ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.237 by root, Wed May 7 15:16:56 2008 UTC vs.
Revision 1.510 by root, Wed Aug 28 09:45:49 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
109# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
110# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 133# else
120# define EV_USE_INOTIFY 0 134# undef EV_USE_KQUEUE
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0 135# define EV_USE_KQUEUE 0
129# endif
130# endif 136# endif
131 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
132#endif 145# endif
133 146
134#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
135#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
136#include <fcntl.h> 188#include <fcntl.h>
137#include <stddef.h> 189#include <stddef.h>
138 190
139#include <stdio.h> 191#include <stdio.h>
140 192
141#include <assert.h> 193#include <assert.h>
142#include <errno.h> 194#include <errno.h>
143#include <sys/types.h> 195#include <sys/types.h>
144#include <time.h> 196#include <time.h>
197#include <limits.h>
145 198
146#include <signal.h> 199#include <signal.h>
147 200
148#ifdef EV_H 201#ifdef EV_H
149# include EV_H 202# include EV_H
150#else 203#else
151# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
152#endif 216#endif
153 217
154#ifndef _WIN32 218#ifndef _WIN32
155# include <sys/time.h> 219# include <sys/time.h>
156# include <sys/wait.h> 220# include <sys/wait.h>
157# include <unistd.h> 221# include <unistd.h>
158#else 222#else
223# include <io.h>
159# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
160# include <windows.h> 226# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
163# endif 229# endif
230# undef EV_AVOID_STDIO
164#endif 231#endif
165 232
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 233/* this block tries to deduce configuration from header-defined symbols and defaults */
167 234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
280
168#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
169# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
170#endif 287#endif
171 288
172#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 291#endif
175 292
176#ifndef EV_USE_NANOSLEEP 293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
177# define EV_USE_NANOSLEEP 0 297# define EV_USE_NANOSLEEP 0
298# endif
178#endif 299#endif
179 300
180#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 303#endif
183 304
184#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
185# ifdef _WIN32 306# ifdef _WIN32
186# define EV_USE_POLL 0 307# define EV_USE_POLL 0
187# else 308# else
188# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 310# endif
190#endif 311#endif
191 312
192#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 316# else
196# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
197# endif 318# endif
198#endif 319#endif
199 320
203 324
204#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 326# define EV_USE_PORT 0
206#endif 327#endif
207 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
337#ifndef EV_USE_IOURING
338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
342# endif
343#endif
344
208#ifndef EV_USE_INOTIFY 345#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 347# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 348# else
212# define EV_USE_INOTIFY 0 349# define EV_USE_INOTIFY 0
213# endif 350# endif
214#endif 351#endif
215 352
216#ifndef EV_PID_HASHSIZE 353#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 355#endif
223 356
224#ifndef EV_INOTIFY_HASHSIZE 357#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 359#endif
231 360
232#ifndef EV_USE_EVENTFD 361#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 363# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 364# else
236# define EV_USE_EVENTFD 0 365# define EV_USE_EVENTFD 0
237# endif 366# endif
238#endif 367#endif
239 368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
374# endif
375#endif
376
377#if 0 /* debugging */
378# define EV_VERIFY 3
379# define EV_USE_4HEAP 1
380# define EV_HEAP_CACHE_AT 1
381#endif
382
383#ifndef EV_VERIFY
384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385#endif
386
387#ifndef EV_USE_4HEAP
388# define EV_USE_4HEAP EV_FEATURE_DATA
389#endif
390
391#ifndef EV_HEAP_CACHE_AT
392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
407# undef EV_USE_POLL
408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
423# endif
424#endif
425
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 427
242#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 429# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 430# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 439# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 440# define EV_USE_INOTIFY 0
255#endif 441#endif
256 442
257#if !EV_USE_NANOSLEEP 443#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 444/* hp-ux has it in sys/time.h, which we unconditionally include above */
445# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 446# include <sys/select.h>
260# endif 447# endif
261#endif 448#endif
262 449
450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453# define EV_NEED_SYSCALL 1
454# else
455# undef EV_USE_LINUXAIO
456# define EV_USE_LINUXAIO 0
457# endif
458#endif
459
460#if EV_USE_IOURING
461# include <sys/syscall.h>
462# if !SYS_io_uring_setup && __linux && !__alpha
463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
474
263#if EV_USE_INOTIFY 475#if EV_USE_INOTIFY
476# include <sys/statfs.h>
264# include <sys/inotify.h> 477# include <sys/inotify.h>
478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479# ifndef IN_DONT_FOLLOW
480# undef EV_USE_INOTIFY
481# define EV_USE_INOTIFY 0
265#endif 482# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 483#endif
270 484
271#if EV_USE_EVENTFD 485#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 487# include <stdint.h>
274# ifdef __cplusplus 488# ifndef EFD_NONBLOCK
275extern "C" { 489# define EFD_NONBLOCK O_NONBLOCK
276# endif 490# endif
277int eventfd (unsigned int initval, int flags); 491# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 492# ifdef O_CLOEXEC
279} 493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
280# endif 497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
281#endif 506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
282 515
283/**/ 516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
524
525#if EV_VERIFY >= 3
526# define EV_FREQUENT_CHECK ev_verify (EV_A)
527#else
528# define EV_FREQUENT_CHECK do { } while (0)
529#endif
284 530
285/* 531/*
286 * This is used to avoid floating point rounding problems. 532 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 533 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 534 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 535#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 537
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 538#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 539#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 540
541/* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544#define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549#ifndef EV_TS_CONST
550# define EV_TS_CONST(nv) nv
551# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
552# define EV_TS_FROM_USEC(us) us * 1e-6
553# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
554# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
555# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
556# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
557#endif
558
559/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
560/* ECB.H BEGIN */
561/*
562 * libecb - http://software.schmorp.de/pkg/libecb
563 *
564 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
565 * Copyright (©) 2011 Emanuele Giaquinta
566 * All rights reserved.
567 *
568 * Redistribution and use in source and binary forms, with or without modifica-
569 * tion, are permitted provided that the following conditions are met:
570 *
571 * 1. Redistributions of source code must retain the above copyright notice,
572 * this list of conditions and the following disclaimer.
573 *
574 * 2. Redistributions in binary form must reproduce the above copyright
575 * notice, this list of conditions and the following disclaimer in the
576 * documentation and/or other materials provided with the distribution.
577 *
578 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
579 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
580 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
581 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
582 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
583 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
584 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
585 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
586 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
587 * OF THE POSSIBILITY OF SUCH DAMAGE.
588 *
589 * Alternatively, the contents of this file may be used under the terms of
590 * the GNU General Public License ("GPL") version 2 or any later version,
591 * in which case the provisions of the GPL are applicable instead of
592 * the above. If you wish to allow the use of your version of this file
593 * only under the terms of the GPL and not to allow others to use your
594 * version of this file under the BSD license, indicate your decision
595 * by deleting the provisions above and replace them with the notice
596 * and other provisions required by the GPL. If you do not delete the
597 * provisions above, a recipient may use your version of this file under
598 * either the BSD or the GPL.
599 */
600
601#ifndef ECB_H
602#define ECB_H
603
604/* 16 bits major, 16 bits minor */
605#define ECB_VERSION 0x00010006
606
607#ifdef _WIN32
608 typedef signed char int8_t;
609 typedef unsigned char uint8_t;
610 typedef signed short int16_t;
611 typedef unsigned short uint16_t;
612 typedef signed int int32_t;
613 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 614 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 615 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 616 typedef unsigned long long uint64_t;
617 #else /* _MSC_VER || __BORLANDC__ */
618 typedef signed __int64 int64_t;
619 typedef unsigned __int64 uint64_t;
620 #endif
621 #ifdef _WIN64
622 #define ECB_PTRSIZE 8
623 typedef uint64_t uintptr_t;
624 typedef int64_t intptr_t;
625 #else
626 #define ECB_PTRSIZE 4
627 typedef uint32_t uintptr_t;
628 typedef int32_t intptr_t;
629 #endif
302#else 630#else
303# define expect(expr,value) (expr) 631 #include <inttypes.h>
304# define noinline 632 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 633 #define ECB_PTRSIZE 8
306# define inline 634 #else
635 #define ECB_PTRSIZE 4
636 #endif
307# endif 637#endif
638
639#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
640#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
641
642/* work around x32 idiocy by defining proper macros */
643#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
644 #if _ILP32
645 #define ECB_AMD64_X32 1
646 #else
647 #define ECB_AMD64 1
308#endif 648 #endif
649#endif
309 650
310#define expect_false(expr) expect ((expr) != 0, 0) 651/* many compilers define _GNUC_ to some versions but then only implement
311#define expect_true(expr) expect ((expr) != 0, 1) 652 * what their idiot authors think are the "more important" extensions,
312#define inline_size static inline 653 * causing enormous grief in return for some better fake benchmark numbers.
313 654 * or so.
314#if EV_MINIMAL 655 * we try to detect these and simply assume they are not gcc - if they have
315# define inline_speed static noinline 656 * an issue with that they should have done it right in the first place.
657 */
658#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
659 #define ECB_GCC_VERSION(major,minor) 0
316#else 660#else
661 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
662#endif
663
664#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
665
666#if __clang__ && defined __has_builtin
667 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
668#else
669 #define ECB_CLANG_BUILTIN(x) 0
670#endif
671
672#if __clang__ && defined __has_extension
673 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
674#else
675 #define ECB_CLANG_EXTENSION(x) 0
676#endif
677
678#define ECB_CPP (__cplusplus+0)
679#define ECB_CPP11 (__cplusplus >= 201103L)
680#define ECB_CPP14 (__cplusplus >= 201402L)
681#define ECB_CPP17 (__cplusplus >= 201703L)
682
683#if ECB_CPP
684 #define ECB_C 0
685 #define ECB_STDC_VERSION 0
686#else
687 #define ECB_C 1
688 #define ECB_STDC_VERSION __STDC_VERSION__
689#endif
690
691#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
692#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
693#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
694
695#if ECB_CPP
696 #define ECB_EXTERN_C extern "C"
697 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
698 #define ECB_EXTERN_C_END }
699#else
700 #define ECB_EXTERN_C extern
701 #define ECB_EXTERN_C_BEG
702 #define ECB_EXTERN_C_END
703#endif
704
705/*****************************************************************************/
706
707/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
708/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
709
710#if ECB_NO_THREADS
711 #define ECB_NO_SMP 1
712#endif
713
714#if ECB_NO_SMP
715 #define ECB_MEMORY_FENCE do { } while (0)
716#endif
717
718/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
719#if __xlC__ && ECB_CPP
720 #include <builtins.h>
721#endif
722
723#if 1400 <= _MSC_VER
724 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
725#endif
726
727#ifndef ECB_MEMORY_FENCE
728 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
730 #if __i386 || __i386__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
732 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
733 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
734 #elif ECB_GCC_AMD64
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
736 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
737 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
738 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
739 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
740 #elif defined __ARM_ARCH_2__ \
741 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
742 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
743 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
744 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
745 || defined __ARM_ARCH_5TEJ__
746 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
747 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
748 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
749 || defined __ARM_ARCH_6T2__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
751 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
752 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
753 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
754 #elif __aarch64__
755 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
756 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
757 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
758 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
759 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
760 #elif defined __s390__ || defined __s390x__
761 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
762 #elif defined __mips__
763 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
764 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
765 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
766 #elif defined __alpha__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
768 #elif defined __hppa__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
770 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
771 #elif defined __ia64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
773 #elif defined __m68k__
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
775 #elif defined __m88k__
776 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
777 #elif defined __sh__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
779 #endif
780 #endif
781#endif
782
783#ifndef ECB_MEMORY_FENCE
784 #if ECB_GCC_VERSION(4,7)
785 /* see comment below (stdatomic.h) about the C11 memory model. */
786 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
787 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
788 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
789 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
790
791 #elif ECB_CLANG_EXTENSION(c_atomic)
792 /* see comment below (stdatomic.h) about the C11 memory model. */
793 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
794 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
795 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
796 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
797
798 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
799 #define ECB_MEMORY_FENCE __sync_synchronize ()
800 #elif _MSC_VER >= 1500 /* VC++ 2008 */
801 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
802 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
803 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
804 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
805 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
806 #elif _MSC_VER >= 1400 /* VC++ 2005 */
807 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
808 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
809 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
810 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
811 #elif defined _WIN32
812 #include <WinNT.h>
813 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
814 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
815 #include <mbarrier.h>
816 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
817 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
818 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
819 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
820 #elif __xlC__
821 #define ECB_MEMORY_FENCE __sync ()
822 #endif
823#endif
824
825#ifndef ECB_MEMORY_FENCE
826 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
827 /* we assume that these memory fences work on all variables/all memory accesses, */
828 /* not just C11 atomics and atomic accesses */
829 #include <stdatomic.h>
830 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
831 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
832 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
833 #endif
834#endif
835
836#ifndef ECB_MEMORY_FENCE
837 #if !ECB_AVOID_PTHREADS
838 /*
839 * if you get undefined symbol references to pthread_mutex_lock,
840 * or failure to find pthread.h, then you should implement
841 * the ECB_MEMORY_FENCE operations for your cpu/compiler
842 * OR provide pthread.h and link against the posix thread library
843 * of your system.
844 */
845 #include <pthread.h>
846 #define ECB_NEEDS_PTHREADS 1
847 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
848
849 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
850 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
851 #endif
852#endif
853
854#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
855 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
856#endif
857
858#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
859 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
860#endif
861
862#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
863 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
864#endif
865
866/*****************************************************************************/
867
868#if ECB_CPP
869 #define ecb_inline static inline
870#elif ECB_GCC_VERSION(2,5)
871 #define ecb_inline static __inline__
872#elif ECB_C99
873 #define ecb_inline static inline
874#else
875 #define ecb_inline static
876#endif
877
878#if ECB_GCC_VERSION(3,3)
879 #define ecb_restrict __restrict__
880#elif ECB_C99
881 #define ecb_restrict restrict
882#else
883 #define ecb_restrict
884#endif
885
886typedef int ecb_bool;
887
888#define ECB_CONCAT_(a, b) a ## b
889#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
890#define ECB_STRINGIFY_(a) # a
891#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
892#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
893
894#define ecb_function_ ecb_inline
895
896#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
897 #define ecb_attribute(attrlist) __attribute__ (attrlist)
898#else
899 #define ecb_attribute(attrlist)
900#endif
901
902#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
903 #define ecb_is_constant(expr) __builtin_constant_p (expr)
904#else
905 /* possible C11 impl for integral types
906 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
907 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
908
909 #define ecb_is_constant(expr) 0
910#endif
911
912#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
913 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
914#else
915 #define ecb_expect(expr,value) (expr)
916#endif
917
918#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
919 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
920#else
921 #define ecb_prefetch(addr,rw,locality)
922#endif
923
924/* no emulation for ecb_decltype */
925#if ECB_CPP11
926 // older implementations might have problems with decltype(x)::type, work around it
927 template<class T> struct ecb_decltype_t { typedef T type; };
928 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
929#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
930 #define ecb_decltype(x) __typeof__ (x)
931#endif
932
933#if _MSC_VER >= 1300
934 #define ecb_deprecated __declspec (deprecated)
935#else
936 #define ecb_deprecated ecb_attribute ((__deprecated__))
937#endif
938
939#if _MSC_VER >= 1500
940 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
941#elif ECB_GCC_VERSION(4,5)
942 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
943#else
944 #define ecb_deprecated_message(msg) ecb_deprecated
945#endif
946
947#if _MSC_VER >= 1400
948 #define ecb_noinline __declspec (noinline)
949#else
950 #define ecb_noinline ecb_attribute ((__noinline__))
951#endif
952
953#define ecb_unused ecb_attribute ((__unused__))
954#define ecb_const ecb_attribute ((__const__))
955#define ecb_pure ecb_attribute ((__pure__))
956
957#if ECB_C11 || __IBMC_NORETURN
958 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
959 #define ecb_noreturn _Noreturn
960#elif ECB_CPP11
961 #define ecb_noreturn [[noreturn]]
962#elif _MSC_VER >= 1200
963 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
964 #define ecb_noreturn __declspec (noreturn)
965#else
966 #define ecb_noreturn ecb_attribute ((__noreturn__))
967#endif
968
969#if ECB_GCC_VERSION(4,3)
970 #define ecb_artificial ecb_attribute ((__artificial__))
971 #define ecb_hot ecb_attribute ((__hot__))
972 #define ecb_cold ecb_attribute ((__cold__))
973#else
974 #define ecb_artificial
975 #define ecb_hot
976 #define ecb_cold
977#endif
978
979/* put around conditional expressions if you are very sure that the */
980/* expression is mostly true or mostly false. note that these return */
981/* booleans, not the expression. */
982#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
983#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
984/* for compatibility to the rest of the world */
985#define ecb_likely(expr) ecb_expect_true (expr)
986#define ecb_unlikely(expr) ecb_expect_false (expr)
987
988/* count trailing zero bits and count # of one bits */
989#if ECB_GCC_VERSION(3,4) \
990 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
991 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
992 && ECB_CLANG_BUILTIN(__builtin_popcount))
993 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
994 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
995 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
996 #define ecb_ctz32(x) __builtin_ctz (x)
997 #define ecb_ctz64(x) __builtin_ctzll (x)
998 #define ecb_popcount32(x) __builtin_popcount (x)
999 /* no popcountll */
1000#else
1001 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1002 ecb_function_ ecb_const int
1003 ecb_ctz32 (uint32_t x)
1004 {
1005#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1006 unsigned long r;
1007 _BitScanForward (&r, x);
1008 return (int)r;
1009#else
1010 int r = 0;
1011
1012 x &= ~x + 1; /* this isolates the lowest bit */
1013
1014#if ECB_branchless_on_i386
1015 r += !!(x & 0xaaaaaaaa) << 0;
1016 r += !!(x & 0xcccccccc) << 1;
1017 r += !!(x & 0xf0f0f0f0) << 2;
1018 r += !!(x & 0xff00ff00) << 3;
1019 r += !!(x & 0xffff0000) << 4;
1020#else
1021 if (x & 0xaaaaaaaa) r += 1;
1022 if (x & 0xcccccccc) r += 2;
1023 if (x & 0xf0f0f0f0) r += 4;
1024 if (x & 0xff00ff00) r += 8;
1025 if (x & 0xffff0000) r += 16;
1026#endif
1027
1028 return r;
1029#endif
1030 }
1031
1032 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1033 ecb_function_ ecb_const int
1034 ecb_ctz64 (uint64_t x)
1035 {
1036#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1037 unsigned long r;
1038 _BitScanForward64 (&r, x);
1039 return (int)r;
1040#else
1041 int shift = x & 0xffffffff ? 0 : 32;
1042 return ecb_ctz32 (x >> shift) + shift;
1043#endif
1044 }
1045
1046 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1047 ecb_function_ ecb_const int
1048 ecb_popcount32 (uint32_t x)
1049 {
1050 x -= (x >> 1) & 0x55555555;
1051 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1052 x = ((x >> 4) + x) & 0x0f0f0f0f;
1053 x *= 0x01010101;
1054
1055 return x >> 24;
1056 }
1057
1058 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1059 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1060 {
1061#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1062 unsigned long r;
1063 _BitScanReverse (&r, x);
1064 return (int)r;
1065#else
1066 int r = 0;
1067
1068 if (x >> 16) { x >>= 16; r += 16; }
1069 if (x >> 8) { x >>= 8; r += 8; }
1070 if (x >> 4) { x >>= 4; r += 4; }
1071 if (x >> 2) { x >>= 2; r += 2; }
1072 if (x >> 1) { r += 1; }
1073
1074 return r;
1075#endif
1076 }
1077
1078 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1079 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1080 {
1081#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1082 unsigned long r;
1083 _BitScanReverse64 (&r, x);
1084 return (int)r;
1085#else
1086 int r = 0;
1087
1088 if (x >> 32) { x >>= 32; r += 32; }
1089
1090 return r + ecb_ld32 (x);
1091#endif
1092 }
1093#endif
1094
1095ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1096ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1097ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1098ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1099
1100ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1101ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1102{
1103 return ( (x * 0x0802U & 0x22110U)
1104 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1105}
1106
1107ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1108ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1109{
1110 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1111 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1112 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1113 x = ( x >> 8 ) | ( x << 8);
1114
1115 return x;
1116}
1117
1118ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1119ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1120{
1121 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1122 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1123 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1124 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1125 x = ( x >> 16 ) | ( x << 16);
1126
1127 return x;
1128}
1129
1130/* popcount64 is only available on 64 bit cpus as gcc builtin */
1131/* so for this version we are lazy */
1132ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1133ecb_function_ ecb_const int
1134ecb_popcount64 (uint64_t x)
1135{
1136 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1137}
1138
1139ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1140ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1141ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1142ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1143ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1144ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1145ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1146ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1147
1148ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1149ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1150ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1151ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1152ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1153ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1154ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1155ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1156
1157#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1158 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1159 #define ecb_bswap16(x) __builtin_bswap16 (x)
1160 #else
1161 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1162 #endif
1163 #define ecb_bswap32(x) __builtin_bswap32 (x)
1164 #define ecb_bswap64(x) __builtin_bswap64 (x)
1165#elif _MSC_VER
1166 #include <stdlib.h>
1167 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1168 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1169 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1170#else
1171 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1172 ecb_function_ ecb_const uint16_t
1173 ecb_bswap16 (uint16_t x)
1174 {
1175 return ecb_rotl16 (x, 8);
1176 }
1177
1178 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1179 ecb_function_ ecb_const uint32_t
1180 ecb_bswap32 (uint32_t x)
1181 {
1182 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1183 }
1184
1185 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1186 ecb_function_ ecb_const uint64_t
1187 ecb_bswap64 (uint64_t x)
1188 {
1189 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1190 }
1191#endif
1192
1193#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1194 #define ecb_unreachable() __builtin_unreachable ()
1195#else
1196 /* this seems to work fine, but gcc always emits a warning for it :/ */
1197 ecb_inline ecb_noreturn void ecb_unreachable (void);
1198 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1199#endif
1200
1201/* try to tell the compiler that some condition is definitely true */
1202#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1203
1204ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1205ecb_inline ecb_const uint32_t
1206ecb_byteorder_helper (void)
1207{
1208 /* the union code still generates code under pressure in gcc, */
1209 /* but less than using pointers, and always seems to */
1210 /* successfully return a constant. */
1211 /* the reason why we have this horrible preprocessor mess */
1212 /* is to avoid it in all cases, at least on common architectures */
1213 /* or when using a recent enough gcc version (>= 4.6) */
1214#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1215 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1216 #define ECB_LITTLE_ENDIAN 1
1217 return 0x44332211;
1218#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1219 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1220 #define ECB_BIG_ENDIAN 1
1221 return 0x11223344;
1222#else
1223 union
1224 {
1225 uint8_t c[4];
1226 uint32_t u;
1227 } u = { 0x11, 0x22, 0x33, 0x44 };
1228 return u.u;
1229#endif
1230}
1231
1232ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1233ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1234ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1235ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1236
1237#if ECB_GCC_VERSION(3,0) || ECB_C99
1238 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1239#else
1240 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1241#endif
1242
1243#if ECB_CPP
1244 template<typename T>
1245 static inline T ecb_div_rd (T val, T div)
1246 {
1247 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1248 }
1249 template<typename T>
1250 static inline T ecb_div_ru (T val, T div)
1251 {
1252 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1253 }
1254#else
1255 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1256 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1257#endif
1258
1259#if ecb_cplusplus_does_not_suck
1260 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1261 template<typename T, int N>
1262 static inline int ecb_array_length (const T (&arr)[N])
1263 {
1264 return N;
1265 }
1266#else
1267 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1268#endif
1269
1270ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1271ecb_function_ ecb_const uint32_t
1272ecb_binary16_to_binary32 (uint32_t x)
1273{
1274 unsigned int s = (x & 0x8000) << (31 - 15);
1275 int e = (x >> 10) & 0x001f;
1276 unsigned int m = x & 0x03ff;
1277
1278 if (ecb_expect_false (e == 31))
1279 /* infinity or NaN */
1280 e = 255 - (127 - 15);
1281 else if (ecb_expect_false (!e))
1282 {
1283 if (ecb_expect_true (!m))
1284 /* zero, handled by code below by forcing e to 0 */
1285 e = 0 - (127 - 15);
1286 else
1287 {
1288 /* subnormal, renormalise */
1289 unsigned int s = 10 - ecb_ld32 (m);
1290
1291 m = (m << s) & 0x3ff; /* mask implicit bit */
1292 e -= s - 1;
1293 }
1294 }
1295
1296 /* e and m now are normalised, or zero, (or inf or nan) */
1297 e += 127 - 15;
1298
1299 return s | (e << 23) | (m << (23 - 10));
1300}
1301
1302ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1303ecb_function_ ecb_const uint16_t
1304ecb_binary32_to_binary16 (uint32_t x)
1305{
1306 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1307 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1308 unsigned int m = x & 0x007fffff;
1309
1310 x &= 0x7fffffff;
1311
1312 /* if it's within range of binary16 normals, use fast path */
1313 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1314 {
1315 /* mantissa round-to-even */
1316 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1317
1318 /* handle overflow */
1319 if (ecb_expect_false (m >= 0x00800000))
1320 {
1321 m >>= 1;
1322 e += 1;
1323 }
1324
1325 return s | (e << 10) | (m >> (23 - 10));
1326 }
1327
1328 /* handle large numbers and infinity */
1329 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1330 return s | 0x7c00;
1331
1332 /* handle zero, subnormals and small numbers */
1333 if (ecb_expect_true (x < 0x38800000))
1334 {
1335 /* zero */
1336 if (ecb_expect_true (!x))
1337 return s;
1338
1339 /* handle subnormals */
1340
1341 /* too small, will be zero */
1342 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1343 return s;
1344
1345 m |= 0x00800000; /* make implicit bit explicit */
1346
1347 /* very tricky - we need to round to the nearest e (+10) bit value */
1348 {
1349 unsigned int bits = 14 - e;
1350 unsigned int half = (1 << (bits - 1)) - 1;
1351 unsigned int even = (m >> bits) & 1;
1352
1353 /* if this overflows, we will end up with a normalised number */
1354 m = (m + half + even) >> bits;
1355 }
1356
1357 return s | m;
1358 }
1359
1360 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1361 m >>= 13;
1362
1363 return s | 0x7c00 | m | !m;
1364}
1365
1366/*******************************************************************************/
1367/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1368
1369/* basically, everything uses "ieee pure-endian" floating point numbers */
1370/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1371#if 0 \
1372 || __i386 || __i386__ \
1373 || ECB_GCC_AMD64 \
1374 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1375 || defined __s390__ || defined __s390x__ \
1376 || defined __mips__ \
1377 || defined __alpha__ \
1378 || defined __hppa__ \
1379 || defined __ia64__ \
1380 || defined __m68k__ \
1381 || defined __m88k__ \
1382 || defined __sh__ \
1383 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1384 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1385 || defined __aarch64__
1386 #define ECB_STDFP 1
1387 #include <string.h> /* for memcpy */
1388#else
1389 #define ECB_STDFP 0
1390#endif
1391
1392#ifndef ECB_NO_LIBM
1393
1394 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1395
1396 /* only the oldest of old doesn't have this one. solaris. */
1397 #ifdef INFINITY
1398 #define ECB_INFINITY INFINITY
1399 #else
1400 #define ECB_INFINITY HUGE_VAL
1401 #endif
1402
1403 #ifdef NAN
1404 #define ECB_NAN NAN
1405 #else
1406 #define ECB_NAN ECB_INFINITY
1407 #endif
1408
1409 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1410 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1411 #define ecb_frexpf(x,e) frexpf ((x), (e))
1412 #else
1413 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1414 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1415 #endif
1416
1417 /* convert a float to ieee single/binary32 */
1418 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1419 ecb_function_ ecb_const uint32_t
1420 ecb_float_to_binary32 (float x)
1421 {
1422 uint32_t r;
1423
1424 #if ECB_STDFP
1425 memcpy (&r, &x, 4);
1426 #else
1427 /* slow emulation, works for anything but -0 */
1428 uint32_t m;
1429 int e;
1430
1431 if (x == 0e0f ) return 0x00000000U;
1432 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1433 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1434 if (x != x ) return 0x7fbfffffU;
1435
1436 m = ecb_frexpf (x, &e) * 0x1000000U;
1437
1438 r = m & 0x80000000U;
1439
1440 if (r)
1441 m = -m;
1442
1443 if (e <= -126)
1444 {
1445 m &= 0xffffffU;
1446 m >>= (-125 - e);
1447 e = -126;
1448 }
1449
1450 r |= (e + 126) << 23;
1451 r |= m & 0x7fffffU;
1452 #endif
1453
1454 return r;
1455 }
1456
1457 /* converts an ieee single/binary32 to a float */
1458 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1459 ecb_function_ ecb_const float
1460 ecb_binary32_to_float (uint32_t x)
1461 {
1462 float r;
1463
1464 #if ECB_STDFP
1465 memcpy (&r, &x, 4);
1466 #else
1467 /* emulation, only works for normals and subnormals and +0 */
1468 int neg = x >> 31;
1469 int e = (x >> 23) & 0xffU;
1470
1471 x &= 0x7fffffU;
1472
1473 if (e)
1474 x |= 0x800000U;
1475 else
1476 e = 1;
1477
1478 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1479 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1480
1481 r = neg ? -r : r;
1482 #endif
1483
1484 return r;
1485 }
1486
1487 /* convert a double to ieee double/binary64 */
1488 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1489 ecb_function_ ecb_const uint64_t
1490 ecb_double_to_binary64 (double x)
1491 {
1492 uint64_t r;
1493
1494 #if ECB_STDFP
1495 memcpy (&r, &x, 8);
1496 #else
1497 /* slow emulation, works for anything but -0 */
1498 uint64_t m;
1499 int e;
1500
1501 if (x == 0e0 ) return 0x0000000000000000U;
1502 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1503 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1504 if (x != x ) return 0X7ff7ffffffffffffU;
1505
1506 m = frexp (x, &e) * 0x20000000000000U;
1507
1508 r = m & 0x8000000000000000;;
1509
1510 if (r)
1511 m = -m;
1512
1513 if (e <= -1022)
1514 {
1515 m &= 0x1fffffffffffffU;
1516 m >>= (-1021 - e);
1517 e = -1022;
1518 }
1519
1520 r |= ((uint64_t)(e + 1022)) << 52;
1521 r |= m & 0xfffffffffffffU;
1522 #endif
1523
1524 return r;
1525 }
1526
1527 /* converts an ieee double/binary64 to a double */
1528 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1529 ecb_function_ ecb_const double
1530 ecb_binary64_to_double (uint64_t x)
1531 {
1532 double r;
1533
1534 #if ECB_STDFP
1535 memcpy (&r, &x, 8);
1536 #else
1537 /* emulation, only works for normals and subnormals and +0 */
1538 int neg = x >> 63;
1539 int e = (x >> 52) & 0x7ffU;
1540
1541 x &= 0xfffffffffffffU;
1542
1543 if (e)
1544 x |= 0x10000000000000U;
1545 else
1546 e = 1;
1547
1548 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1549 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1550
1551 r = neg ? -r : r;
1552 #endif
1553
1554 return r;
1555 }
1556
1557 /* convert a float to ieee half/binary16 */
1558 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1559 ecb_function_ ecb_const uint16_t
1560 ecb_float_to_binary16 (float x)
1561 {
1562 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1563 }
1564
1565 /* convert an ieee half/binary16 to float */
1566 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1567 ecb_function_ ecb_const float
1568 ecb_binary16_to_float (uint16_t x)
1569 {
1570 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1571 }
1572
1573#endif
1574
1575#endif
1576
1577/* ECB.H END */
1578
1579#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1580/* if your architecture doesn't need memory fences, e.g. because it is
1581 * single-cpu/core, or if you use libev in a project that doesn't use libev
1582 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1583 * libev, in which cases the memory fences become nops.
1584 * alternatively, you can remove this #error and link against libpthread,
1585 * which will then provide the memory fences.
1586 */
1587# error "memory fences not defined for your architecture, please report"
1588#endif
1589
1590#ifndef ECB_MEMORY_FENCE
1591# define ECB_MEMORY_FENCE do { } while (0)
1592# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1593# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1594#endif
1595
1596#define inline_size ecb_inline
1597
1598#if EV_FEATURE_CODE
317# define inline_speed static inline 1599# define inline_speed ecb_inline
1600#else
1601# define inline_speed ecb_noinline static
318#endif 1602#endif
319 1603
1604/*****************************************************************************/
1605/* raw syscall wrappers */
1606
1607#if EV_NEED_SYSCALL
1608
1609#include <sys/syscall.h>
1610
1611/*
1612 * define some syscall wrappers for common architectures
1613 * this is mostly for nice looks during debugging, not performance.
1614 * our syscalls return < 0, not == -1, on error. which is good
1615 * enough for linux aio.
1616 * TODO: arm is also common nowadays, maybe even mips and x86
1617 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1618 */
1619#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1620 /* the costly errno access probably kills this for size optimisation */
1621
1622 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1623 ({ \
1624 long res; \
1625 register unsigned long r6 __asm__ ("r9" ); \
1626 register unsigned long r5 __asm__ ("r8" ); \
1627 register unsigned long r4 __asm__ ("r10"); \
1628 register unsigned long r3 __asm__ ("rdx"); \
1629 register unsigned long r2 __asm__ ("rsi"); \
1630 register unsigned long r1 __asm__ ("rdi"); \
1631 if (narg >= 6) r6 = (unsigned long)(arg6); \
1632 if (narg >= 5) r5 = (unsigned long)(arg5); \
1633 if (narg >= 4) r4 = (unsigned long)(arg4); \
1634 if (narg >= 3) r3 = (unsigned long)(arg3); \
1635 if (narg >= 2) r2 = (unsigned long)(arg2); \
1636 if (narg >= 1) r1 = (unsigned long)(arg1); \
1637 __asm__ __volatile__ ( \
1638 "syscall\n\t" \
1639 : "=a" (res) \
1640 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1641 : "cc", "r11", "cx", "memory"); \
1642 errno = -res; \
1643 res; \
1644 })
1645
1646#endif
1647
1648#ifdef ev_syscall
1649 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1650 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1651 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1652 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1653 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1654 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1655 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1656#else
1657 #define ev_syscall0(nr) syscall (nr)
1658 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1659 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1660 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1661 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1662 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1663 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1664#endif
1665
1666#endif
1667
1668/*****************************************************************************/
1669
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1670#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1671
1672#if EV_MINPRI == EV_MAXPRI
1673# define ABSPRI(w) (((W)w), 0)
1674#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1675# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1676#endif
322 1677
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1678#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325 1679
326typedef ev_watcher *W; 1680typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 1681typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 1682typedef ev_watcher_time *WT;
329 1683
330#define ev_active(w) ((W)(w))->active 1684#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 1685#define ev_at(w) ((WT)(w))->at
332 1686
1687#if EV_USE_REALTIME
1688/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1689/* giving it a reasonably high chance of working on typical architectures */
1690static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1691#endif
1692
333#if EV_USE_MONOTONIC 1693#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1694static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1695#endif
1696
1697#ifndef EV_FD_TO_WIN32_HANDLE
1698# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1699#endif
1700#ifndef EV_WIN32_HANDLE_TO_FD
1701# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1702#endif
1703#ifndef EV_WIN32_CLOSE_FD
1704# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1705#endif
338 1706
339#ifdef _WIN32 1707#ifdef _WIN32
340# include "ev_win32.c" 1708# include "ev_win32.c"
341#endif 1709#endif
342 1710
343/*****************************************************************************/ 1711/*****************************************************************************/
344 1712
1713#if EV_USE_LINUXAIO
1714# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1715#endif
1716
1717/* define a suitable floor function (only used by periodics atm) */
1718
1719#if EV_USE_FLOOR
1720# include <math.h>
1721# define ev_floor(v) floor (v)
1722#else
1723
1724#include <float.h>
1725
1726/* a floor() replacement function, should be independent of ev_tstamp type */
1727ecb_noinline
1728static ev_tstamp
1729ev_floor (ev_tstamp v)
1730{
1731 /* the choice of shift factor is not terribly important */
1732#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1733 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1734#else
1735 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1736#endif
1737
1738 /* special treatment for negative arguments */
1739 if (ecb_expect_false (v < 0.))
1740 {
1741 ev_tstamp f = -ev_floor (-v);
1742
1743 return f - (f == v ? 0 : 1);
1744 }
1745
1746 /* argument too large for an unsigned long? then reduce it */
1747 if (ecb_expect_false (v >= shift))
1748 {
1749 ev_tstamp f;
1750
1751 if (v == v - 1.)
1752 return v; /* very large numbers are assumed to be integer */
1753
1754 f = shift * ev_floor (v * (1. / shift));
1755 return f + ev_floor (v - f);
1756 }
1757
1758 /* fits into an unsigned long */
1759 return (unsigned long)v;
1760}
1761
1762#endif
1763
1764/*****************************************************************************/
1765
1766#ifdef __linux
1767# include <sys/utsname.h>
1768#endif
1769
1770ecb_noinline ecb_cold
1771static unsigned int
1772ev_linux_version (void)
1773{
1774#ifdef __linux
1775 unsigned int v = 0;
1776 struct utsname buf;
1777 int i;
1778 char *p = buf.release;
1779
1780 if (uname (&buf))
1781 return 0;
1782
1783 for (i = 3+1; --i; )
1784 {
1785 unsigned int c = 0;
1786
1787 for (;;)
1788 {
1789 if (*p >= '0' && *p <= '9')
1790 c = c * 10 + *p++ - '0';
1791 else
1792 {
1793 p += *p == '.';
1794 break;
1795 }
1796 }
1797
1798 v = (v << 8) | c;
1799 }
1800
1801 return v;
1802#else
1803 return 0;
1804#endif
1805}
1806
1807/*****************************************************************************/
1808
1809#if EV_AVOID_STDIO
1810ecb_noinline ecb_cold
1811static void
1812ev_printerr (const char *msg)
1813{
1814 write (STDERR_FILENO, msg, strlen (msg));
1815}
1816#endif
1817
345static void (*syserr_cb)(const char *msg); 1818static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
346 1819
1820ecb_cold
347void 1821void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1822ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
349{ 1823{
350 syserr_cb = cb; 1824 syserr_cb = cb;
351} 1825}
352 1826
353static void noinline 1827ecb_noinline ecb_cold
1828static void
354syserr (const char *msg) 1829ev_syserr (const char *msg)
355{ 1830{
356 if (!msg) 1831 if (!msg)
357 msg = "(libev) system error"; 1832 msg = "(libev) system error";
358 1833
359 if (syserr_cb) 1834 if (syserr_cb)
360 syserr_cb (msg); 1835 syserr_cb (msg);
361 else 1836 else
362 { 1837 {
1838#if EV_AVOID_STDIO
1839 ev_printerr (msg);
1840 ev_printerr (": ");
1841 ev_printerr (strerror (errno));
1842 ev_printerr ("\n");
1843#else
363 perror (msg); 1844 perror (msg);
1845#endif
364 abort (); 1846 abort ();
365 } 1847 }
366} 1848}
367 1849
368static void * 1850static void *
369ev_realloc_emul (void *ptr, long size) 1851ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
370{ 1852{
371 /* some systems, notably openbsd and darwin, fail to properly 1853 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1854 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1855 * the single unix specification, so work around them here.
1856 * recently, also (at least) fedora and debian started breaking it,
1857 * despite documenting it otherwise.
374 */ 1858 */
375 1859
376 if (size) 1860 if (size)
377 return realloc (ptr, size); 1861 return realloc (ptr, size);
378 1862
379 free (ptr); 1863 free (ptr);
380 return 0; 1864 return 0;
381} 1865}
382 1866
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1867static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
384 1868
1869ecb_cold
385void 1870void
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1871ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
387{ 1872{
388 alloc = cb; 1873 alloc = cb;
389} 1874}
390 1875
391inline_speed void * 1876inline_speed void *
393{ 1878{
394 ptr = alloc (ptr, size); 1879 ptr = alloc (ptr, size);
395 1880
396 if (!ptr && size) 1881 if (!ptr && size)
397 { 1882 {
1883#if EV_AVOID_STDIO
1884 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1885#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1886 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1887#endif
399 abort (); 1888 abort ();
400 } 1889 }
401 1890
402 return ptr; 1891 return ptr;
403} 1892}
405#define ev_malloc(size) ev_realloc (0, (size)) 1894#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1895#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1896
408/*****************************************************************************/ 1897/*****************************************************************************/
409 1898
1899/* set in reify when reification needed */
1900#define EV_ANFD_REIFY 1
1901
1902/* file descriptor info structure */
410typedef struct 1903typedef struct
411{ 1904{
412 WL head; 1905 WL head;
413 unsigned char events; 1906 unsigned char events; /* the events watched for */
414 unsigned char reify; 1907 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1908 unsigned char emask; /* some backends store the actual kernel mask in here */
1909 unsigned char eflags; /* flags field for use by backends */
1910#if EV_USE_EPOLL
1911 unsigned int egen; /* generation counter to counter epoll bugs */
1912#endif
415#if EV_SELECT_IS_WINSOCKET 1913#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1914 SOCKET handle;
417#endif 1915#endif
1916#if EV_USE_IOCP
1917 OVERLAPPED or, ow;
1918#endif
418} ANFD; 1919} ANFD;
419 1920
1921/* stores the pending event set for a given watcher */
420typedef struct 1922typedef struct
421{ 1923{
422 W w; 1924 W w;
423 int events; 1925 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1926} ANPENDING;
425 1927
426#if EV_USE_INOTIFY 1928#if EV_USE_INOTIFY
1929/* hash table entry per inotify-id */
427typedef struct 1930typedef struct
428{ 1931{
429 WL head; 1932 WL head;
430} ANFS; 1933} ANFS;
1934#endif
1935
1936/* Heap Entry */
1937#if EV_HEAP_CACHE_AT
1938 /* a heap element */
1939 typedef struct {
1940 ev_tstamp at;
1941 WT w;
1942 } ANHE;
1943
1944 #define ANHE_w(he) (he).w /* access watcher, read-write */
1945 #define ANHE_at(he) (he).at /* access cached at, read-only */
1946 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1947#else
1948 /* a heap element */
1949 typedef WT ANHE;
1950
1951 #define ANHE_w(he) (he)
1952 #define ANHE_at(he) (he)->at
1953 #define ANHE_at_cache(he)
431#endif 1954#endif
432 1955
433#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
434 1957
435 struct ev_loop 1958 struct ev_loop
441 #undef VAR 1964 #undef VAR
442 }; 1965 };
443 #include "ev_wrap.h" 1966 #include "ev_wrap.h"
444 1967
445 static struct ev_loop default_loop_struct; 1968 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr; 1969 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
447 1970
448#else 1971#else
449 1972
450 ev_tstamp ev_rt_now; 1973 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
451 #define VAR(name,decl) static decl; 1974 #define VAR(name,decl) static decl;
452 #include "ev_vars.h" 1975 #include "ev_vars.h"
453 #undef VAR 1976 #undef VAR
454 1977
455 static int ev_default_loop_ptr; 1978 static int ev_default_loop_ptr;
456 1979
457#endif 1980#endif
458 1981
1982#if EV_FEATURE_API
1983# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1984# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1985# define EV_INVOKE_PENDING invoke_cb (EV_A)
1986#else
1987# define EV_RELEASE_CB (void)0
1988# define EV_ACQUIRE_CB (void)0
1989# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1990#endif
1991
1992#define EVBREAK_RECURSE 0x80
1993
459/*****************************************************************************/ 1994/*****************************************************************************/
460 1995
1996#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1997ev_tstamp
462ev_time (void) 1998ev_time (void) EV_NOEXCEPT
463{ 1999{
464#if EV_USE_REALTIME 2000#if EV_USE_REALTIME
2001 if (ecb_expect_true (have_realtime))
2002 {
465 struct timespec ts; 2003 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 2004 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 2005 return EV_TS_GET (ts);
468#else 2006 }
2007#endif
2008
2009 {
469 struct timeval tv; 2010 struct timeval tv;
470 gettimeofday (&tv, 0); 2011 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 2012 return EV_TV_GET (tv);
472#endif 2013 }
473} 2014}
2015#endif
474 2016
475ev_tstamp inline_size 2017inline_size ev_tstamp
476get_clock (void) 2018get_clock (void)
477{ 2019{
478#if EV_USE_MONOTONIC 2020#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 2021 if (ecb_expect_true (have_monotonic))
480 { 2022 {
481 struct timespec ts; 2023 struct timespec ts;
482 clock_gettime (CLOCK_MONOTONIC, &ts); 2024 clock_gettime (CLOCK_MONOTONIC, &ts);
483 return ts.tv_sec + ts.tv_nsec * 1e-9; 2025 return EV_TS_GET (ts);
484 } 2026 }
485#endif 2027#endif
486 2028
487 return ev_time (); 2029 return ev_time ();
488} 2030}
489 2031
490#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
491ev_tstamp 2033ev_tstamp
492ev_now (EV_P) 2034ev_now (EV_P) EV_NOEXCEPT
493{ 2035{
494 return ev_rt_now; 2036 return ev_rt_now;
495} 2037}
496#endif 2038#endif
497 2039
498void 2040void
499ev_sleep (ev_tstamp delay) 2041ev_sleep (ev_tstamp delay) EV_NOEXCEPT
500{ 2042{
501 if (delay > 0.) 2043 if (delay > EV_TS_CONST (0.))
502 { 2044 {
503#if EV_USE_NANOSLEEP 2045#if EV_USE_NANOSLEEP
504 struct timespec ts; 2046 struct timespec ts;
505 2047
506 ts.tv_sec = (time_t)delay; 2048 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 2049 nanosleep (&ts, 0);
510#elif defined(_WIN32) 2050#elif defined _WIN32
2051 /* maybe this should round up, as ms is very low resolution */
2052 /* compared to select (µs) or nanosleep (ns) */
511 Sleep ((unsigned long)(delay * 1e3)); 2053 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
512#else 2054#else
513 struct timeval tv; 2055 struct timeval tv;
514 2056
515 tv.tv_sec = (time_t)delay; 2057 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2058 /* something not guaranteed by newer posix versions, but guaranteed */
517 2059 /* by older ones */
2060 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 2061 select (0, 0, 0, 0, &tv);
519#endif 2062#endif
520 } 2063 }
521} 2064}
522 2065
523/*****************************************************************************/ 2066/*****************************************************************************/
524 2067
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2068#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 2069
527int inline_size 2070/* find a suitable new size for the given array, */
2071/* hopefully by rounding to a nice-to-malloc size */
2072inline_size int
528array_nextsize (int elem, int cur, int cnt) 2073array_nextsize (int elem, int cur, int cnt)
529{ 2074{
530 int ncur = cur + 1; 2075 int ncur = cur + 1;
531 2076
532 do 2077 do
533 ncur <<= 1; 2078 ncur <<= 1;
534 while (cnt > ncur); 2079 while (cnt > ncur);
535 2080
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2081 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2082 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 { 2083 {
539 ncur *= elem; 2084 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2085 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4; 2086 ncur = ncur - sizeof (void *) * 4;
543 } 2088 }
544 2089
545 return ncur; 2090 return ncur;
546} 2091}
547 2092
548static noinline void * 2093ecb_noinline ecb_cold
2094static void *
549array_realloc (int elem, void *base, int *cur, int cnt) 2095array_realloc (int elem, void *base, int *cur, int cnt)
550{ 2096{
551 *cur = array_nextsize (elem, *cur, cnt); 2097 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 2098 return ev_realloc (base, elem * *cur);
553} 2099}
554 2100
2101#define array_needsize_noinit(base,offset,count)
2102
2103#define array_needsize_zerofill(base,offset,count) \
2104 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2105
555#define array_needsize(type,base,cur,cnt,init) \ 2106#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 2107 if (ecb_expect_false ((cnt) > (cur))) \
557 { \ 2108 { \
558 int ocur_ = (cur); \ 2109 ecb_unused int ocur_ = (cur); \
559 (base) = (type *)array_realloc \ 2110 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \ 2111 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \ 2112 init ((base), ocur_, ((cur) - ocur_)); \
562 } 2113 }
563 2114
564#if 0 2115#if 0
565#define array_slim(type,stem) \ 2116#define array_slim(type,stem) \
566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2117 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2121 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 2122 }
572#endif 2123#endif
573 2124
574#define array_free(stem, idx) \ 2125#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2126 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 2127
577/*****************************************************************************/ 2128/*****************************************************************************/
578 2129
579void noinline 2130/* dummy callback for pending events */
2131ecb_noinline
2132static void
2133pendingcb (EV_P_ ev_prepare *w, int revents)
2134{
2135}
2136
2137ecb_noinline
2138void
580ev_feed_event (EV_P_ void *w, int revents) 2139ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
581{ 2140{
582 W w_ = (W)w; 2141 W w_ = (W)w;
583 int pri = ABSPRI (w_); 2142 int pri = ABSPRI (w_);
584 2143
585 if (expect_false (w_->pending)) 2144 if (ecb_expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents; 2145 pendings [pri][w_->pending - 1].events |= revents;
587 else 2146 else
588 { 2147 {
589 w_->pending = ++pendingcnt [pri]; 2148 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2149 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
591 pendings [pri][w_->pending - 1].w = w_; 2150 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 2151 pendings [pri][w_->pending - 1].events = revents;
593 } 2152 }
594}
595 2153
596void inline_speed 2154 pendingpri = NUMPRI - 1;
2155}
2156
2157inline_speed void
2158feed_reverse (EV_P_ W w)
2159{
2160 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2161 rfeeds [rfeedcnt++] = w;
2162}
2163
2164inline_size void
2165feed_reverse_done (EV_P_ int revents)
2166{
2167 do
2168 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2169 while (rfeedcnt);
2170}
2171
2172inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 2173queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 2174{
599 int i; 2175 int i;
600 2176
601 for (i = 0; i < eventcnt; ++i) 2177 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 2178 ev_feed_event (EV_A_ events [i], type);
603} 2179}
604 2180
605/*****************************************************************************/ 2181/*****************************************************************************/
606 2182
607void inline_size 2183inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 2184fd_event_nocheck (EV_P_ int fd, int revents)
622{ 2185{
623 ANFD *anfd = anfds + fd; 2186 ANFD *anfd = anfds + fd;
624 ev_io *w; 2187 ev_io *w;
625 2188
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2189 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 2193 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 2194 ev_feed_event (EV_A_ (W)w, ev);
632 } 2195 }
633} 2196}
634 2197
635void 2198/* do not submit kernel events for fds that have reify set */
2199/* because that means they changed while we were polling for new events */
2200inline_speed void
636ev_feed_fd_event (EV_P_ int fd, int revents) 2201fd_event (EV_P_ int fd, int revents)
2202{
2203 ANFD *anfd = anfds + fd;
2204
2205 if (ecb_expect_true (!anfd->reify))
2206 fd_event_nocheck (EV_A_ fd, revents);
2207}
2208
2209void
2210ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
637{ 2211{
638 if (fd >= 0 && fd < anfdmax) 2212 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 2213 fd_event_nocheck (EV_A_ fd, revents);
640} 2214}
641 2215
642void inline_size 2216/* make sure the external fd watch events are in-sync */
2217/* with the kernel/libev internal state */
2218inline_size void
643fd_reify (EV_P) 2219fd_reify (EV_P)
644{ 2220{
645 int i; 2221 int i;
2222
2223#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2224 for (i = 0; i < fdchangecnt; ++i)
2225 {
2226 int fd = fdchanges [i];
2227 ANFD *anfd = anfds + fd;
2228
2229 if (anfd->reify & EV__IOFDSET && anfd->head)
2230 {
2231 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2232
2233 if (handle != anfd->handle)
2234 {
2235 unsigned long arg;
2236
2237 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2238
2239 /* handle changed, but fd didn't - we need to do it in two steps */
2240 backend_modify (EV_A_ fd, anfd->events, 0);
2241 anfd->events = 0;
2242 anfd->handle = handle;
2243 }
2244 }
2245 }
2246#endif
646 2247
647 for (i = 0; i < fdchangecnt; ++i) 2248 for (i = 0; i < fdchangecnt; ++i)
648 { 2249 {
649 int fd = fdchanges [i]; 2250 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd; 2251 ANFD *anfd = anfds + fd;
651 ev_io *w; 2252 ev_io *w;
652 2253
653 unsigned char events = 0; 2254 unsigned char o_events = anfd->events;
2255 unsigned char o_reify = anfd->reify;
654 2256
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2257 anfd->reify = 0;
656 events |= (unsigned char)w->events;
657 2258
658#if EV_SELECT_IS_WINSOCKET 2259 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
659 if (events)
660 { 2260 {
661 unsigned long argp; 2261 anfd->events = 0;
662 #ifdef EV_FD_TO_WIN32_HANDLE 2262
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2263 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
664 #else 2264 anfd->events |= (unsigned char)w->events;
665 anfd->handle = _get_osfhandle (fd); 2265
666 #endif 2266 if (o_events != anfd->events)
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2267 o_reify = EV__IOFDSET; /* actually |= */
668 } 2268 }
669#endif
670 2269
671 { 2270 if (o_reify & EV__IOFDSET)
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 2271 backend_modify (EV_A_ fd, o_events, anfd->events);
680 }
681 } 2272 }
682 2273
683 fdchangecnt = 0; 2274 fdchangecnt = 0;
684} 2275}
685 2276
2277/* something about the given fd changed */
686void inline_size 2278inline_size
2279void
687fd_change (EV_P_ int fd, int flags) 2280fd_change (EV_P_ int fd, int flags)
688{ 2281{
689 unsigned char reify = anfds [fd].reify; 2282 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 2283 anfds [fd].reify |= flags;
691 2284
692 if (expect_true (!reify)) 2285 if (ecb_expect_true (!reify))
693 { 2286 {
694 ++fdchangecnt; 2287 ++fdchangecnt;
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2288 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
696 fdchanges [fdchangecnt - 1] = fd; 2289 fdchanges [fdchangecnt - 1] = fd;
697 } 2290 }
698} 2291}
699 2292
700void inline_speed 2293/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2294inline_speed ecb_cold void
701fd_kill (EV_P_ int fd) 2295fd_kill (EV_P_ int fd)
702{ 2296{
703 ev_io *w; 2297 ev_io *w;
704 2298
705 while ((w = (ev_io *)anfds [fd].head)) 2299 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 2301 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2302 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 2303 }
710} 2304}
711 2305
712int inline_size 2306/* check whether the given fd is actually valid, for error recovery */
2307inline_size ecb_cold int
713fd_valid (int fd) 2308fd_valid (int fd)
714{ 2309{
715#ifdef _WIN32 2310#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 2311 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 2312#else
718 return fcntl (fd, F_GETFD) != -1; 2313 return fcntl (fd, F_GETFD) != -1;
719#endif 2314#endif
720} 2315}
721 2316
722/* called on EBADF to verify fds */ 2317/* called on EBADF to verify fds */
723static void noinline 2318ecb_noinline ecb_cold
2319static void
724fd_ebadf (EV_P) 2320fd_ebadf (EV_P)
725{ 2321{
726 int fd; 2322 int fd;
727 2323
728 for (fd = 0; fd < anfdmax; ++fd) 2324 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 2325 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 2326 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 2327 fd_kill (EV_A_ fd);
732} 2328}
733 2329
734/* called on ENOMEM in select/poll to kill some fds and retry */ 2330/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 2331ecb_noinline ecb_cold
2332static void
736fd_enomem (EV_P) 2333fd_enomem (EV_P)
737{ 2334{
738 int fd; 2335 int fd;
739 2336
740 for (fd = anfdmax; fd--; ) 2337 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 2338 if (anfds [fd].events)
742 { 2339 {
743 fd_kill (EV_A_ fd); 2340 fd_kill (EV_A_ fd);
744 return; 2341 break;
745 } 2342 }
746} 2343}
747 2344
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 2345/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 2346ecb_noinline
2347static void
750fd_rearm_all (EV_P) 2348fd_rearm_all (EV_P)
751{ 2349{
752 int fd; 2350 int fd;
753 2351
754 for (fd = 0; fd < anfdmax; ++fd) 2352 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 2353 if (anfds [fd].events)
756 { 2354 {
757 anfds [fd].events = 0; 2355 anfds [fd].events = 0;
2356 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2357 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 2358 }
760} 2359}
761 2360
2361/* used to prepare libev internal fd's */
2362/* this is not fork-safe */
2363inline_speed void
2364fd_intern (int fd)
2365{
2366#ifdef _WIN32
2367 unsigned long arg = 1;
2368 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2369#else
2370 fcntl (fd, F_SETFD, FD_CLOEXEC);
2371 fcntl (fd, F_SETFL, O_NONBLOCK);
2372#endif
2373}
2374
762/*****************************************************************************/ 2375/*****************************************************************************/
2376
2377/*
2378 * the heap functions want a real array index. array index 0 is guaranteed to not
2379 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2380 * the branching factor of the d-tree.
2381 */
763 2382
764/* 2383/*
765 * at the moment we allow libev the luxury of two heaps, 2384 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 2385 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 2386 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 2387 * the difference is about 5% with 50000+ watchers.
769 */ 2388 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 2389#if EV_USE_4HEAP
772 2390
773#define DHEAP 4 2391#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2392#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2393#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2394#define UPHEAP_DONE(p,k) ((p) == (k))
775 2395
776/* towards the root */ 2396/* away from the root */
777void inline_speed 2397inline_speed void
778upheap (WT *heap, int k) 2398downheap (ANHE *heap, int N, int k)
779{ 2399{
780 WT w = heap [k]; 2400 ANHE he = heap [k];
2401 ANHE *E = heap + N + HEAP0;
781 2402
782 for (;;) 2403 for (;;)
783 { 2404 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
785
786 if (p >= HEAP0 || heap [p]->at <= w->at)
787 break;
788
789 heap [k] = heap [p];
790 ev_active (heap [k]) = k;
791 k = p;
792 }
793
794 heap [k] = w;
795 ev_active (heap [k]) = k;
796}
797
798/* away from the root */
799void inline_speed
800downheap (WT *heap, int N, int k)
801{
802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
804
805 for (;;)
806 {
807 ev_tstamp minat; 2405 ev_tstamp minat;
808 WT *minpos; 2406 ANHE *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2407 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
810 2408
811 // find minimum child 2409 /* find minimum child */
812 if (expect_true (pos + DHEAP - 1 < E)) 2410 if (ecb_expect_true (pos + DHEAP - 1 < E))
813 { 2411 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at); 2412 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2413 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2414 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2415 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2416 }
2417 else if (pos < E)
2418 {
2419 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 2420 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 2421 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 2422 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 2423 }
820 else 2424 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break; 2425 break;
833 2426
834 ev_active (*minpos) = k; 2427 if (ANHE_at (he) <= minat)
2428 break;
2429
835 heap [k] = *minpos; 2430 heap [k] = *minpos;
2431 ev_active (ANHE_w (*minpos)) = k;
836 2432
837 k = minpos - heap; 2433 k = minpos - heap;
838 } 2434 }
839 2435
840 heap [k] = w; 2436 heap [k] = he;
841 ev_active (heap [k]) = k; 2437 ev_active (ANHE_w (he)) = k;
842} 2438}
843 2439
844#else // 4HEAP 2440#else /* not 4HEAP */
845 2441
846#define HEAP0 1 2442#define HEAP0 1
2443#define HPARENT(k) ((k) >> 1)
2444#define UPHEAP_DONE(p,k) (!(p))
847 2445
848/* towards the root */ 2446/* away from the root */
849void inline_speed 2447inline_speed void
850upheap (WT *heap, int k) 2448downheap (ANHE *heap, int N, int k)
851{ 2449{
852 WT w = heap [k]; 2450 ANHE he = heap [k];
853 2451
854 for (;;) 2452 for (;;)
855 { 2453 {
856 int p = k >> 1; 2454 int c = k << 1;
857 2455
858 /* maybe we could use a dummy element at heap [0]? */ 2456 if (c >= N + HEAP0)
859 if (!p || heap [p]->at <= w->at)
860 break; 2457 break;
861 2458
862 heap [k] = heap [p]; 2459 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
863 ev_active (heap [k]) = k; 2460 ? 1 : 0;
864 k = p;
865 }
866 2461
867 heap [k] = w; 2462 if (ANHE_at (he) <= ANHE_at (heap [c]))
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break; 2463 break;
883 2464
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c]; 2465 heap [k] = heap [c];
891 ((W)heap [k])->active = k; 2466 ev_active (ANHE_w (heap [k])) = k;
892 2467
893 k = c; 2468 k = c;
894 } 2469 }
895 2470
896 heap [k] = w; 2471 heap [k] = he;
2472 ev_active (ANHE_w (he)) = k;
2473}
2474#endif
2475
2476/* towards the root */
2477inline_speed void
2478upheap (ANHE *heap, int k)
2479{
2480 ANHE he = heap [k];
2481
2482 for (;;)
2483 {
2484 int p = HPARENT (k);
2485
2486 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2487 break;
2488
2489 heap [k] = heap [p];
897 ev_active (heap [k]) = k; 2490 ev_active (ANHE_w (heap [k])) = k;
898} 2491 k = p;
899#endif 2492 }
900 2493
901void inline_size 2494 heap [k] = he;
2495 ev_active (ANHE_w (he)) = k;
2496}
2497
2498/* move an element suitably so it is in a correct place */
2499inline_size void
902adjustheap (WT *heap, int N, int k) 2500adjustheap (ANHE *heap, int N, int k)
903{ 2501{
2502 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
904 upheap (heap, k); 2503 upheap (heap, k);
2504 else
905 downheap (heap, N, k); 2505 downheap (heap, N, k);
2506}
2507
2508/* rebuild the heap: this function is used only once and executed rarely */
2509inline_size void
2510reheap (ANHE *heap, int N)
2511{
2512 int i;
2513
2514 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2515 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2516 for (i = 0; i < N; ++i)
2517 upheap (heap, i + HEAP0);
906} 2518}
907 2519
908/*****************************************************************************/ 2520/*****************************************************************************/
909 2521
2522/* associate signal watchers to a signal signal */
910typedef struct 2523typedef struct
911{ 2524{
2525 EV_ATOMIC_T pending;
2526#if EV_MULTIPLICITY
2527 EV_P;
2528#endif
912 WL head; 2529 WL head;
913 EV_ATOMIC_T gotsig;
914} ANSIG; 2530} ANSIG;
915 2531
916static ANSIG *signals; 2532static ANSIG signals [EV_NSIG - 1];
917static int signalmax;
918
919static EV_ATOMIC_T gotsig;
920
921void inline_size
922signals_init (ANSIG *base, int count)
923{
924 while (count--)
925 {
926 base->head = 0;
927 base->gotsig = 0;
928
929 ++base;
930 }
931}
932 2533
933/*****************************************************************************/ 2534/*****************************************************************************/
934 2535
935void inline_speed 2536#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
936fd_intern (int fd)
937{
938#ifdef _WIN32
939 int arg = 1;
940 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
941#else
942 fcntl (fd, F_SETFD, FD_CLOEXEC);
943 fcntl (fd, F_SETFL, O_NONBLOCK);
944#endif
945}
946 2537
947static void noinline 2538ecb_noinline ecb_cold
2539static void
948evpipe_init (EV_P) 2540evpipe_init (EV_P)
949{ 2541{
950 if (!ev_is_active (&pipeev)) 2542 if (!ev_is_active (&pipe_w))
2543 {
2544 int fds [2];
2545
2546# if EV_USE_EVENTFD
2547 fds [0] = -1;
2548 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2549 if (fds [1] < 0 && errno == EINVAL)
2550 fds [1] = eventfd (0, 0);
2551
2552 if (fds [1] < 0)
2553# endif
2554 {
2555 while (pipe (fds))
2556 ev_syserr ("(libev) error creating signal/async pipe");
2557
2558 fd_intern (fds [0]);
2559 }
2560
2561 evpipe [0] = fds [0];
2562
2563 if (evpipe [1] < 0)
2564 evpipe [1] = fds [1]; /* first call, set write fd */
2565 else
2566 {
2567 /* on subsequent calls, do not change evpipe [1] */
2568 /* so that evpipe_write can always rely on its value. */
2569 /* this branch does not do anything sensible on windows, */
2570 /* so must not be executed on windows */
2571
2572 dup2 (fds [1], evpipe [1]);
2573 close (fds [1]);
2574 }
2575
2576 fd_intern (evpipe [1]);
2577
2578 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2579 ev_io_start (EV_A_ &pipe_w);
2580 ev_unref (EV_A); /* watcher should not keep loop alive */
951 { 2581 }
2582}
2583
2584inline_speed void
2585evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2586{
2587 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2588
2589 if (ecb_expect_true (*flag))
2590 return;
2591
2592 *flag = 1;
2593 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2594
2595 pipe_write_skipped = 1;
2596
2597 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2598
2599 if (pipe_write_wanted)
2600 {
2601 int old_errno;
2602
2603 pipe_write_skipped = 0;
2604 ECB_MEMORY_FENCE_RELEASE;
2605
2606 old_errno = errno; /* save errno because write will clobber it */
2607
952#if EV_USE_EVENTFD 2608#if EV_USE_EVENTFD
953 if ((evfd = eventfd (0, 0)) >= 0) 2609 if (evpipe [0] < 0)
954 { 2610 {
955 evpipe [0] = -1; 2611 uint64_t counter = 1;
956 fd_intern (evfd); 2612 write (evpipe [1], &counter, sizeof (uint64_t));
957 ev_io_set (&pipeev, evfd, EV_READ);
958 } 2613 }
959 else 2614 else
960#endif 2615#endif
961 { 2616 {
962 while (pipe (evpipe)) 2617#ifdef _WIN32
963 syserr ("(libev) error creating signal/async pipe"); 2618 WSABUF buf;
964 2619 DWORD sent;
965 fd_intern (evpipe [0]); 2620 buf.buf = (char *)&buf;
966 fd_intern (evpipe [1]); 2621 buf.len = 1;
967 ev_io_set (&pipeev, evpipe [0], EV_READ); 2622 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2623#else
2624 write (evpipe [1], &(evpipe [1]), 1);
2625#endif
968 } 2626 }
969 2627
970 ev_io_start (EV_A_ &pipeev); 2628 errno = old_errno;
971 ev_unref (EV_A); /* watcher should not keep loop alive */
972 }
973}
974
975void inline_size
976evpipe_write (EV_P_ EV_ATOMIC_T *flag)
977{
978 if (!*flag)
979 { 2629 }
980 int old_errno = errno; /* save errno because write might clobber it */ 2630}
981 2631
982 *flag = 1; 2632/* called whenever the libev signal pipe */
2633/* got some events (signal, async) */
2634static void
2635pipecb (EV_P_ ev_io *iow, int revents)
2636{
2637 int i;
983 2638
2639 if (revents & EV_READ)
2640 {
984#if EV_USE_EVENTFD 2641#if EV_USE_EVENTFD
985 if (evfd >= 0) 2642 if (evpipe [0] < 0)
986 { 2643 {
987 uint64_t counter = 1; 2644 uint64_t counter;
988 write (evfd, &counter, sizeof (uint64_t)); 2645 read (evpipe [1], &counter, sizeof (uint64_t));
989 } 2646 }
990 else 2647 else
991#endif 2648#endif
992 write (evpipe [1], &old_errno, 1); 2649 {
993
994 errno = old_errno;
995 }
996}
997
998static void
999pipecb (EV_P_ ev_io *iow, int revents)
1000{
1001#if EV_USE_EVENTFD
1002 if (evfd >= 0)
1003 {
1004 uint64_t counter;
1005 read (evfd, &counter, sizeof (uint64_t));
1006 }
1007 else
1008#endif
1009 {
1010 char dummy; 2650 char dummy[4];
2651#ifdef _WIN32
2652 WSABUF buf;
2653 DWORD recvd;
2654 DWORD flags = 0;
2655 buf.buf = dummy;
2656 buf.len = sizeof (dummy);
2657 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2658#else
1011 read (evpipe [0], &dummy, 1); 2659 read (evpipe [0], &dummy, sizeof (dummy));
2660#endif
2661 }
2662 }
2663
2664 pipe_write_skipped = 0;
2665
2666 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2667
2668#if EV_SIGNAL_ENABLE
2669 if (sig_pending)
1012 } 2670 {
2671 sig_pending = 0;
1013 2672
1014 if (gotsig && ev_is_default_loop (EV_A)) 2673 ECB_MEMORY_FENCE;
1015 {
1016 int signum;
1017 gotsig = 0;
1018 2674
1019 for (signum = signalmax; signum--; ) 2675 for (i = EV_NSIG - 1; i--; )
1020 if (signals [signum].gotsig) 2676 if (ecb_expect_false (signals [i].pending))
1021 ev_feed_signal_event (EV_A_ signum + 1); 2677 ev_feed_signal_event (EV_A_ i + 1);
1022 } 2678 }
2679#endif
1023 2680
1024#if EV_ASYNC_ENABLE 2681#if EV_ASYNC_ENABLE
1025 if (gotasync) 2682 if (async_pending)
1026 { 2683 {
1027 int i; 2684 async_pending = 0;
1028 gotasync = 0; 2685
2686 ECB_MEMORY_FENCE;
1029 2687
1030 for (i = asynccnt; i--; ) 2688 for (i = asynccnt; i--; )
1031 if (asyncs [i]->sent) 2689 if (asyncs [i]->sent)
1032 { 2690 {
1033 asyncs [i]->sent = 0; 2691 asyncs [i]->sent = 0;
2692 ECB_MEMORY_FENCE_RELEASE;
1034 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2693 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1035 } 2694 }
1036 } 2695 }
1037#endif 2696#endif
1038} 2697}
1039 2698
1040/*****************************************************************************/ 2699/*****************************************************************************/
1041 2700
2701void
2702ev_feed_signal (int signum) EV_NOEXCEPT
2703{
2704#if EV_MULTIPLICITY
2705 EV_P;
2706 ECB_MEMORY_FENCE_ACQUIRE;
2707 EV_A = signals [signum - 1].loop;
2708
2709 if (!EV_A)
2710 return;
2711#endif
2712
2713 signals [signum - 1].pending = 1;
2714 evpipe_write (EV_A_ &sig_pending);
2715}
2716
1042static void 2717static void
1043ev_sighandler (int signum) 2718ev_sighandler (int signum)
1044{ 2719{
2720#ifdef _WIN32
2721 signal (signum, ev_sighandler);
2722#endif
2723
2724 ev_feed_signal (signum);
2725}
2726
2727ecb_noinline
2728void
2729ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2730{
2731 WL w;
2732
2733 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2734 return;
2735
2736 --signum;
2737
1045#if EV_MULTIPLICITY 2738#if EV_MULTIPLICITY
1046 struct ev_loop *loop = &default_loop_struct; 2739 /* it is permissible to try to feed a signal to the wrong loop */
1047#endif 2740 /* or, likely more useful, feeding a signal nobody is waiting for */
1048 2741
1049#if _WIN32 2742 if (ecb_expect_false (signals [signum].loop != EV_A))
1050 signal (signum, ev_sighandler);
1051#endif
1052
1053 signals [signum - 1].gotsig = 1;
1054 evpipe_write (EV_A_ &gotsig);
1055}
1056
1057void noinline
1058ev_feed_signal_event (EV_P_ int signum)
1059{
1060 WL w;
1061
1062#if EV_MULTIPLICITY
1063 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1064#endif
1065
1066 --signum;
1067
1068 if (signum < 0 || signum >= signalmax)
1069 return; 2743 return;
2744#endif
1070 2745
1071 signals [signum].gotsig = 0; 2746 signals [signum].pending = 0;
2747 ECB_MEMORY_FENCE_RELEASE;
1072 2748
1073 for (w = signals [signum].head; w; w = w->next) 2749 for (w = signals [signum].head; w; w = w->next)
1074 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2750 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1075} 2751}
1076 2752
2753#if EV_USE_SIGNALFD
2754static void
2755sigfdcb (EV_P_ ev_io *iow, int revents)
2756{
2757 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2758
2759 for (;;)
2760 {
2761 ssize_t res = read (sigfd, si, sizeof (si));
2762
2763 /* not ISO-C, as res might be -1, but works with SuS */
2764 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2765 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2766
2767 if (res < (ssize_t)sizeof (si))
2768 break;
2769 }
2770}
2771#endif
2772
2773#endif
2774
1077/*****************************************************************************/ 2775/*****************************************************************************/
1078 2776
2777#if EV_CHILD_ENABLE
1079static WL childs [EV_PID_HASHSIZE]; 2778static WL childs [EV_PID_HASHSIZE];
1080
1081#ifndef _WIN32
1082 2779
1083static ev_signal childev; 2780static ev_signal childev;
1084 2781
1085#ifndef WIFCONTINUED 2782#ifndef WIFCONTINUED
1086# define WIFCONTINUED(status) 0 2783# define WIFCONTINUED(status) 0
1087#endif 2784#endif
1088 2785
1089void inline_speed 2786/* handle a single child status event */
2787inline_speed void
1090child_reap (EV_P_ int chain, int pid, int status) 2788child_reap (EV_P_ int chain, int pid, int status)
1091{ 2789{
1092 ev_child *w; 2790 ev_child *w;
1093 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2791 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1094 2792
1095 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2793 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1096 { 2794 {
1097 if ((w->pid == pid || !w->pid) 2795 if ((w->pid == pid || !w->pid)
1098 && (!traced || (w->flags & 1))) 2796 && (!traced || (w->flags & 1)))
1099 { 2797 {
1100 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2798 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1107 2805
1108#ifndef WCONTINUED 2806#ifndef WCONTINUED
1109# define WCONTINUED 0 2807# define WCONTINUED 0
1110#endif 2808#endif
1111 2809
2810/* called on sigchld etc., calls waitpid */
1112static void 2811static void
1113childcb (EV_P_ ev_signal *sw, int revents) 2812childcb (EV_P_ ev_signal *sw, int revents)
1114{ 2813{
1115 int pid, status; 2814 int pid, status;
1116 2815
1124 /* make sure we are called again until all children have been reaped */ 2823 /* make sure we are called again until all children have been reaped */
1125 /* we need to do it this way so that the callback gets called before we continue */ 2824 /* we need to do it this way so that the callback gets called before we continue */
1126 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2825 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1127 2826
1128 child_reap (EV_A_ pid, pid, status); 2827 child_reap (EV_A_ pid, pid, status);
1129 if (EV_PID_HASHSIZE > 1) 2828 if ((EV_PID_HASHSIZE) > 1)
1130 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2829 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1131} 2830}
1132 2831
1133#endif 2832#endif
1134 2833
1135/*****************************************************************************/ 2834/*****************************************************************************/
1136 2835
2836#if EV_USE_IOCP
2837# include "ev_iocp.c"
2838#endif
1137#if EV_USE_PORT 2839#if EV_USE_PORT
1138# include "ev_port.c" 2840# include "ev_port.c"
1139#endif 2841#endif
1140#if EV_USE_KQUEUE 2842#if EV_USE_KQUEUE
1141# include "ev_kqueue.c" 2843# include "ev_kqueue.c"
1142#endif 2844#endif
1143#if EV_USE_EPOLL 2845#if EV_USE_EPOLL
1144# include "ev_epoll.c" 2846# include "ev_epoll.c"
1145#endif 2847#endif
2848#if EV_USE_LINUXAIO
2849# include "ev_linuxaio.c"
2850#endif
2851#if EV_USE_IOURING
2852# include "ev_iouring.c"
2853#endif
1146#if EV_USE_POLL 2854#if EV_USE_POLL
1147# include "ev_poll.c" 2855# include "ev_poll.c"
1148#endif 2856#endif
1149#if EV_USE_SELECT 2857#if EV_USE_SELECT
1150# include "ev_select.c" 2858# include "ev_select.c"
1151#endif 2859#endif
1152 2860
1153int 2861ecb_cold int
1154ev_version_major (void) 2862ev_version_major (void) EV_NOEXCEPT
1155{ 2863{
1156 return EV_VERSION_MAJOR; 2864 return EV_VERSION_MAJOR;
1157} 2865}
1158 2866
1159int 2867ecb_cold int
1160ev_version_minor (void) 2868ev_version_minor (void) EV_NOEXCEPT
1161{ 2869{
1162 return EV_VERSION_MINOR; 2870 return EV_VERSION_MINOR;
1163} 2871}
1164 2872
1165/* return true if we are running with elevated privileges and should ignore env variables */ 2873/* return true if we are running with elevated privileges and should ignore env variables */
1166int inline_size 2874inline_size ecb_cold int
1167enable_secure (void) 2875enable_secure (void)
1168{ 2876{
1169#ifdef _WIN32 2877#ifdef _WIN32
1170 return 0; 2878 return 0;
1171#else 2879#else
1172 return getuid () != geteuid () 2880 return getuid () != geteuid ()
1173 || getgid () != getegid (); 2881 || getgid () != getegid ();
1174#endif 2882#endif
1175} 2883}
1176 2884
2885ecb_cold
1177unsigned int 2886unsigned int
1178ev_supported_backends (void) 2887ev_supported_backends (void) EV_NOEXCEPT
1179{ 2888{
1180 unsigned int flags = 0; 2889 unsigned int flags = 0;
1181 2890
1182 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2891 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1183 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2892 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1184 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2893 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2894 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2895 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
1185 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2896 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1186 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2897 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1187 2898
1188 return flags; 2899 return flags;
1189} 2900}
1190 2901
2902ecb_cold
1191unsigned int 2903unsigned int
1192ev_recommended_backends (void) 2904ev_recommended_backends (void) EV_NOEXCEPT
1193{ 2905{
1194 unsigned int flags = ev_supported_backends (); 2906 unsigned int flags = ev_supported_backends ();
1195 2907
1196#ifndef __NetBSD__ 2908#ifndef __NetBSD__
1197 /* kqueue is borked on everything but netbsd apparently */ 2909 /* kqueue is borked on everything but netbsd apparently */
1198 /* it usually doesn't work correctly on anything but sockets and pipes */ 2910 /* it usually doesn't work correctly on anything but sockets and pipes */
1199 flags &= ~EVBACKEND_KQUEUE; 2911 flags &= ~EVBACKEND_KQUEUE;
1200#endif 2912#endif
1201#ifdef __APPLE__ 2913#ifdef __APPLE__
1202 // flags &= ~EVBACKEND_KQUEUE; for documentation 2914 /* only select works correctly on that "unix-certified" platform */
2915 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2916 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2917#endif
2918#ifdef __FreeBSD__
2919 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2920#endif
2921
2922 /* TODO: linuxaio is very experimental */
2923#if !EV_RECOMMEND_LINUXAIO
2924 flags &= ~EVBACKEND_LINUXAIO;
2925#endif
2926 /* TODO: linuxaio is super experimental */
2927#if !EV_RECOMMEND_IOURING
1203 flags &= ~EVBACKEND_POLL; 2928 flags &= ~EVBACKEND_IOURING;
1204#endif 2929#endif
1205 2930
1206 return flags; 2931 return flags;
1207} 2932}
1208 2933
2934ecb_cold
1209unsigned int 2935unsigned int
1210ev_embeddable_backends (void) 2936ev_embeddable_backends (void) EV_NOEXCEPT
1211{ 2937{
1212 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2938 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1213 2939
1214 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2940 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1215 /* please fix it and tell me how to detect the fix */ 2941 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1216 flags &= ~EVBACKEND_EPOLL; 2942 flags &= ~EVBACKEND_EPOLL;
2943
2944 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2945
2946 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2947 * because our backend_fd is the epoll fd we need as fallback.
2948 * if the kernel ever is fixed, this might change...
2949 */
1217 2950
1218 return flags; 2951 return flags;
1219} 2952}
1220 2953
1221unsigned int 2954unsigned int
1222ev_backend (EV_P) 2955ev_backend (EV_P) EV_NOEXCEPT
1223{ 2956{
1224 return backend; 2957 return backend;
1225} 2958}
1226 2959
2960#if EV_FEATURE_API
1227unsigned int 2961unsigned int
1228ev_loop_count (EV_P) 2962ev_iteration (EV_P) EV_NOEXCEPT
1229{ 2963{
1230 return loop_count; 2964 return loop_count;
1231} 2965}
1232 2966
2967unsigned int
2968ev_depth (EV_P) EV_NOEXCEPT
2969{
2970 return loop_depth;
2971}
2972
1233void 2973void
1234ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2974ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1235{ 2975{
1236 io_blocktime = interval; 2976 io_blocktime = interval;
1237} 2977}
1238 2978
1239void 2979void
1240ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2980ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1241{ 2981{
1242 timeout_blocktime = interval; 2982 timeout_blocktime = interval;
1243} 2983}
1244 2984
1245static void noinline 2985void
2986ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2987{
2988 userdata = data;
2989}
2990
2991void *
2992ev_userdata (EV_P) EV_NOEXCEPT
2993{
2994 return userdata;
2995}
2996
2997void
2998ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2999{
3000 invoke_cb = invoke_pending_cb;
3001}
3002
3003void
3004ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3005{
3006 release_cb = release;
3007 acquire_cb = acquire;
3008}
3009#endif
3010
3011/* initialise a loop structure, must be zero-initialised */
3012ecb_noinline ecb_cold
3013static void
1246loop_init (EV_P_ unsigned int flags) 3014loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1247{ 3015{
1248 if (!backend) 3016 if (!backend)
1249 { 3017 {
3018 origflags = flags;
3019
3020#if EV_USE_REALTIME
3021 if (!have_realtime)
3022 {
3023 struct timespec ts;
3024
3025 if (!clock_gettime (CLOCK_REALTIME, &ts))
3026 have_realtime = 1;
3027 }
3028#endif
3029
1250#if EV_USE_MONOTONIC 3030#if EV_USE_MONOTONIC
3031 if (!have_monotonic)
1251 { 3032 {
1252 struct timespec ts; 3033 struct timespec ts;
3034
1253 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3035 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1254 have_monotonic = 1; 3036 have_monotonic = 1;
1255 } 3037 }
1256#endif
1257
1258 ev_rt_now = ev_time ();
1259 mn_now = get_clock ();
1260 now_floor = mn_now;
1261 rtmn_diff = ev_rt_now - mn_now;
1262
1263 io_blocktime = 0.;
1264 timeout_blocktime = 0.;
1265 backend = 0;
1266 backend_fd = -1;
1267 gotasync = 0;
1268#if EV_USE_INOTIFY
1269 fs_fd = -2;
1270#endif 3038#endif
1271 3039
1272 /* pid check not overridable via env */ 3040 /* pid check not overridable via env */
1273#ifndef _WIN32 3041#ifndef _WIN32
1274 if (flags & EVFLAG_FORKCHECK) 3042 if (flags & EVFLAG_FORKCHECK)
1278 if (!(flags & EVFLAG_NOENV) 3046 if (!(flags & EVFLAG_NOENV)
1279 && !enable_secure () 3047 && !enable_secure ()
1280 && getenv ("LIBEV_FLAGS")) 3048 && getenv ("LIBEV_FLAGS"))
1281 flags = atoi (getenv ("LIBEV_FLAGS")); 3049 flags = atoi (getenv ("LIBEV_FLAGS"));
1282 3050
1283 if (!(flags & 0x0000ffffU)) 3051 ev_rt_now = ev_time ();
3052 mn_now = get_clock ();
3053 now_floor = mn_now;
3054 rtmn_diff = ev_rt_now - mn_now;
3055#if EV_FEATURE_API
3056 invoke_cb = ev_invoke_pending;
3057#endif
3058
3059 io_blocktime = 0.;
3060 timeout_blocktime = 0.;
3061 backend = 0;
3062 backend_fd = -1;
3063 sig_pending = 0;
3064#if EV_ASYNC_ENABLE
3065 async_pending = 0;
3066#endif
3067 pipe_write_skipped = 0;
3068 pipe_write_wanted = 0;
3069 evpipe [0] = -1;
3070 evpipe [1] = -1;
3071#if EV_USE_INOTIFY
3072 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3073#endif
3074#if EV_USE_SIGNALFD
3075 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3076#endif
3077
3078 if (!(flags & EVBACKEND_MASK))
1284 flags |= ev_recommended_backends (); 3079 flags |= ev_recommended_backends ();
1285 3080
3081#if EV_USE_IOCP
3082 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3083#endif
1286#if EV_USE_PORT 3084#if EV_USE_PORT
1287 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3085 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1288#endif 3086#endif
1289#if EV_USE_KQUEUE 3087#if EV_USE_KQUEUE
1290 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3088 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3089#endif
3090#if EV_USE_IOURING
3091 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3092#endif
3093#if EV_USE_LINUXAIO
3094 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1291#endif 3095#endif
1292#if EV_USE_EPOLL 3096#if EV_USE_EPOLL
1293 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3097 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1294#endif 3098#endif
1295#if EV_USE_POLL 3099#if EV_USE_POLL
1296 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3100 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1297#endif 3101#endif
1298#if EV_USE_SELECT 3102#if EV_USE_SELECT
1299 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3103 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1300#endif 3104#endif
1301 3105
3106 ev_prepare_init (&pending_w, pendingcb);
3107
3108#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1302 ev_init (&pipeev, pipecb); 3109 ev_init (&pipe_w, pipecb);
1303 ev_set_priority (&pipeev, EV_MAXPRI); 3110 ev_set_priority (&pipe_w, EV_MAXPRI);
3111#endif
1304 } 3112 }
1305} 3113}
1306 3114
1307static void noinline 3115/* free up a loop structure */
3116ecb_cold
3117void
1308loop_destroy (EV_P) 3118ev_loop_destroy (EV_P)
1309{ 3119{
1310 int i; 3120 int i;
1311 3121
3122#if EV_MULTIPLICITY
3123 /* mimic free (0) */
3124 if (!EV_A)
3125 return;
3126#endif
3127
3128#if EV_CLEANUP_ENABLE
3129 /* queue cleanup watchers (and execute them) */
3130 if (ecb_expect_false (cleanupcnt))
3131 {
3132 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3133 EV_INVOKE_PENDING;
3134 }
3135#endif
3136
3137#if EV_CHILD_ENABLE
3138 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3139 {
3140 ev_ref (EV_A); /* child watcher */
3141 ev_signal_stop (EV_A_ &childev);
3142 }
3143#endif
3144
1312 if (ev_is_active (&pipeev)) 3145 if (ev_is_active (&pipe_w))
1313 { 3146 {
1314 ev_ref (EV_A); /* signal watcher */ 3147 /*ev_ref (EV_A);*/
1315 ev_io_stop (EV_A_ &pipeev); 3148 /*ev_io_stop (EV_A_ &pipe_w);*/
1316 3149
3150 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3151 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3152 }
3153
1317#if EV_USE_EVENTFD 3154#if EV_USE_SIGNALFD
1318 if (evfd >= 0) 3155 if (ev_is_active (&sigfd_w))
1319 close (evfd); 3156 close (sigfd);
1320#endif 3157#endif
1321
1322 if (evpipe [0] >= 0)
1323 {
1324 close (evpipe [0]);
1325 close (evpipe [1]);
1326 }
1327 }
1328 3158
1329#if EV_USE_INOTIFY 3159#if EV_USE_INOTIFY
1330 if (fs_fd >= 0) 3160 if (fs_fd >= 0)
1331 close (fs_fd); 3161 close (fs_fd);
1332#endif 3162#endif
1333 3163
1334 if (backend_fd >= 0) 3164 if (backend_fd >= 0)
1335 close (backend_fd); 3165 close (backend_fd);
1336 3166
3167#if EV_USE_IOCP
3168 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3169#endif
1337#if EV_USE_PORT 3170#if EV_USE_PORT
1338 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3171 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1339#endif 3172#endif
1340#if EV_USE_KQUEUE 3173#if EV_USE_KQUEUE
1341 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3174 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3175#endif
3176#if EV_USE_IOURING
3177 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3178#endif
3179#if EV_USE_LINUXAIO
3180 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1342#endif 3181#endif
1343#if EV_USE_EPOLL 3182#if EV_USE_EPOLL
1344 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3183 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1345#endif 3184#endif
1346#if EV_USE_POLL 3185#if EV_USE_POLL
1347 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3186 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1348#endif 3187#endif
1349#if EV_USE_SELECT 3188#if EV_USE_SELECT
1350 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3189 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1351#endif 3190#endif
1352 3191
1353 for (i = NUMPRI; i--; ) 3192 for (i = NUMPRI; i--; )
1354 { 3193 {
1355 array_free (pending, [i]); 3194 array_free (pending, [i]);
1356#if EV_IDLE_ENABLE 3195#if EV_IDLE_ENABLE
1357 array_free (idle, [i]); 3196 array_free (idle, [i]);
1358#endif 3197#endif
1359 } 3198 }
1360 3199
1361 ev_free (anfds); anfdmax = 0; 3200 ev_free (anfds); anfds = 0; anfdmax = 0;
1362 3201
1363 /* have to use the microsoft-never-gets-it-right macro */ 3202 /* have to use the microsoft-never-gets-it-right macro */
3203 array_free (rfeed, EMPTY);
1364 array_free (fdchange, EMPTY); 3204 array_free (fdchange, EMPTY);
1365 array_free (timer, EMPTY); 3205 array_free (timer, EMPTY);
1366#if EV_PERIODIC_ENABLE 3206#if EV_PERIODIC_ENABLE
1367 array_free (periodic, EMPTY); 3207 array_free (periodic, EMPTY);
1368#endif 3208#endif
1369#if EV_FORK_ENABLE 3209#if EV_FORK_ENABLE
1370 array_free (fork, EMPTY); 3210 array_free (fork, EMPTY);
1371#endif 3211#endif
3212#if EV_CLEANUP_ENABLE
3213 array_free (cleanup, EMPTY);
3214#endif
1372 array_free (prepare, EMPTY); 3215 array_free (prepare, EMPTY);
1373 array_free (check, EMPTY); 3216 array_free (check, EMPTY);
1374#if EV_ASYNC_ENABLE 3217#if EV_ASYNC_ENABLE
1375 array_free (async, EMPTY); 3218 array_free (async, EMPTY);
1376#endif 3219#endif
1377 3220
1378 backend = 0; 3221 backend = 0;
3222
3223#if EV_MULTIPLICITY
3224 if (ev_is_default_loop (EV_A))
3225#endif
3226 ev_default_loop_ptr = 0;
3227#if EV_MULTIPLICITY
3228 else
3229 ev_free (EV_A);
3230#endif
1379} 3231}
1380 3232
1381#if EV_USE_INOTIFY 3233#if EV_USE_INOTIFY
1382void inline_size infy_fork (EV_P); 3234inline_size void infy_fork (EV_P);
1383#endif 3235#endif
1384 3236
1385void inline_size 3237inline_size void
1386loop_fork (EV_P) 3238loop_fork (EV_P)
1387{ 3239{
1388#if EV_USE_PORT 3240#if EV_USE_PORT
1389 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3241 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1390#endif 3242#endif
1391#if EV_USE_KQUEUE 3243#if EV_USE_KQUEUE
1392 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3244 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3245#endif
3246#if EV_USE_IOURING
3247 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3248#endif
3249#if EV_USE_LINUXAIO
3250 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1393#endif 3251#endif
1394#if EV_USE_EPOLL 3252#if EV_USE_EPOLL
1395 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3253 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1396#endif 3254#endif
1397#if EV_USE_INOTIFY 3255#if EV_USE_INOTIFY
1398 infy_fork (EV_A); 3256 infy_fork (EV_A);
1399#endif 3257#endif
1400 3258
1401 if (ev_is_active (&pipeev)) 3259#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3260 if (ev_is_active (&pipe_w) && postfork != 2)
3261 {
3262 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3263
3264 ev_ref (EV_A);
3265 ev_io_stop (EV_A_ &pipe_w);
3266
3267 if (evpipe [0] >= 0)
3268 EV_WIN32_CLOSE_FD (evpipe [0]);
3269
3270 evpipe_init (EV_A);
3271 /* iterate over everything, in case we missed something before */
3272 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1402 { 3273 }
1403 /* this "locks" the handlers against writing to the pipe */ 3274#endif
1404 /* while we modify the fd vars */ 3275
1405 gotsig = 1; 3276 postfork = 0;
3277}
3278
3279#if EV_MULTIPLICITY
3280
3281ecb_cold
3282struct ev_loop *
3283ev_loop_new (unsigned int flags) EV_NOEXCEPT
3284{
3285 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3286
3287 memset (EV_A, 0, sizeof (struct ev_loop));
3288 loop_init (EV_A_ flags);
3289
3290 if (ev_backend (EV_A))
3291 return EV_A;
3292
3293 ev_free (EV_A);
3294 return 0;
3295}
3296
3297#endif /* multiplicity */
3298
3299#if EV_VERIFY
3300ecb_noinline ecb_cold
3301static void
3302verify_watcher (EV_P_ W w)
3303{
3304 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3305
3306 if (w->pending)
3307 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3308}
3309
3310ecb_noinline ecb_cold
3311static void
3312verify_heap (EV_P_ ANHE *heap, int N)
3313{
3314 int i;
3315
3316 for (i = HEAP0; i < N + HEAP0; ++i)
3317 {
3318 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3319 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3320 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3321
3322 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3323 }
3324}
3325
3326ecb_noinline ecb_cold
3327static void
3328array_verify (EV_P_ W *ws, int cnt)
3329{
3330 while (cnt--)
3331 {
3332 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3333 verify_watcher (EV_A_ ws [cnt]);
3334 }
3335}
3336#endif
3337
3338#if EV_FEATURE_API
3339void ecb_cold
3340ev_verify (EV_P) EV_NOEXCEPT
3341{
3342#if EV_VERIFY
3343 int i;
3344 WL w, w2;
3345
3346 assert (activecnt >= -1);
3347
3348 assert (fdchangemax >= fdchangecnt);
3349 for (i = 0; i < fdchangecnt; ++i)
3350 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3351
3352 assert (anfdmax >= 0);
3353 for (i = 0; i < anfdmax; ++i)
3354 {
3355 int j = 0;
3356
3357 for (w = w2 = anfds [i].head; w; w = w->next)
3358 {
3359 verify_watcher (EV_A_ (W)w);
3360
3361 if (j++ & 1)
3362 {
3363 assert (("libev: io watcher list contains a loop", w != w2));
3364 w2 = w2->next;
3365 }
3366
3367 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3368 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3369 }
3370 }
3371
3372 assert (timermax >= timercnt);
3373 verify_heap (EV_A_ timers, timercnt);
3374
3375#if EV_PERIODIC_ENABLE
3376 assert (periodicmax >= periodiccnt);
3377 verify_heap (EV_A_ periodics, periodiccnt);
3378#endif
3379
3380 for (i = NUMPRI; i--; )
3381 {
3382 assert (pendingmax [i] >= pendingcnt [i]);
3383#if EV_IDLE_ENABLE
3384 assert (idleall >= 0);
3385 assert (idlemax [i] >= idlecnt [i]);
3386 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3387#endif
3388 }
3389
3390#if EV_FORK_ENABLE
3391 assert (forkmax >= forkcnt);
3392 array_verify (EV_A_ (W *)forks, forkcnt);
3393#endif
3394
3395#if EV_CLEANUP_ENABLE
3396 assert (cleanupmax >= cleanupcnt);
3397 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3398#endif
3399
1406#if EV_ASYNC_ENABLE 3400#if EV_ASYNC_ENABLE
1407 gotasync = 1; 3401 assert (asyncmax >= asynccnt);
3402 array_verify (EV_A_ (W *)asyncs, asynccnt);
3403#endif
3404
3405#if EV_PREPARE_ENABLE
3406 assert (preparemax >= preparecnt);
3407 array_verify (EV_A_ (W *)prepares, preparecnt);
3408#endif
3409
3410#if EV_CHECK_ENABLE
3411 assert (checkmax >= checkcnt);
3412 array_verify (EV_A_ (W *)checks, checkcnt);
3413#endif
3414
3415# if 0
3416#if EV_CHILD_ENABLE
3417 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3418 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3419#endif
1408#endif 3420# endif
1409
1410 ev_ref (EV_A);
1411 ev_io_stop (EV_A_ &pipeev);
1412
1413#if EV_USE_EVENTFD
1414 if (evfd >= 0)
1415 close (evfd);
1416#endif 3421#endif
1417
1418 if (evpipe [0] >= 0)
1419 {
1420 close (evpipe [0]);
1421 close (evpipe [1]);
1422 }
1423
1424 evpipe_init (EV_A);
1425 /* now iterate over everything, in case we missed something */
1426 pipecb (EV_A_ &pipeev, EV_READ);
1427 }
1428
1429 postfork = 0;
1430} 3422}
3423#endif
1431 3424
1432#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
3426ecb_cold
1433struct ev_loop * 3427struct ev_loop *
1434ev_loop_new (unsigned int flags)
1435{
1436 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1437
1438 memset (loop, 0, sizeof (struct ev_loop));
1439
1440 loop_init (EV_A_ flags);
1441
1442 if (ev_backend (EV_A))
1443 return loop;
1444
1445 return 0;
1446}
1447
1448void
1449ev_loop_destroy (EV_P)
1450{
1451 loop_destroy (EV_A);
1452 ev_free (loop);
1453}
1454
1455void
1456ev_loop_fork (EV_P)
1457{
1458 postfork = 1; /* must be in line with ev_default_fork */
1459}
1460#endif
1461
1462#if EV_MULTIPLICITY
1463struct ev_loop *
1464ev_default_loop_init (unsigned int flags)
1465#else 3428#else
1466int 3429int
3430#endif
1467ev_default_loop (unsigned int flags) 3431ev_default_loop (unsigned int flags) EV_NOEXCEPT
1468#endif
1469{ 3432{
1470 if (!ev_default_loop_ptr) 3433 if (!ev_default_loop_ptr)
1471 { 3434 {
1472#if EV_MULTIPLICITY 3435#if EV_MULTIPLICITY
1473 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3436 EV_P = ev_default_loop_ptr = &default_loop_struct;
1474#else 3437#else
1475 ev_default_loop_ptr = 1; 3438 ev_default_loop_ptr = 1;
1476#endif 3439#endif
1477 3440
1478 loop_init (EV_A_ flags); 3441 loop_init (EV_A_ flags);
1479 3442
1480 if (ev_backend (EV_A)) 3443 if (ev_backend (EV_A))
1481 { 3444 {
1482#ifndef _WIN32 3445#if EV_CHILD_ENABLE
1483 ev_signal_init (&childev, childcb, SIGCHLD); 3446 ev_signal_init (&childev, childcb, SIGCHLD);
1484 ev_set_priority (&childev, EV_MAXPRI); 3447 ev_set_priority (&childev, EV_MAXPRI);
1485 ev_signal_start (EV_A_ &childev); 3448 ev_signal_start (EV_A_ &childev);
1486 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3449 ev_unref (EV_A); /* child watcher should not keep loop alive */
1487#endif 3450#endif
1492 3455
1493 return ev_default_loop_ptr; 3456 return ev_default_loop_ptr;
1494} 3457}
1495 3458
1496void 3459void
1497ev_default_destroy (void) 3460ev_loop_fork (EV_P) EV_NOEXCEPT
1498{ 3461{
1499#if EV_MULTIPLICITY 3462 postfork = 1;
1500 struct ev_loop *loop = ev_default_loop_ptr;
1501#endif
1502
1503#ifndef _WIN32
1504 ev_ref (EV_A); /* child watcher */
1505 ev_signal_stop (EV_A_ &childev);
1506#endif
1507
1508 loop_destroy (EV_A);
1509}
1510
1511void
1512ev_default_fork (void)
1513{
1514#if EV_MULTIPLICITY
1515 struct ev_loop *loop = ev_default_loop_ptr;
1516#endif
1517
1518 if (backend)
1519 postfork = 1; /* must be in line with ev_loop_fork */
1520} 3463}
1521 3464
1522/*****************************************************************************/ 3465/*****************************************************************************/
1523 3466
1524void 3467void
1525ev_invoke (EV_P_ void *w, int revents) 3468ev_invoke (EV_P_ void *w, int revents)
1526{ 3469{
1527 EV_CB_INVOKE ((W)w, revents); 3470 EV_CB_INVOKE ((W)w, revents);
1528} 3471}
1529 3472
1530void inline_speed 3473unsigned int
1531call_pending (EV_P) 3474ev_pending_count (EV_P) EV_NOEXCEPT
1532{ 3475{
1533 int pri; 3476 int pri;
3477 unsigned int count = 0;
1534 3478
1535 for (pri = NUMPRI; pri--; ) 3479 for (pri = NUMPRI; pri--; )
3480 count += pendingcnt [pri];
3481
3482 return count;
3483}
3484
3485ecb_noinline
3486void
3487ev_invoke_pending (EV_P)
3488{
3489 pendingpri = NUMPRI;
3490
3491 do
3492 {
3493 --pendingpri;
3494
3495 /* pendingpri possibly gets modified in the inner loop */
1536 while (pendingcnt [pri]) 3496 while (pendingcnt [pendingpri])
1537 {
1538 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1539
1540 if (expect_true (p->w))
1541 { 3497 {
1542 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3498 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1543 3499
1544 p->w->pending = 0; 3500 p->w->pending = 0;
1545 EV_CB_INVOKE (p->w, p->events); 3501 EV_CB_INVOKE (p->w, p->events);
3502 EV_FREQUENT_CHECK;
1546 } 3503 }
1547 } 3504 }
3505 while (pendingpri);
1548} 3506}
1549 3507
1550#if EV_IDLE_ENABLE 3508#if EV_IDLE_ENABLE
1551void inline_size 3509/* make idle watchers pending. this handles the "call-idle */
3510/* only when higher priorities are idle" logic */
3511inline_size void
1552idle_reify (EV_P) 3512idle_reify (EV_P)
1553{ 3513{
1554 if (expect_false (idleall)) 3514 if (ecb_expect_false (idleall))
1555 { 3515 {
1556 int pri; 3516 int pri;
1557 3517
1558 for (pri = NUMPRI; pri--; ) 3518 for (pri = NUMPRI; pri--; )
1559 { 3519 {
1568 } 3528 }
1569 } 3529 }
1570} 3530}
1571#endif 3531#endif
1572 3532
1573void inline_size 3533/* make timers pending */
3534inline_size void
1574timers_reify (EV_P) 3535timers_reify (EV_P)
1575{ 3536{
3537 EV_FREQUENT_CHECK;
3538
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 3539 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 3540 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 3541 do
1579
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581
1582 /* first reschedule or stop timer */
1583 if (w->repeat)
1584 { 3542 {
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3543 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1586 3544
3545 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3546
3547 /* first reschedule or stop timer */
3548 if (w->repeat)
3549 {
1587 ev_at (w) += w->repeat; 3550 ev_at (w) += w->repeat;
1588 if (ev_at (w) < mn_now) 3551 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now; 3552 ev_at (w) = mn_now;
1590 3553
3554 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3555
3556 ANHE_at_cache (timers [HEAP0]);
1591 downheap (timers, timercnt, HEAP0); 3557 downheap (timers, timercnt, HEAP0);
3558 }
3559 else
3560 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3561
3562 EV_FREQUENT_CHECK;
3563 feed_reverse (EV_A_ (W)w);
1592 } 3564 }
1593 else 3565 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 3566
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3567 feed_reverse_done (EV_A_ EV_TIMER);
1597 } 3568 }
1598} 3569}
1599 3570
1600#if EV_PERIODIC_ENABLE 3571#if EV_PERIODIC_ENABLE
1601void inline_size 3572
3573ecb_noinline
3574static void
3575periodic_recalc (EV_P_ ev_periodic *w)
3576{
3577 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3578 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3579
3580 /* the above almost always errs on the low side */
3581 while (at <= ev_rt_now)
3582 {
3583 ev_tstamp nat = at + w->interval;
3584
3585 /* when resolution fails us, we use ev_rt_now */
3586 if (ecb_expect_false (nat == at))
3587 {
3588 at = ev_rt_now;
3589 break;
3590 }
3591
3592 at = nat;
3593 }
3594
3595 ev_at (w) = at;
3596}
3597
3598/* make periodics pending */
3599inline_size void
1602periodics_reify (EV_P) 3600periodics_reify (EV_P)
1603{ 3601{
3602 EV_FREQUENT_CHECK;
3603
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 3604 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 3605 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 3606 do
1607
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609
1610 /* first reschedule or stop timer */
1611 if (w->reschedule_cb)
1612 { 3607 {
3608 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3609
3610 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3611
3612 /* first reschedule or stop timer */
3613 if (w->reschedule_cb)
3614 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 3615 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3616
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 3617 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3618
3619 ANHE_at_cache (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 3620 downheap (periodics, periodiccnt, HEAP0);
3621 }
3622 else if (w->interval)
3623 {
3624 periodic_recalc (EV_A_ w);
3625 ANHE_at_cache (periodics [HEAP0]);
3626 downheap (periodics, periodiccnt, HEAP0);
3627 }
3628 else
3629 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3630
3631 EV_FREQUENT_CHECK;
3632 feed_reverse (EV_A_ (W)w);
1616 } 3633 }
1617 else if (w->interval) 3634 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1618 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1622 downheap (periodics, periodiccnt, HEAP0);
1623 }
1624 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 3635
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3636 feed_reverse_done (EV_A_ EV_PERIODIC);
1628 } 3637 }
1629} 3638}
1630 3639
1631static void noinline 3640/* simply recalculate all periodics */
3641/* TODO: maybe ensure that at least one event happens when jumping forward? */
3642ecb_noinline ecb_cold
3643static void
1632periodics_reschedule (EV_P) 3644periodics_reschedule (EV_P)
1633{ 3645{
1634 int i; 3646 int i;
1635 3647
1636 /* adjust periodics after time jump */ 3648 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 3649 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 3650 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 3651 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 3652
1641 if (w->reschedule_cb) 3653 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3654 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 3655 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3656 periodic_recalc (EV_A_ w);
3657
3658 ANHE_at_cache (periodics [i]);
3659 }
3660
3661 reheap (periodics, periodiccnt);
3662}
3663#endif
3664
3665/* adjust all timers by a given offset */
3666ecb_noinline ecb_cold
3667static void
3668timers_reschedule (EV_P_ ev_tstamp adjust)
3669{
3670 int i;
3671
3672 for (i = 0; i < timercnt; ++i)
1645 } 3673 {
1646 3674 ANHE *he = timers + i + HEAP0;
1647 /* now rebuild the heap */ 3675 ANHE_w (*he)->at += adjust;
1648 for (i = periodiccnt >> 1; --i; ) 3676 ANHE_at_cache (*he);
1649 downheap (periodics, periodiccnt, i + HEAP0); 3677 }
1650} 3678}
1651#endif
1652 3679
1653void inline_speed 3680/* fetch new monotonic and realtime times from the kernel */
3681/* also detect if there was a timejump, and act accordingly */
3682inline_speed void
1654time_update (EV_P_ ev_tstamp max_block) 3683time_update (EV_P_ ev_tstamp max_block)
1655{ 3684{
1656 int i;
1657
1658#if EV_USE_MONOTONIC 3685#if EV_USE_MONOTONIC
1659 if (expect_true (have_monotonic)) 3686 if (ecb_expect_true (have_monotonic))
1660 { 3687 {
3688 int i;
1661 ev_tstamp odiff = rtmn_diff; 3689 ev_tstamp odiff = rtmn_diff;
1662 3690
1663 mn_now = get_clock (); 3691 mn_now = get_clock ();
1664 3692
1665 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3693 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1666 /* interpolate in the meantime */ 3694 /* interpolate in the meantime */
1667 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3695 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1668 { 3696 {
1669 ev_rt_now = rtmn_diff + mn_now; 3697 ev_rt_now = rtmn_diff + mn_now;
1670 return; 3698 return;
1671 } 3699 }
1672 3700
1681 * doesn't hurt either as we only do this on time-jumps or 3709 * doesn't hurt either as we only do this on time-jumps or
1682 * in the unlikely event of having been preempted here. 3710 * in the unlikely event of having been preempted here.
1683 */ 3711 */
1684 for (i = 4; --i; ) 3712 for (i = 4; --i; )
1685 { 3713 {
3714 ev_tstamp diff;
1686 rtmn_diff = ev_rt_now - mn_now; 3715 rtmn_diff = ev_rt_now - mn_now;
1687 3716
1688 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3717 diff = odiff - rtmn_diff;
3718
3719 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1689 return; /* all is well */ 3720 return; /* all is well */
1690 3721
1691 ev_rt_now = ev_time (); 3722 ev_rt_now = ev_time ();
1692 mn_now = get_clock (); 3723 mn_now = get_clock ();
1693 now_floor = mn_now; 3724 now_floor = mn_now;
1694 } 3725 }
1695 3726
3727 /* no timer adjustment, as the monotonic clock doesn't jump */
3728 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1696# if EV_PERIODIC_ENABLE 3729# if EV_PERIODIC_ENABLE
1697 periodics_reschedule (EV_A); 3730 periodics_reschedule (EV_A);
1698# endif 3731# endif
1699 /* no timer adjustment, as the monotonic clock doesn't jump */
1700 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1701 } 3732 }
1702 else 3733 else
1703#endif 3734#endif
1704 { 3735 {
1705 ev_rt_now = ev_time (); 3736 ev_rt_now = ev_time ();
1706 3737
1707 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3738 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1708 { 3739 {
3740 /* adjust timers. this is easy, as the offset is the same for all of them */
3741 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1709#if EV_PERIODIC_ENABLE 3742#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 3743 periodics_reschedule (EV_A);
1711#endif 3744#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now;
1715 } 3745 }
1716 3746
1717 mn_now = ev_rt_now; 3747 mn_now = ev_rt_now;
1718 } 3748 }
1719} 3749}
1720 3750
1721void 3751int
1722ev_ref (EV_P)
1723{
1724 ++activecnt;
1725}
1726
1727void
1728ev_unref (EV_P)
1729{
1730 --activecnt;
1731}
1732
1733static int loop_done;
1734
1735void
1736ev_loop (EV_P_ int flags) 3752ev_run (EV_P_ int flags)
1737{ 3753{
3754#if EV_FEATURE_API
3755 ++loop_depth;
3756#endif
3757
3758 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3759
1738 loop_done = EVUNLOOP_CANCEL; 3760 loop_done = EVBREAK_CANCEL;
1739 3761
1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3762 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1741 3763
1742 do 3764 do
1743 { 3765 {
3766#if EV_VERIFY >= 2
3767 ev_verify (EV_A);
3768#endif
3769
1744#ifndef _WIN32 3770#ifndef _WIN32
1745 if (expect_false (curpid)) /* penalise the forking check even more */ 3771 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1746 if (expect_false (getpid () != curpid)) 3772 if (ecb_expect_false (getpid () != curpid))
1747 { 3773 {
1748 curpid = getpid (); 3774 curpid = getpid ();
1749 postfork = 1; 3775 postfork = 1;
1750 } 3776 }
1751#endif 3777#endif
1752 3778
1753#if EV_FORK_ENABLE 3779#if EV_FORK_ENABLE
1754 /* we might have forked, so queue fork handlers */ 3780 /* we might have forked, so queue fork handlers */
1755 if (expect_false (postfork)) 3781 if (ecb_expect_false (postfork))
1756 if (forkcnt) 3782 if (forkcnt)
1757 { 3783 {
1758 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3784 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1759 call_pending (EV_A); 3785 EV_INVOKE_PENDING;
1760 } 3786 }
1761#endif 3787#endif
1762 3788
3789#if EV_PREPARE_ENABLE
1763 /* queue prepare watchers (and execute them) */ 3790 /* queue prepare watchers (and execute them) */
1764 if (expect_false (preparecnt)) 3791 if (ecb_expect_false (preparecnt))
1765 { 3792 {
1766 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3793 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1767 call_pending (EV_A); 3794 EV_INVOKE_PENDING;
1768 } 3795 }
3796#endif
1769 3797
1770 if (expect_false (!activecnt)) 3798 if (ecb_expect_false (loop_done))
1771 break; 3799 break;
1772 3800
1773 /* we might have forked, so reify kernel state if necessary */ 3801 /* we might have forked, so reify kernel state if necessary */
1774 if (expect_false (postfork)) 3802 if (ecb_expect_false (postfork))
1775 loop_fork (EV_A); 3803 loop_fork (EV_A);
1776 3804
1777 /* update fd-related kernel structures */ 3805 /* update fd-related kernel structures */
1778 fd_reify (EV_A); 3806 fd_reify (EV_A);
1779 3807
1780 /* calculate blocking time */ 3808 /* calculate blocking time */
1781 { 3809 {
1782 ev_tstamp waittime = 0.; 3810 ev_tstamp waittime = 0.;
1783 ev_tstamp sleeptime = 0.; 3811 ev_tstamp sleeptime = 0.;
1784 3812
3813 /* remember old timestamp for io_blocktime calculation */
3814 ev_tstamp prev_mn_now = mn_now;
3815
3816 /* update time to cancel out callback processing overhead */
3817 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3818
3819 /* from now on, we want a pipe-wake-up */
3820 pipe_write_wanted = 1;
3821
3822 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3823
1785 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3824 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1786 { 3825 {
1787 /* update time to cancel out callback processing overhead */
1788 time_update (EV_A_ 1e100);
1789
1790 waittime = MAX_BLOCKTIME; 3826 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1791 3827
1792 if (timercnt) 3828 if (timercnt)
1793 { 3829 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 3830 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1795 if (waittime > to) waittime = to; 3831 if (waittime > to) waittime = to;
1796 } 3832 }
1797 3833
1798#if EV_PERIODIC_ENABLE 3834#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 3835 if (periodiccnt)
1800 { 3836 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3837 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1802 if (waittime > to) waittime = to; 3838 if (waittime > to) waittime = to;
1803 } 3839 }
1804#endif 3840#endif
1805 3841
3842 /* don't let timeouts decrease the waittime below timeout_blocktime */
1806 if (expect_false (waittime < timeout_blocktime)) 3843 if (ecb_expect_false (waittime < timeout_blocktime))
1807 waittime = timeout_blocktime; 3844 waittime = timeout_blocktime;
1808 3845
1809 sleeptime = waittime - backend_fudge; 3846 /* at this point, we NEED to wait, so we have to ensure */
3847 /* to pass a minimum nonzero value to the backend */
3848 if (ecb_expect_false (waittime < backend_mintime))
3849 waittime = backend_mintime;
1810 3850
3851 /* extra check because io_blocktime is commonly 0 */
1811 if (expect_true (sleeptime > io_blocktime)) 3852 if (ecb_expect_false (io_blocktime))
1812 sleeptime = io_blocktime;
1813
1814 if (sleeptime)
1815 { 3853 {
3854 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3855
3856 if (sleeptime > waittime - backend_mintime)
3857 sleeptime = waittime - backend_mintime;
3858
3859 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3860 {
1816 ev_sleep (sleeptime); 3861 ev_sleep (sleeptime);
1817 waittime -= sleeptime; 3862 waittime -= sleeptime;
3863 }
1818 } 3864 }
1819 } 3865 }
1820 3866
3867#if EV_FEATURE_API
1821 ++loop_count; 3868 ++loop_count;
3869#endif
3870 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1822 backend_poll (EV_A_ waittime); 3871 backend_poll (EV_A_ waittime);
3872 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3873
3874 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3875
3876 ECB_MEMORY_FENCE_ACQUIRE;
3877 if (pipe_write_skipped)
3878 {
3879 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3880 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3881 }
1823 3882
1824 /* update ev_rt_now, do magic */ 3883 /* update ev_rt_now, do magic */
1825 time_update (EV_A_ waittime + sleeptime); 3884 time_update (EV_A_ waittime + sleeptime);
1826 } 3885 }
1827 3886
1834#if EV_IDLE_ENABLE 3893#if EV_IDLE_ENABLE
1835 /* queue idle watchers unless other events are pending */ 3894 /* queue idle watchers unless other events are pending */
1836 idle_reify (EV_A); 3895 idle_reify (EV_A);
1837#endif 3896#endif
1838 3897
3898#if EV_CHECK_ENABLE
1839 /* queue check watchers, to be executed first */ 3899 /* queue check watchers, to be executed first */
1840 if (expect_false (checkcnt)) 3900 if (ecb_expect_false (checkcnt))
1841 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3901 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3902#endif
1842 3903
1843 call_pending (EV_A); 3904 EV_INVOKE_PENDING;
1844 } 3905 }
1845 while (expect_true ( 3906 while (ecb_expect_true (
1846 activecnt 3907 activecnt
1847 && !loop_done 3908 && !loop_done
1848 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3909 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1849 )); 3910 ));
1850 3911
1851 if (loop_done == EVUNLOOP_ONE) 3912 if (loop_done == EVBREAK_ONE)
1852 loop_done = EVUNLOOP_CANCEL; 3913 loop_done = EVBREAK_CANCEL;
1853}
1854 3914
3915#if EV_FEATURE_API
3916 --loop_depth;
3917#endif
3918
3919 return activecnt;
3920}
3921
1855void 3922void
1856ev_unloop (EV_P_ int how) 3923ev_break (EV_P_ int how) EV_NOEXCEPT
1857{ 3924{
1858 loop_done = how; 3925 loop_done = how;
1859} 3926}
1860 3927
3928void
3929ev_ref (EV_P) EV_NOEXCEPT
3930{
3931 ++activecnt;
3932}
3933
3934void
3935ev_unref (EV_P) EV_NOEXCEPT
3936{
3937 --activecnt;
3938}
3939
3940void
3941ev_now_update (EV_P) EV_NOEXCEPT
3942{
3943 time_update (EV_A_ EV_TSTAMP_HUGE);
3944}
3945
3946void
3947ev_suspend (EV_P) EV_NOEXCEPT
3948{
3949 ev_now_update (EV_A);
3950}
3951
3952void
3953ev_resume (EV_P) EV_NOEXCEPT
3954{
3955 ev_tstamp mn_prev = mn_now;
3956
3957 ev_now_update (EV_A);
3958 timers_reschedule (EV_A_ mn_now - mn_prev);
3959#if EV_PERIODIC_ENABLE
3960 /* TODO: really do this? */
3961 periodics_reschedule (EV_A);
3962#endif
3963}
3964
1861/*****************************************************************************/ 3965/*****************************************************************************/
3966/* singly-linked list management, used when the expected list length is short */
1862 3967
1863void inline_size 3968inline_size void
1864wlist_add (WL *head, WL elem) 3969wlist_add (WL *head, WL elem)
1865{ 3970{
1866 elem->next = *head; 3971 elem->next = *head;
1867 *head = elem; 3972 *head = elem;
1868} 3973}
1869 3974
1870void inline_size 3975inline_size void
1871wlist_del (WL *head, WL elem) 3976wlist_del (WL *head, WL elem)
1872{ 3977{
1873 while (*head) 3978 while (*head)
1874 { 3979 {
1875 if (*head == elem) 3980 if (ecb_expect_true (*head == elem))
1876 { 3981 {
1877 *head = elem->next; 3982 *head = elem->next;
1878 return; 3983 break;
1879 } 3984 }
1880 3985
1881 head = &(*head)->next; 3986 head = &(*head)->next;
1882 } 3987 }
1883} 3988}
1884 3989
1885void inline_speed 3990/* internal, faster, version of ev_clear_pending */
3991inline_speed void
1886clear_pending (EV_P_ W w) 3992clear_pending (EV_P_ W w)
1887{ 3993{
1888 if (w->pending) 3994 if (w->pending)
1889 { 3995 {
1890 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3996 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1891 w->pending = 0; 3997 w->pending = 0;
1892 } 3998 }
1893} 3999}
1894 4000
1895int 4001int
1896ev_clear_pending (EV_P_ void *w) 4002ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1897{ 4003{
1898 W w_ = (W)w; 4004 W w_ = (W)w;
1899 int pending = w_->pending; 4005 int pending = w_->pending;
1900 4006
1901 if (expect_true (pending)) 4007 if (ecb_expect_true (pending))
1902 { 4008 {
1903 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4009 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4010 p->w = (W)&pending_w;
1904 w_->pending = 0; 4011 w_->pending = 0;
1905 p->w = 0;
1906 return p->events; 4012 return p->events;
1907 } 4013 }
1908 else 4014 else
1909 return 0; 4015 return 0;
1910} 4016}
1911 4017
1912void inline_size 4018inline_size void
1913pri_adjust (EV_P_ W w) 4019pri_adjust (EV_P_ W w)
1914{ 4020{
1915 int pri = w->priority; 4021 int pri = ev_priority (w);
1916 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4022 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1917 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4023 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1918 w->priority = pri; 4024 ev_set_priority (w, pri);
1919} 4025}
1920 4026
1921void inline_speed 4027inline_speed void
1922ev_start (EV_P_ W w, int active) 4028ev_start (EV_P_ W w, int active)
1923{ 4029{
1924 pri_adjust (EV_A_ w); 4030 pri_adjust (EV_A_ w);
1925 w->active = active; 4031 w->active = active;
1926 ev_ref (EV_A); 4032 ev_ref (EV_A);
1927} 4033}
1928 4034
1929void inline_size 4035inline_size void
1930ev_stop (EV_P_ W w) 4036ev_stop (EV_P_ W w)
1931{ 4037{
1932 ev_unref (EV_A); 4038 ev_unref (EV_A);
1933 w->active = 0; 4039 w->active = 0;
1934} 4040}
1935 4041
1936/*****************************************************************************/ 4042/*****************************************************************************/
1937 4043
1938void noinline 4044ecb_noinline
4045void
1939ev_io_start (EV_P_ ev_io *w) 4046ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1940{ 4047{
1941 int fd = w->fd; 4048 int fd = w->fd;
1942 4049
1943 if (expect_false (ev_is_active (w))) 4050 if (ecb_expect_false (ev_is_active (w)))
1944 return; 4051 return;
1945 4052
1946 assert (("ev_io_start called with negative fd", fd >= 0)); 4053 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4054 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4055
4056#if EV_VERIFY >= 2
4057 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4058#endif
4059 EV_FREQUENT_CHECK;
1947 4060
1948 ev_start (EV_A_ (W)w, 1); 4061 ev_start (EV_A_ (W)w, 1);
1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4062 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1950 wlist_add (&anfds[fd].head, (WL)w); 4063 wlist_add (&anfds[fd].head, (WL)w);
1951 4064
4065 /* common bug, apparently */
4066 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4067
1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4068 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1953 w->events &= ~EV_IOFDSET; 4069 w->events &= ~EV__IOFDSET;
1954}
1955 4070
1956void noinline 4071 EV_FREQUENT_CHECK;
4072}
4073
4074ecb_noinline
4075void
1957ev_io_stop (EV_P_ ev_io *w) 4076ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1958{ 4077{
1959 clear_pending (EV_A_ (W)w); 4078 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 4079 if (ecb_expect_false (!ev_is_active (w)))
1961 return; 4080 return;
1962 4081
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4082 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4083
4084#if EV_VERIFY >= 2
4085 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4086#endif
4087 EV_FREQUENT_CHECK;
1964 4088
1965 wlist_del (&anfds[w->fd].head, (WL)w); 4089 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 4090 ev_stop (EV_A_ (W)w);
1967 4091
1968 fd_change (EV_A_ w->fd, 1); 4092 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1969}
1970 4093
1971void noinline 4094 EV_FREQUENT_CHECK;
4095}
4096
4097ecb_noinline
4098void
1972ev_timer_start (EV_P_ ev_timer *w) 4099ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1973{ 4100{
1974 if (expect_false (ev_is_active (w))) 4101 if (ecb_expect_false (ev_is_active (w)))
1975 return; 4102 return;
1976 4103
1977 ev_at (w) += mn_now; 4104 ev_at (w) += mn_now;
1978 4105
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4106 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 4107
4108 EV_FREQUENT_CHECK;
4109
4110 ++timercnt;
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 4111 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 4112 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1983 timers [ev_active (w)] = (WT)w; 4113 ANHE_w (timers [ev_active (w)]) = (WT)w;
4114 ANHE_at_cache (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 4115 upheap (timers, ev_active (w));
1985 4116
4117 EV_FREQUENT_CHECK;
4118
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 4119 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 4120}
1988 4121
1989void noinline 4122ecb_noinline
4123void
1990ev_timer_stop (EV_P_ ev_timer *w) 4124ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1991{ 4125{
1992 clear_pending (EV_A_ (W)w); 4126 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 4127 if (ecb_expect_false (!ev_is_active (w)))
1994 return; 4128 return;
4129
4130 EV_FREQUENT_CHECK;
1995 4131
1996 { 4132 {
1997 int active = ev_active (w); 4133 int active = ev_active (w);
1998 4134
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 4135 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 4136
4137 --timercnt;
4138
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 4139 if (ecb_expect_true (active < timercnt + HEAP0))
2002 { 4140 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 4141 timers [active] = timers [timercnt + HEAP0];
2004 adjustheap (timers, timercnt, active); 4142 adjustheap (timers, timercnt, active);
2005 } 4143 }
2006
2007 --timercnt;
2008 } 4144 }
2009 4145
2010 ev_at (w) -= mn_now; 4146 ev_at (w) -= mn_now;
2011 4147
2012 ev_stop (EV_A_ (W)w); 4148 ev_stop (EV_A_ (W)w);
2013}
2014 4149
2015void noinline 4150 EV_FREQUENT_CHECK;
4151}
4152
4153ecb_noinline
4154void
2016ev_timer_again (EV_P_ ev_timer *w) 4155ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2017{ 4156{
4157 EV_FREQUENT_CHECK;
4158
4159 clear_pending (EV_A_ (W)w);
4160
2018 if (ev_is_active (w)) 4161 if (ev_is_active (w))
2019 { 4162 {
2020 if (w->repeat) 4163 if (w->repeat)
2021 { 4164 {
2022 ev_at (w) = mn_now + w->repeat; 4165 ev_at (w) = mn_now + w->repeat;
4166 ANHE_at_cache (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 4167 adjustheap (timers, timercnt, ev_active (w));
2024 } 4168 }
2025 else 4169 else
2026 ev_timer_stop (EV_A_ w); 4170 ev_timer_stop (EV_A_ w);
2027 } 4171 }
2028 else if (w->repeat) 4172 else if (w->repeat)
2029 { 4173 {
2030 ev_at (w) = w->repeat; 4174 ev_at (w) = w->repeat;
2031 ev_timer_start (EV_A_ w); 4175 ev_timer_start (EV_A_ w);
2032 } 4176 }
4177
4178 EV_FREQUENT_CHECK;
4179}
4180
4181ev_tstamp
4182ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4183{
4184 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
2033} 4185}
2034 4186
2035#if EV_PERIODIC_ENABLE 4187#if EV_PERIODIC_ENABLE
2036void noinline 4188ecb_noinline
4189void
2037ev_periodic_start (EV_P_ ev_periodic *w) 4190ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2038{ 4191{
2039 if (expect_false (ev_is_active (w))) 4192 if (ecb_expect_false (ev_is_active (w)))
2040 return; 4193 return;
2041 4194
2042 if (w->reschedule_cb) 4195 if (w->reschedule_cb)
2043 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4196 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2044 else if (w->interval) 4197 else if (w->interval)
2045 { 4198 {
2046 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4199 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2047 /* this formula differs from the one in periodic_reify because we do not always round up */ 4200 periodic_recalc (EV_A_ w);
2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2049 } 4201 }
2050 else 4202 else
2051 ev_at (w) = w->offset; 4203 ev_at (w) = w->offset;
2052 4204
4205 EV_FREQUENT_CHECK;
4206
4207 ++periodiccnt;
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 4208 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 4209 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2055 periodics [ev_active (w)] = (WT)w; 4210 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4211 ANHE_at_cache (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 4212 upheap (periodics, ev_active (w));
2057 4213
4214 EV_FREQUENT_CHECK;
4215
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 4216 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 4217}
2060 4218
2061void noinline 4219ecb_noinline
4220void
2062ev_periodic_stop (EV_P_ ev_periodic *w) 4221ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2063{ 4222{
2064 clear_pending (EV_A_ (W)w); 4223 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 4224 if (ecb_expect_false (!ev_is_active (w)))
2066 return; 4225 return;
4226
4227 EV_FREQUENT_CHECK;
2067 4228
2068 { 4229 {
2069 int active = ev_active (w); 4230 int active = ev_active (w);
2070 4231
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 4232 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 4233
4234 --periodiccnt;
4235
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 4236 if (ecb_expect_true (active < periodiccnt + HEAP0))
2074 { 4237 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 4238 periodics [active] = periodics [periodiccnt + HEAP0];
2076 adjustheap (periodics, periodiccnt, active); 4239 adjustheap (periodics, periodiccnt, active);
2077 } 4240 }
2078
2079 --periodiccnt;
2080 } 4241 }
2081 4242
2082 ev_stop (EV_A_ (W)w); 4243 ev_stop (EV_A_ (W)w);
2083}
2084 4244
2085void noinline 4245 EV_FREQUENT_CHECK;
4246}
4247
4248ecb_noinline
4249void
2086ev_periodic_again (EV_P_ ev_periodic *w) 4250ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2087{ 4251{
2088 /* TODO: use adjustheap and recalculation */ 4252 /* TODO: use adjustheap and recalculation */
2089 ev_periodic_stop (EV_A_ w); 4253 ev_periodic_stop (EV_A_ w);
2090 ev_periodic_start (EV_A_ w); 4254 ev_periodic_start (EV_A_ w);
2091} 4255}
2093 4257
2094#ifndef SA_RESTART 4258#ifndef SA_RESTART
2095# define SA_RESTART 0 4259# define SA_RESTART 0
2096#endif 4260#endif
2097 4261
2098void noinline 4262#if EV_SIGNAL_ENABLE
4263
4264ecb_noinline
4265void
2099ev_signal_start (EV_P_ ev_signal *w) 4266ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2100{ 4267{
4268 if (ecb_expect_false (ev_is_active (w)))
4269 return;
4270
4271 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4272
2101#if EV_MULTIPLICITY 4273#if EV_MULTIPLICITY
2102 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4274 assert (("libev: a signal must not be attached to two different loops",
2103#endif 4275 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2104 if (expect_false (ev_is_active (w)))
2105 return;
2106 4276
2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4277 signals [w->signum - 1].loop = EV_A;
4278 ECB_MEMORY_FENCE_RELEASE;
4279#endif
2108 4280
2109 evpipe_init (EV_A); 4281 EV_FREQUENT_CHECK;
2110 4282
4283#if EV_USE_SIGNALFD
4284 if (sigfd == -2)
2111 { 4285 {
2112#ifndef _WIN32 4286 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2113 sigset_t full, prev; 4287 if (sigfd < 0 && errno == EINVAL)
2114 sigfillset (&full); 4288 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2115 sigprocmask (SIG_SETMASK, &full, &prev);
2116#endif
2117 4289
2118 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4290 if (sigfd >= 0)
4291 {
4292 fd_intern (sigfd); /* doing it twice will not hurt */
2119 4293
2120#ifndef _WIN32 4294 sigemptyset (&sigfd_set);
2121 sigprocmask (SIG_SETMASK, &prev, 0); 4295
2122#endif 4296 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4297 ev_set_priority (&sigfd_w, EV_MAXPRI);
4298 ev_io_start (EV_A_ &sigfd_w);
4299 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4300 }
2123 } 4301 }
4302
4303 if (sigfd >= 0)
4304 {
4305 /* TODO: check .head */
4306 sigaddset (&sigfd_set, w->signum);
4307 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4308
4309 signalfd (sigfd, &sigfd_set, 0);
4310 }
4311#endif
2124 4312
2125 ev_start (EV_A_ (W)w, 1); 4313 ev_start (EV_A_ (W)w, 1);
2126 wlist_add (&signals [w->signum - 1].head, (WL)w); 4314 wlist_add (&signals [w->signum - 1].head, (WL)w);
2127 4315
2128 if (!((WL)w)->next) 4316 if (!((WL)w)->next)
4317# if EV_USE_SIGNALFD
4318 if (sigfd < 0) /*TODO*/
4319# endif
2129 { 4320 {
2130#if _WIN32 4321# ifdef _WIN32
4322 evpipe_init (EV_A);
4323
2131 signal (w->signum, ev_sighandler); 4324 signal (w->signum, ev_sighandler);
2132#else 4325# else
2133 struct sigaction sa; 4326 struct sigaction sa;
4327
4328 evpipe_init (EV_A);
4329
2134 sa.sa_handler = ev_sighandler; 4330 sa.sa_handler = ev_sighandler;
2135 sigfillset (&sa.sa_mask); 4331 sigfillset (&sa.sa_mask);
2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4332 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2137 sigaction (w->signum, &sa, 0); 4333 sigaction (w->signum, &sa, 0);
4334
4335 if (origflags & EVFLAG_NOSIGMASK)
4336 {
4337 sigemptyset (&sa.sa_mask);
4338 sigaddset (&sa.sa_mask, w->signum);
4339 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4340 }
2138#endif 4341#endif
2139 } 4342 }
2140}
2141 4343
2142void noinline 4344 EV_FREQUENT_CHECK;
4345}
4346
4347ecb_noinline
4348void
2143ev_signal_stop (EV_P_ ev_signal *w) 4349ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2144{ 4350{
2145 clear_pending (EV_A_ (W)w); 4351 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 4352 if (ecb_expect_false (!ev_is_active (w)))
2147 return; 4353 return;
4354
4355 EV_FREQUENT_CHECK;
2148 4356
2149 wlist_del (&signals [w->signum - 1].head, (WL)w); 4357 wlist_del (&signals [w->signum - 1].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 4358 ev_stop (EV_A_ (W)w);
2151 4359
2152 if (!signals [w->signum - 1].head) 4360 if (!signals [w->signum - 1].head)
2153 signal (w->signum, SIG_DFL); 4361 {
2154}
2155
2156void
2157ev_child_start (EV_P_ ev_child *w)
2158{
2159#if EV_MULTIPLICITY 4362#if EV_MULTIPLICITY
4363 signals [w->signum - 1].loop = 0; /* unattach from signal */
4364#endif
4365#if EV_USE_SIGNALFD
4366 if (sigfd >= 0)
4367 {
4368 sigset_t ss;
4369
4370 sigemptyset (&ss);
4371 sigaddset (&ss, w->signum);
4372 sigdelset (&sigfd_set, w->signum);
4373
4374 signalfd (sigfd, &sigfd_set, 0);
4375 sigprocmask (SIG_UNBLOCK, &ss, 0);
4376 }
4377 else
4378#endif
4379 signal (w->signum, SIG_DFL);
4380 }
4381
4382 EV_FREQUENT_CHECK;
4383}
4384
4385#endif
4386
4387#if EV_CHILD_ENABLE
4388
4389void
4390ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4391{
4392#if EV_MULTIPLICITY
2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4393 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2161#endif 4394#endif
2162 if (expect_false (ev_is_active (w))) 4395 if (ecb_expect_false (ev_is_active (w)))
2163 return; 4396 return;
2164 4397
4398 EV_FREQUENT_CHECK;
4399
2165 ev_start (EV_A_ (W)w, 1); 4400 ev_start (EV_A_ (W)w, 1);
2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4401 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2167}
2168 4402
4403 EV_FREQUENT_CHECK;
4404}
4405
2169void 4406void
2170ev_child_stop (EV_P_ ev_child *w) 4407ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2171{ 4408{
2172 clear_pending (EV_A_ (W)w); 4409 clear_pending (EV_A_ (W)w);
2173 if (expect_false (!ev_is_active (w))) 4410 if (ecb_expect_false (!ev_is_active (w)))
2174 return; 4411 return;
2175 4412
4413 EV_FREQUENT_CHECK;
4414
2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4415 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2177 ev_stop (EV_A_ (W)w); 4416 ev_stop (EV_A_ (W)w);
4417
4418 EV_FREQUENT_CHECK;
2178} 4419}
4420
4421#endif
2179 4422
2180#if EV_STAT_ENABLE 4423#if EV_STAT_ENABLE
2181 4424
2182# ifdef _WIN32 4425# ifdef _WIN32
2183# undef lstat 4426# undef lstat
2184# define lstat(a,b) _stati64 (a,b) 4427# define lstat(a,b) _stati64 (a,b)
2185# endif 4428# endif
2186 4429
2187#define DEF_STAT_INTERVAL 5.0074891 4430#define DEF_STAT_INTERVAL 5.0074891
4431#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2188#define MIN_STAT_INTERVAL 0.1074891 4432#define MIN_STAT_INTERVAL 0.1074891
2189 4433
2190static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4434ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2191 4435
2192#if EV_USE_INOTIFY 4436#if EV_USE_INOTIFY
2193# define EV_INOTIFY_BUFSIZE 8192
2194 4437
2195static void noinline 4438/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4439# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4440
4441ecb_noinline
4442static void
2196infy_add (EV_P_ ev_stat *w) 4443infy_add (EV_P_ ev_stat *w)
2197{ 4444{
2198 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4445 w->wd = inotify_add_watch (fs_fd, w->path,
4446 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4447 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4448 | IN_DONT_FOLLOW | IN_MASK_ADD);
2199 4449
2200 if (w->wd < 0) 4450 if (w->wd >= 0)
4451 {
4452 struct statfs sfs;
4453
4454 /* now local changes will be tracked by inotify, but remote changes won't */
4455 /* unless the filesystem is known to be local, we therefore still poll */
4456 /* also do poll on <2.6.25, but with normal frequency */
4457
4458 if (!fs_2625)
4459 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4460 else if (!statfs (w->path, &sfs)
4461 && (sfs.f_type == 0x1373 /* devfs */
4462 || sfs.f_type == 0x4006 /* fat */
4463 || sfs.f_type == 0x4d44 /* msdos */
4464 || sfs.f_type == 0xEF53 /* ext2/3 */
4465 || sfs.f_type == 0x72b6 /* jffs2 */
4466 || sfs.f_type == 0x858458f6 /* ramfs */
4467 || sfs.f_type == 0x5346544e /* ntfs */
4468 || sfs.f_type == 0x3153464a /* jfs */
4469 || sfs.f_type == 0x9123683e /* btrfs */
4470 || sfs.f_type == 0x52654973 /* reiser3 */
4471 || sfs.f_type == 0x01021994 /* tmpfs */
4472 || sfs.f_type == 0x58465342 /* xfs */))
4473 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4474 else
4475 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2201 { 4476 }
2202 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4477 else
4478 {
4479 /* can't use inotify, continue to stat */
4480 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2203 4481
2204 /* monitor some parent directory for speedup hints */ 4482 /* if path is not there, monitor some parent directory for speedup hints */
2205 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4483 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2206 /* but an efficiency issue only */ 4484 /* but an efficiency issue only */
2207 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4485 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2208 { 4486 {
2209 char path [4096]; 4487 char path [4096];
2210 strcpy (path, w->path); 4488 strcpy (path, w->path);
2214 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4492 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2215 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4493 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2216 4494
2217 char *pend = strrchr (path, '/'); 4495 char *pend = strrchr (path, '/');
2218 4496
2219 if (!pend) 4497 if (!pend || pend == path)
2220 break; /* whoops, no '/', complain to your admin */ 4498 break;
2221 4499
2222 *pend = 0; 4500 *pend = 0;
2223 w->wd = inotify_add_watch (fs_fd, path, mask); 4501 w->wd = inotify_add_watch (fs_fd, path, mask);
2224 } 4502 }
2225 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4503 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2226 } 4504 }
2227 } 4505 }
2228 else
2229 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2230 4506
2231 if (w->wd >= 0) 4507 if (w->wd >= 0)
2232 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4508 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2233}
2234 4509
2235static void noinline 4510 /* now re-arm timer, if required */
4511 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4512 ev_timer_again (EV_A_ &w->timer);
4513 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4514}
4515
4516ecb_noinline
4517static void
2236infy_del (EV_P_ ev_stat *w) 4518infy_del (EV_P_ ev_stat *w)
2237{ 4519{
2238 int slot; 4520 int slot;
2239 int wd = w->wd; 4521 int wd = w->wd;
2240 4522
2241 if (wd < 0) 4523 if (wd < 0)
2242 return; 4524 return;
2243 4525
2244 w->wd = -2; 4526 w->wd = -2;
2245 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4527 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2246 wlist_del (&fs_hash [slot].head, (WL)w); 4528 wlist_del (&fs_hash [slot].head, (WL)w);
2247 4529
2248 /* remove this watcher, if others are watching it, they will rearm */ 4530 /* remove this watcher, if others are watching it, they will rearm */
2249 inotify_rm_watch (fs_fd, wd); 4531 inotify_rm_watch (fs_fd, wd);
2250} 4532}
2251 4533
2252static void noinline 4534ecb_noinline
4535static void
2253infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4536infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2254{ 4537{
2255 if (slot < 0) 4538 if (slot < 0)
2256 /* overflow, need to check for all hahs slots */ 4539 /* overflow, need to check for all hash slots */
2257 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4540 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2258 infy_wd (EV_A_ slot, wd, ev); 4541 infy_wd (EV_A_ slot, wd, ev);
2259 else 4542 else
2260 { 4543 {
2261 WL w_; 4544 WL w_;
2262 4545
2263 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4546 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2264 { 4547 {
2265 ev_stat *w = (ev_stat *)w_; 4548 ev_stat *w = (ev_stat *)w_;
2266 w_ = w_->next; /* lets us remove this watcher and all before it */ 4549 w_ = w_->next; /* lets us remove this watcher and all before it */
2267 4550
2268 if (w->wd == wd || wd == -1) 4551 if (w->wd == wd || wd == -1)
2269 { 4552 {
2270 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4553 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2271 { 4554 {
4555 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2272 w->wd = -1; 4556 w->wd = -1;
2273 infy_add (EV_A_ w); /* re-add, no matter what */ 4557 infy_add (EV_A_ w); /* re-add, no matter what */
2274 } 4558 }
2275 4559
2276 stat_timer_cb (EV_A_ &w->timer, 0); 4560 stat_timer_cb (EV_A_ &w->timer, 0);
2281 4565
2282static void 4566static void
2283infy_cb (EV_P_ ev_io *w, int revents) 4567infy_cb (EV_P_ ev_io *w, int revents)
2284{ 4568{
2285 char buf [EV_INOTIFY_BUFSIZE]; 4569 char buf [EV_INOTIFY_BUFSIZE];
2286 struct inotify_event *ev = (struct inotify_event *)buf;
2287 int ofs; 4570 int ofs;
2288 int len = read (fs_fd, buf, sizeof (buf)); 4571 int len = read (fs_fd, buf, sizeof (buf));
2289 4572
2290 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4573 for (ofs = 0; ofs < len; )
4574 {
4575 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2291 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4576 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4577 ofs += sizeof (struct inotify_event) + ev->len;
4578 }
2292} 4579}
2293 4580
2294void inline_size 4581inline_size ecb_cold
4582void
4583ev_check_2625 (EV_P)
4584{
4585 /* kernels < 2.6.25 are borked
4586 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4587 */
4588 if (ev_linux_version () < 0x020619)
4589 return;
4590
4591 fs_2625 = 1;
4592}
4593
4594inline_size int
4595infy_newfd (void)
4596{
4597#if defined IN_CLOEXEC && defined IN_NONBLOCK
4598 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4599 if (fd >= 0)
4600 return fd;
4601#endif
4602 return inotify_init ();
4603}
4604
4605inline_size void
2295infy_init (EV_P) 4606infy_init (EV_P)
2296{ 4607{
2297 if (fs_fd != -2) 4608 if (fs_fd != -2)
2298 return; 4609 return;
2299 4610
4611 fs_fd = -1;
4612
4613 ev_check_2625 (EV_A);
4614
2300 fs_fd = inotify_init (); 4615 fs_fd = infy_newfd ();
2301 4616
2302 if (fs_fd >= 0) 4617 if (fs_fd >= 0)
2303 { 4618 {
4619 fd_intern (fs_fd);
2304 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4620 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2305 ev_set_priority (&fs_w, EV_MAXPRI); 4621 ev_set_priority (&fs_w, EV_MAXPRI);
2306 ev_io_start (EV_A_ &fs_w); 4622 ev_io_start (EV_A_ &fs_w);
4623 ev_unref (EV_A);
2307 } 4624 }
2308} 4625}
2309 4626
2310void inline_size 4627inline_size void
2311infy_fork (EV_P) 4628infy_fork (EV_P)
2312{ 4629{
2313 int slot; 4630 int slot;
2314 4631
2315 if (fs_fd < 0) 4632 if (fs_fd < 0)
2316 return; 4633 return;
2317 4634
4635 ev_ref (EV_A);
4636 ev_io_stop (EV_A_ &fs_w);
2318 close (fs_fd); 4637 close (fs_fd);
2319 fs_fd = inotify_init (); 4638 fs_fd = infy_newfd ();
2320 4639
4640 if (fs_fd >= 0)
4641 {
4642 fd_intern (fs_fd);
4643 ev_io_set (&fs_w, fs_fd, EV_READ);
4644 ev_io_start (EV_A_ &fs_w);
4645 ev_unref (EV_A);
4646 }
4647
2321 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4648 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2322 { 4649 {
2323 WL w_ = fs_hash [slot].head; 4650 WL w_ = fs_hash [slot].head;
2324 fs_hash [slot].head = 0; 4651 fs_hash [slot].head = 0;
2325 4652
2326 while (w_) 4653 while (w_)
2331 w->wd = -1; 4658 w->wd = -1;
2332 4659
2333 if (fs_fd >= 0) 4660 if (fs_fd >= 0)
2334 infy_add (EV_A_ w); /* re-add, no matter what */ 4661 infy_add (EV_A_ w); /* re-add, no matter what */
2335 else 4662 else
4663 {
4664 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4665 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2336 ev_timer_start (EV_A_ &w->timer); 4666 ev_timer_again (EV_A_ &w->timer);
4667 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4668 }
2337 } 4669 }
2338
2339 } 4670 }
2340} 4671}
2341 4672
2342#endif 4673#endif
2343 4674
4675#ifdef _WIN32
4676# define EV_LSTAT(p,b) _stati64 (p, b)
4677#else
4678# define EV_LSTAT(p,b) lstat (p, b)
4679#endif
4680
2344void 4681void
2345ev_stat_stat (EV_P_ ev_stat *w) 4682ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2346{ 4683{
2347 if (lstat (w->path, &w->attr) < 0) 4684 if (lstat (w->path, &w->attr) < 0)
2348 w->attr.st_nlink = 0; 4685 w->attr.st_nlink = 0;
2349 else if (!w->attr.st_nlink) 4686 else if (!w->attr.st_nlink)
2350 w->attr.st_nlink = 1; 4687 w->attr.st_nlink = 1;
2351} 4688}
2352 4689
2353static void noinline 4690ecb_noinline
4691static void
2354stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4692stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2355{ 4693{
2356 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4694 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2357 4695
2358 /* we copy this here each the time so that */ 4696 ev_statdata prev = w->attr;
2359 /* prev has the old value when the callback gets invoked */
2360 w->prev = w->attr;
2361 ev_stat_stat (EV_A_ w); 4697 ev_stat_stat (EV_A_ w);
2362 4698
2363 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4699 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2364 if ( 4700 if (
2365 w->prev.st_dev != w->attr.st_dev 4701 prev.st_dev != w->attr.st_dev
2366 || w->prev.st_ino != w->attr.st_ino 4702 || prev.st_ino != w->attr.st_ino
2367 || w->prev.st_mode != w->attr.st_mode 4703 || prev.st_mode != w->attr.st_mode
2368 || w->prev.st_nlink != w->attr.st_nlink 4704 || prev.st_nlink != w->attr.st_nlink
2369 || w->prev.st_uid != w->attr.st_uid 4705 || prev.st_uid != w->attr.st_uid
2370 || w->prev.st_gid != w->attr.st_gid 4706 || prev.st_gid != w->attr.st_gid
2371 || w->prev.st_rdev != w->attr.st_rdev 4707 || prev.st_rdev != w->attr.st_rdev
2372 || w->prev.st_size != w->attr.st_size 4708 || prev.st_size != w->attr.st_size
2373 || w->prev.st_atime != w->attr.st_atime 4709 || prev.st_atime != w->attr.st_atime
2374 || w->prev.st_mtime != w->attr.st_mtime 4710 || prev.st_mtime != w->attr.st_mtime
2375 || w->prev.st_ctime != w->attr.st_ctime 4711 || prev.st_ctime != w->attr.st_ctime
2376 ) { 4712 ) {
4713 /* we only update w->prev on actual differences */
4714 /* in case we test more often than invoke the callback, */
4715 /* to ensure that prev is always different to attr */
4716 w->prev = prev;
4717
2377 #if EV_USE_INOTIFY 4718 #if EV_USE_INOTIFY
4719 if (fs_fd >= 0)
4720 {
2378 infy_del (EV_A_ w); 4721 infy_del (EV_A_ w);
2379 infy_add (EV_A_ w); 4722 infy_add (EV_A_ w);
2380 ev_stat_stat (EV_A_ w); /* avoid race... */ 4723 ev_stat_stat (EV_A_ w); /* avoid race... */
4724 }
2381 #endif 4725 #endif
2382 4726
2383 ev_feed_event (EV_A_ w, EV_STAT); 4727 ev_feed_event (EV_A_ w, EV_STAT);
2384 } 4728 }
2385} 4729}
2386 4730
2387void 4731void
2388ev_stat_start (EV_P_ ev_stat *w) 4732ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2389{ 4733{
2390 if (expect_false (ev_is_active (w))) 4734 if (ecb_expect_false (ev_is_active (w)))
2391 return; 4735 return;
2392 4736
2393 /* since we use memcmp, we need to clear any padding data etc. */
2394 memset (&w->prev, 0, sizeof (ev_statdata));
2395 memset (&w->attr, 0, sizeof (ev_statdata));
2396
2397 ev_stat_stat (EV_A_ w); 4737 ev_stat_stat (EV_A_ w);
2398 4738
4739 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2399 if (w->interval < MIN_STAT_INTERVAL) 4740 w->interval = MIN_STAT_INTERVAL;
2400 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2401 4741
2402 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4742 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2403 ev_set_priority (&w->timer, ev_priority (w)); 4743 ev_set_priority (&w->timer, ev_priority (w));
2404 4744
2405#if EV_USE_INOTIFY 4745#if EV_USE_INOTIFY
2406 infy_init (EV_A); 4746 infy_init (EV_A);
2407 4747
2408 if (fs_fd >= 0) 4748 if (fs_fd >= 0)
2409 infy_add (EV_A_ w); 4749 infy_add (EV_A_ w);
2410 else 4750 else
2411#endif 4751#endif
4752 {
2412 ev_timer_start (EV_A_ &w->timer); 4753 ev_timer_again (EV_A_ &w->timer);
4754 ev_unref (EV_A);
4755 }
2413 4756
2414 ev_start (EV_A_ (W)w, 1); 4757 ev_start (EV_A_ (W)w, 1);
2415}
2416 4758
4759 EV_FREQUENT_CHECK;
4760}
4761
2417void 4762void
2418ev_stat_stop (EV_P_ ev_stat *w) 4763ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2419{ 4764{
2420 clear_pending (EV_A_ (W)w); 4765 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 4766 if (ecb_expect_false (!ev_is_active (w)))
2422 return; 4767 return;
4768
4769 EV_FREQUENT_CHECK;
2423 4770
2424#if EV_USE_INOTIFY 4771#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w); 4772 infy_del (EV_A_ w);
2426#endif 4773#endif
4774
4775 if (ev_is_active (&w->timer))
4776 {
4777 ev_ref (EV_A);
2427 ev_timer_stop (EV_A_ &w->timer); 4778 ev_timer_stop (EV_A_ &w->timer);
4779 }
2428 4780
2429 ev_stop (EV_A_ (W)w); 4781 ev_stop (EV_A_ (W)w);
4782
4783 EV_FREQUENT_CHECK;
2430} 4784}
2431#endif 4785#endif
2432 4786
2433#if EV_IDLE_ENABLE 4787#if EV_IDLE_ENABLE
2434void 4788void
2435ev_idle_start (EV_P_ ev_idle *w) 4789ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2436{ 4790{
2437 if (expect_false (ev_is_active (w))) 4791 if (ecb_expect_false (ev_is_active (w)))
2438 return; 4792 return;
2439 4793
2440 pri_adjust (EV_A_ (W)w); 4794 pri_adjust (EV_A_ (W)w);
4795
4796 EV_FREQUENT_CHECK;
2441 4797
2442 { 4798 {
2443 int active = ++idlecnt [ABSPRI (w)]; 4799 int active = ++idlecnt [ABSPRI (w)];
2444 4800
2445 ++idleall; 4801 ++idleall;
2446 ev_start (EV_A_ (W)w, active); 4802 ev_start (EV_A_ (W)w, active);
2447 4803
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4804 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2449 idles [ABSPRI (w)][active - 1] = w; 4805 idles [ABSPRI (w)][active - 1] = w;
2450 } 4806 }
2451}
2452 4807
4808 EV_FREQUENT_CHECK;
4809}
4810
2453void 4811void
2454ev_idle_stop (EV_P_ ev_idle *w) 4812ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2455{ 4813{
2456 clear_pending (EV_A_ (W)w); 4814 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 4815 if (ecb_expect_false (!ev_is_active (w)))
2458 return; 4816 return;
4817
4818 EV_FREQUENT_CHECK;
2459 4819
2460 { 4820 {
2461 int active = ev_active (w); 4821 int active = ev_active (w);
2462 4822
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4823 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4824 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465 4825
2466 ev_stop (EV_A_ (W)w); 4826 ev_stop (EV_A_ (W)w);
2467 --idleall; 4827 --idleall;
2468 } 4828 }
2469}
2470#endif
2471 4829
4830 EV_FREQUENT_CHECK;
4831}
4832#endif
4833
4834#if EV_PREPARE_ENABLE
2472void 4835void
2473ev_prepare_start (EV_P_ ev_prepare *w) 4836ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2474{ 4837{
2475 if (expect_false (ev_is_active (w))) 4838 if (ecb_expect_false (ev_is_active (w)))
2476 return; 4839 return;
2477 4840
4841 EV_FREQUENT_CHECK;
4842
2478 ev_start (EV_A_ (W)w, ++preparecnt); 4843 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4844 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2480 prepares [preparecnt - 1] = w; 4845 prepares [preparecnt - 1] = w;
2481}
2482 4846
4847 EV_FREQUENT_CHECK;
4848}
4849
2483void 4850void
2484ev_prepare_stop (EV_P_ ev_prepare *w) 4851ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2485{ 4852{
2486 clear_pending (EV_A_ (W)w); 4853 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w))) 4854 if (ecb_expect_false (!ev_is_active (w)))
2488 return; 4855 return;
4856
4857 EV_FREQUENT_CHECK;
2489 4858
2490 { 4859 {
2491 int active = ev_active (w); 4860 int active = ev_active (w);
2492 4861
2493 prepares [active - 1] = prepares [--preparecnt]; 4862 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active; 4863 ev_active (prepares [active - 1]) = active;
2495 } 4864 }
2496 4865
2497 ev_stop (EV_A_ (W)w); 4866 ev_stop (EV_A_ (W)w);
2498}
2499 4867
4868 EV_FREQUENT_CHECK;
4869}
4870#endif
4871
4872#if EV_CHECK_ENABLE
2500void 4873void
2501ev_check_start (EV_P_ ev_check *w) 4874ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2502{ 4875{
2503 if (expect_false (ev_is_active (w))) 4876 if (ecb_expect_false (ev_is_active (w)))
2504 return; 4877 return;
2505 4878
4879 EV_FREQUENT_CHECK;
4880
2506 ev_start (EV_A_ (W)w, ++checkcnt); 4881 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4882 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2508 checks [checkcnt - 1] = w; 4883 checks [checkcnt - 1] = w;
2509}
2510 4884
4885 EV_FREQUENT_CHECK;
4886}
4887
2511void 4888void
2512ev_check_stop (EV_P_ ev_check *w) 4889ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2513{ 4890{
2514 clear_pending (EV_A_ (W)w); 4891 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w))) 4892 if (ecb_expect_false (!ev_is_active (w)))
2516 return; 4893 return;
4894
4895 EV_FREQUENT_CHECK;
2517 4896
2518 { 4897 {
2519 int active = ev_active (w); 4898 int active = ev_active (w);
2520 4899
2521 checks [active - 1] = checks [--checkcnt]; 4900 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active; 4901 ev_active (checks [active - 1]) = active;
2523 } 4902 }
2524 4903
2525 ev_stop (EV_A_ (W)w); 4904 ev_stop (EV_A_ (W)w);
4905
4906 EV_FREQUENT_CHECK;
2526} 4907}
4908#endif
2527 4909
2528#if EV_EMBED_ENABLE 4910#if EV_EMBED_ENABLE
2529void noinline 4911ecb_noinline
4912void
2530ev_embed_sweep (EV_P_ ev_embed *w) 4913ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2531{ 4914{
2532 ev_loop (w->other, EVLOOP_NONBLOCK); 4915 ev_run (w->other, EVRUN_NOWAIT);
2533} 4916}
2534 4917
2535static void 4918static void
2536embed_io_cb (EV_P_ ev_io *io, int revents) 4919embed_io_cb (EV_P_ ev_io *io, int revents)
2537{ 4920{
2538 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4921 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2539 4922
2540 if (ev_cb (w)) 4923 if (ev_cb (w))
2541 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4924 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2542 else 4925 else
2543 ev_loop (w->other, EVLOOP_NONBLOCK); 4926 ev_run (w->other, EVRUN_NOWAIT);
2544} 4927}
2545 4928
2546static void 4929static void
2547embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4930embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2548{ 4931{
2549 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4932 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2550 4933
2551 { 4934 {
2552 struct ev_loop *loop = w->other; 4935 EV_P = w->other;
2553 4936
2554 while (fdchangecnt) 4937 while (fdchangecnt)
2555 { 4938 {
2556 fd_reify (EV_A); 4939 fd_reify (EV_A);
2557 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4940 ev_run (EV_A_ EVRUN_NOWAIT);
2558 } 4941 }
2559 } 4942 }
4943}
4944
4945static void
4946embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4947{
4948 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4949
4950 ev_embed_stop (EV_A_ w);
4951
4952 {
4953 EV_P = w->other;
4954
4955 ev_loop_fork (EV_A);
4956 ev_run (EV_A_ EVRUN_NOWAIT);
4957 }
4958
4959 ev_embed_start (EV_A_ w);
2560} 4960}
2561 4961
2562#if 0 4962#if 0
2563static void 4963static void
2564embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4964embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2566 ev_idle_stop (EV_A_ idle); 4966 ev_idle_stop (EV_A_ idle);
2567} 4967}
2568#endif 4968#endif
2569 4969
2570void 4970void
2571ev_embed_start (EV_P_ ev_embed *w) 4971ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2572{ 4972{
2573 if (expect_false (ev_is_active (w))) 4973 if (ecb_expect_false (ev_is_active (w)))
2574 return; 4974 return;
2575 4975
2576 { 4976 {
2577 struct ev_loop *loop = w->other; 4977 EV_P = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4978 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4979 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 } 4980 }
4981
4982 EV_FREQUENT_CHECK;
2581 4983
2582 ev_set_priority (&w->io, ev_priority (w)); 4984 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io); 4985 ev_io_start (EV_A_ &w->io);
2584 4986
2585 ev_prepare_init (&w->prepare, embed_prepare_cb); 4987 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI); 4988 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare); 4989 ev_prepare_start (EV_A_ &w->prepare);
2588 4990
4991 ev_fork_init (&w->fork, embed_fork_cb);
4992 ev_fork_start (EV_A_ &w->fork);
4993
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4994 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590 4995
2591 ev_start (EV_A_ (W)w, 1); 4996 ev_start (EV_A_ (W)w, 1);
2592}
2593 4997
4998 EV_FREQUENT_CHECK;
4999}
5000
2594void 5001void
2595ev_embed_stop (EV_P_ ev_embed *w) 5002ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2596{ 5003{
2597 clear_pending (EV_A_ (W)w); 5004 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w))) 5005 if (ecb_expect_false (!ev_is_active (w)))
2599 return; 5006 return;
2600 5007
5008 EV_FREQUENT_CHECK;
5009
2601 ev_io_stop (EV_A_ &w->io); 5010 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare); 5011 ev_prepare_stop (EV_A_ &w->prepare);
5012 ev_fork_stop (EV_A_ &w->fork);
2603 5013
2604 ev_stop (EV_A_ (W)w); 5014 ev_stop (EV_A_ (W)w);
5015
5016 EV_FREQUENT_CHECK;
2605} 5017}
2606#endif 5018#endif
2607 5019
2608#if EV_FORK_ENABLE 5020#if EV_FORK_ENABLE
2609void 5021void
2610ev_fork_start (EV_P_ ev_fork *w) 5022ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2611{ 5023{
2612 if (expect_false (ev_is_active (w))) 5024 if (ecb_expect_false (ev_is_active (w)))
2613 return; 5025 return;
2614 5026
5027 EV_FREQUENT_CHECK;
5028
2615 ev_start (EV_A_ (W)w, ++forkcnt); 5029 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5030 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2617 forks [forkcnt - 1] = w; 5031 forks [forkcnt - 1] = w;
2618}
2619 5032
5033 EV_FREQUENT_CHECK;
5034}
5035
2620void 5036void
2621ev_fork_stop (EV_P_ ev_fork *w) 5037ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2622{ 5038{
2623 clear_pending (EV_A_ (W)w); 5039 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w))) 5040 if (ecb_expect_false (!ev_is_active (w)))
2625 return; 5041 return;
5042
5043 EV_FREQUENT_CHECK;
2626 5044
2627 { 5045 {
2628 int active = ev_active (w); 5046 int active = ev_active (w);
2629 5047
2630 forks [active - 1] = forks [--forkcnt]; 5048 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active; 5049 ev_active (forks [active - 1]) = active;
2632 } 5050 }
2633 5051
2634 ev_stop (EV_A_ (W)w); 5052 ev_stop (EV_A_ (W)w);
5053
5054 EV_FREQUENT_CHECK;
5055}
5056#endif
5057
5058#if EV_CLEANUP_ENABLE
5059void
5060ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5061{
5062 if (ecb_expect_false (ev_is_active (w)))
5063 return;
5064
5065 EV_FREQUENT_CHECK;
5066
5067 ev_start (EV_A_ (W)w, ++cleanupcnt);
5068 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5069 cleanups [cleanupcnt - 1] = w;
5070
5071 /* cleanup watchers should never keep a refcount on the loop */
5072 ev_unref (EV_A);
5073 EV_FREQUENT_CHECK;
5074}
5075
5076void
5077ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5078{
5079 clear_pending (EV_A_ (W)w);
5080 if (ecb_expect_false (!ev_is_active (w)))
5081 return;
5082
5083 EV_FREQUENT_CHECK;
5084 ev_ref (EV_A);
5085
5086 {
5087 int active = ev_active (w);
5088
5089 cleanups [active - 1] = cleanups [--cleanupcnt];
5090 ev_active (cleanups [active - 1]) = active;
5091 }
5092
5093 ev_stop (EV_A_ (W)w);
5094
5095 EV_FREQUENT_CHECK;
2635} 5096}
2636#endif 5097#endif
2637 5098
2638#if EV_ASYNC_ENABLE 5099#if EV_ASYNC_ENABLE
2639void 5100void
2640ev_async_start (EV_P_ ev_async *w) 5101ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2641{ 5102{
2642 if (expect_false (ev_is_active (w))) 5103 if (ecb_expect_false (ev_is_active (w)))
2643 return; 5104 return;
2644 5105
5106 w->sent = 0;
5107
2645 evpipe_init (EV_A); 5108 evpipe_init (EV_A);
2646 5109
5110 EV_FREQUENT_CHECK;
5111
2647 ev_start (EV_A_ (W)w, ++asynccnt); 5112 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5113 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2649 asyncs [asynccnt - 1] = w; 5114 asyncs [asynccnt - 1] = w;
2650}
2651 5115
5116 EV_FREQUENT_CHECK;
5117}
5118
2652void 5119void
2653ev_async_stop (EV_P_ ev_async *w) 5120ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2654{ 5121{
2655 clear_pending (EV_A_ (W)w); 5122 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w))) 5123 if (ecb_expect_false (!ev_is_active (w)))
2657 return; 5124 return;
5125
5126 EV_FREQUENT_CHECK;
2658 5127
2659 { 5128 {
2660 int active = ev_active (w); 5129 int active = ev_active (w);
2661 5130
2662 asyncs [active - 1] = asyncs [--asynccnt]; 5131 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active; 5132 ev_active (asyncs [active - 1]) = active;
2664 } 5133 }
2665 5134
2666 ev_stop (EV_A_ (W)w); 5135 ev_stop (EV_A_ (W)w);
2667}
2668 5136
5137 EV_FREQUENT_CHECK;
5138}
5139
2669void 5140void
2670ev_async_send (EV_P_ ev_async *w) 5141ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2671{ 5142{
2672 w->sent = 1; 5143 w->sent = 1;
2673 evpipe_write (EV_A_ &gotasync); 5144 evpipe_write (EV_A_ &async_pending);
2674} 5145}
2675#endif 5146#endif
2676 5147
2677/*****************************************************************************/ 5148/*****************************************************************************/
2678 5149
2688once_cb (EV_P_ struct ev_once *once, int revents) 5159once_cb (EV_P_ struct ev_once *once, int revents)
2689{ 5160{
2690 void (*cb)(int revents, void *arg) = once->cb; 5161 void (*cb)(int revents, void *arg) = once->cb;
2691 void *arg = once->arg; 5162 void *arg = once->arg;
2692 5163
2693 ev_io_stop (EV_A_ &once->io); 5164 ev_io_stop (EV_A_ &once->io);
2694 ev_timer_stop (EV_A_ &once->to); 5165 ev_timer_stop (EV_A_ &once->to);
2695 ev_free (once); 5166 ev_free (once);
2696 5167
2697 cb (revents, arg); 5168 cb (revents, arg);
2698} 5169}
2699 5170
2700static void 5171static void
2701once_cb_io (EV_P_ ev_io *w, int revents) 5172once_cb_io (EV_P_ ev_io *w, int revents)
2702{ 5173{
2703 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5174 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5175
5176 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2704} 5177}
2705 5178
2706static void 5179static void
2707once_cb_to (EV_P_ ev_timer *w, int revents) 5180once_cb_to (EV_P_ ev_timer *w, int revents)
2708{ 5181{
2709 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5182 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2710}
2711 5183
5184 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5185}
5186
2712void 5187void
2713ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5188ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2714{ 5189{
2715 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5190 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2716
2717 if (expect_false (!once))
2718 {
2719 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2720 return;
2721 }
2722 5191
2723 once->cb = cb; 5192 once->cb = cb;
2724 once->arg = arg; 5193 once->arg = arg;
2725 5194
2726 ev_init (&once->io, once_cb_io); 5195 ev_init (&once->io, once_cb_io);
2736 ev_timer_set (&once->to, timeout, 0.); 5205 ev_timer_set (&once->to, timeout, 0.);
2737 ev_timer_start (EV_A_ &once->to); 5206 ev_timer_start (EV_A_ &once->to);
2738 } 5207 }
2739} 5208}
2740 5209
5210/*****************************************************************************/
5211
5212#if EV_WALK_ENABLE
5213ecb_cold
5214void
5215ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5216{
5217 int i, j;
5218 ev_watcher_list *wl, *wn;
5219
5220 if (types & (EV_IO | EV_EMBED))
5221 for (i = 0; i < anfdmax; ++i)
5222 for (wl = anfds [i].head; wl; )
5223 {
5224 wn = wl->next;
5225
5226#if EV_EMBED_ENABLE
5227 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5228 {
5229 if (types & EV_EMBED)
5230 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5231 }
5232 else
5233#endif
5234#if EV_USE_INOTIFY
5235 if (ev_cb ((ev_io *)wl) == infy_cb)
5236 ;
5237 else
5238#endif
5239 if ((ev_io *)wl != &pipe_w)
5240 if (types & EV_IO)
5241 cb (EV_A_ EV_IO, wl);
5242
5243 wl = wn;
5244 }
5245
5246 if (types & (EV_TIMER | EV_STAT))
5247 for (i = timercnt + HEAP0; i-- > HEAP0; )
5248#if EV_STAT_ENABLE
5249 /*TODO: timer is not always active*/
5250 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5251 {
5252 if (types & EV_STAT)
5253 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5254 }
5255 else
5256#endif
5257 if (types & EV_TIMER)
5258 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5259
5260#if EV_PERIODIC_ENABLE
5261 if (types & EV_PERIODIC)
5262 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5263 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5264#endif
5265
5266#if EV_IDLE_ENABLE
5267 if (types & EV_IDLE)
5268 for (j = NUMPRI; j--; )
5269 for (i = idlecnt [j]; i--; )
5270 cb (EV_A_ EV_IDLE, idles [j][i]);
5271#endif
5272
5273#if EV_FORK_ENABLE
5274 if (types & EV_FORK)
5275 for (i = forkcnt; i--; )
5276 if (ev_cb (forks [i]) != embed_fork_cb)
5277 cb (EV_A_ EV_FORK, forks [i]);
5278#endif
5279
5280#if EV_ASYNC_ENABLE
5281 if (types & EV_ASYNC)
5282 for (i = asynccnt; i--; )
5283 cb (EV_A_ EV_ASYNC, asyncs [i]);
5284#endif
5285
5286#if EV_PREPARE_ENABLE
5287 if (types & EV_PREPARE)
5288 for (i = preparecnt; i--; )
5289# if EV_EMBED_ENABLE
5290 if (ev_cb (prepares [i]) != embed_prepare_cb)
5291# endif
5292 cb (EV_A_ EV_PREPARE, prepares [i]);
5293#endif
5294
5295#if EV_CHECK_ENABLE
5296 if (types & EV_CHECK)
5297 for (i = checkcnt; i--; )
5298 cb (EV_A_ EV_CHECK, checks [i]);
5299#endif
5300
5301#if EV_SIGNAL_ENABLE
5302 if (types & EV_SIGNAL)
5303 for (i = 0; i < EV_NSIG - 1; ++i)
5304 for (wl = signals [i].head; wl; )
5305 {
5306 wn = wl->next;
5307 cb (EV_A_ EV_SIGNAL, wl);
5308 wl = wn;
5309 }
5310#endif
5311
5312#if EV_CHILD_ENABLE
5313 if (types & EV_CHILD)
5314 for (i = (EV_PID_HASHSIZE); i--; )
5315 for (wl = childs [i]; wl; )
5316 {
5317 wn = wl->next;
5318 cb (EV_A_ EV_CHILD, wl);
5319 wl = wn;
5320 }
5321#endif
5322/* EV_STAT 0x00001000 /* stat data changed */
5323/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5324}
5325#endif
5326
2741#if EV_MULTIPLICITY 5327#if EV_MULTIPLICITY
2742 #include "ev_wrap.h" 5328 #include "ev_wrap.h"
2743#endif 5329#endif
2744 5330
2745#ifdef __cplusplus
2746}
2747#endif
2748

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines