ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.237 by root, Wed May 7 15:16:56 2008 UTC vs.
Revision 1.259 by root, Mon Sep 8 13:14:23 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
422 W w; 455 W w;
423 int events; 456 int events;
424} ANPENDING; 457} ANPENDING;
425 458
426#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
427typedef struct 461typedef struct
428{ 462{
429 WL head; 463 WL head;
430} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
431#endif 483#endif
432 484
433#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
434 486
435 struct ev_loop 487 struct ev_loop
513 struct timeval tv; 565 struct timeval tv;
514 566
515 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
518 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
519#endif 574#endif
520 } 575 }
521} 576}
522 577
656 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
657 712
658#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
659 if (events) 714 if (events)
660 { 715 {
661 unsigned long argp; 716 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 719 #else
665 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
666 #endif 721 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 723 }
669#endif 724#endif
670 725
671 { 726 {
672 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
725{ 780{
726 int fd; 781 int fd;
727 782
728 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 784 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
732} 787}
733 788
734/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 790static void noinline
760} 815}
761 816
762/*****************************************************************************/ 817/*****************************************************************************/
763 818
764/* 819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
765 * at the moment we allow libev the luxury of two heaps, 826 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 828 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 829 * the difference is about 5% with 50000+ watchers.
769 */ 830 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 831#if EV_USE_4HEAP
772 832
773#define DHEAP 4 833#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
839void inline_speed
840downheap (ANHE *heap, int N, int k)
841{
842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
844
845 for (;;)
846 {
847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
850
851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
867 break;
868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
775 917
776/* towards the root */ 918/* towards the root */
777void inline_speed 919void inline_speed
778upheap (WT *heap, int k) 920upheap (ANHE *heap, int k)
779{ 921{
780 WT w = heap [k]; 922 ANHE he = heap [k];
781 923
782 for (;;) 924 for (;;)
783 { 925 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 926 int p = HPARENT (k);
785 927
786 if (p >= HEAP0 || heap [p]->at <= w->at) 928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
787 break; 929 break;
788 930
789 heap [k] = heap [p]; 931 heap [k] = heap [p];
790 ev_active (heap [k]) = k; 932 ev_active (ANHE_w (heap [k])) = k;
791 k = p; 933 k = p;
792 } 934 }
793 935
794 heap [k] = w; 936 heap [k] = he;
795 ev_active (heap [k]) = k; 937 ev_active (ANHE_w (he)) = k;
796} 938}
797
798/* away from the root */
799void inline_speed
800downheap (WT *heap, int N, int k)
801{
802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
804
805 for (;;)
806 {
807 ev_tstamp minat;
808 WT *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
810
811 // find minimum child
812 if (expect_true (pos + DHEAP - 1 < E))
813 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at);
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break;
833
834 ev_active (*minpos) = k;
835 heap [k] = *minpos;
836
837 k = minpos - heap;
838 }
839
840 heap [k] = w;
841 ev_active (heap [k]) = k;
842}
843
844#else // 4HEAP
845
846#define HEAP0 1
847
848/* towards the root */
849void inline_speed
850upheap (WT *heap, int k)
851{
852 WT w = heap [k];
853
854 for (;;)
855 {
856 int p = k >> 1;
857
858 /* maybe we could use a dummy element at heap [0]? */
859 if (!p || heap [p]->at <= w->at)
860 break;
861
862 heap [k] = heap [p];
863 ev_active (heap [k]) = k;
864 k = p;
865 }
866
867 heap [k] = w;
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break;
883
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c];
891 ((W)heap [k])->active = k;
892
893 k = c;
894 }
895
896 heap [k] = w;
897 ev_active (heap [k]) = k;
898}
899#endif
900 939
901void inline_size 940void inline_size
902adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
903{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
904 upheap (heap, k); 944 upheap (heap, k);
945 else
905 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
906} 959}
907 960
908/*****************************************************************************/ 961/*****************************************************************************/
909 962
910typedef struct 963typedef struct
934 987
935void inline_speed 988void inline_speed
936fd_intern (int fd) 989fd_intern (int fd)
937{ 990{
938#ifdef _WIN32 991#ifdef _WIN32
939 int arg = 1; 992 unsigned long arg = 1;
940 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
941#else 994#else
942 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
943 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
944#endif 997#endif
1428 1481
1429 postfork = 0; 1482 postfork = 0;
1430} 1483}
1431 1484
1432#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1433struct ev_loop * 1487struct ev_loop *
1434ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1435{ 1489{
1436 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1437 1491
1455void 1509void
1456ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1457{ 1511{
1458 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1459} 1513}
1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1460#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1461 1615
1462#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1463struct ev_loop * 1617struct ev_loop *
1464ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1465#else 1619#else
1541 { 1695 {
1542 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1543 1697
1544 p->w->pending = 0; 1698 p->w->pending = 0;
1545 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1546 } 1701 }
1547 } 1702 }
1548} 1703}
1549 1704
1550#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1571#endif 1726#endif
1572 1727
1573void inline_size 1728void inline_size
1574timers_reify (EV_P) 1729timers_reify (EV_P)
1575{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 1734 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1579 1736
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581 1738
1582 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1583 if (w->repeat) 1740 if (w->repeat)
1584 { 1741 {
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586
1587 ev_at (w) += w->repeat; 1742 ev_at (w) += w->repeat;
1588 if (ev_at (w) < mn_now) 1743 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now; 1744 ev_at (w) = mn_now;
1590 1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1591 downheap (timers, timercnt, HEAP0); 1749 downheap (timers, timercnt, HEAP0);
1592 } 1750 }
1593 else 1751 else
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 1753
1754 EV_FREQUENT_CHECK;
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1597 } 1756 }
1598} 1757}
1599 1758
1600#if EV_PERIODIC_ENABLE 1759#if EV_PERIODIC_ENABLE
1601void inline_size 1760void inline_size
1602periodics_reify (EV_P) 1761periodics_reify (EV_P)
1603{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 1766 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1607 1768
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609 1770
1610 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1611 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1612 { 1773 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 1779 downheap (periodics, periodiccnt, HEAP0);
1616 } 1780 }
1617 else if (w->interval) 1781 else if (w->interval)
1618 { 1782 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1622 downheap (periodics, periodiccnt, HEAP0); 1798 downheap (periodics, periodiccnt, HEAP0);
1623 } 1799 }
1624 else 1800 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1802
1803 EV_FREQUENT_CHECK;
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1628 } 1805 }
1629} 1806}
1630 1807
1631static void noinline 1808static void noinline
1632periodics_reschedule (EV_P) 1809periodics_reschedule (EV_P)
1633{ 1810{
1634 int i; 1811 int i;
1635 1812
1636 /* adjust periodics after time jump */ 1813 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 1815 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 1817
1641 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1820 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1645 }
1646 1822
1647 /* now rebuild the heap */ 1823 ANHE_at_cache (periodics [i]);
1648 for (i = periodiccnt >> 1; --i; ) 1824 }
1825
1649 downheap (periodics, periodiccnt, i + HEAP0); 1826 reheap (periodics, periodiccnt);
1650} 1827}
1651#endif 1828#endif
1652 1829
1653void inline_speed 1830void inline_speed
1654time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1708 { 1885 {
1709#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1711#endif 1888#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now; 1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1715 } 1896 }
1716 1897
1717 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1718 } 1899 }
1719} 1900}
1739 1920
1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1741 1922
1742 do 1923 do
1743 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1744#ifndef _WIN32 1929#ifndef _WIN32
1745 if (expect_false (curpid)) /* penalise the forking check even more */ 1930 if (expect_false (curpid)) /* penalise the forking check even more */
1746 if (expect_false (getpid () != curpid)) 1931 if (expect_false (getpid () != curpid))
1747 { 1932 {
1748 curpid = getpid (); 1933 curpid = getpid ();
1789 1974
1790 waittime = MAX_BLOCKTIME; 1975 waittime = MAX_BLOCKTIME;
1791 1976
1792 if (timercnt) 1977 if (timercnt)
1793 { 1978 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 1980 if (waittime > to) waittime = to;
1796 } 1981 }
1797 1982
1798#if EV_PERIODIC_ENABLE 1983#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 1984 if (periodiccnt)
1800 { 1985 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 1987 if (waittime > to) waittime = to;
1803 } 1988 }
1804#endif 1989#endif
1805 1990
1806 if (expect_false (waittime < timeout_blocktime)) 1991 if (expect_false (waittime < timeout_blocktime))
1943 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1944 return; 2129 return;
1945 2130
1946 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1947 2132
2133 EV_FREQUENT_CHECK;
2134
1948 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1950 wlist_add (&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1951 2138
1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1953 w->events &= ~EV_IOFDSET; 2140 w->events &= ~EV_IOFDSET;
2141
2142 EV_FREQUENT_CHECK;
1954} 2143}
1955 2144
1956void noinline 2145void noinline
1957ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1958{ 2147{
1959 clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1961 return; 2150 return;
1962 2151
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153
2154 EV_FREQUENT_CHECK;
1964 2155
1965 wlist_del (&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1967 2158
1968 fd_change (EV_A_ w->fd, 1); 2159 fd_change (EV_A_ w->fd, 1);
2160
2161 EV_FREQUENT_CHECK;
1969} 2162}
1970 2163
1971void noinline 2164void noinline
1972ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
1973{ 2166{
1976 2169
1977 ev_at (w) += mn_now; 2170 ev_at (w) += mn_now;
1978 2171
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
2180 ANHE_at_cache (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2181 upheap (timers, ev_active (w));
1985 2182
2183 EV_FREQUENT_CHECK;
2184
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2186}
1988 2187
1989void noinline 2188void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2189ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2190{
1992 clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
1994 return; 2193 return;
1995 2194
2195 EV_FREQUENT_CHECK;
2196
1996 { 2197 {
1997 int active = ev_active (w); 2198 int active = ev_active (w);
1998 2199
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2201
2202 --timercnt;
2203
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2204 if (expect_true (active < timercnt + HEAP0))
2002 { 2205 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2206 timers [active] = timers [timercnt + HEAP0];
2004 adjustheap (timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
2005 } 2208 }
2006
2007 --timercnt;
2008 } 2209 }
2210
2211 EV_FREQUENT_CHECK;
2009 2212
2010 ev_at (w) -= mn_now; 2213 ev_at (w) -= mn_now;
2011 2214
2012 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
2013} 2216}
2014 2217
2015void noinline 2218void noinline
2016ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
2017{ 2220{
2221 EV_FREQUENT_CHECK;
2222
2018 if (ev_is_active (w)) 2223 if (ev_is_active (w))
2019 { 2224 {
2020 if (w->repeat) 2225 if (w->repeat)
2021 { 2226 {
2022 ev_at (w) = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2228 ANHE_at_cache (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2229 adjustheap (timers, timercnt, ev_active (w));
2024 } 2230 }
2025 else 2231 else
2026 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
2027 } 2233 }
2028 else if (w->repeat) 2234 else if (w->repeat)
2029 { 2235 {
2030 ev_at (w) = w->repeat; 2236 ev_at (w) = w->repeat;
2031 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
2032 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
2033} 2241}
2034 2242
2035#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
2036void noinline 2244void noinline
2037ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2049 } 2257 }
2050 else 2258 else
2051 ev_at (w) = w->offset; 2259 ev_at (w) = w->offset;
2052 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2267 ANHE_at_cache (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 2268 upheap (periodics, ev_active (w));
2057 2269
2270 EV_FREQUENT_CHECK;
2271
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2273}
2060 2274
2061void noinline 2275void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2276ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2277{
2064 clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
2066 return; 2280 return;
2067 2281
2282 EV_FREQUENT_CHECK;
2283
2068 { 2284 {
2069 int active = ev_active (w); 2285 int active = ev_active (w);
2070 2286
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2288
2289 --periodiccnt;
2290
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2291 if (expect_true (active < periodiccnt + HEAP0))
2074 { 2292 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
2076 adjustheap (periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
2077 } 2295 }
2078
2079 --periodiccnt;
2080 } 2296 }
2297
2298 EV_FREQUENT_CHECK;
2081 2299
2082 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
2083} 2301}
2084 2302
2085void noinline 2303void noinline
2105 return; 2323 return;
2106 2324
2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2108 2326
2109 evpipe_init (EV_A); 2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
2110 2330
2111 { 2331 {
2112#ifndef _WIN32 2332#ifndef _WIN32
2113 sigset_t full, prev; 2333 sigset_t full, prev;
2114 sigfillset (&full); 2334 sigfillset (&full);
2135 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2137 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
2138#endif 2358#endif
2139 } 2359 }
2360
2361 EV_FREQUENT_CHECK;
2140} 2362}
2141 2363
2142void noinline 2364void noinline
2143ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
2144{ 2366{
2145 clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
2147 return; 2369 return;
2148 2370
2371 EV_FREQUENT_CHECK;
2372
2149 wlist_del (&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
2151 2375
2152 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
2153 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
2154} 2380}
2155 2381
2156void 2382void
2157ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
2158{ 2384{
2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2161#endif 2387#endif
2162 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
2163 return; 2389 return;
2164 2390
2391 EV_FREQUENT_CHECK;
2392
2165 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
2167} 2397}
2168 2398
2169void 2399void
2170ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
2171{ 2401{
2172 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
2173 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
2174 return; 2404 return;
2175 2405
2406 EV_FREQUENT_CHECK;
2407
2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2177 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
2178} 2412}
2179 2413
2180#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
2181 2415
2182# ifdef _WIN32 2416# ifdef _WIN32
2337 } 2571 }
2338 2572
2339 } 2573 }
2340} 2574}
2341 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2342#endif 2582#endif
2343 2583
2344void 2584void
2345ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
2346{ 2586{
2410 else 2650 else
2411#endif 2651#endif
2412 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
2413 2653
2414 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2415} 2657}
2416 2658
2417void 2659void
2418ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
2419{ 2661{
2420 clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
2422 return; 2664 return;
2423 2665
2666 EV_FREQUENT_CHECK;
2667
2424#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
2426#endif 2670#endif
2427 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
2428 2672
2429 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2430} 2676}
2431#endif 2677#endif
2432 2678
2433#if EV_IDLE_ENABLE 2679#if EV_IDLE_ENABLE
2434void 2680void
2436{ 2682{
2437 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
2438 return; 2684 return;
2439 2685
2440 pri_adjust (EV_A_ (W)w); 2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2441 2689
2442 { 2690 {
2443 int active = ++idlecnt [ABSPRI (w)]; 2691 int active = ++idlecnt [ABSPRI (w)];
2444 2692
2445 ++idleall; 2693 ++idleall;
2446 ev_start (EV_A_ (W)w, active); 2694 ev_start (EV_A_ (W)w, active);
2447 2695
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2449 idles [ABSPRI (w)][active - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2450 } 2698 }
2699
2700 EV_FREQUENT_CHECK;
2451} 2701}
2452 2702
2453void 2703void
2454ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
2455{ 2705{
2456 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
2458 return; 2708 return;
2459 2709
2710 EV_FREQUENT_CHECK;
2711
2460 { 2712 {
2461 int active = ev_active (w); 2713 int active = ev_active (w);
2462 2714
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465 2717
2466 ev_stop (EV_A_ (W)w); 2718 ev_stop (EV_A_ (W)w);
2467 --idleall; 2719 --idleall;
2468 } 2720 }
2721
2722 EV_FREQUENT_CHECK;
2469} 2723}
2470#endif 2724#endif
2471 2725
2472void 2726void
2473ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
2474{ 2728{
2475 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2476 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
2477 2733
2478 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2480 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2481} 2739}
2482 2740
2483void 2741void
2484ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2485{ 2743{
2486 clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2488 return; 2746 return;
2489 2747
2748 EV_FREQUENT_CHECK;
2749
2490 { 2750 {
2491 int active = ev_active (w); 2751 int active = ev_active (w);
2492 2752
2493 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active; 2754 ev_active (prepares [active - 1]) = active;
2495 } 2755 }
2496 2756
2497 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2498} 2760}
2499 2761
2500void 2762void
2501ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2502{ 2764{
2503 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2504 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2505 2769
2506 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2508 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2509} 2775}
2510 2776
2511void 2777void
2512ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2513{ 2779{
2514 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2516 return; 2782 return;
2517 2783
2784 EV_FREQUENT_CHECK;
2785
2518 { 2786 {
2519 int active = ev_active (w); 2787 int active = ev_active (w);
2520 2788
2521 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active; 2790 ev_active (checks [active - 1]) = active;
2523 } 2791 }
2524 2792
2525 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2526} 2796}
2527 2797
2528#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2529void noinline 2799void noinline
2530ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2577 struct ev_loop *loop = w->other; 2847 struct ev_loop *loop = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 } 2850 }
2581 2851
2852 EV_FREQUENT_CHECK;
2853
2582 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2584 2856
2585 ev_prepare_init (&w->prepare, embed_prepare_cb); 2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI); 2858 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare); 2859 ev_prepare_start (EV_A_ &w->prepare);
2588 2860
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590 2862
2591 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2592} 2866}
2593 2867
2594void 2868void
2595ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2596{ 2870{
2597 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2599 return; 2873 return;
2600 2874
2875 EV_FREQUENT_CHECK;
2876
2601 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare); 2878 ev_prepare_stop (EV_A_ &w->prepare);
2603 2879
2604 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2605} 2883}
2606#endif 2884#endif
2607 2885
2608#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2609void 2887void
2610ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2611{ 2889{
2612 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2613 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2614 2894
2615 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2617 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2618} 2900}
2619 2901
2620void 2902void
2621ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2622{ 2904{
2623 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2625 return; 2907 return;
2626 2908
2909 EV_FREQUENT_CHECK;
2910
2627 { 2911 {
2628 int active = ev_active (w); 2912 int active = ev_active (w);
2629 2913
2630 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active; 2915 ev_active (forks [active - 1]) = active;
2632 } 2916 }
2633 2917
2634 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2635} 2921}
2636#endif 2922#endif
2637 2923
2638#if EV_ASYNC_ENABLE 2924#if EV_ASYNC_ENABLE
2639void 2925void
2641{ 2927{
2642 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2643 return; 2929 return;
2644 2930
2645 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2646 2934
2647 ev_start (EV_A_ (W)w, ++asynccnt); 2935 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2649 asyncs [asynccnt - 1] = w; 2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2650} 2940}
2651 2941
2652void 2942void
2653ev_async_stop (EV_P_ ev_async *w) 2943ev_async_stop (EV_P_ ev_async *w)
2654{ 2944{
2655 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2657 return; 2947 return;
2658 2948
2949 EV_FREQUENT_CHECK;
2950
2659 { 2951 {
2660 int active = ev_active (w); 2952 int active = ev_active (w);
2661 2953
2662 asyncs [active - 1] = asyncs [--asynccnt]; 2954 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active; 2955 ev_active (asyncs [active - 1]) = active;
2664 } 2956 }
2665 2957
2666 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2667} 2961}
2668 2962
2669void 2963void
2670ev_async_send (EV_P_ ev_async *w) 2964ev_async_send (EV_P_ ev_async *w)
2671{ 2965{
2688once_cb (EV_P_ struct ev_once *once, int revents) 2982once_cb (EV_P_ struct ev_once *once, int revents)
2689{ 2983{
2690 void (*cb)(int revents, void *arg) = once->cb; 2984 void (*cb)(int revents, void *arg) = once->cb;
2691 void *arg = once->arg; 2985 void *arg = once->arg;
2692 2986
2693 ev_io_stop (EV_A_ &once->io); 2987 ev_io_stop (EV_A_ &once->io);
2694 ev_timer_stop (EV_A_ &once->to); 2988 ev_timer_stop (EV_A_ &once->to);
2695 ev_free (once); 2989 ev_free (once);
2696 2990
2697 cb (revents, arg); 2991 cb (revents, arg);
2698} 2992}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines