ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.237 by root, Wed May 7 15:16:56 2008 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
422 W w; 430 W w;
423 int events; 431 int events;
424} ANPENDING; 432} ANPENDING;
425 433
426#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
427typedef struct 436typedef struct
428{ 437{
429 WL head; 438 WL head;
430} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
431#endif 458#endif
432 459
433#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
434 461
435 struct ev_loop 462 struct ev_loop
760} 787}
761 788
762/*****************************************************************************/ 789/*****************************************************************************/
763 790
764/* 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
765 * at the moment we allow libev the luxury of two heaps, 798 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 800 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 801 * the difference is about 5% with 50000+ watchers.
769 */ 802 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 803#if EV_USE_4HEAP
772 804
773#define DHEAP 4 805#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775 807
776/* towards the root */ 808/* towards the root */
777void inline_speed 809void inline_speed
778upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
779{ 811{
780 WT w = heap [k]; 812 ANHE he = heap [k];
781 813
782 for (;;) 814 for (;;)
783 { 815 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
785 817
786 if (p >= HEAP0 || heap [p]->at <= w->at) 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
787 break; 819 break;
788 820
789 heap [k] = heap [p]; 821 heap [k] = heap [p];
790 ev_active (heap [k]) = k; 822 ev_active (ANHE_w (heap [k])) = k;
791 k = p; 823 k = p;
792 } 824 }
793 825
826 ev_active (ANHE_w (he)) = k;
794 heap [k] = w; 827 heap [k] = he;
795 ev_active (heap [k]) = k;
796} 828}
797 829
798/* away from the root */ 830/* away from the root */
799void inline_speed 831void inline_speed
800downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
801{ 833{
802 WT w = heap [k]; 834 ANHE he = heap [k];
803 WT *E = heap + N + HEAP0; 835 ANHE *E = heap + N + HEAP0;
804 836
805 for (;;) 837 for (;;)
806 { 838 {
807 ev_tstamp minat; 839 ev_tstamp minat;
808 WT *minpos; 840 ANHE *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
810 842
811 // find minimum child 843 // find minimum child
812 if (expect_true (pos + DHEAP - 1 < E)) 844 if (expect_true (pos + DHEAP - 1 < E))
813 { 845 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at); 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 857 }
820 else 858 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break; 859 break;
833 860
861 if (ANHE_at (he) <= minat)
862 break;
863
834 ev_active (*minpos) = k; 864 ev_active (ANHE_w (*minpos)) = k;
835 heap [k] = *minpos; 865 heap [k] = *minpos;
836 866
837 k = minpos - heap; 867 k = minpos - heap;
838 } 868 }
839 869
870 ev_active (ANHE_w (he)) = k;
840 heap [k] = w; 871 heap [k] = he;
841 ev_active (heap [k]) = k;
842} 872}
843 873
844#else // 4HEAP 874#else // 4HEAP
845 875
846#define HEAP0 1 876#define HEAP0 1
847 877
848/* towards the root */ 878/* towards the root */
849void inline_speed 879void inline_speed
850upheap (WT *heap, int k) 880upheap (ANHE *heap, int k)
851{ 881{
852 WT w = heap [k]; 882 ANHE he = heap [k];
853 883
854 for (;;) 884 for (;;)
855 { 885 {
856 int p = k >> 1; 886 int p = k >> 1;
857 887
858 /* maybe we could use a dummy element at heap [0]? */ 888 /* maybe we could use a dummy element at heap [0]? */
859 if (!p || heap [p]->at <= w->at) 889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
860 break; 890 break;
861 891
862 heap [k] = heap [p]; 892 heap [k] = heap [p];
863 ev_active (heap [k]) = k; 893 ev_active (ANHE_w (heap [k])) = k;
864 k = p; 894 k = p;
865 } 895 }
866 896
867 heap [k] = w; 897 heap [k] = he;
868 ev_active (heap [k]) = k; 898 ev_active (ANHE_w (heap [k])) = k;
869} 899}
870 900
871/* away from the root */ 901/* away from the root */
872void inline_speed 902void inline_speed
873downheap (WT *heap, int N, int k) 903downheap (ANHE *heap, int N, int k)
874{ 904{
875 WT w = heap [k]; 905 ANHE he = heap [k];
876 906
877 for (;;) 907 for (;;)
878 { 908 {
879 int c = k << 1; 909 int c = k << 1;
880 910
881 if (c > N) 911 if (c > N)
882 break; 912 break;
883 913
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0; 915 ? 1 : 0;
886 916
887 if (w->at <= heap [c]->at) 917 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break; 918 break;
889 919
890 heap [k] = heap [c]; 920 heap [k] = heap [c];
891 ((W)heap [k])->active = k; 921 ev_active (ANHE_w (heap [k])) = k;
892 922
893 k = c; 923 k = c;
894 } 924 }
895 925
896 heap [k] = w; 926 heap [k] = he;
897 ev_active (heap [k]) = k; 927 ev_active (ANHE_w (he)) = k;
898} 928}
899#endif 929#endif
900 930
901void inline_size 931void inline_size
902adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
903{ 933{
904 upheap (heap, k); 934 upheap (heap, k);
905 downheap (heap, N, k); 935 downheap (heap, N, k);
906} 936}
907 937
1571#endif 1601#endif
1572 1602
1573void inline_size 1603void inline_size
1574timers_reify (EV_P) 1604timers_reify (EV_P)
1575{ 1605{
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 1607 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1579 1609
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581 1611
1582 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1583 if (w->repeat) 1613 if (w->repeat)
1584 { 1614 {
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586
1587 ev_at (w) += w->repeat; 1615 ev_at (w) += w->repeat;
1588 if (ev_at (w) < mn_now) 1616 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now; 1617 ev_at (w) = mn_now;
1590 1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1591 downheap (timers, timercnt, HEAP0); 1622 downheap (timers, timercnt, HEAP0);
1592 } 1623 }
1593 else 1624 else
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 1626
1599 1630
1600#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1601void inline_size 1632void inline_size
1602periodics_reify (EV_P) 1633periodics_reify (EV_P)
1603{ 1634{
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 1636 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1607 1638
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609 1640
1610 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1611 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1612 { 1643 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 1649 downheap (periodics, periodiccnt, HEAP0);
1616 } 1650 }
1617 else if (w->interval) 1651 else if (w->interval)
1618 { 1652 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1622 downheap (periodics, periodiccnt, HEAP0); 1668 downheap (periodics, periodiccnt, HEAP0);
1623 } 1669 }
1624 else 1670 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1672
1632periodics_reschedule (EV_P) 1678periodics_reschedule (EV_P)
1633{ 1679{
1634 int i; 1680 int i;
1635 1681
1636 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 1684 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 1686
1641 if (w->reschedule_cb) 1687 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1689 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1645 }
1646 1691
1647 /* now rebuild the heap */ 1692 ANHE_at_set (periodics [i]);
1648 for (i = periodiccnt >> 1; --i; ) 1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1649 downheap (periodics, periodiccnt, i + HEAP0); 1698 upheap (periodics, i + HEAP0);
1650} 1699}
1651#endif 1700#endif
1652 1701
1653void inline_speed 1702void inline_speed
1654time_update (EV_P_ ev_tstamp max_block) 1703time_update (EV_P_ ev_tstamp max_block)
1708 { 1757 {
1709#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1711#endif 1760#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now; 1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1715 } 1768 }
1716 1769
1717 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1718 } 1771 }
1719} 1772}
1789 1842
1790 waittime = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1791 1844
1792 if (timercnt) 1845 if (timercnt)
1793 { 1846 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 1848 if (waittime > to) waittime = to;
1796 } 1849 }
1797 1850
1798#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 1852 if (periodiccnt)
1800 { 1853 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 1855 if (waittime > to) waittime = to;
1803 } 1856 }
1804#endif 1857#endif
1805 1858
1806 if (expect_false (waittime < timeout_blocktime)) 1859 if (expect_false (waittime < timeout_blocktime))
1958{ 2011{
1959 clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1961 return; 2014 return;
1962 2015
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1964 2017
1965 wlist_del (&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1967 2020
1968 fd_change (EV_A_ w->fd, 1); 2021 fd_change (EV_A_ w->fd, 1);
1977 ev_at (w) += mn_now; 2030 ev_at (w) += mn_now;
1978 2031
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2033
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2038 upheap (timers, ev_active (w));
1985 2039
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2041}
1988 2042
1989void noinline 2043void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2045{
1994 return; 2048 return;
1995 2049
1996 { 2050 {
1997 int active = ev_active (w); 2051 int active = ev_active (w);
1998 2052
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2054
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
2002 { 2056 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
2004 adjustheap (timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
2018 if (ev_is_active (w)) 2072 if (ev_is_active (w))
2019 { 2073 {
2020 if (w->repeat) 2074 if (w->repeat)
2021 { 2075 {
2022 ev_at (w) = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2078 adjustheap (timers, timercnt, ev_active (w));
2024 } 2079 }
2025 else 2080 else
2026 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
2027 } 2082 }
2049 } 2104 }
2050 else 2105 else
2051 ev_at (w) = w->offset; 2106 ev_at (w) = w->offset;
2052 2107
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 2112 upheap (periodics, ev_active (w));
2057 2113
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2115}
2060 2116
2061void noinline 2117void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2119{
2066 return; 2122 return;
2067 2123
2068 { 2124 {
2069 int active = ev_active (w); 2125 int active = ev_active (w);
2070 2126
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2128
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
2074 { 2130 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2076 adjustheap (periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines