ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

422 W w; 422 W w;
423 int events; 423 int events;
424} ANPENDING; 424} ANPENDING;
425 425
426#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
427typedef struct 428typedef struct
428{ 429{
429 WL head; 430 WL head;
430} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
431#endif 451#endif
432 452
433#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
434 454
435 struct ev_loop 455 struct ev_loop
760} 780}
761 781
762/*****************************************************************************/ 782/*****************************************************************************/
763 783
764/* 784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
765 * at the moment we allow libev the luxury of two heaps, 791 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 793 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 794 * the difference is about 5% with 50000+ watchers.
769 */ 795 */
770#define USE_4HEAP !EV_MINIMAL 796#define EV_USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP 797#if EV_USE_4HEAP
773 798
774#define DHEAP 4 799#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
776 801
777/* towards the root */ 802/* towards the root */
778void inline_speed 803void inline_speed
779upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
780{ 805{
781 WT w = heap [k]; 806 ANHE he = heap [k];
782 807
783 for (;;) 808 for (;;)
784 { 809 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786 811
787 if (p == k || heap [p]->at <= w->at) 812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
788 break; 813 break;
789 814
790 heap [k] = heap [p]; 815 heap [k] = heap [p];
791 ev_active (heap [k]) = k; 816 ev_active (ANHE_w (heap [k])) = k;
792 k = p; 817 k = p;
793 } 818 }
794 819
820 ev_active (ANHE_w (he)) = k;
795 heap [k] = w; 821 heap [k] = he;
796 ev_active (heap [k]) = k;
797} 822}
798 823
799/* away from the root */ 824/* away from the root */
800void inline_speed 825void inline_speed
801downheap (WT *heap, int N, int k) 826downheap (ANHE *heap, int N, int k)
802{ 827{
803 WT w = heap [k]; 828 ANHE he = heap [k];
804 WT *E = heap + N + HEAP0; 829 ANHE *E = heap + N + HEAP0;
805 830
806 for (;;) 831 for (;;)
807 { 832 {
808 ev_tstamp minat; 833 ev_tstamp minat;
809 WT *minpos; 834 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
811 836
812 // find minimum child 837 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E)) 838 if (expect_true (pos + DHEAP - 1 < E))
814 { 839 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at); 840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
820 } 851 }
821 else 852 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
831
832 if (w->at <= minat)
833 break; 853 break;
834 854
855 if (ANHE_at (he) <= minat)
856 break;
857
835 ev_active (*minpos) = k; 858 ev_active (ANHE_w (*minpos)) = k;
836 heap [k] = *minpos; 859 heap [k] = *minpos;
837 860
838 k = minpos - heap; 861 k = minpos - heap;
839 } 862 }
840 863
864 ev_active (ANHE_w (he)) = k;
841 heap [k] = w; 865 heap [k] = he;
842 ev_active (heap [k]) = k;
843} 866}
844 867
845#else // 4HEAP 868#else // 4HEAP
846 869
847#define HEAP0 1 870#define HEAP0 1
848 871
849/* towards the root */ 872/* towards the root */
850void inline_speed 873void inline_speed
851upheap (WT *heap, int k) 874upheap (ANHE *heap, int k)
852{ 875{
853 WT w = heap [k]; 876 ANHE he = heap [k];
854 877
855 for (;;) 878 for (;;)
856 { 879 {
857 int p = k >> 1; 880 int p = k >> 1;
858 881
859 /* maybe we could use a dummy element at heap [0]? */ 882 /* maybe we could use a dummy element at heap [0]? */
860 if (!p || heap [p]->at <= w->at) 883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
861 break; 884 break;
862 885
863 heap [k] = heap [p]; 886 heap [k] = heap [p];
864 ev_active (heap [k]) = k; 887 ev_active (ANHE_w (heap [k])) = k;
865 k = p; 888 k = p;
866 } 889 }
867 890
868 heap [k] = w; 891 heap [k] = w;
869 ev_active (heap [k]) = k; 892 ev_active (ANHE_w (heap [k])) = k;
870} 893}
871 894
872/* away from the root */ 895/* away from the root */
873void inline_speed 896void inline_speed
874downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
875{ 898{
876 WT w = heap [k]; 899 ANHE he = heap [k];
877 900
878 for (;;) 901 for (;;)
879 { 902 {
880 int c = k << 1; 903 int c = k << 1;
881 904
882 if (c > N) 905 if (c > N)
883 break; 906 break;
884 907
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
886 ? 1 : 0; 909 ? 1 : 0;
887 910
888 if (w->at <= heap [c]->at) 911 if (w->at <= ANHE_at (heap [c]))
889 break; 912 break;
890 913
891 heap [k] = heap [c]; 914 heap [k] = heap [c];
892 ((W)heap [k])->active = k; 915 ev_active (ANHE_w (heap [k])) = k;
893 916
894 k = c; 917 k = c;
895 } 918 }
896 919
897 heap [k] = w; 920 heap [k] = he;
898 ev_active (heap [k]) = k; 921 ev_active (ANHE_w (he)) = k;
899} 922}
900#endif 923#endif
901 924
902void inline_size 925void inline_size
903adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
904{ 927{
905 upheap (heap, k); 928 upheap (heap, k);
906 downheap (heap, N, k); 929 downheap (heap, N, k);
907} 930}
908 931
1572#endif 1595#endif
1573 1596
1574void inline_size 1597void inline_size
1575timers_reify (EV_P) 1598timers_reify (EV_P)
1576{ 1599{
1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1578 { 1601 {
1579 ev_timer *w = (ev_timer *)timers [HEAP0]; 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1580 1603
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1582 1605
1583 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
1584 if (w->repeat) 1607 if (w->repeat)
1587 1610
1588 ev_at (w) += w->repeat; 1611 ev_at (w) += w->repeat;
1589 if (ev_at (w) < mn_now) 1612 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now; 1613 ev_at (w) = mn_now;
1591 1614
1615 ANHE_at_set (timers [HEAP0]);
1592 downheap (timers, timercnt, HEAP0); 1616 downheap (timers, timercnt, HEAP0);
1593 } 1617 }
1594 else 1618 else
1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1596 1620
1600 1624
1601#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1602void inline_size 1626void inline_size
1603periodics_reify (EV_P) 1627periodics_reify (EV_P)
1604{ 1628{
1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1606 { 1630 {
1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1608 1632
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1610 1634
1611 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
1612 if (w->reschedule_cb) 1636 if (w->reschedule_cb)
1613 { 1637 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1616 downheap (periodics, periodiccnt, 1); 1641 downheap (periodics, periodiccnt, HEAP0);
1617 } 1642 }
1618 else if (w->interval) 1643 else if (w->interval)
1619 { 1644 {
1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1623 downheap (periodics, periodiccnt, HEAP0); 1649 downheap (periodics, periodiccnt, HEAP0);
1624 } 1650 }
1625 else 1651 else
1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1627 1653
1633periodics_reschedule (EV_P) 1659periodics_reschedule (EV_P)
1634{ 1660{
1635 int i; 1661 int i;
1636 1662
1637 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
1638 for (i = 1; i <= periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1639 { 1665 {
1640 ev_periodic *w = (ev_periodic *)periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1641 1667
1642 if (w->reschedule_cb) 1668 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1644 else if (w->interval) 1670 else if (w->interval)
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 }
1647 1672
1648 /* now rebuild the heap */ 1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1649 for (i = periodiccnt >> 1; --i; ) 1677 for (i = periodiccnt >> 1; --i; )
1650 downheap (periodics, periodiccnt, i + HEAP0); 1678 downheap (periodics, periodiccnt, i + HEAP0);
1651} 1679}
1652#endif 1680#endif
1653 1681
1709 { 1737 {
1710#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1711 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1712#endif 1740#endif
1713 /* adjust timers. this is easy, as the offset is the same for all of them */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1714 for (i = 1; i <= timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1715 ev_at (timers [i]) += ev_rt_now - mn_now; 1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1716 } 1748 }
1717 1749
1718 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1719 } 1751 }
1720} 1752}
1790 1822
1791 waittime = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1792 1824
1793 if (timercnt) 1825 if (timercnt)
1794 { 1826 {
1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1796 if (waittime > to) waittime = to; 1828 if (waittime > to) waittime = to;
1797 } 1829 }
1798 1830
1799#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1800 if (periodiccnt) 1832 if (periodiccnt)
1801 { 1833 {
1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1803 if (waittime > to) waittime = to; 1835 if (waittime > to) waittime = to;
1804 } 1836 }
1805#endif 1837#endif
1806 1838
1807 if (expect_false (waittime < timeout_blocktime)) 1839 if (expect_false (waittime < timeout_blocktime))
1959{ 1991{
1960 clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1961 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1962 return; 1994 return;
1963 1995
1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1965 1997
1966 wlist_del (&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1967 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1968 2000
1969 fd_change (EV_A_ w->fd, 1); 2001 fd_change (EV_A_ w->fd, 1);
1978 ev_at (w) += mn_now; 2010 ev_at (w) += mn_now;
1979 2011
1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1981 2013
1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1984 timers [ev_active (w)] = (WT)w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]);
1985 upheap (timers, ev_active (w)); 2018 upheap (timers, ev_active (w));
1986 2019
1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1988} 2021}
1989 2022
1990void noinline 2023void noinline
1991ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1992{ 2025{
1995 return; 2028 return;
1996 2029
1997 { 2030 {
1998 int active = ev_active (w); 2031 int active = ev_active (w);
1999 2032
2000 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2001 2034
2002 if (expect_true (active < timercnt + HEAP0 - 1)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
2003 { 2036 {
2004 timers [active] = timers [timercnt + HEAP0 - 1]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
2005 adjustheap (timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
2019 if (ev_is_active (w)) 2052 if (ev_is_active (w))
2020 { 2053 {
2021 if (w->repeat) 2054 if (w->repeat)
2022 { 2055 {
2023 ev_at (w) = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
2024 adjustheap (timers, timercnt, ev_active (w)); 2058 adjustheap (timers, timercnt, ev_active (w));
2025 } 2059 }
2026 else 2060 else
2027 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
2028 } 2062 }
2050 } 2084 }
2051 else 2085 else
2052 ev_at (w) = w->offset; 2086 ev_at (w) = w->offset;
2053 2087
2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2056 periodics [ev_active (w)] = (WT)w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2057 upheap (periodics, ev_active (w)); 2091 upheap (periodics, ev_active (w));
2058 2092
2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2060} 2094}
2061 2095
2062void noinline 2096void noinline
2063ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
2064{ 2098{
2067 return; 2101 return;
2068 2102
2069 { 2103 {
2070 int active = ev_active (w); 2104 int active = ev_active (w);
2071 2105
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2073 2107
2074 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
2075 { 2109 {
2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2077 adjustheap (periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines