ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.222 by root, Sun Apr 6 12:45:58 2008 UTC vs.
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC

300# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
302#else 302#else
303# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
304# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline 306# define inline
307# endif 307# endif
308#endif 308#endif
309 309
310#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
325 325
326typedef ev_watcher *W; 326typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
329 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
330#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 337#endif
360 perror (msg); 363 perror (msg);
361 abort (); 364 abort ();
362 } 365 }
363} 366}
364 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
365static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
366 384
367void 385void
368ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
369{ 387{
370 alloc = cb; 388 alloc = cb;
371} 389}
372 390
373inline_speed void * 391inline_speed void *
374ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
375{ 393{
376 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
377 395
378 if (!ptr && size) 396 if (!ptr && size)
379 { 397 {
380 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
381 abort (); 399 abort ();
502 } 520 }
503} 521}
504 522
505/*****************************************************************************/ 523/*****************************************************************************/
506 524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
507int inline_size 527int inline_size
508array_nextsize (int elem, int cur, int cnt) 528array_nextsize (int elem, int cur, int cnt)
509{ 529{
510 int ncur = cur + 1; 530 int ncur = cur + 1;
511 531
512 do 532 do
513 ncur <<= 1; 533 ncur <<= 1;
514 while (cnt > ncur); 534 while (cnt > ncur);
515 535
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
517 if (elem * ncur > 4096) 537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
518 { 538 {
519 ncur *= elem; 539 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
521 ncur = ncur - sizeof (void *) * 4; 541 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem; 542 ncur /= elem;
523 } 543 }
524 544
525 return ncur; 545 return ncur;
739 } 759 }
740} 760}
741 761
742/*****************************************************************************/ 762/*****************************************************************************/
743 763
764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP
773
774#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */
776
777/* towards the root */
744void inline_speed 778void inline_speed
745upheap (WT *heap, int k) 779upheap (WT *heap, int k)
746{ 780{
747 WT w = heap [k]; 781 WT w = heap [k];
748 782
749 while (k) 783 for (;;)
750 { 784 {
751 int p = (k - 1) >> 1; 785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
752 786
753 if (heap [p]->at <= w->at) 787 if (p == k || heap [p]->at <= w->at)
754 break; 788 break;
755 789
756 heap [k] = heap [p]; 790 heap [k] = heap [p];
757 ((W)heap [k])->active = k + 1; 791 ev_active (heap [k]) = k;
758 k = p; 792 k = p;
759 } 793 }
760 794
761 heap [k] = w; 795 heap [k] = w;
762 ((W)heap [k])->active = k + 1; 796 ev_active (heap [k]) = k;
763} 797}
764 798
799/* away from the root */
765void inline_speed 800void inline_speed
766downheap (WT *heap, int N, int k) 801downheap (WT *heap, int N, int k)
767{ 802{
768 WT w = heap [k]; 803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
769 805
770 for (;;) 806 for (;;)
771 { 807 {
808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
811
812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
814 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at);
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
820 }
821 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
831
832 if (w->at <= minat)
833 break;
834
835 ev_active (*minpos) = k;
836 heap [k] = *minpos;
837
838 k = minpos - heap;
839 }
840
841 heap [k] = w;
842 ev_active (heap [k]) = k;
843}
844
845#else // 4HEAP
846
847#define HEAP0 1
848
849/* towards the root */
850void inline_speed
851upheap (WT *heap, int k)
852{
853 WT w = heap [k];
854
855 for (;;)
856 {
857 int p = k >> 1;
858
859 /* maybe we could use a dummy element at heap [0]? */
860 if (!p || heap [p]->at <= w->at)
861 break;
862
863 heap [k] = heap [p];
864 ev_active (heap [k]) = k;
865 k = p;
866 }
867
868 heap [k] = w;
869 ev_active (heap [k]) = k;
870}
871
872/* away from the root */
873void inline_speed
874downheap (WT *heap, int N, int k)
875{
876 WT w = heap [k];
877
878 for (;;)
879 {
772 int c = (k << 1) + 1; 880 int c = k << 1;
773 881
774 if (c >= N) 882 if (c > N)
775 break; 883 break;
776 884
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0; 886 ? 1 : 0;
779 887
780 if (w->at <= heap [c]->at) 888 if (w->at <= heap [c]->at)
781 break; 889 break;
782 890
783 heap [k] = heap [c]; 891 heap [k] = heap [c];
784 ((W)heap [k])->active = k + 1; 892 ((W)heap [k])->active = k;
785 893
786 k = c; 894 k = c;
787 } 895 }
788 896
789 heap [k] = w; 897 heap [k] = w;
790 ((W)heap [k])->active = k + 1; 898 ev_active (heap [k]) = k;
791} 899}
900#endif
792 901
793void inline_size 902void inline_size
794adjustheap (WT *heap, int N, int k) 903adjustheap (WT *heap, int N, int k)
795{ 904{
796 upheap (heap, k); 905 upheap (heap, k);
891pipecb (EV_P_ ev_io *iow, int revents) 1000pipecb (EV_P_ ev_io *iow, int revents)
892{ 1001{
893#if EV_USE_EVENTFD 1002#if EV_USE_EVENTFD
894 if (evfd >= 0) 1003 if (evfd >= 0)
895 { 1004 {
896 uint64_t counter = 1; 1005 uint64_t counter;
897 read (evfd, &counter, sizeof (uint64_t)); 1006 read (evfd, &counter, sizeof (uint64_t));
898 } 1007 }
899 else 1008 else
900#endif 1009#endif
901 { 1010 {
1170 if (!(flags & EVFLAG_NOENV) 1279 if (!(flags & EVFLAG_NOENV)
1171 && !enable_secure () 1280 && !enable_secure ()
1172 && getenv ("LIBEV_FLAGS")) 1281 && getenv ("LIBEV_FLAGS"))
1173 flags = atoi (getenv ("LIBEV_FLAGS")); 1282 flags = atoi (getenv ("LIBEV_FLAGS"));
1174 1283
1175 if (!(flags & 0x0000ffffUL)) 1284 if (!(flags & 0x0000ffffU))
1176 flags |= ev_recommended_backends (); 1285 flags |= ev_recommended_backends ();
1177 1286
1178#if EV_USE_PORT 1287#if EV_USE_PORT
1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1288 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1180#endif 1289#endif
1268#endif 1377#endif
1269 1378
1270 backend = 0; 1379 backend = 0;
1271} 1380}
1272 1381
1382#if EV_USE_INOTIFY
1273void inline_size infy_fork (EV_P); 1383void inline_size infy_fork (EV_P);
1384#endif
1274 1385
1275void inline_size 1386void inline_size
1276loop_fork (EV_P) 1387loop_fork (EV_P)
1277{ 1388{
1278#if EV_USE_PORT 1389#if EV_USE_PORT
1345void 1456void
1346ev_loop_fork (EV_P) 1457ev_loop_fork (EV_P)
1347{ 1458{
1348 postfork = 1; /* must be in line with ev_default_fork */ 1459 postfork = 1; /* must be in line with ev_default_fork */
1349} 1460}
1350
1351#endif 1461#endif
1352 1462
1353#if EV_MULTIPLICITY 1463#if EV_MULTIPLICITY
1354struct ev_loop * 1464struct ev_loop *
1355ev_default_loop_init (unsigned int flags) 1465ev_default_loop_init (unsigned int flags)
1436 EV_CB_INVOKE (p->w, p->events); 1546 EV_CB_INVOKE (p->w, p->events);
1437 } 1547 }
1438 } 1548 }
1439} 1549}
1440 1550
1441void inline_size
1442timers_reify (EV_P)
1443{
1444 while (timercnt && ((WT)timers [0])->at <= mn_now)
1445 {
1446 ev_timer *w = (ev_timer *)timers [0];
1447
1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1449
1450 /* first reschedule or stop timer */
1451 if (w->repeat)
1452 {
1453 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1454
1455 ((WT)w)->at += w->repeat;
1456 if (((WT)w)->at < mn_now)
1457 ((WT)w)->at = mn_now;
1458
1459 downheap (timers, timercnt, 0);
1460 }
1461 else
1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1463
1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1465 }
1466}
1467
1468#if EV_PERIODIC_ENABLE
1469void inline_size
1470periodics_reify (EV_P)
1471{
1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1473 {
1474 ev_periodic *w = (ev_periodic *)periodics [0];
1475
1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1477
1478 /* first reschedule or stop timer */
1479 if (w->reschedule_cb)
1480 {
1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else if (w->interval)
1486 {
1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1490 downheap (periodics, periodiccnt, 0);
1491 }
1492 else
1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1494
1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1496 }
1497}
1498
1499static void noinline
1500periodics_reschedule (EV_P)
1501{
1502 int i;
1503
1504 /* adjust periodics after time jump */
1505 for (i = 0; i < periodiccnt; ++i)
1506 {
1507 ev_periodic *w = (ev_periodic *)periodics [i];
1508
1509 if (w->reschedule_cb)
1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1511 else if (w->interval)
1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 }
1514
1515 /* now rebuild the heap */
1516 for (i = periodiccnt >> 1; i--; )
1517 downheap (periodics, periodiccnt, i);
1518}
1519#endif
1520
1521#if EV_IDLE_ENABLE 1551#if EV_IDLE_ENABLE
1522void inline_size 1552void inline_size
1523idle_reify (EV_P) 1553idle_reify (EV_P)
1524{ 1554{
1525 if (expect_false (idleall)) 1555 if (expect_false (idleall))
1536 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1566 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1537 break; 1567 break;
1538 } 1568 }
1539 } 1569 }
1540 } 1570 }
1571}
1572#endif
1573
1574void inline_size
1575timers_reify (EV_P)
1576{
1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1578 {
1579 ev_timer *w = (ev_timer *)timers [HEAP0];
1580
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1582
1583 /* first reschedule or stop timer */
1584 if (w->repeat)
1585 {
1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1587
1588 ev_at (w) += w->repeat;
1589 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now;
1591
1592 downheap (timers, timercnt, HEAP0);
1593 }
1594 else
1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1596
1597 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1598 }
1599}
1600
1601#if EV_PERIODIC_ENABLE
1602void inline_size
1603periodics_reify (EV_P)
1604{
1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1606 {
1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1608
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1610
1611 /* first reschedule or stop timer */
1612 if (w->reschedule_cb)
1613 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1616 downheap (periodics, periodiccnt, 1);
1617 }
1618 else if (w->interval)
1619 {
1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1623 downheap (periodics, periodiccnt, HEAP0);
1624 }
1625 else
1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1627
1628 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1629 }
1630}
1631
1632static void noinline
1633periodics_reschedule (EV_P)
1634{
1635 int i;
1636
1637 /* adjust periodics after time jump */
1638 for (i = 1; i <= periodiccnt; ++i)
1639 {
1640 ev_periodic *w = (ev_periodic *)periodics [i];
1641
1642 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1644 else if (w->interval)
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 }
1647
1648 /* now rebuild the heap */
1649 for (i = periodiccnt >> 1; --i; )
1650 downheap (periodics, periodiccnt, i + HEAP0);
1541} 1651}
1542#endif 1652#endif
1543 1653
1544void inline_speed 1654void inline_speed
1545time_update (EV_P_ ev_tstamp max_block) 1655time_update (EV_P_ ev_tstamp max_block)
1574 */ 1684 */
1575 for (i = 4; --i; ) 1685 for (i = 4; --i; )
1576 { 1686 {
1577 rtmn_diff = ev_rt_now - mn_now; 1687 rtmn_diff = ev_rt_now - mn_now;
1578 1688
1579 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1689 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1580 return; /* all is well */ 1690 return; /* all is well */
1581 1691
1582 ev_rt_now = ev_time (); 1692 ev_rt_now = ev_time ();
1583 mn_now = get_clock (); 1693 mn_now = get_clock ();
1584 now_floor = mn_now; 1694 now_floor = mn_now;
1599 { 1709 {
1600#if EV_PERIODIC_ENABLE 1710#if EV_PERIODIC_ENABLE
1601 periodics_reschedule (EV_A); 1711 periodics_reschedule (EV_A);
1602#endif 1712#endif
1603 /* adjust timers. this is easy, as the offset is the same for all of them */ 1713 /* adjust timers. this is easy, as the offset is the same for all of them */
1604 for (i = 0; i < timercnt; ++i) 1714 for (i = 1; i <= timercnt; ++i)
1605 ((WT)timers [i])->at += ev_rt_now - mn_now; 1715 ev_at (timers [i]) += ev_rt_now - mn_now;
1606 } 1716 }
1607 1717
1608 mn_now = ev_rt_now; 1718 mn_now = ev_rt_now;
1609 } 1719 }
1610} 1720}
1680 1790
1681 waittime = MAX_BLOCKTIME; 1791 waittime = MAX_BLOCKTIME;
1682 1792
1683 if (timercnt) 1793 if (timercnt)
1684 { 1794 {
1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1796 if (waittime > to) waittime = to;
1687 } 1797 }
1688 1798
1689#if EV_PERIODIC_ENABLE 1799#if EV_PERIODIC_ENABLE
1690 if (periodiccnt) 1800 if (periodiccnt)
1691 { 1801 {
1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1693 if (waittime > to) waittime = to; 1803 if (waittime > to) waittime = to;
1694 } 1804 }
1695#endif 1805#endif
1696 1806
1697 if (expect_false (waittime < timeout_blocktime)) 1807 if (expect_false (waittime < timeout_blocktime))
1863ev_timer_start (EV_P_ ev_timer *w) 1973ev_timer_start (EV_P_ ev_timer *w)
1864{ 1974{
1865 if (expect_false (ev_is_active (w))) 1975 if (expect_false (ev_is_active (w)))
1866 return; 1976 return;
1867 1977
1868 ((WT)w)->at += mn_now; 1978 ev_at (w) += mn_now;
1869 1979
1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1871 1981
1872 ev_start (EV_A_ (W)w, ++timercnt); 1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1874 timers [timercnt - 1] = (WT)w; 1984 timers [ev_active (w)] = (WT)w;
1875 upheap (timers, timercnt - 1); 1985 upheap (timers, ev_active (w));
1876 1986
1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1878} 1988}
1879 1989
1880void noinline 1990void noinline
1881ev_timer_stop (EV_P_ ev_timer *w) 1991ev_timer_stop (EV_P_ ev_timer *w)
1882{ 1992{
1883 clear_pending (EV_A_ (W)w); 1993 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 1994 if (expect_false (!ev_is_active (w)))
1885 return; 1995 return;
1886 1996
1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1888
1889 { 1997 {
1890 int active = ((W)w)->active; 1998 int active = ev_active (w);
1891 1999
2000 assert (("internal timer heap corruption", timers [active] == (WT)w));
2001
1892 if (expect_true (--active < --timercnt)) 2002 if (expect_true (active < timercnt + HEAP0 - 1))
1893 { 2003 {
1894 timers [active] = timers [timercnt]; 2004 timers [active] = timers [timercnt + HEAP0 - 1];
1895 adjustheap (timers, timercnt, active); 2005 adjustheap (timers, timercnt, active);
1896 } 2006 }
2007
2008 --timercnt;
1897 } 2009 }
1898 2010
1899 ((WT)w)->at -= mn_now; 2011 ev_at (w) -= mn_now;
1900 2012
1901 ev_stop (EV_A_ (W)w); 2013 ev_stop (EV_A_ (W)w);
1902} 2014}
1903 2015
1904void noinline 2016void noinline
1906{ 2018{
1907 if (ev_is_active (w)) 2019 if (ev_is_active (w))
1908 { 2020 {
1909 if (w->repeat) 2021 if (w->repeat)
1910 { 2022 {
1911 ((WT)w)->at = mn_now + w->repeat; 2023 ev_at (w) = mn_now + w->repeat;
1912 adjustheap (timers, timercnt, ((W)w)->active - 1); 2024 adjustheap (timers, timercnt, ev_active (w));
1913 } 2025 }
1914 else 2026 else
1915 ev_timer_stop (EV_A_ w); 2027 ev_timer_stop (EV_A_ w);
1916 } 2028 }
1917 else if (w->repeat) 2029 else if (w->repeat)
1918 { 2030 {
1919 w->at = w->repeat; 2031 ev_at (w) = w->repeat;
1920 ev_timer_start (EV_A_ w); 2032 ev_timer_start (EV_A_ w);
1921 } 2033 }
1922} 2034}
1923 2035
1924#if EV_PERIODIC_ENABLE 2036#if EV_PERIODIC_ENABLE
1927{ 2039{
1928 if (expect_false (ev_is_active (w))) 2040 if (expect_false (ev_is_active (w)))
1929 return; 2041 return;
1930 2042
1931 if (w->reschedule_cb) 2043 if (w->reschedule_cb)
1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2044 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval) 2045 else if (w->interval)
1934 { 2046 {
1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2047 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1936 /* this formula differs from the one in periodic_reify because we do not always round up */ 2048 /* this formula differs from the one in periodic_reify because we do not always round up */
1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2049 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1938 } 2050 }
1939 else 2051 else
1940 ((WT)w)->at = w->offset; 2052 ev_at (w) = w->offset;
1941 2053
1942 ev_start (EV_A_ (W)w, ++periodiccnt); 2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1944 periodics [periodiccnt - 1] = (WT)w; 2056 periodics [ev_active (w)] = (WT)w;
1945 upheap (periodics, periodiccnt - 1); 2057 upheap (periodics, ev_active (w));
1946 2058
1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1948} 2060}
1949 2061
1950void noinline 2062void noinline
1951ev_periodic_stop (EV_P_ ev_periodic *w) 2063ev_periodic_stop (EV_P_ ev_periodic *w)
1952{ 2064{
1953 clear_pending (EV_A_ (W)w); 2065 clear_pending (EV_A_ (W)w);
1954 if (expect_false (!ev_is_active (w))) 2066 if (expect_false (!ev_is_active (w)))
1955 return; 2067 return;
1956 2068
1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1958
1959 { 2069 {
1960 int active = ((W)w)->active; 2070 int active = ev_active (w);
1961 2071
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2073
1962 if (expect_true (--active < --periodiccnt)) 2074 if (expect_true (active < periodiccnt + HEAP0 - 1))
1963 { 2075 {
1964 periodics [active] = periodics [periodiccnt]; 2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1965 adjustheap (periodics, periodiccnt, active); 2077 adjustheap (periodics, periodiccnt, active);
1966 } 2078 }
2079
2080 --periodiccnt;
1967 } 2081 }
1968 2082
1969 ev_stop (EV_A_ (W)w); 2083 ev_stop (EV_A_ (W)w);
1970} 2084}
1971 2085
2087 if (w->wd < 0) 2201 if (w->wd < 0)
2088 { 2202 {
2089 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2203 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2090 2204
2091 /* monitor some parent directory for speedup hints */ 2205 /* monitor some parent directory for speedup hints */
2206 /* note that exceeding the hardcoded limit is not a correctness issue, */
2207 /* but an efficiency issue only */
2092 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2208 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2093 { 2209 {
2094 char path [4096]; 2210 char path [4096];
2095 strcpy (path, w->path); 2211 strcpy (path, w->path);
2096 2212
2341 clear_pending (EV_A_ (W)w); 2457 clear_pending (EV_A_ (W)w);
2342 if (expect_false (!ev_is_active (w))) 2458 if (expect_false (!ev_is_active (w)))
2343 return; 2459 return;
2344 2460
2345 { 2461 {
2346 int active = ((W)w)->active; 2462 int active = ev_active (w);
2347 2463
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2464 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2349 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2465 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2350 2466
2351 ev_stop (EV_A_ (W)w); 2467 ev_stop (EV_A_ (W)w);
2352 --idleall; 2468 --idleall;
2353 } 2469 }
2354} 2470}
2371 clear_pending (EV_A_ (W)w); 2487 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w))) 2488 if (expect_false (!ev_is_active (w)))
2373 return; 2489 return;
2374 2490
2375 { 2491 {
2376 int active = ((W)w)->active; 2492 int active = ev_active (w);
2493
2377 prepares [active - 1] = prepares [--preparecnt]; 2494 prepares [active - 1] = prepares [--preparecnt];
2378 ((W)prepares [active - 1])->active = active; 2495 ev_active (prepares [active - 1]) = active;
2379 } 2496 }
2380 2497
2381 ev_stop (EV_A_ (W)w); 2498 ev_stop (EV_A_ (W)w);
2382} 2499}
2383 2500
2398 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
2400 return; 2517 return;
2401 2518
2402 { 2519 {
2403 int active = ((W)w)->active; 2520 int active = ev_active (w);
2521
2404 checks [active - 1] = checks [--checkcnt]; 2522 checks [active - 1] = checks [--checkcnt];
2405 ((W)checks [active - 1])->active = active; 2523 ev_active (checks [active - 1]) = active;
2406 } 2524 }
2407 2525
2408 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2409} 2527}
2410 2528
2506 clear_pending (EV_A_ (W)w); 2624 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 2625 if (expect_false (!ev_is_active (w)))
2508 return; 2626 return;
2509 2627
2510 { 2628 {
2511 int active = ((W)w)->active; 2629 int active = ev_active (w);
2630
2512 forks [active - 1] = forks [--forkcnt]; 2631 forks [active - 1] = forks [--forkcnt];
2513 ((W)forks [active - 1])->active = active; 2632 ev_active (forks [active - 1]) = active;
2514 } 2633 }
2515 2634
2516 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
2517} 2636}
2518#endif 2637#endif
2537 clear_pending (EV_A_ (W)w); 2656 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w))) 2657 if (expect_false (!ev_is_active (w)))
2539 return; 2658 return;
2540 2659
2541 { 2660 {
2542 int active = ((W)w)->active; 2661 int active = ev_active (w);
2662
2543 asyncs [active - 1] = asyncs [--asynccnt]; 2663 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active; 2664 ev_active (asyncs [active - 1]) = active;
2545 } 2665 }
2546 2666
2547 ev_stop (EV_A_ (W)w); 2667 ev_stop (EV_A_ (W)w);
2548} 2668}
2549 2669

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines