ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
422 W w; 430 W w;
423 int events; 431 int events;
424} ANPENDING; 432} ANPENDING;
425 433
426#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
427typedef struct 436typedef struct
428{ 437{
429 WL head; 438 WL head;
430} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
431#endif 458#endif
432 459
433#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
434 461
435 struct ev_loop 462 struct ev_loop
760} 787}
761 788
762/*****************************************************************************/ 789/*****************************************************************************/
763 790
764/* 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
765 * at the moment we allow libev the luxury of two heaps, 798 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 800 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 801 * the difference is about 5% with 50000+ watchers.
769 */ 802 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP 803#if EV_USE_4HEAP
773 804
774#define DHEAP 4 805#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
776 807
777/* towards the root */ 808/* towards the root */
778void inline_speed 809void inline_speed
779upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
780{ 811{
781 WT w = heap [k]; 812 ANHE he = heap [k];
782 813
783 for (;;) 814 for (;;)
784 { 815 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786 817
787 if (p == k || heap [p]->at <= w->at) 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
788 break; 819 break;
789 820
790 heap [k] = heap [p]; 821 heap [k] = heap [p];
791 ev_active (heap [k]) = k; 822 ev_active (ANHE_w (heap [k])) = k;
792 k = p; 823 k = p;
793 } 824 }
794 825
826 ev_active (ANHE_w (he)) = k;
795 heap [k] = w; 827 heap [k] = he;
796 ev_active (heap [k]) = k;
797} 828}
798 829
799/* away from the root */ 830/* away from the root */
800void inline_speed 831void inline_speed
801downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
802{ 833{
803 WT w = heap [k]; 834 ANHE he = heap [k];
804 WT *E = heap + N + HEAP0; 835 ANHE *E = heap + N + HEAP0;
805 836
806 for (;;) 837 for (;;)
807 { 838 {
808 ev_tstamp minat; 839 ev_tstamp minat;
809 WT *minpos; 840 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
811 842
812 // find minimum child 843 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E)) 844 if (expect_true (pos + DHEAP - 1 < E))
814 { 845 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at); 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
820 } 857 }
821 else 858 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
831
832 if (w->at <= minat)
833 break; 859 break;
834 860
861 if (ANHE_at (he) <= minat)
862 break;
863
835 ev_active (*minpos) = k; 864 ev_active (ANHE_w (*minpos)) = k;
836 heap [k] = *minpos; 865 heap [k] = *minpos;
837 866
838 k = minpos - heap; 867 k = minpos - heap;
839 } 868 }
840 869
870 ev_active (ANHE_w (he)) = k;
841 heap [k] = w; 871 heap [k] = he;
842 ev_active (heap [k]) = k;
843} 872}
844 873
845#else // 4HEAP 874#else // 4HEAP
846 875
847#define HEAP0 1 876#define HEAP0 1
848 877
849/* towards the root */ 878/* towards the root */
850void inline_speed 879void inline_speed
851upheap (WT *heap, int k) 880upheap (ANHE *heap, int k)
852{ 881{
853 WT w = heap [k]; 882 ANHE he = heap [k];
854 883
855 for (;;) 884 for (;;)
856 { 885 {
857 int p = k >> 1; 886 int p = k >> 1;
858 887
859 /* maybe we could use a dummy element at heap [0]? */ 888 /* maybe we could use a dummy element at heap [0]? */
860 if (!p || heap [p]->at <= w->at) 889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
861 break; 890 break;
862 891
863 heap [k] = heap [p]; 892 heap [k] = heap [p];
864 ev_active (heap [k]) = k; 893 ev_active (ANHE_w (heap [k])) = k;
865 k = p; 894 k = p;
866 } 895 }
867 896
868 heap [k] = w; 897 heap [k] = he;
869 ev_active (heap [k]) = k; 898 ev_active (ANHE_w (heap [k])) = k;
870} 899}
871 900
872/* away from the root */ 901/* away from the root */
873void inline_speed 902void inline_speed
874downheap (WT *heap, int N, int k) 903downheap (ANHE *heap, int N, int k)
875{ 904{
876 WT w = heap [k]; 905 ANHE he = heap [k];
877 906
878 for (;;) 907 for (;;)
879 { 908 {
880 int c = k << 1; 909 int c = k << 1;
881 910
882 if (c > N) 911 if (c > N)
883 break; 912 break;
884 913
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
886 ? 1 : 0; 915 ? 1 : 0;
887 916
888 if (w->at <= heap [c]->at) 917 if (ANHE_at (he) <= ANHE_at (heap [c]))
889 break; 918 break;
890 919
891 heap [k] = heap [c]; 920 heap [k] = heap [c];
892 ((W)heap [k])->active = k; 921 ev_active (ANHE_w (heap [k])) = k;
893 922
894 k = c; 923 k = c;
895 } 924 }
896 925
897 heap [k] = w; 926 heap [k] = he;
898 ev_active (heap [k]) = k; 927 ev_active (ANHE_w (he)) = k;
899} 928}
900#endif 929#endif
901 930
902void inline_size 931void inline_size
903adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
904{ 933{
905 upheap (heap, k); 934 upheap (heap, k);
906 downheap (heap, N, k); 935 downheap (heap, N, k);
907} 936}
908 937
1572#endif 1601#endif
1573 1602
1574void inline_size 1603void inline_size
1575timers_reify (EV_P) 1604timers_reify (EV_P)
1576{ 1605{
1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1578 { 1607 {
1579 ev_timer *w = (ev_timer *)timers [HEAP0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1580 1609
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1582 1611
1583 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1584 if (w->repeat) 1613 if (w->repeat)
1585 { 1614 {
1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1587
1588 ev_at (w) += w->repeat; 1615 ev_at (w) += w->repeat;
1589 if (ev_at (w) < mn_now) 1616 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now; 1617 ev_at (w) = mn_now;
1591 1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1592 downheap (timers, timercnt, HEAP0); 1622 downheap (timers, timercnt, HEAP0);
1593 } 1623 }
1594 else 1624 else
1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1596 1626
1600 1630
1601#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1602void inline_size 1632void inline_size
1603periodics_reify (EV_P) 1633periodics_reify (EV_P)
1604{ 1634{
1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1606 { 1636 {
1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1608 1638
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1610 1640
1611 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1612 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1613 { 1643 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1616 downheap (periodics, periodiccnt, 1); 1649 downheap (periodics, periodiccnt, HEAP0);
1617 } 1650 }
1618 else if (w->interval) 1651 else if (w->interval)
1619 { 1652 {
1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1623 downheap (periodics, periodiccnt, HEAP0); 1668 downheap (periodics, periodiccnt, HEAP0);
1624 } 1669 }
1625 else 1670 else
1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1627 1672
1633periodics_reschedule (EV_P) 1678periodics_reschedule (EV_P)
1634{ 1679{
1635 int i; 1680 int i;
1636 1681
1637 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1638 for (i = 1; i <= periodiccnt; ++i) 1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1639 { 1684 {
1640 ev_periodic *w = (ev_periodic *)periodics [i]; 1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1641 1686
1642 if (w->reschedule_cb) 1687 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1644 else if (w->interval) 1689 else if (w->interval)
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 }
1647 1691
1648 /* now rebuild the heap */ 1692 ANHE_at_set (periodics [i]);
1649 for (i = periodiccnt >> 1; --i; ) 1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1650 downheap (periodics, periodiccnt, i + HEAP0); 1698 upheap (periodics, i + HEAP0);
1651} 1699}
1652#endif 1700#endif
1653 1701
1654void inline_speed 1702void inline_speed
1655time_update (EV_P_ ev_tstamp max_block) 1703time_update (EV_P_ ev_tstamp max_block)
1709 { 1757 {
1710#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1711 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1712#endif 1760#endif
1713 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1714 for (i = 1; i <= timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1715 ev_at (timers [i]) += ev_rt_now - mn_now; 1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1716 } 1768 }
1717 1769
1718 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1719 } 1771 }
1720} 1772}
1790 1842
1791 waittime = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1792 1844
1793 if (timercnt) 1845 if (timercnt)
1794 { 1846 {
1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1796 if (waittime > to) waittime = to; 1848 if (waittime > to) waittime = to;
1797 } 1849 }
1798 1850
1799#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1800 if (periodiccnt) 1852 if (periodiccnt)
1801 { 1853 {
1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1803 if (waittime > to) waittime = to; 1855 if (waittime > to) waittime = to;
1804 } 1856 }
1805#endif 1857#endif
1806 1858
1807 if (expect_false (waittime < timeout_blocktime)) 1859 if (expect_false (waittime < timeout_blocktime))
1959{ 2011{
1960 clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1961 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1962 return; 2014 return;
1963 2015
1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1965 2017
1966 wlist_del (&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1967 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1968 2020
1969 fd_change (EV_A_ w->fd, 1); 2021 fd_change (EV_A_ w->fd, 1);
1978 ev_at (w) += mn_now; 2030 ev_at (w) += mn_now;
1979 2031
1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1981 2033
1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1984 timers [ev_active (w)] = (WT)w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]);
1985 upheap (timers, ev_active (w)); 2038 upheap (timers, ev_active (w));
1986 2039
1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1988} 2041}
1989 2042
1990void noinline 2043void noinline
1991ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1992{ 2045{
1995 return; 2048 return;
1996 2049
1997 { 2050 {
1998 int active = ev_active (w); 2051 int active = ev_active (w);
1999 2052
2000 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2001 2054
2002 if (expect_true (active < timercnt + HEAP0 - 1)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
2003 { 2056 {
2004 timers [active] = timers [timercnt + HEAP0 - 1]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
2005 adjustheap (timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
2019 if (ev_is_active (w)) 2072 if (ev_is_active (w))
2020 { 2073 {
2021 if (w->repeat) 2074 if (w->repeat)
2022 { 2075 {
2023 ev_at (w) = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
2024 adjustheap (timers, timercnt, ev_active (w)); 2078 adjustheap (timers, timercnt, ev_active (w));
2025 } 2079 }
2026 else 2080 else
2027 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
2028 } 2082 }
2050 } 2104 }
2051 else 2105 else
2052 ev_at (w) = w->offset; 2106 ev_at (w) = w->offset;
2053 2107
2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2056 periodics [ev_active (w)] = (WT)w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]);
2057 upheap (periodics, ev_active (w)); 2112 upheap (periodics, ev_active (w));
2058 2113
2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2060} 2115}
2061 2116
2062void noinline 2117void noinline
2063ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
2064{ 2119{
2067 return; 2122 return;
2068 2123
2069 { 2124 {
2070 int active = ev_active (w); 2125 int active = ev_active (w);
2071 2126
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2073 2128
2074 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
2075 { 2130 {
2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2077 adjustheap (periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines