{
1751 EV_FREQUENT_CHECK;
1752
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 1754 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1606 1756
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1608 1758
1609 /* first reschedule or stop timer */ 1759 /* first reschedule or stop timer */
1610 if (w->reschedule_cb) 1760 if (w->reschedule_cb)
1611 { 1761 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 1767 downheap (periodics, periodiccnt, HEAP0);
1615 } 1768 }
1616 else if (w->interval) 1769 else if (w->interval)
1617 { 1770 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1621 downheap (periodics, periodiccnt, HEAP0); 1786 downheap (periodics, periodiccnt, HEAP0);
1622 } 1787 }
1623 else 1788 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 1790
1791 EV_FREQUENT_CHECK;
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1627 } 1793 }
1628} 1794}
1629 1795
1630static void noinline 1796static void noinline
1631periodics_reschedule (EV_P) 1797periodics_reschedule (EV_P)
1632{ 1798{
1633 int i; 1799 int i;
1634 1800
1635 /* adjust periodics after time jump */ 1801 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 1803 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 1805
1640 if (w->reschedule_cb) 1806 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 1808 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1644 }
1645 1810
1646 /* now rebuild the heap */ 1811 ANHE_at_cache (periodics [i]);
1647 for (i = periodiccnt >> 1; --i; ) 1812 }
1813
1648 downheap (periodics, periodiccnt, i + HEAP0); 1814 reheap (periodics, periodiccnt);
1649} 1815}
1650#endif 1816#endif
1651 1817
1652void inline_speed 1818void inline_speed
1653time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1707 { 1873 {
1708#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1710#endif 1876#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now; 1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1714 } 1884 }
1715 1885
1716 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1717 } 1887 }
1718} 1888}
1738 1908
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1740 1910
1741 do 1911 do
1742 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1743#ifndef _WIN32 1917#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1746 { 1920 {
1747 curpid = getpid (); 1921 curpid = getpid ();
1788 1962
1789 waittime = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1790 1964
1791 if (timercnt) 1965 if (timercnt)
1792 { 1966 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1794 if (waittime > to) waittime = to; 1968 if (waittime > to) waittime = to;
1795 } 1969 }
1796 1970
1797#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 1972 if (periodiccnt)
1799 { 1973 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1801 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1802 } 1976 }
1803#endif 1977#endif
1804 1978
1805 if (expect_false (waittime < timeout_blocktime)) 1979 if (expect_false (waittime < timeout_blocktime))
1942 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1943 return; 2117 return;
1944 2118
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1946 2120
2121 EV_FREQUENT_CHECK;
2122
1947 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1949 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1950 2126
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1953} 2131}
1954 2132
1955void noinline 2133void noinline
1956ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1957{ 2135{
1958 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1960 return; 2138 return;
1961 2139
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
1963 2143
1964 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1966 2146
1967 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1968} 2150}
1969 2151
1970void noinline 2152void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1972{ 2154{
1975 2157
1976 ev_at (w) += mn_now; 2158 ev_at (w) += mn_now;
1977 2159
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
2168 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 2169 upheap (timers, ev_active (w));
1984 2170
2171 EV_FREQUENT_CHECK;
2172
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 2174}
1987 2175
1988void noinline 2176void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1990{ 2178{
1991 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1993 return; 2181 return;
1994 2182
2183 EV_FREQUENT_CHECK;
2184
1995 { 2185 {
1996 int active = ev_active (w); 2186 int active = ev_active (w);
1997 2187
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 2189
2190 --timercnt;
2191
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 2192 if (expect_true (active < timercnt + HEAP0))
2001 { 2193 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 2194 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
2004 } 2196 }
2005
2006 --timercnt;
2007 } 2197 }
2198
2199 EV_FREQUENT_CHECK;
2008 2200
2009 ev_at (w) -= mn_now; 2201 ev_at (w) -= mn_now;
2010 2202
2011 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
2012} 2204}
2013 2205
2014void noinline 2206void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
2016{ 2208{
2209 EV_FREQUENT_CHECK;
2210
2017 if (ev_is_active (w)) 2211 if (ev_is_active (w))
2018 { 2212 {
2019 if (w->repeat) 2213 if (w->repeat)
2020 { 2214 {
2021 ev_at (w) = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 2217 adjustheap (timers, timercnt, ev_active (w));
2023 } 2218 }
2024 else 2219 else
2025 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
2026 } 2221 }
2027 else if (w->repeat) 2222 else if (w->repeat)
2028 { 2223 {
2029 ev_at (w) = w->repeat; 2224 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
2031 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
2032} 2229}
2033 2230
2034#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
2035void noinline 2232void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 2245 }
2049 else 2246 else
2050 ev_at (w) = w->offset; 2247 ev_at (w) = w->offset;
2051 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2255 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 2256 upheap (periodics, ev_active (w));
2056 2257
2258 EV_FREQUENT_CHECK;
2259
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 2261}
2059 2262
2060void noinline 2263void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
2062{ 2265{
2063 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
2065 return; 2268 return;
2066 2269
2270 EV_FREQUENT_CHECK;
2271
2067 { 2272 {
2068 int active = ev_active (w); 2273 int active = ev_active (w);
2069 2274
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 2276
2277 --periodiccnt;
2278
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2279 if (expect_true (active < periodiccnt + HEAP0))
2073 { 2280 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
2076 } 2283 }
2077
2078 --periodiccnt;
2079 } 2284 }
2285
2286 EV_FREQUENT_CHECK;
2080 2287
2081 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
2082} 2289}
2083 2290
2084void noinline 2291void noinline
2104 return; 2311 return;
2105 2312
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2107 2314
2108 evpipe_init (EV_A); 2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2109 2318
2110 { 2319 {
2111#ifndef _WIN32 2320#ifndef _WIN32
2112 sigset_t full, prev; 2321 sigset_t full, prev;
2113 sigfillset (&full); 2322 sigfillset (&full);
2134 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
2137#endif 2346#endif
2138 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
2139} 2350}
2140 2351
2141void noinline 2352void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
2143{ 2354{
2144 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
2146 return; 2357 return;
2147 2358
2359 EV_FREQUENT_CHECK;
2360
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
2150 2363
2151 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
2152 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
2153} 2368}
2154 2369
2155void 2370void
2156ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
2157{ 2372{
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 2375#endif
2161 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
2162 return; 2377 return;
2163 2378
2379 EV_FREQUENT_CHECK;
2380
2164 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
2166} 2385}
2167 2386
2168void 2387void
2169ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
2170{ 2389{
2171 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
2173 return; 2392 return;
2174 2393
2394 EV_FREQUENT_CHECK;
2395
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
2177} 2400}
2178 2401
2179#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
2180 2403
2181# ifdef _WIN32 2404# ifdef _WIN32
2409 else 2632 else
2410#endif 2633#endif
2411 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2412 2635
2413 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2414} 2639}
2415 2640
2416void 2641void
2417ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2418{ 2643{
2419 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2421 return; 2646 return;
2422 2647
2648 EV_FREQUENT_CHECK;
2649
2423#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2425#endif 2652#endif
2426 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2427 2654
2428 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2429} 2658}
2430#endif 2659#endif
2431 2660
2432#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2433void 2662void
2435{ 2664{
2436 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2437 return; 2666 return;
2438 2667
2439 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2440 2671
2441 { 2672 {
2442 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2443 2674
2444 ++idleall; 2675 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2446 2677
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2449 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2450} 2683}
2451 2684
2452void 2685void
2453ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2454{ 2687{
2455 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2457 return; 2690 return;
2458 2691
2692 EV_FREQUENT_CHECK;
2693
2459 { 2694 {
2460 int active = ev_active (w); 2695 int active = ev_active (w);
2461 2696
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 2699
2465 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2466 --idleall; 2701 --idleall;
2467 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2468} 2705}
2469#endif 2706#endif
2470 2707
2471void 2708void
2472ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2473{ 2710{
2474 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2475 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2476 2715
2477 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2480} 2721}
2481 2722
2482void 2723void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2484{ 2725{
2485 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2487 return; 2728 return;
2488 2729
2730 EV_FREQUENT_CHECK;
2731
2489 { 2732 {
2490 int active = ev_active (w); 2733 int active = ev_active (w);
2491 2734
2492 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 2736 ev_active (prepares [active - 1]) = active;
2494 } 2737 }
2495 2738
2496 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2497} 2742}
2498 2743
2499void 2744void
2500ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2501{ 2746{
2502 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2503 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2504 2751
2505 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2508} 2757}
2509 2758
2510void 2759void
2511ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2512{ 2761{
2513 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2515 return; 2764 return;
2516 2765
2766 EV_FREQUENT_CHECK;
2767
2517 { 2768 {
2518 int active = ev_active (w); 2769 int active = ev_active (w);
2519 2770
2520 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 2772 ev_active (checks [active - 1]) = active;
2522 } 2773 }
2523 2774
2524 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2525} 2778}
2526 2779
2527#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2528void noinline 2781void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2576 struct ev_loop *loop = w->other; 2829 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 2832 }
2580 2833
2834 EV_FREQUENT_CHECK;
2835
2581 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2583 2838
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 2840 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 2841 ev_prepare_start (EV_A_ &w->prepare);
2587 2842
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 2844
2590 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2591} 2848}
2592 2849
2593void 2850void
2594ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2595{ 2852{
2596 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2598 return; 2855 return;
2599 2856
2857 EV_FREQUENT_CHECK;
2858
2600 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 2860 ev_prepare_stop (EV_A_ &w->prepare);
2602 2861
2603 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2604} 2865}
2605#endif 2866#endif
2606 2867
2607#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2608void 2869void
2609ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2610{ 2871{
2611 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2612 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2613 2876
2614 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2617} 2882}
2618 2883
2619void 2884void
2620ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2621{ 2886{
2622 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2624 return; 2889 return;
2625 2890
2891 EV_FREQUENT_CHECK;
2892
2626 { 2893 {
2627 int active = ev_active (w); 2894 int active = ev_active (w);
2628 2895
2629 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 2897 ev_active (forks [active - 1]) = active;
2631 } 2898 }
2632 2899
2633 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2634} 2903}
2635#endif 2904#endif
2636 2905
2637#if EV_ASYNC_ENABLE 2906#if EV_ASYNC_ENABLE
2638void 2907void
2640{ 2909{
2641 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2642 return; 2911 return;
2643 2912
2644 evpipe_init (EV_A); 2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2645 2916
2646 ev_start (EV_A_ (W)w, ++asynccnt); 2917 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2649} 2922}
2650 2923
2651void 2924void
2652ev_async_stop (EV_P_ ev_async *w) 2925ev_async_stop (EV_P_ ev_async *w)
2653{ 2926{
2654 clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
2656 return; 2929 return;
2657 2930
2931 EV_FREQUENT_CHECK;
2932
2658 { 2933 {
2659 int active = ev_active (w); 2934 int active = ev_active (w);
2660 2935
2661 asyncs [active - 1] = asyncs [--asynccnt]; 2936 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 2937 ev_active (asyncs [active - 1]) = active;
2663 } 2938 }
2664 2939
2665 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2666} 2943}
2667 2944
2668void 2945void
2669ev_async_send (EV_P_ ev_async *w) 2946ev_async_send (EV_P_ ev_async *w)
2670{ 2947{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines