ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.236 by root, Wed May 7 14:46:22 2008 UTC vs.
Revision 1.311 by root, Wed Jul 29 09:36:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
169# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
170#endif 232#endif
171 233
172#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 236#endif
175 237
176#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
177# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
178#endif 244#endif
179 245
180#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
182#endif 248#endif
235# else 301# else
236# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
237# endif 303# endif
238#endif 304#endif
239 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 347
242#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 365# include <sys/select.h>
260# endif 366# endif
261#endif 367#endif
262 368
263#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
264# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
265#endif 378#endif
266 379
267#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 381# include <winsock.h>
269#endif 382#endif
270 383
271#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
274# ifdef __cplusplus 397# ifdef __cplusplus
275extern "C" { 398extern "C" {
276# endif 399# endif
277int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus 401# ifdef __cplusplus
279} 402}
280# endif 403# endif
281#endif 404#endif
282 405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
283/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
284 417
285/* 418/*
286 * This is used to avoid floating point rounding problems. 419 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 420 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 421 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 448# define inline_speed static noinline
316#else 449#else
317# define inline_speed static inline 450# define inline_speed static inline
318#endif 451#endif
319 452
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
322 460
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
325 463
326typedef ev_watcher *W; 464typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
329 467
330#define ev_active(w) ((W)(w))->active 468#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 469#define ev_at(w) ((WT)(w))->at
332 470
333#if EV_USE_MONOTONIC 471#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 479#endif
338 480
339#ifdef _WIN32 481#ifdef _WIN32
340# include "ev_win32.c" 482# include "ev_win32.c"
349{ 491{
350 syserr_cb = cb; 492 syserr_cb = cb;
351} 493}
352 494
353static void noinline 495static void noinline
354syserr (const char *msg) 496ev_syserr (const char *msg)
355{ 497{
356 if (!msg) 498 if (!msg)
357 msg = "(libev) system error"; 499 msg = "(libev) system error";
358 500
359 if (syserr_cb) 501 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 547#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 548#define ev_free(ptr) ev_realloc ((ptr), 0)
407 549
408/*****************************************************************************/ 550/*****************************************************************************/
409 551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
410typedef struct 556typedef struct
411{ 557{
412 WL head; 558 WL head;
413 unsigned char events; 559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
415#if EV_SELECT_IS_WINSOCKET 566#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 567 SOCKET handle;
417#endif 568#endif
418} ANFD; 569} ANFD;
419 570
571/* stores the pending event set for a given watcher */
420typedef struct 572typedef struct
421{ 573{
422 W w; 574 W w;
423 int events; 575 int events; /* the pending event set for the given watcher */
424} ANPENDING; 576} ANPENDING;
425 577
426#if EV_USE_INOTIFY 578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
427typedef struct 580typedef struct
428{ 581{
429 WL head; 582 WL head;
430} ANFS; 583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
431#endif 604#endif
432 605
433#if EV_MULTIPLICITY 606#if EV_MULTIPLICITY
434 607
435 struct ev_loop 608 struct ev_loop
454 627
455 static int ev_default_loop_ptr; 628 static int ev_default_loop_ptr;
456 629
457#endif 630#endif
458 631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
643
459/*****************************************************************************/ 644/*****************************************************************************/
460 645
646#ifndef EV_HAVE_EV_TIME
461ev_tstamp 647ev_tstamp
462ev_time (void) 648ev_time (void)
463{ 649{
464#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
465 struct timespec ts; 653 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 656 }
657#endif
658
469 struct timeval tv; 659 struct timeval tv;
470 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 662}
663#endif
474 664
475ev_tstamp inline_size 665inline_size ev_tstamp
476get_clock (void) 666get_clock (void)
477{ 667{
478#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 669 if (expect_true (have_monotonic))
480 { 670 {
513 struct timeval tv; 703 struct timeval tv;
514 704
515 tv.tv_sec = (time_t)delay; 705 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
518 select (0, 0, 0, 0, &tv); 711 select (0, 0, 0, 0, &tv);
519#endif 712#endif
520 } 713 }
521} 714}
522 715
523/*****************************************************************************/ 716/*****************************************************************************/
524 717
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 719
527int inline_size 720/* find a suitable new size for the given array, */
721/* hopefully by rounding to a ncie-to-malloc size */
722inline_size int
528array_nextsize (int elem, int cur, int cnt) 723array_nextsize (int elem, int cur, int cnt)
529{ 724{
530 int ncur = cur + 1; 725 int ncur = cur + 1;
531 726
532 do 727 do
549array_realloc (int elem, void *base, int *cur, int cnt) 744array_realloc (int elem, void *base, int *cur, int cnt)
550{ 745{
551 *cur = array_nextsize (elem, *cur, cnt); 746 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 747 return ev_realloc (base, elem * *cur);
553} 748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 752
555#define array_needsize(type,base,cur,cnt,init) \ 753#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 754 if (expect_false ((cnt) > (cur))) \
557 { \ 755 { \
558 int ocur_ = (cur); \ 756 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 769 }
572#endif 770#endif
573 771
574#define array_free(stem, idx) \ 772#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 774
577/*****************************************************************************/ 775/*****************************************************************************/
776
777/* dummy callback for pending events */
778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
780{
781}
578 782
579void noinline 783void noinline
580ev_feed_event (EV_P_ void *w, int revents) 784ev_feed_event (EV_P_ void *w, int revents)
581{ 785{
582 W w_ = (W)w; 786 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 795 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 796 pendings [pri][w_->pending - 1].events = revents;
593 } 797 }
594} 798}
595 799
596void inline_speed 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 817{
599 int i; 818 int i;
600 819
601 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
603} 822}
604 823
605/*****************************************************************************/ 824/*****************************************************************************/
606 825
607void inline_size 826inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 827fd_event_nc (EV_P_ int fd, int revents)
622{ 828{
623 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
624 ev_io *w; 830 ev_io *w;
625 831
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 836 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
632 } 838 }
633} 839}
634 840
841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
847
848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850}
851
635void 852void
636ev_feed_fd_event (EV_P_ int fd, int revents) 853ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 854{
638 if (fd >= 0 && fd < anfdmax) 855 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 856 fd_event_nc (EV_A_ fd, revents);
640} 857}
641 858
642void inline_size 859/* make sure the external fd watch events are in-sync */
860/* with the kernel/libev internal state */
861inline_size void
643fd_reify (EV_P) 862fd_reify (EV_P)
644{ 863{
645 int i; 864 int i;
646 865
647 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 875 events |= (unsigned char)w->events;
657 876
658#if EV_SELECT_IS_WINSOCKET 877#if EV_SELECT_IS_WINSOCKET
659 if (events) 878 if (events)
660 { 879 {
661 unsigned long argp; 880 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 881 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 883 #else
665 anfd->handle = _get_osfhandle (fd); 884 anfd->handle = _get_osfhandle (fd);
666 #endif 885 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 887 }
669#endif 888#endif
670 889
671 { 890 {
672 unsigned char o_events = anfd->events; 891 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 892 unsigned char o_reify = anfd->reify;
674 893
675 anfd->reify = 0; 894 anfd->reify = 0;
676 anfd->events = events; 895 anfd->events = events;
677 896
678 if (o_events != events || o_reify & EV_IOFDSET) 897 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 898 backend_modify (EV_A_ fd, o_events, events);
680 } 899 }
681 } 900 }
682 901
683 fdchangecnt = 0; 902 fdchangecnt = 0;
684} 903}
685 904
686void inline_size 905/* something about the given fd changed */
906inline_size void
687fd_change (EV_P_ int fd, int flags) 907fd_change (EV_P_ int fd, int flags)
688{ 908{
689 unsigned char reify = anfds [fd].reify; 909 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 910 anfds [fd].reify |= flags;
691 911
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
697 } 917 }
698} 918}
699 919
700void inline_speed 920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
701fd_kill (EV_P_ int fd) 922fd_kill (EV_P_ int fd)
702{ 923{
703 ev_io *w; 924 ev_io *w;
704 925
705 while ((w = (ev_io *)anfds [fd].head)) 926 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 928 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 930 }
710} 931}
711 932
712int inline_size 933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
713fd_valid (int fd) 935fd_valid (int fd)
714{ 936{
715#ifdef _WIN32 937#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 938 return _get_osfhandle (fd) != -1;
717#else 939#else
725{ 947{
726 int fd; 948 int fd;
727 949
728 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 951 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 953 fd_kill (EV_A_ fd);
732} 954}
733 955
734/* called on ENOMEM in select/poll to kill some fds and retry */ 956/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 957static void noinline
739 961
740 for (fd = anfdmax; fd--; ) 962 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 963 if (anfds [fd].events)
742 { 964 {
743 fd_kill (EV_A_ fd); 965 fd_kill (EV_A_ fd);
744 return; 966 break;
745 } 967 }
746} 968}
747 969
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 970/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 971static void noinline
753 975
754 for (fd = 0; fd < anfdmax; ++fd) 976 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 977 if (anfds [fd].events)
756 { 978 {
757 anfds [fd].events = 0; 979 anfds [fd].events = 0;
980 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 982 }
760} 983}
761 984
762/*****************************************************************************/ 985/*****************************************************************************/
986
987/*
988 * the heap functions want a real array index. array index 0 uis guaranteed to not
989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
990 * the branching factor of the d-tree.
991 */
763 992
764/* 993/*
765 * at the moment we allow libev the luxury of two heaps, 994 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 996 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 997 * the difference is about 5% with 50000+ watchers.
769 */ 998 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 999#if EV_USE_4HEAP
772 1000
1001#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
774 1005
775/* towards the root */ 1006/* away from the root */
776void inline_speed 1007inline_speed void
777upheap (WT *heap, int k) 1008downheap (ANHE *heap, int N, int k)
778{ 1009{
779 WT w = heap [k]; 1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
780 1012
781 for (;;) 1013 for (;;)
782 { 1014 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 1015 ev_tstamp minat;
807 WT *minpos; 1016 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 1018
810 // find minimum child 1019 /* find minimum child */
811 if (expect_true (pos +3 < E)) 1020 if (expect_true (pos + DHEAP - 1 < E))
812 { 1021 {
813 /* fast path */
814 (minpos = pos + 0), (minat = (*minpos)->at); 1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
815 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
816 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
817 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
818 } 1033 }
819 else 1034 else
820 {
821 /* slow path */
822 if (pos >= E)
823 break;
824 (minpos = pos + 0), (minat = (*minpos)->at);
825 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
826 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
827 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
828 }
829
830 if (w->at <= minat)
831 break; 1035 break;
832 1036
833 ev_active (*minpos) = k; 1037 if (ANHE_at (he) <= minat)
1038 break;
1039
834 heap [k] = *minpos; 1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
835 1042
836 k = minpos - heap; 1043 k = minpos - heap;
837 } 1044 }
838 1045
839 heap [k] = w; 1046 heap [k] = he;
840 ev_active (heap [k]) = k; 1047 ev_active (ANHE_w (he)) = k;
841} 1048}
842 1049
843#else // 4HEAP 1050#else /* 4HEAP */
844 1051
845#define HEAP0 1 1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
846 1055
847/* towards the root */ 1056/* away from the root */
848void inline_speed 1057inline_speed void
849upheap (WT *heap, int k) 1058downheap (ANHE *heap, int N, int k)
850{ 1059{
851 WT w = heap [k]; 1060 ANHE he = heap [k];
852 1061
853 for (;;) 1062 for (;;)
854 { 1063 {
855 int p = k >> 1; 1064 int c = k << 1;
856 1065
857 /* maybe we could use a dummy element at heap [0]? */ 1066 if (c >= N + HEAP0)
858 if (!p || heap [p]->at <= w->at)
859 break; 1067 break;
860 1068
861 heap [k] = heap [p]; 1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
862 ev_active (heap [k]) = k; 1070 ? 1 : 0;
863 k = p;
864 }
865 1071
866 heap [k] = w; 1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break; 1073 break;
882 1074
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c]; 1075 heap [k] = heap [c];
890 ((W)heap [k])->active = k; 1076 ev_active (ANHE_w (heap [k])) = k;
891 1077
892 k = c; 1078 k = c;
893 } 1079 }
894 1080
895 heap [k] = w; 1081 heap [k] = he;
1082 ev_active (ANHE_w (he)) = k;
1083}
1084#endif
1085
1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
1099 heap [k] = heap [p];
896 ev_active (heap [k]) = k; 1100 ev_active (ANHE_w (heap [k])) = k;
897} 1101 k = p;
898#endif 1102 }
899 1103
900void inline_size 1104 heap [k] = he;
1105 ev_active (ANHE_w (he)) = k;
1106}
1107
1108/* move an element suitably so it is in a correct place */
1109inline_size void
901adjustheap (WT *heap, int N, int k) 1110adjustheap (ANHE *heap, int N, int k)
902{ 1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
903 upheap (heap, k); 1113 upheap (heap, k);
1114 else
904 downheap (heap, N, k); 1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
905} 1128}
906 1129
907/*****************************************************************************/ 1130/*****************************************************************************/
908 1131
1132/* associate signal watchers to a signal signal */
909typedef struct 1133typedef struct
910{ 1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
911 WL head; 1139 WL head;
912 EV_ATOMIC_T gotsig;
913} ANSIG; 1140} ANSIG;
914 1141
915static ANSIG *signals; 1142static ANSIG signals [EV_NSIG - 1];
916static int signalmax;
917
918static EV_ATOMIC_T gotsig;
919
920void inline_size
921signals_init (ANSIG *base, int count)
922{
923 while (count--)
924 {
925 base->head = 0;
926 base->gotsig = 0;
927
928 ++base;
929 }
930}
931 1143
932/*****************************************************************************/ 1144/*****************************************************************************/
933 1145
934void inline_speed 1146/* used to prepare libev internal fd's */
1147/* this is not fork-safe */
1148inline_speed void
935fd_intern (int fd) 1149fd_intern (int fd)
936{ 1150{
937#ifdef _WIN32 1151#ifdef _WIN32
938 int arg = 1; 1152 unsigned long arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else 1154#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC); 1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK); 1156 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif 1157#endif
944} 1158}
945 1159
946static void noinline 1160static void noinline
947evpipe_init (EV_P) 1161evpipe_init (EV_P)
948{ 1162{
949 if (!ev_is_active (&pipeev)) 1163 if (!ev_is_active (&pipe_w))
950 { 1164 {
951#if EV_USE_EVENTFD 1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
952 if ((evfd = eventfd (0, 0)) >= 0) 1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
953 { 1171 {
954 evpipe [0] = -1; 1172 evpipe [0] = -1;
955 fd_intern (evfd); 1173 fd_intern (evfd); /* doing it twice doesn't hurt */
956 ev_io_set (&pipeev, evfd, EV_READ); 1174 ev_io_set (&pipe_w, evfd, EV_READ);
957 } 1175 }
958 else 1176 else
959#endif 1177#endif
960 { 1178 {
961 while (pipe (evpipe)) 1179 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe"); 1180 ev_syserr ("(libev) error creating signal/async pipe");
963 1181
964 fd_intern (evpipe [0]); 1182 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]); 1183 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ); 1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
967 } 1185 }
968 1186
969 ev_io_start (EV_A_ &pipeev); 1187 ev_io_start (EV_A_ &pipe_w);
970 ev_unref (EV_A); /* watcher should not keep loop alive */ 1188 ev_unref (EV_A); /* watcher should not keep loop alive */
971 } 1189 }
972} 1190}
973 1191
974void inline_size 1192inline_size void
975evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{ 1194{
977 if (!*flag) 1195 if (!*flag)
978 { 1196 {
979 int old_errno = errno; /* save errno because write might clobber it */ 1197 int old_errno = errno; /* save errno because write might clobber it */
992 1210
993 errno = old_errno; 1211 errno = old_errno;
994 } 1212 }
995} 1213}
996 1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
997static void 1217static void
998pipecb (EV_P_ ev_io *iow, int revents) 1218pipecb (EV_P_ ev_io *iow, int revents)
999{ 1219{
1220 int i;
1221
1000#if EV_USE_EVENTFD 1222#if EV_USE_EVENTFD
1001 if (evfd >= 0) 1223 if (evfd >= 0)
1002 { 1224 {
1003 uint64_t counter; 1225 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t)); 1226 read (evfd, &counter, sizeof (uint64_t));
1008 { 1230 {
1009 char dummy; 1231 char dummy;
1010 read (evpipe [0], &dummy, 1); 1232 read (evpipe [0], &dummy, 1);
1011 } 1233 }
1012 1234
1013 if (gotsig && ev_is_default_loop (EV_A)) 1235 if (sig_pending)
1014 { 1236 {
1015 int signum; 1237 sig_pending = 0;
1016 gotsig = 0;
1017 1238
1018 for (signum = signalmax; signum--; ) 1239 for (i = EV_NSIG - 1; i--; )
1019 if (signals [signum].gotsig) 1240 if (expect_false (signals [i].pending))
1020 ev_feed_signal_event (EV_A_ signum + 1); 1241 ev_feed_signal_event (EV_A_ i + 1);
1021 } 1242 }
1022 1243
1023#if EV_ASYNC_ENABLE 1244#if EV_ASYNC_ENABLE
1024 if (gotasync) 1245 if (async_pending)
1025 { 1246 {
1026 int i; 1247 async_pending = 0;
1027 gotasync = 0;
1028 1248
1029 for (i = asynccnt; i--; ) 1249 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent) 1250 if (asyncs [i]->sent)
1031 { 1251 {
1032 asyncs [i]->sent = 0; 1252 asyncs [i]->sent = 0;
1040 1260
1041static void 1261static void
1042ev_sighandler (int signum) 1262ev_sighandler (int signum)
1043{ 1263{
1044#if EV_MULTIPLICITY 1264#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct; 1265 EV_P = signals [signum - 1].loop;
1046#endif 1266#endif
1047 1267
1048#if _WIN32 1268#if _WIN32
1049 signal (signum, ev_sighandler); 1269 signal (signum, ev_sighandler);
1050#endif 1270#endif
1051 1271
1052 signals [signum - 1].gotsig = 1; 1272 signals [signum - 1].pending = 1;
1053 evpipe_write (EV_A_ &gotsig); 1273 evpipe_write (EV_A_ &sig_pending);
1054} 1274}
1055 1275
1056void noinline 1276void noinline
1057ev_feed_signal_event (EV_P_ int signum) 1277ev_feed_signal_event (EV_P_ int signum)
1058{ 1278{
1059 WL w; 1279 WL w;
1060 1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1061#if EV_MULTIPLICITY 1286#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1287 /* it is permissible to try to feed a signal to the wrong loop */
1063#endif 1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1064 1289
1065 --signum; 1290 if (expect_false (signals [signum].loop != EV_A))
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return; 1291 return;
1292#endif
1069 1293
1070 signals [signum].gotsig = 0; 1294 signals [signum].pending = 0;
1071 1295
1072 for (w = signals [signum].head; w; w = w->next) 1296 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074} 1298}
1075 1299
1300#if EV_USE_SIGNALFD
1301static void
1302sigfdcb (EV_P_ ev_io *iow, int revents)
1303{
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
1315 break;
1316 }
1317}
1318#endif
1319
1076/*****************************************************************************/ 1320/*****************************************************************************/
1077 1321
1078static WL childs [EV_PID_HASHSIZE]; 1322static WL childs [EV_PID_HASHSIZE];
1079 1323
1080#ifndef _WIN32 1324#ifndef _WIN32
1083 1327
1084#ifndef WIFCONTINUED 1328#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0 1329# define WIFCONTINUED(status) 0
1086#endif 1330#endif
1087 1331
1088void inline_speed 1332/* handle a single child status event */
1333inline_speed void
1089child_reap (EV_P_ int chain, int pid, int status) 1334child_reap (EV_P_ int chain, int pid, int status)
1090{ 1335{
1091 ev_child *w; 1336 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093 1338
1106 1351
1107#ifndef WCONTINUED 1352#ifndef WCONTINUED
1108# define WCONTINUED 0 1353# define WCONTINUED 0
1109#endif 1354#endif
1110 1355
1356/* called on sigchld etc., calls waitpid */
1111static void 1357static void
1112childcb (EV_P_ ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
1113{ 1359{
1114 int pid, status; 1360 int pid, status;
1115 1361
1196 /* kqueue is borked on everything but netbsd apparently */ 1442 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */ 1443 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE; 1444 flags &= ~EVBACKEND_KQUEUE;
1199#endif 1445#endif
1200#ifdef __APPLE__ 1446#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation 1447 /* only select works correctly on that "unix-certified" platform */
1202 flags &= ~EVBACKEND_POLL; 1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1203#endif 1450#endif
1204 1451
1205 return flags; 1452 return flags;
1206} 1453}
1207 1454
1221ev_backend (EV_P) 1468ev_backend (EV_P)
1222{ 1469{
1223 return backend; 1470 return backend;
1224} 1471}
1225 1472
1473#if EV_MINIMAL < 2
1226unsigned int 1474unsigned int
1227ev_loop_count (EV_P) 1475ev_loop_count (EV_P)
1228{ 1476{
1229 return loop_count; 1477 return loop_count;
1230} 1478}
1231 1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
1232void 1486void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{ 1488{
1235 io_blocktime = interval; 1489 io_blocktime = interval;
1236} 1490}
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{ 1494{
1241 timeout_blocktime = interval; 1495 timeout_blocktime = interval;
1242} 1496}
1243 1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
1244static void noinline 1523static void noinline
1245loop_init (EV_P_ unsigned int flags) 1524loop_init (EV_P_ unsigned int flags)
1246{ 1525{
1247 if (!backend) 1526 if (!backend)
1248 { 1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
1249#if EV_USE_MONOTONIC 1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
1250 { 1540 {
1251 struct timespec ts; 1541 struct timespec ts;
1542
1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1253 have_monotonic = 1; 1544 have_monotonic = 1;
1254 } 1545 }
1255#endif 1546#endif
1547
1548 /* pid check not overridable via env */
1549#ifndef _WIN32
1550 if (flags & EVFLAG_FORKCHECK)
1551 curpid = getpid ();
1552#endif
1553
1554 if (!(flags & EVFLAG_NOENV)
1555 && !enable_secure ()
1556 && getenv ("LIBEV_FLAGS"))
1557 flags = atoi (getenv ("LIBEV_FLAGS"));
1256 1558
1257 ev_rt_now = ev_time (); 1559 ev_rt_now = ev_time ();
1258 mn_now = get_clock (); 1560 mn_now = get_clock ();
1259 now_floor = mn_now; 1561 now_floor = mn_now;
1260 rtmn_diff = ev_rt_now - mn_now; 1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
1261 1566
1262 io_blocktime = 0.; 1567 io_blocktime = 0.;
1263 timeout_blocktime = 0.; 1568 timeout_blocktime = 0.;
1264 backend = 0; 1569 backend = 0;
1265 backend_fd = -1; 1570 backend_fd = -1;
1266 gotasync = 0; 1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1267#if EV_USE_INOTIFY 1575#if EV_USE_INOTIFY
1268 fs_fd = -2; 1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1269#endif 1577#endif
1270 1578#if EV_USE_SIGNALFD
1271 /* pid check not overridable via env */ 1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1272#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK)
1274 curpid = getpid ();
1275#endif 1580#endif
1276
1277 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS"))
1280 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1581
1282 if (!(flags & 0x0000ffffU)) 1582 if (!(flags & 0x0000ffffU))
1283 flags |= ev_recommended_backends (); 1583 flags |= ev_recommended_backends ();
1284 1584
1285#if EV_USE_PORT 1585#if EV_USE_PORT
1296#endif 1596#endif
1297#if EV_USE_SELECT 1597#if EV_USE_SELECT
1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1299#endif 1599#endif
1300 1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
1301 ev_init (&pipeev, pipecb); 1603 ev_init (&pipe_w, pipecb);
1302 ev_set_priority (&pipeev, EV_MAXPRI); 1604 ev_set_priority (&pipe_w, EV_MAXPRI);
1303 } 1605 }
1304} 1606}
1305 1607
1608/* free up a loop structure */
1306static void noinline 1609static void noinline
1307loop_destroy (EV_P) 1610loop_destroy (EV_P)
1308{ 1611{
1309 int i; 1612 int i;
1310 1613
1311 if (ev_is_active (&pipeev)) 1614 if (ev_is_active (&pipe_w))
1312 { 1615 {
1313 ev_ref (EV_A); /* signal watcher */ 1616 /*ev_ref (EV_A);*/
1314 ev_io_stop (EV_A_ &pipeev); 1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1315 1618
1316#if EV_USE_EVENTFD 1619#if EV_USE_EVENTFD
1317 if (evfd >= 0) 1620 if (evfd >= 0)
1318 close (evfd); 1621 close (evfd);
1319#endif 1622#endif
1323 close (evpipe [0]); 1626 close (evpipe [0]);
1324 close (evpipe [1]); 1627 close (evpipe [1]);
1325 } 1628 }
1326 } 1629 }
1327 1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1640
1328#if EV_USE_INOTIFY 1641#if EV_USE_INOTIFY
1329 if (fs_fd >= 0) 1642 if (fs_fd >= 0)
1330 close (fs_fd); 1643 close (fs_fd);
1331#endif 1644#endif
1332 1645
1355#if EV_IDLE_ENABLE 1668#if EV_IDLE_ENABLE
1356 array_free (idle, [i]); 1669 array_free (idle, [i]);
1357#endif 1670#endif
1358 } 1671 }
1359 1672
1360 ev_free (anfds); anfdmax = 0; 1673 ev_free (anfds); anfds = 0; anfdmax = 0;
1361 1674
1362 /* have to use the microsoft-never-gets-it-right macro */ 1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
1363 array_free (fdchange, EMPTY); 1677 array_free (fdchange, EMPTY);
1364 array_free (timer, EMPTY); 1678 array_free (timer, EMPTY);
1365#if EV_PERIODIC_ENABLE 1679#if EV_PERIODIC_ENABLE
1366 array_free (periodic, EMPTY); 1680 array_free (periodic, EMPTY);
1367#endif 1681#endif
1376 1690
1377 backend = 0; 1691 backend = 0;
1378} 1692}
1379 1693
1380#if EV_USE_INOTIFY 1694#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P); 1695inline_size void infy_fork (EV_P);
1382#endif 1696#endif
1383 1697
1384void inline_size 1698inline_size void
1385loop_fork (EV_P) 1699loop_fork (EV_P)
1386{ 1700{
1387#if EV_USE_PORT 1701#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif 1703#endif
1395#endif 1709#endif
1396#if EV_USE_INOTIFY 1710#if EV_USE_INOTIFY
1397 infy_fork (EV_A); 1711 infy_fork (EV_A);
1398#endif 1712#endif
1399 1713
1400 if (ev_is_active (&pipeev)) 1714 if (ev_is_active (&pipe_w))
1401 { 1715 {
1402 /* this "locks" the handlers against writing to the pipe */ 1716 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */ 1717 /* while we modify the fd vars */
1404 gotsig = 1; 1718 sig_pending = 1;
1405#if EV_ASYNC_ENABLE 1719#if EV_ASYNC_ENABLE
1406 gotasync = 1; 1720 async_pending = 1;
1407#endif 1721#endif
1408 1722
1409 ev_ref (EV_A); 1723 ev_ref (EV_A);
1410 ev_io_stop (EV_A_ &pipeev); 1724 ev_io_stop (EV_A_ &pipe_w);
1411 1725
1412#if EV_USE_EVENTFD 1726#if EV_USE_EVENTFD
1413 if (evfd >= 0) 1727 if (evfd >= 0)
1414 close (evfd); 1728 close (evfd);
1415#endif 1729#endif
1420 close (evpipe [1]); 1734 close (evpipe [1]);
1421 } 1735 }
1422 1736
1423 evpipe_init (EV_A); 1737 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */ 1738 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ); 1739 pipecb (EV_A_ &pipe_w, EV_READ);
1426 } 1740 }
1427 1741
1428 postfork = 0; 1742 postfork = 0;
1429} 1743}
1430 1744
1431#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1746
1432struct ev_loop * 1747struct ev_loop *
1433ev_loop_new (unsigned int flags) 1748ev_loop_new (unsigned int flags)
1434{ 1749{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 1751
1437 memset (loop, 0, sizeof (struct ev_loop)); 1752 memset (EV_A, 0, sizeof (struct ev_loop));
1438
1439 loop_init (EV_A_ flags); 1753 loop_init (EV_A_ flags);
1440 1754
1441 if (ev_backend (EV_A)) 1755 if (ev_backend (EV_A))
1442 return loop; 1756 return EV_A;
1443 1757
1444 return 0; 1758 return 0;
1445} 1759}
1446 1760
1447void 1761void
1453 1767
1454void 1768void
1455ev_loop_fork (EV_P) 1769ev_loop_fork (EV_P)
1456{ 1770{
1457 postfork = 1; /* must be in line with ev_default_fork */ 1771 postfork = 1; /* must be in line with ev_default_fork */
1772}
1773#endif /* multiplicity */
1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871# endif
1872#endif
1458} 1873}
1459#endif 1874#endif
1460 1875
1461#if EV_MULTIPLICITY 1876#if EV_MULTIPLICITY
1462struct ev_loop * 1877struct ev_loop *
1467#endif 1882#endif
1468{ 1883{
1469 if (!ev_default_loop_ptr) 1884 if (!ev_default_loop_ptr)
1470 { 1885 {
1471#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
1473#else 1888#else
1474 ev_default_loop_ptr = 1; 1889 ev_default_loop_ptr = 1;
1475#endif 1890#endif
1476 1891
1477 loop_init (EV_A_ flags); 1892 loop_init (EV_A_ flags);
1494 1909
1495void 1910void
1496ev_default_destroy (void) 1911ev_default_destroy (void)
1497{ 1912{
1498#if EV_MULTIPLICITY 1913#if EV_MULTIPLICITY
1499 struct ev_loop *loop = ev_default_loop_ptr; 1914 EV_P = ev_default_loop_ptr;
1500#endif 1915#endif
1916
1917 ev_default_loop_ptr = 0;
1501 1918
1502#ifndef _WIN32 1919#ifndef _WIN32
1503 ev_ref (EV_A); /* child watcher */ 1920 ev_ref (EV_A); /* child watcher */
1504 ev_signal_stop (EV_A_ &childev); 1921 ev_signal_stop (EV_A_ &childev);
1505#endif 1922#endif
1509 1926
1510void 1927void
1511ev_default_fork (void) 1928ev_default_fork (void)
1512{ 1929{
1513#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1514 struct ev_loop *loop = ev_default_loop_ptr; 1931 EV_P = ev_default_loop_ptr;
1515#endif 1932#endif
1516 1933
1517 if (backend)
1518 postfork = 1; /* must be in line with ev_loop_fork */ 1934 postfork = 1; /* must be in line with ev_loop_fork */
1519} 1935}
1520 1936
1521/*****************************************************************************/ 1937/*****************************************************************************/
1522 1938
1523void 1939void
1524ev_invoke (EV_P_ void *w, int revents) 1940ev_invoke (EV_P_ void *w, int revents)
1525{ 1941{
1526 EV_CB_INVOKE ((W)w, revents); 1942 EV_CB_INVOKE ((W)w, revents);
1527} 1943}
1528 1944
1529void inline_speed 1945unsigned int
1530call_pending (EV_P) 1946ev_pending_count (EV_P)
1947{
1948 int pri;
1949 unsigned int count = 0;
1950
1951 for (pri = NUMPRI; pri--; )
1952 count += pendingcnt [pri];
1953
1954 return count;
1955}
1956
1957void noinline
1958ev_invoke_pending (EV_P)
1531{ 1959{
1532 int pri; 1960 int pri;
1533 1961
1534 for (pri = NUMPRI; pri--; ) 1962 for (pri = NUMPRI; pri--; )
1535 while (pendingcnt [pri]) 1963 while (pendingcnt [pri])
1536 { 1964 {
1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1538 1966
1539 if (expect_true (p->w))
1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1968 /* ^ this is no longer true, as pending_w could be here */
1542 1969
1543 p->w->pending = 0; 1970 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 1971 EV_CB_INVOKE (p->w, p->events);
1545 } 1972 EV_FREQUENT_CHECK;
1546 } 1973 }
1547} 1974}
1548 1975
1549#if EV_IDLE_ENABLE 1976#if EV_IDLE_ENABLE
1550void inline_size 1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
1551idle_reify (EV_P) 1980idle_reify (EV_P)
1552{ 1981{
1553 if (expect_false (idleall)) 1982 if (expect_false (idleall))
1554 { 1983 {
1555 int pri; 1984 int pri;
1567 } 1996 }
1568 } 1997 }
1569} 1998}
1570#endif 1999#endif
1571 2000
1572void inline_size 2001/* make timers pending */
2002inline_size void
1573timers_reify (EV_P) 2003timers_reify (EV_P)
1574{ 2004{
2005 EV_FREQUENT_CHECK;
2006
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 2008 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 2009 do
1578
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580
1581 /* first reschedule or stop timer */
1582 if (w->repeat)
1583 { 2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585 2023
1586 ev_at (w) += w->repeat; 2024 ANHE_at_cache (timers [HEAP0]);
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
1590 downheap (timers, timercnt, HEAP0); 2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
1591 } 2032 }
1592 else 2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 2034
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
1596 } 2036 }
1597} 2037}
1598 2038
1599#if EV_PERIODIC_ENABLE 2039#if EV_PERIODIC_ENABLE
1600void inline_size 2040/* make periodics pending */
2041inline_size void
1601periodics_reify (EV_P) 2042periodics_reify (EV_P)
1602{ 2043{
2044 EV_FREQUENT_CHECK;
2045
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 2047 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2048 int feed_count = 0;
1606 2049
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2050 do
1608
1609 /* first reschedule or stop timer */
1610 if (w->reschedule_cb)
1611 { 2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
1615 } 2090 }
1616 else if (w->interval) 2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
1622 }
1623 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 2092
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2093 feed_reverse_done (EV_A_ EV_PERIODIC);
1627 } 2094 }
1628} 2095}
1629 2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1630static void noinline 2099static void noinline
1631periodics_reschedule (EV_P) 2100periodics_reschedule (EV_P)
1632{ 2101{
1633 int i; 2102 int i;
1634 2103
1635 /* adjust periodics after time jump */ 2104 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 2106 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 2108
1640 if (w->reschedule_cb) 2109 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 2111 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
1644 } 2128 {
1645 2129 ANHE *he = timers + i + HEAP0;
1646 /* now rebuild the heap */ 2130 ANHE_w (*he)->at += adjust;
1647 for (i = periodiccnt >> 1; --i; ) 2131 ANHE_at_cache (*he);
1648 downheap (periodics, periodiccnt, i + HEAP0); 2132 }
1649} 2133}
1650#endif
1651 2134
1652void inline_speed 2135/* fetch new monotonic and realtime times from the kernel */
2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
1653time_update (EV_P_ ev_tstamp max_block) 2138time_update (EV_P_ ev_tstamp max_block)
1654{ 2139{
1655 int i;
1656
1657#if EV_USE_MONOTONIC 2140#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic)) 2141 if (expect_true (have_monotonic))
1659 { 2142 {
2143 int i;
1660 ev_tstamp odiff = rtmn_diff; 2144 ev_tstamp odiff = rtmn_diff;
1661 2145
1662 mn_now = get_clock (); 2146 mn_now = get_clock ();
1663 2147
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1690 ev_rt_now = ev_time (); 2174 ev_rt_now = ev_time ();
1691 mn_now = get_clock (); 2175 mn_now = get_clock ();
1692 now_floor = mn_now; 2176 now_floor = mn_now;
1693 } 2177 }
1694 2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1695# if EV_PERIODIC_ENABLE 2181# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A); 2182 periodics_reschedule (EV_A);
1697# endif 2183# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 } 2184 }
1701 else 2185 else
1702#endif 2186#endif
1703 { 2187 {
1704 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1705 2189
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 { 2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1708#if EV_PERIODIC_ENABLE 2194#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 2195 periodics_reschedule (EV_A);
1710#endif 2196#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1714 } 2197 }
1715 2198
1716 mn_now = ev_rt_now; 2199 mn_now = ev_rt_now;
1717 } 2200 }
1718} 2201}
1719 2202
1720void 2203void
1721ev_ref (EV_P)
1722{
1723 ++activecnt;
1724}
1725
1726void
1727ev_unref (EV_P)
1728{
1729 --activecnt;
1730}
1731
1732static int loop_done;
1733
1734void
1735ev_loop (EV_P_ int flags) 2204ev_loop (EV_P_ int flags)
1736{ 2205{
2206#if EV_MINIMAL < 2
2207 ++loop_depth;
2208#endif
2209
2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
1737 loop_done = EVUNLOOP_CANCEL; 2212 loop_done = EVUNLOOP_CANCEL;
1738 2213
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1740 2215
1741 do 2216 do
1742 { 2217 {
2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
1743#ifndef _WIN32 2222#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 2223 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 2224 if (expect_false (getpid () != curpid))
1746 { 2225 {
1747 curpid = getpid (); 2226 curpid = getpid ();
1753 /* we might have forked, so queue fork handlers */ 2232 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork)) 2233 if (expect_false (postfork))
1755 if (forkcnt) 2234 if (forkcnt)
1756 { 2235 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A); 2237 EV_INVOKE_PENDING;
1759 } 2238 }
1760#endif 2239#endif
1761 2240
1762 /* queue prepare watchers (and execute them) */ 2241 /* queue prepare watchers (and execute them) */
1763 if (expect_false (preparecnt)) 2242 if (expect_false (preparecnt))
1764 { 2243 {
1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1766 call_pending (EV_A); 2245 EV_INVOKE_PENDING;
1767 } 2246 }
1768 2247
1769 if (expect_false (!activecnt)) 2248 if (expect_false (loop_done))
1770 break; 2249 break;
1771 2250
1772 /* we might have forked, so reify kernel state if necessary */ 2251 /* we might have forked, so reify kernel state if necessary */
1773 if (expect_false (postfork)) 2252 if (expect_false (postfork))
1774 loop_fork (EV_A); 2253 loop_fork (EV_A);
1781 ev_tstamp waittime = 0.; 2260 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.; 2261 ev_tstamp sleeptime = 0.;
1783 2262
1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1785 { 2264 {
2265 /* remember old timestamp for io_blocktime calculation */
2266 ev_tstamp prev_mn_now = mn_now;
2267
1786 /* update time to cancel out callback processing overhead */ 2268 /* update time to cancel out callback processing overhead */
1787 time_update (EV_A_ 1e100); 2269 time_update (EV_A_ 1e100);
1788 2270
1789 waittime = MAX_BLOCKTIME; 2271 waittime = MAX_BLOCKTIME;
1790 2272
1791 if (timercnt) 2273 if (timercnt)
1792 { 2274 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1794 if (waittime > to) waittime = to; 2276 if (waittime > to) waittime = to;
1795 } 2277 }
1796 2278
1797#if EV_PERIODIC_ENABLE 2279#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 2280 if (periodiccnt)
1799 { 2281 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1801 if (waittime > to) waittime = to; 2283 if (waittime > to) waittime = to;
1802 } 2284 }
1803#endif 2285#endif
1804 2286
2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
1805 if (expect_false (waittime < timeout_blocktime)) 2288 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime; 2289 waittime = timeout_blocktime;
1807 2290
1808 sleeptime = waittime - backend_fudge; 2291 /* extra check because io_blocktime is commonly 0 */
1809
1810 if (expect_true (sleeptime > io_blocktime)) 2292 if (expect_false (io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 { 2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
1815 ev_sleep (sleeptime); 2301 ev_sleep (sleeptime);
1816 waittime -= sleeptime; 2302 waittime -= sleeptime;
2303 }
1817 } 2304 }
1818 } 2305 }
1819 2306
2307#if EV_MINIMAL < 2
1820 ++loop_count; 2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1821 backend_poll (EV_A_ waittime); 2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1822 2313
1823 /* update ev_rt_now, do magic */ 2314 /* update ev_rt_now, do magic */
1824 time_update (EV_A_ waittime + sleeptime); 2315 time_update (EV_A_ waittime + sleeptime);
1825 } 2316 }
1826 2317
1837 2328
1838 /* queue check watchers, to be executed first */ 2329 /* queue check watchers, to be executed first */
1839 if (expect_false (checkcnt)) 2330 if (expect_false (checkcnt))
1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1841 2332
1842 call_pending (EV_A); 2333 EV_INVOKE_PENDING;
1843 } 2334 }
1844 while (expect_true ( 2335 while (expect_true (
1845 activecnt 2336 activecnt
1846 && !loop_done 2337 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 )); 2339 ));
1849 2340
1850 if (loop_done == EVUNLOOP_ONE) 2341 if (loop_done == EVUNLOOP_ONE)
1851 loop_done = EVUNLOOP_CANCEL; 2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
1852} 2347}
1853 2348
1854void 2349void
1855ev_unloop (EV_P_ int how) 2350ev_unloop (EV_P_ int how)
1856{ 2351{
1857 loop_done = how; 2352 loop_done = how;
1858} 2353}
1859 2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
2390}
2391
1860/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
1861 2394
1862void inline_size 2395inline_size void
1863wlist_add (WL *head, WL elem) 2396wlist_add (WL *head, WL elem)
1864{ 2397{
1865 elem->next = *head; 2398 elem->next = *head;
1866 *head = elem; 2399 *head = elem;
1867} 2400}
1868 2401
1869void inline_size 2402inline_size void
1870wlist_del (WL *head, WL elem) 2403wlist_del (WL *head, WL elem)
1871{ 2404{
1872 while (*head) 2405 while (*head)
1873 { 2406 {
1874 if (*head == elem) 2407 if (expect_true (*head == elem))
1875 { 2408 {
1876 *head = elem->next; 2409 *head = elem->next;
1877 return; 2410 break;
1878 } 2411 }
1879 2412
1880 head = &(*head)->next; 2413 head = &(*head)->next;
1881 } 2414 }
1882} 2415}
1883 2416
1884void inline_speed 2417/* internal, faster, version of ev_clear_pending */
2418inline_speed void
1885clear_pending (EV_P_ W w) 2419clear_pending (EV_P_ W w)
1886{ 2420{
1887 if (w->pending) 2421 if (w->pending)
1888 { 2422 {
1889 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1890 w->pending = 0; 2424 w->pending = 0;
1891 } 2425 }
1892} 2426}
1893 2427
1894int 2428int
1898 int pending = w_->pending; 2432 int pending = w_->pending;
1899 2433
1900 if (expect_true (pending)) 2434 if (expect_true (pending))
1901 { 2435 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
1903 w_->pending = 0; 2438 w_->pending = 0;
1904 p->w = 0;
1905 return p->events; 2439 return p->events;
1906 } 2440 }
1907 else 2441 else
1908 return 0; 2442 return 0;
1909} 2443}
1910 2444
1911void inline_size 2445inline_size void
1912pri_adjust (EV_P_ W w) 2446pri_adjust (EV_P_ W w)
1913{ 2447{
1914 int pri = w->priority; 2448 int pri = ev_priority (w);
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri; 2451 ev_set_priority (w, pri);
1918} 2452}
1919 2453
1920void inline_speed 2454inline_speed void
1921ev_start (EV_P_ W w, int active) 2455ev_start (EV_P_ W w, int active)
1922{ 2456{
1923 pri_adjust (EV_A_ w); 2457 pri_adjust (EV_A_ w);
1924 w->active = active; 2458 w->active = active;
1925 ev_ref (EV_A); 2459 ev_ref (EV_A);
1926} 2460}
1927 2461
1928void inline_size 2462inline_size void
1929ev_stop (EV_P_ W w) 2463ev_stop (EV_P_ W w)
1930{ 2464{
1931 ev_unref (EV_A); 2465 ev_unref (EV_A);
1932 w->active = 0; 2466 w->active = 0;
1933} 2467}
1940 int fd = w->fd; 2474 int fd = w->fd;
1941 2475
1942 if (expect_false (ev_is_active (w))) 2476 if (expect_false (ev_is_active (w)))
1943 return; 2477 return;
1944 2478
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
1946 2483
1947 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1949 wlist_add (&anfds[fd].head, (WL)w); 2486 wlist_add (&anfds[fd].head, (WL)w);
1950 2487
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1952 w->events &= ~EV_IOFDSET; 2489 w->events &= ~EV__IOFDSET;
2490
2491 EV_FREQUENT_CHECK;
1953} 2492}
1954 2493
1955void noinline 2494void noinline
1956ev_io_stop (EV_P_ ev_io *w) 2495ev_io_stop (EV_P_ ev_io *w)
1957{ 2496{
1958 clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 2498 if (expect_false (!ev_is_active (w)))
1960 return; 2499 return;
1961 2500
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2502
2503 EV_FREQUENT_CHECK;
1963 2504
1964 wlist_del (&anfds[w->fd].head, (WL)w); 2505 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
1966 2507
1967 fd_change (EV_A_ w->fd, 1); 2508 fd_change (EV_A_ w->fd, 1);
2509
2510 EV_FREQUENT_CHECK;
1968} 2511}
1969 2512
1970void noinline 2513void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 2514ev_timer_start (EV_P_ ev_timer *w)
1972{ 2515{
1973 if (expect_false (ev_is_active (w))) 2516 if (expect_false (ev_is_active (w)))
1974 return; 2517 return;
1975 2518
1976 ev_at (w) += mn_now; 2519 ev_at (w) += mn_now;
1977 2520
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
2529 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 2530 upheap (timers, ev_active (w));
1984 2531
2532 EV_FREQUENT_CHECK;
2533
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 2535}
1987 2536
1988void noinline 2537void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 2538ev_timer_stop (EV_P_ ev_timer *w)
1990{ 2539{
1991 clear_pending (EV_A_ (W)w); 2540 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 2541 if (expect_false (!ev_is_active (w)))
1993 return; 2542 return;
1994 2543
2544 EV_FREQUENT_CHECK;
2545
1995 { 2546 {
1996 int active = ev_active (w); 2547 int active = ev_active (w);
1997 2548
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 2550
2551 --timercnt;
2552
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 2553 if (expect_true (active < timercnt + HEAP0))
2001 { 2554 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 2555 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 2556 adjustheap (timers, timercnt, active);
2004 } 2557 }
2005
2006 --timercnt;
2007 } 2558 }
2559
2560 EV_FREQUENT_CHECK;
2008 2561
2009 ev_at (w) -= mn_now; 2562 ev_at (w) -= mn_now;
2010 2563
2011 ev_stop (EV_A_ (W)w); 2564 ev_stop (EV_A_ (W)w);
2012} 2565}
2013 2566
2014void noinline 2567void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 2568ev_timer_again (EV_P_ ev_timer *w)
2016{ 2569{
2570 EV_FREQUENT_CHECK;
2571
2017 if (ev_is_active (w)) 2572 if (ev_is_active (w))
2018 { 2573 {
2019 if (w->repeat) 2574 if (w->repeat)
2020 { 2575 {
2021 ev_at (w) = mn_now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 2578 adjustheap (timers, timercnt, ev_active (w));
2023 } 2579 }
2024 else 2580 else
2025 ev_timer_stop (EV_A_ w); 2581 ev_timer_stop (EV_A_ w);
2026 } 2582 }
2027 else if (w->repeat) 2583 else if (w->repeat)
2028 { 2584 {
2029 ev_at (w) = w->repeat; 2585 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 2586 ev_timer_start (EV_A_ w);
2031 } 2587 }
2588
2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2032} 2596}
2033 2597
2034#if EV_PERIODIC_ENABLE 2598#if EV_PERIODIC_ENABLE
2035void noinline 2599void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 2600ev_periodic_start (EV_P_ ev_periodic *w)
2040 2604
2041 if (w->reschedule_cb) 2605 if (w->reschedule_cb)
2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2043 else if (w->interval) 2607 else if (w->interval)
2044 { 2608 {
2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2046 /* this formula differs from the one in periodic_reify because we do not always round up */ 2610 /* this formula differs from the one in periodic_reify because we do not always round up */
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 2612 }
2049 else 2613 else
2050 ev_at (w) = w->offset; 2614 ev_at (w) = w->offset;
2051 2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2622 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 2623 upheap (periodics, ev_active (w));
2056 2624
2625 EV_FREQUENT_CHECK;
2626
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 2628}
2059 2629
2060void noinline 2630void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 2631ev_periodic_stop (EV_P_ ev_periodic *w)
2062{ 2632{
2063 clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 2634 if (expect_false (!ev_is_active (w)))
2065 return; 2635 return;
2066 2636
2637 EV_FREQUENT_CHECK;
2638
2067 { 2639 {
2068 int active = ev_active (w); 2640 int active = ev_active (w);
2069 2641
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 2643
2644 --periodiccnt;
2645
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2646 if (expect_true (active < periodiccnt + HEAP0))
2073 { 2647 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2648 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 2649 adjustheap (periodics, periodiccnt, active);
2076 } 2650 }
2077
2078 --periodiccnt;
2079 } 2651 }
2652
2653 EV_FREQUENT_CHECK;
2080 2654
2081 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2082} 2656}
2083 2657
2084void noinline 2658void noinline
2095#endif 2669#endif
2096 2670
2097void noinline 2671void noinline
2098ev_signal_start (EV_P_ ev_signal *w) 2672ev_signal_start (EV_P_ ev_signal *w)
2099{ 2673{
2100#if EV_MULTIPLICITY
2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2102#endif
2103 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
2104 return; 2675 return;
2105 2676
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2107 2678
2108 evpipe_init (EV_A); 2679#if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2109 2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
2110 { 2690 {
2111#ifndef _WIN32 2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2112 sigset_t full, prev; 2692 if (sigfd < 0 && errno == EINVAL)
2113 sigfillset (&full); 2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116 2694
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
2118 2698
2119#ifndef _WIN32 2699 sigemptyset (&sigfd_set);
2120 sigprocmask (SIG_SETMASK, &prev, 0); 2700
2121#endif 2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
2122 } 2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
2123 2717
2124 ev_start (EV_A_ (W)w, 1); 2718 ev_start (EV_A_ (W)w, 1);
2125 wlist_add (&signals [w->signum - 1].head, (WL)w); 2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
2126 2720
2127 if (!((WL)w)->next) 2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724# endif
2128 { 2725 {
2129#if _WIN32 2726# if _WIN32
2130 signal (w->signum, ev_sighandler); 2727 signal (w->signum, ev_sighandler);
2131#else 2728# else
2132 struct sigaction sa; 2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
2133 sa.sa_handler = ev_sighandler; 2733 sa.sa_handler = ev_sighandler;
2134 sigfillset (&sa.sa_mask); 2734 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2137#endif 2741#endif
2138 } 2742 }
2743
2744 EV_FREQUENT_CHECK;
2139} 2745}
2140 2746
2141void noinline 2747void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 2748ev_signal_stop (EV_P_ ev_signal *w)
2143{ 2749{
2144 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2146 return; 2752 return;
2147 2753
2754 EV_FREQUENT_CHECK;
2755
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2150 2758
2151 if (!signals [w->signum - 1].head) 2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774#endif
2152 signal (w->signum, SIG_DFL); 2775 signal (w->signum, SIG_DFL);
2776 }
2777
2778 EV_FREQUENT_CHECK;
2153} 2779}
2154 2780
2155void 2781void
2156ev_child_start (EV_P_ ev_child *w) 2782ev_child_start (EV_P_ ev_child *w)
2157{ 2783{
2158#if EV_MULTIPLICITY 2784#if EV_MULTIPLICITY
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 2786#endif
2161 if (expect_false (ev_is_active (w))) 2787 if (expect_false (ev_is_active (w)))
2162 return; 2788 return;
2163 2789
2790 EV_FREQUENT_CHECK;
2791
2164 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2794
2795 EV_FREQUENT_CHECK;
2166} 2796}
2167 2797
2168void 2798void
2169ev_child_stop (EV_P_ ev_child *w) 2799ev_child_stop (EV_P_ ev_child *w)
2170{ 2800{
2171 clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
2173 return; 2803 return;
2174 2804
2805 EV_FREQUENT_CHECK;
2806
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
2809
2810 EV_FREQUENT_CHECK;
2177} 2811}
2178 2812
2179#if EV_STAT_ENABLE 2813#if EV_STAT_ENABLE
2180 2814
2181# ifdef _WIN32 2815# ifdef _WIN32
2182# undef lstat 2816# undef lstat
2183# define lstat(a,b) _stati64 (a,b) 2817# define lstat(a,b) _stati64 (a,b)
2184# endif 2818# endif
2185 2819
2186#define DEF_STAT_INTERVAL 5.0074891 2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2187#define MIN_STAT_INTERVAL 0.1074891 2822#define MIN_STAT_INTERVAL 0.1074891
2188 2823
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190 2825
2191#if EV_USE_INOTIFY 2826#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192 2827# define EV_INOTIFY_BUFSIZE 8192
2196{ 2831{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198 2833
2199 if (w->wd < 0) 2834 if (w->wd < 0)
2200 { 2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2202 2838
2203 /* monitor some parent directory for speedup hints */ 2839 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2205 /* but an efficiency issue only */ 2841 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 { 2843 {
2208 char path [4096]; 2844 char path [4096];
2209 strcpy (path, w->path); 2845 strcpy (path, w->path);
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215 2851
2216 char *pend = strrchr (path, '/'); 2852 char *pend = strrchr (path, '/');
2217 2853
2218 if (!pend) 2854 if (!pend || pend == path)
2219 break; /* whoops, no '/', complain to your admin */ 2855 break;
2220 2856
2221 *pend = 0; 2857 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask); 2858 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 } 2859 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 } 2861 }
2226 } 2862 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229 2863
2230 if (w->wd >= 0) 2864 if (w->wd >= 0)
2865 {
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2866 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2867
2868 /* now local changes will be tracked by inotify, but remote changes won't */
2869 /* unless the filesystem it known to be local, we therefore still poll */
2870 /* also do poll on <2.6.25, but with normal frequency */
2871 struct statfs sfs;
2872
2873 if (fs_2625 && !statfs (w->path, &sfs))
2874 if (sfs.f_type == 0x1373 /* devfs */
2875 || sfs.f_type == 0xEF53 /* ext2/3 */
2876 || sfs.f_type == 0x3153464a /* jfs */
2877 || sfs.f_type == 0x52654973 /* reiser3 */
2878 || sfs.f_type == 0x01021994 /* tempfs */
2879 || sfs.f_type == 0x58465342 /* xfs */)
2880 return;
2881
2882 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2883 ev_timer_again (EV_A_ &w->timer);
2884 }
2232} 2885}
2233 2886
2234static void noinline 2887static void noinline
2235infy_del (EV_P_ ev_stat *w) 2888infy_del (EV_P_ ev_stat *w)
2236{ 2889{
2250 2903
2251static void noinline 2904static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{ 2906{
2254 if (slot < 0) 2907 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */ 2908 /* overflow, need to check for all hash slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2257 infy_wd (EV_A_ slot, wd, ev); 2910 infy_wd (EV_A_ slot, wd, ev);
2258 else 2911 else
2259 { 2912 {
2260 WL w_; 2913 WL w_;
2266 2919
2267 if (w->wd == wd || wd == -1) 2920 if (w->wd == wd || wd == -1)
2268 { 2921 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 { 2923 {
2924 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2271 w->wd = -1; 2925 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */ 2926 infy_add (EV_A_ w); /* re-add, no matter what */
2273 } 2927 }
2274 2928
2275 stat_timer_cb (EV_A_ &w->timer, 0); 2929 stat_timer_cb (EV_A_ &w->timer, 0);
2288 2942
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2943 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2944 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2291} 2945}
2292 2946
2293void inline_size 2947inline_size void
2948check_2625 (EV_P)
2949{
2950 /* kernels < 2.6.25 are borked
2951 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2952 */
2953 struct utsname buf;
2954 int major, minor, micro;
2955
2956 if (uname (&buf))
2957 return;
2958
2959 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2960 return;
2961
2962 if (major < 2
2963 || (major == 2 && minor < 6)
2964 || (major == 2 && minor == 6 && micro < 25))
2965 return;
2966
2967 fs_2625 = 1;
2968}
2969
2970inline_size void
2294infy_init (EV_P) 2971infy_init (EV_P)
2295{ 2972{
2296 if (fs_fd != -2) 2973 if (fs_fd != -2)
2297 return; 2974 return;
2975
2976 fs_fd = -1;
2977
2978 check_2625 (EV_A);
2298 2979
2299 fs_fd = inotify_init (); 2980 fs_fd = inotify_init ();
2300 2981
2301 if (fs_fd >= 0) 2982 if (fs_fd >= 0)
2302 { 2983 {
2304 ev_set_priority (&fs_w, EV_MAXPRI); 2985 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w); 2986 ev_io_start (EV_A_ &fs_w);
2306 } 2987 }
2307} 2988}
2308 2989
2309void inline_size 2990inline_size void
2310infy_fork (EV_P) 2991infy_fork (EV_P)
2311{ 2992{
2312 int slot; 2993 int slot;
2313 2994
2314 if (fs_fd < 0) 2995 if (fs_fd < 0)
2330 w->wd = -1; 3011 w->wd = -1;
2331 3012
2332 if (fs_fd >= 0) 3013 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 3014 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else 3015 else
2335 ev_timer_start (EV_A_ &w->timer); 3016 ev_timer_again (EV_A_ &w->timer);
2336 } 3017 }
2337
2338 } 3018 }
2339} 3019}
2340 3020
3021#endif
3022
3023#ifdef _WIN32
3024# define EV_LSTAT(p,b) _stati64 (p, b)
3025#else
3026# define EV_LSTAT(p,b) lstat (p, b)
2341#endif 3027#endif
2342 3028
2343void 3029void
2344ev_stat_stat (EV_P_ ev_stat *w) 3030ev_stat_stat (EV_P_ ev_stat *w)
2345{ 3031{
2372 || w->prev.st_atime != w->attr.st_atime 3058 || w->prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime 3059 || w->prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime 3060 || w->prev.st_ctime != w->attr.st_ctime
2375 ) { 3061 ) {
2376 #if EV_USE_INOTIFY 3062 #if EV_USE_INOTIFY
3063 if (fs_fd >= 0)
3064 {
2377 infy_del (EV_A_ w); 3065 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w); 3066 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */ 3067 ev_stat_stat (EV_A_ w); /* avoid race... */
3068 }
2380 #endif 3069 #endif
2381 3070
2382 ev_feed_event (EV_A_ w, EV_STAT); 3071 ev_feed_event (EV_A_ w, EV_STAT);
2383 } 3072 }
2384} 3073}
2387ev_stat_start (EV_P_ ev_stat *w) 3076ev_stat_start (EV_P_ ev_stat *w)
2388{ 3077{
2389 if (expect_false (ev_is_active (w))) 3078 if (expect_false (ev_is_active (w)))
2390 return; 3079 return;
2391 3080
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w); 3081 ev_stat_stat (EV_A_ w);
2397 3082
3083 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2398 if (w->interval < MIN_STAT_INTERVAL) 3084 w->interval = MIN_STAT_INTERVAL;
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400 3085
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3086 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2402 ev_set_priority (&w->timer, ev_priority (w)); 3087 ev_set_priority (&w->timer, ev_priority (w));
2403 3088
2404#if EV_USE_INOTIFY 3089#if EV_USE_INOTIFY
2405 infy_init (EV_A); 3090 infy_init (EV_A);
2406 3091
2407 if (fs_fd >= 0) 3092 if (fs_fd >= 0)
2408 infy_add (EV_A_ w); 3093 infy_add (EV_A_ w);
2409 else 3094 else
2410#endif 3095#endif
2411 ev_timer_start (EV_A_ &w->timer); 3096 ev_timer_again (EV_A_ &w->timer);
2412 3097
2413 ev_start (EV_A_ (W)w, 1); 3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
2414} 3101}
2415 3102
2416void 3103void
2417ev_stat_stop (EV_P_ ev_stat *w) 3104ev_stat_stop (EV_P_ ev_stat *w)
2418{ 3105{
2419 clear_pending (EV_A_ (W)w); 3106 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 3107 if (expect_false (!ev_is_active (w)))
2421 return; 3108 return;
2422 3109
3110 EV_FREQUENT_CHECK;
3111
2423#if EV_USE_INOTIFY 3112#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 3113 infy_del (EV_A_ w);
2425#endif 3114#endif
2426 ev_timer_stop (EV_A_ &w->timer); 3115 ev_timer_stop (EV_A_ &w->timer);
2427 3116
2428 ev_stop (EV_A_ (W)w); 3117 ev_stop (EV_A_ (W)w);
3118
3119 EV_FREQUENT_CHECK;
2429} 3120}
2430#endif 3121#endif
2431 3122
2432#if EV_IDLE_ENABLE 3123#if EV_IDLE_ENABLE
2433void 3124void
2435{ 3126{
2436 if (expect_false (ev_is_active (w))) 3127 if (expect_false (ev_is_active (w)))
2437 return; 3128 return;
2438 3129
2439 pri_adjust (EV_A_ (W)w); 3130 pri_adjust (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
2440 3133
2441 { 3134 {
2442 int active = ++idlecnt [ABSPRI (w)]; 3135 int active = ++idlecnt [ABSPRI (w)];
2443 3136
2444 ++idleall; 3137 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 3138 ev_start (EV_A_ (W)w, active);
2446 3139
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3140 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 3141 idles [ABSPRI (w)][active - 1] = w;
2449 } 3142 }
3143
3144 EV_FREQUENT_CHECK;
2450} 3145}
2451 3146
2452void 3147void
2453ev_idle_stop (EV_P_ ev_idle *w) 3148ev_idle_stop (EV_P_ ev_idle *w)
2454{ 3149{
2455 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2457 return; 3152 return;
2458 3153
3154 EV_FREQUENT_CHECK;
3155
2459 { 3156 {
2460 int active = ev_active (w); 3157 int active = ev_active (w);
2461 3158
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3159 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3160 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 3161
2465 ev_stop (EV_A_ (W)w); 3162 ev_stop (EV_A_ (W)w);
2466 --idleall; 3163 --idleall;
2467 } 3164 }
3165
3166 EV_FREQUENT_CHECK;
2468} 3167}
2469#endif 3168#endif
2470 3169
2471void 3170void
2472ev_prepare_start (EV_P_ ev_prepare *w) 3171ev_prepare_start (EV_P_ ev_prepare *w)
2473{ 3172{
2474 if (expect_false (ev_is_active (w))) 3173 if (expect_false (ev_is_active (w)))
2475 return; 3174 return;
3175
3176 EV_FREQUENT_CHECK;
2476 3177
2477 ev_start (EV_A_ (W)w, ++preparecnt); 3178 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3179 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 3180 prepares [preparecnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
2480} 3183}
2481 3184
2482void 3185void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 3186ev_prepare_stop (EV_P_ ev_prepare *w)
2484{ 3187{
2485 clear_pending (EV_A_ (W)w); 3188 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 3189 if (expect_false (!ev_is_active (w)))
2487 return; 3190 return;
2488 3191
3192 EV_FREQUENT_CHECK;
3193
2489 { 3194 {
2490 int active = ev_active (w); 3195 int active = ev_active (w);
2491 3196
2492 prepares [active - 1] = prepares [--preparecnt]; 3197 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 3198 ev_active (prepares [active - 1]) = active;
2494 } 3199 }
2495 3200
2496 ev_stop (EV_A_ (W)w); 3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
2497} 3204}
2498 3205
2499void 3206void
2500ev_check_start (EV_P_ ev_check *w) 3207ev_check_start (EV_P_ ev_check *w)
2501{ 3208{
2502 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
2503 return; 3210 return;
3211
3212 EV_FREQUENT_CHECK;
2504 3213
2505 ev_start (EV_A_ (W)w, ++checkcnt); 3214 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3215 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 3216 checks [checkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
2508} 3219}
2509 3220
2510void 3221void
2511ev_check_stop (EV_P_ ev_check *w) 3222ev_check_stop (EV_P_ ev_check *w)
2512{ 3223{
2513 clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
2515 return; 3226 return;
2516 3227
3228 EV_FREQUENT_CHECK;
3229
2517 { 3230 {
2518 int active = ev_active (w); 3231 int active = ev_active (w);
2519 3232
2520 checks [active - 1] = checks [--checkcnt]; 3233 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 3234 ev_active (checks [active - 1]) = active;
2522 } 3235 }
2523 3236
2524 ev_stop (EV_A_ (W)w); 3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
2525} 3240}
2526 3241
2527#if EV_EMBED_ENABLE 3242#if EV_EMBED_ENABLE
2528void noinline 3243void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 3244ev_embed_sweep (EV_P_ ev_embed *w)
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3261embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{ 3262{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3263 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549 3264
2550 { 3265 {
2551 struct ev_loop *loop = w->other; 3266 EV_P = w->other;
2552 3267
2553 while (fdchangecnt) 3268 while (fdchangecnt)
2554 { 3269 {
2555 fd_reify (EV_A); 3270 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3271 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 } 3272 }
2558 } 3273 }
2559} 3274}
2560 3275
3276static void
3277embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3278{
3279 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3280
3281 ev_embed_stop (EV_A_ w);
3282
3283 {
3284 EV_P = w->other;
3285
3286 ev_loop_fork (EV_A);
3287 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3288 }
3289
3290 ev_embed_start (EV_A_ w);
3291}
3292
2561#if 0 3293#if 0
2562static void 3294static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3295embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{ 3296{
2565 ev_idle_stop (EV_A_ idle); 3297 ev_idle_stop (EV_A_ idle);
2571{ 3303{
2572 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
2573 return; 3305 return;
2574 3306
2575 { 3307 {
2576 struct ev_loop *loop = w->other; 3308 EV_P = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3309 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3310 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 3311 }
3312
3313 EV_FREQUENT_CHECK;
2580 3314
2581 ev_set_priority (&w->io, ev_priority (w)); 3315 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 3316 ev_io_start (EV_A_ &w->io);
2583 3317
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 3318 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 3319 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 3320 ev_prepare_start (EV_A_ &w->prepare);
2587 3321
3322 ev_fork_init (&w->fork, embed_fork_cb);
3323 ev_fork_start (EV_A_ &w->fork);
3324
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3325 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 3326
2590 ev_start (EV_A_ (W)w, 1); 3327 ev_start (EV_A_ (W)w, 1);
3328
3329 EV_FREQUENT_CHECK;
2591} 3330}
2592 3331
2593void 3332void
2594ev_embed_stop (EV_P_ ev_embed *w) 3333ev_embed_stop (EV_P_ ev_embed *w)
2595{ 3334{
2596 clear_pending (EV_A_ (W)w); 3335 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 3336 if (expect_false (!ev_is_active (w)))
2598 return; 3337 return;
2599 3338
3339 EV_FREQUENT_CHECK;
3340
2600 ev_io_stop (EV_A_ &w->io); 3341 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 3342 ev_prepare_stop (EV_A_ &w->prepare);
3343 ev_fork_stop (EV_A_ &w->fork);
2602 3344
2603 ev_stop (EV_A_ (W)w); 3345 EV_FREQUENT_CHECK;
2604} 3346}
2605#endif 3347#endif
2606 3348
2607#if EV_FORK_ENABLE 3349#if EV_FORK_ENABLE
2608void 3350void
2609ev_fork_start (EV_P_ ev_fork *w) 3351ev_fork_start (EV_P_ ev_fork *w)
2610{ 3352{
2611 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2612 return; 3354 return;
3355
3356 EV_FREQUENT_CHECK;
2613 3357
2614 ev_start (EV_A_ (W)w, ++forkcnt); 3358 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3359 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 3360 forks [forkcnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
2617} 3363}
2618 3364
2619void 3365void
2620ev_fork_stop (EV_P_ ev_fork *w) 3366ev_fork_stop (EV_P_ ev_fork *w)
2621{ 3367{
2622 clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
2624 return; 3370 return;
2625 3371
3372 EV_FREQUENT_CHECK;
3373
2626 { 3374 {
2627 int active = ev_active (w); 3375 int active = ev_active (w);
2628 3376
2629 forks [active - 1] = forks [--forkcnt]; 3377 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 3378 ev_active (forks [active - 1]) = active;
2631 } 3379 }
2632 3380
2633 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
3382
3383 EV_FREQUENT_CHECK;
2634} 3384}
2635#endif 3385#endif
2636 3386
2637#if EV_ASYNC_ENABLE 3387#if EV_ASYNC_ENABLE
2638void 3388void
2640{ 3390{
2641 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2642 return; 3392 return;
2643 3393
2644 evpipe_init (EV_A); 3394 evpipe_init (EV_A);
3395
3396 EV_FREQUENT_CHECK;
2645 3397
2646 ev_start (EV_A_ (W)w, ++asynccnt); 3398 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3399 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 3400 asyncs [asynccnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
2649} 3403}
2650 3404
2651void 3405void
2652ev_async_stop (EV_P_ ev_async *w) 3406ev_async_stop (EV_P_ ev_async *w)
2653{ 3407{
2654 clear_pending (EV_A_ (W)w); 3408 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 3409 if (expect_false (!ev_is_active (w)))
2656 return; 3410 return;
2657 3411
3412 EV_FREQUENT_CHECK;
3413
2658 { 3414 {
2659 int active = ev_active (w); 3415 int active = ev_active (w);
2660 3416
2661 asyncs [active - 1] = asyncs [--asynccnt]; 3417 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 3418 ev_active (asyncs [active - 1]) = active;
2663 } 3419 }
2664 3420
2665 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
2666} 3424}
2667 3425
2668void 3426void
2669ev_async_send (EV_P_ ev_async *w) 3427ev_async_send (EV_P_ ev_async *w)
2670{ 3428{
2671 w->sent = 1; 3429 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync); 3430 evpipe_write (EV_A_ &async_pending);
2673} 3431}
2674#endif 3432#endif
2675 3433
2676/*****************************************************************************/ 3434/*****************************************************************************/
2677 3435
2687once_cb (EV_P_ struct ev_once *once, int revents) 3445once_cb (EV_P_ struct ev_once *once, int revents)
2688{ 3446{
2689 void (*cb)(int revents, void *arg) = once->cb; 3447 void (*cb)(int revents, void *arg) = once->cb;
2690 void *arg = once->arg; 3448 void *arg = once->arg;
2691 3449
2692 ev_io_stop (EV_A_ &once->io); 3450 ev_io_stop (EV_A_ &once->io);
2693 ev_timer_stop (EV_A_ &once->to); 3451 ev_timer_stop (EV_A_ &once->to);
2694 ev_free (once); 3452 ev_free (once);
2695 3453
2696 cb (revents, arg); 3454 cb (revents, arg);
2697} 3455}
2698 3456
2699static void 3457static void
2700once_cb_io (EV_P_ ev_io *w, int revents) 3458once_cb_io (EV_P_ ev_io *w, int revents)
2701{ 3459{
2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3460 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3461
3462 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2703} 3463}
2704 3464
2705static void 3465static void
2706once_cb_to (EV_P_ ev_timer *w, int revents) 3466once_cb_to (EV_P_ ev_timer *w, int revents)
2707{ 3467{
2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3468 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3469
3470 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2709} 3471}
2710 3472
2711void 3473void
2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3474ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2713{ 3475{
2735 ev_timer_set (&once->to, timeout, 0.); 3497 ev_timer_set (&once->to, timeout, 0.);
2736 ev_timer_start (EV_A_ &once->to); 3498 ev_timer_start (EV_A_ &once->to);
2737 } 3499 }
2738} 3500}
2739 3501
3502/*****************************************************************************/
3503
3504#if EV_WALK_ENABLE
3505void
3506ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3507{
3508 int i, j;
3509 ev_watcher_list *wl, *wn;
3510
3511 if (types & (EV_IO | EV_EMBED))
3512 for (i = 0; i < anfdmax; ++i)
3513 for (wl = anfds [i].head; wl; )
3514 {
3515 wn = wl->next;
3516
3517#if EV_EMBED_ENABLE
3518 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3519 {
3520 if (types & EV_EMBED)
3521 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3522 }
3523 else
3524#endif
3525#if EV_USE_INOTIFY
3526 if (ev_cb ((ev_io *)wl) == infy_cb)
3527 ;
3528 else
3529#endif
3530 if ((ev_io *)wl != &pipe_w)
3531 if (types & EV_IO)
3532 cb (EV_A_ EV_IO, wl);
3533
3534 wl = wn;
3535 }
3536
3537 if (types & (EV_TIMER | EV_STAT))
3538 for (i = timercnt + HEAP0; i-- > HEAP0; )
3539#if EV_STAT_ENABLE
3540 /*TODO: timer is not always active*/
3541 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3542 {
3543 if (types & EV_STAT)
3544 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3545 }
3546 else
3547#endif
3548 if (types & EV_TIMER)
3549 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3550
3551#if EV_PERIODIC_ENABLE
3552 if (types & EV_PERIODIC)
3553 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3554 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3555#endif
3556
3557#if EV_IDLE_ENABLE
3558 if (types & EV_IDLE)
3559 for (j = NUMPRI; i--; )
3560 for (i = idlecnt [j]; i--; )
3561 cb (EV_A_ EV_IDLE, idles [j][i]);
3562#endif
3563
3564#if EV_FORK_ENABLE
3565 if (types & EV_FORK)
3566 for (i = forkcnt; i--; )
3567 if (ev_cb (forks [i]) != embed_fork_cb)
3568 cb (EV_A_ EV_FORK, forks [i]);
3569#endif
3570
3571#if EV_ASYNC_ENABLE
3572 if (types & EV_ASYNC)
3573 for (i = asynccnt; i--; )
3574 cb (EV_A_ EV_ASYNC, asyncs [i]);
3575#endif
3576
3577 if (types & EV_PREPARE)
3578 for (i = preparecnt; i--; )
3579#if EV_EMBED_ENABLE
3580 if (ev_cb (prepares [i]) != embed_prepare_cb)
3581#endif
3582 cb (EV_A_ EV_PREPARE, prepares [i]);
3583
3584 if (types & EV_CHECK)
3585 for (i = checkcnt; i--; )
3586 cb (EV_A_ EV_CHECK, checks [i]);
3587
3588 if (types & EV_SIGNAL)
3589 for (i = 0; i < EV_NSIG - 1; ++i)
3590 for (wl = signals [i].head; wl; )
3591 {
3592 wn = wl->next;
3593 cb (EV_A_ EV_SIGNAL, wl);
3594 wl = wn;
3595 }
3596
3597 if (types & EV_CHILD)
3598 for (i = EV_PID_HASHSIZE; i--; )
3599 for (wl = childs [i]; wl; )
3600 {
3601 wn = wl->next;
3602 cb (EV_A_ EV_CHILD, wl);
3603 wl = wn;
3604 }
3605/* EV_STAT 0x00001000 /* stat data changed */
3606/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3607}
3608#endif
3609
2740#if EV_MULTIPLICITY 3610#if EV_MULTIPLICITY
2741 #include "ev_wrap.h" 3611 #include "ev_wrap.h"
2742#endif 3612#endif
2743 3613
2744#ifdef __cplusplus 3614#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines