ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC vs.
Revision 1.290 by root, Mon Jun 29 04:41:34 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 289/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 290
242#ifndef CLOCK_MONOTONIC 291#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 292# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 293# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 308# include <sys/select.h>
260# endif 309# endif
261#endif 310#endif
262 311
263#if EV_USE_INOTIFY 312#if EV_USE_INOTIFY
313# include <sys/utsname.h>
314# include <sys/statfs.h>
264# include <sys/inotify.h> 315# include <sys/inotify.h>
316/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
317# ifndef IN_DONT_FOLLOW
318# undef EV_USE_INOTIFY
319# define EV_USE_INOTIFY 0
320# endif
265#endif 321#endif
266 322
267#if EV_SELECT_IS_WINSOCKET 323#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 324# include <winsock.h>
325#endif
326
327/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
328/* which makes programs even slower. might work on other unices, too. */
329#if EV_USE_CLOCK_SYSCALL
330# include <syscall.h>
331# ifdef SYS_clock_gettime
332# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
333# undef EV_USE_MONOTONIC
334# define EV_USE_MONOTONIC 1
335# else
336# undef EV_USE_CLOCK_SYSCALL
337# define EV_USE_CLOCK_SYSCALL 0
338# endif
269#endif 339#endif
270 340
271#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 343# include <stdint.h>
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
328typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
329 405
330#define ev_active(w) ((W)(w))->active 406#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 407#define ev_at(w) ((WT)(w))->at
332 408
333#if EV_USE_MONOTONIC 409#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 417#endif
338 418
339#ifdef _WIN32 419#ifdef _WIN32
340# include "ev_win32.c" 420# include "ev_win32.c"
349{ 429{
350 syserr_cb = cb; 430 syserr_cb = cb;
351} 431}
352 432
353static void noinline 433static void noinline
354syserr (const char *msg) 434ev_syserr (const char *msg)
355{ 435{
356 if (!msg) 436 if (!msg)
357 msg = "(libev) system error"; 437 msg = "(libev) system error";
358 438
359 if (syserr_cb) 439 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
407 487
408/*****************************************************************************/ 488/*****************************************************************************/
409 489
490/* file descriptor info structure */
410typedef struct 491typedef struct
411{ 492{
412 WL head; 493 WL head;
413 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
415#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 502 SOCKET handle;
417#endif 503#endif
418} ANFD; 504} ANFD;
419 505
506/* stores the pending event set for a given watcher */
420typedef struct 507typedef struct
421{ 508{
422 W w; 509 W w;
423 int events; 510 int events; /* the pending event set for the given watcher */
424} ANPENDING; 511} ANPENDING;
425 512
426#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
427typedef struct 515typedef struct
428{ 516{
429 WL head; 517 WL head;
430} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
431#endif 539#endif
432 540
433#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
434 542
435 struct ev_loop 543 struct ev_loop
460 568
461ev_tstamp 569ev_tstamp
462ev_time (void) 570ev_time (void)
463{ 571{
464#if EV_USE_REALTIME 572#if EV_USE_REALTIME
573 if (expect_true (have_realtime))
574 {
465 struct timespec ts; 575 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 576 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 577 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 578 }
579#endif
580
469 struct timeval tv; 581 struct timeval tv;
470 gettimeofday (&tv, 0); 582 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 583 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 584}
474 585
475ev_tstamp inline_size 586inline_size ev_tstamp
476get_clock (void) 587get_clock (void)
477{ 588{
478#if EV_USE_MONOTONIC 589#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 590 if (expect_true (have_monotonic))
480 { 591 {
513 struct timeval tv; 624 struct timeval tv;
514 625
515 tv.tv_sec = (time_t)delay; 626 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 627 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 628
629 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
630 /* somehting nto guaranteed by newer posix versions, but guaranteed */
631 /* by older ones */
518 select (0, 0, 0, 0, &tv); 632 select (0, 0, 0, 0, &tv);
519#endif 633#endif
520 } 634 }
521} 635}
522 636
523/*****************************************************************************/ 637/*****************************************************************************/
524 638
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 639#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 640
527int inline_size 641/* find a suitable new size for the given array, */
642/* hopefully by rounding to a ncie-to-malloc size */
643inline_size int
528array_nextsize (int elem, int cur, int cnt) 644array_nextsize (int elem, int cur, int cnt)
529{ 645{
530 int ncur = cur + 1; 646 int ncur = cur + 1;
531 647
532 do 648 do
549array_realloc (int elem, void *base, int *cur, int cnt) 665array_realloc (int elem, void *base, int *cur, int cnt)
550{ 666{
551 *cur = array_nextsize (elem, *cur, cnt); 667 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 668 return ev_realloc (base, elem * *cur);
553} 669}
670
671#define array_init_zero(base,count) \
672 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 673
555#define array_needsize(type,base,cur,cnt,init) \ 674#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 675 if (expect_false ((cnt) > (cur))) \
557 { \ 676 { \
558 int ocur_ = (cur); \ 677 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 689 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 690 }
572#endif 691#endif
573 692
574#define array_free(stem, idx) \ 693#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 694 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 695
577/*****************************************************************************/ 696/*****************************************************************************/
697
698/* dummy callback for pending events */
699static void noinline
700pendingcb (EV_P_ ev_prepare *w, int revents)
701{
702}
578 703
579void noinline 704void noinline
580ev_feed_event (EV_P_ void *w, int revents) 705ev_feed_event (EV_P_ void *w, int revents)
581{ 706{
582 W w_ = (W)w; 707 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 716 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 717 pendings [pri][w_->pending - 1].events = revents;
593 } 718 }
594} 719}
595 720
596void inline_speed 721inline_speed void
722feed_reverse (EV_P_ W w)
723{
724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
725 rfeeds [rfeedcnt++] = w;
726}
727
728inline_size void
729feed_reverse_done (EV_P_ int revents)
730{
731 do
732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
733 while (rfeedcnt);
734}
735
736inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 737queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 738{
599 int i; 739 int i;
600 740
601 for (i = 0; i < eventcnt; ++i) 741 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 742 ev_feed_event (EV_A_ events [i], type);
603} 743}
604 744
605/*****************************************************************************/ 745/*****************************************************************************/
606 746
607void inline_size 747inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 748fd_event (EV_P_ int fd, int revents)
622{ 749{
623 ANFD *anfd = anfds + fd; 750 ANFD *anfd = anfds + fd;
624 ev_io *w; 751 ev_io *w;
625 752
637{ 764{
638 if (fd >= 0 && fd < anfdmax) 765 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 766 fd_event (EV_A_ fd, revents);
640} 767}
641 768
642void inline_size 769/* make sure the external fd watch events are in-sync */
770/* with the kernel/libev internal state */
771inline_size void
643fd_reify (EV_P) 772fd_reify (EV_P)
644{ 773{
645 int i; 774 int i;
646 775
647 for (i = 0; i < fdchangecnt; ++i) 776 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 785 events |= (unsigned char)w->events;
657 786
658#if EV_SELECT_IS_WINSOCKET 787#if EV_SELECT_IS_WINSOCKET
659 if (events) 788 if (events)
660 { 789 {
661 unsigned long argp; 790 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 791 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 792 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 793 #else
665 anfd->handle = _get_osfhandle (fd); 794 anfd->handle = _get_osfhandle (fd);
666 #endif 795 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 796 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 797 }
669#endif 798#endif
670 799
671 { 800 {
672 unsigned char o_events = anfd->events; 801 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 802 unsigned char o_reify = anfd->reify;
674 803
675 anfd->reify = 0; 804 anfd->reify = 0;
676 anfd->events = events; 805 anfd->events = events;
677 806
678 if (o_events != events || o_reify & EV_IOFDSET) 807 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 808 backend_modify (EV_A_ fd, o_events, events);
680 } 809 }
681 } 810 }
682 811
683 fdchangecnt = 0; 812 fdchangecnt = 0;
684} 813}
685 814
686void inline_size 815/* something about the given fd changed */
816inline_size void
687fd_change (EV_P_ int fd, int flags) 817fd_change (EV_P_ int fd, int flags)
688{ 818{
689 unsigned char reify = anfds [fd].reify; 819 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 820 anfds [fd].reify |= flags;
691 821
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 825 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 826 fdchanges [fdchangecnt - 1] = fd;
697 } 827 }
698} 828}
699 829
700void inline_speed 830/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
831inline_speed void
701fd_kill (EV_P_ int fd) 832fd_kill (EV_P_ int fd)
702{ 833{
703 ev_io *w; 834 ev_io *w;
704 835
705 while ((w = (ev_io *)anfds [fd].head)) 836 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 838 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 839 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 840 }
710} 841}
711 842
712int inline_size 843/* check whether the given fd is atcually valid, for error recovery */
844inline_size int
713fd_valid (int fd) 845fd_valid (int fd)
714{ 846{
715#ifdef _WIN32 847#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 848 return _get_osfhandle (fd) != -1;
717#else 849#else
725{ 857{
726 int fd; 858 int fd;
727 859
728 for (fd = 0; fd < anfdmax; ++fd) 860 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 861 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 862 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 863 fd_kill (EV_A_ fd);
732} 864}
733 865
734/* called on ENOMEM in select/poll to kill some fds and retry */ 866/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 867static void noinline
753 885
754 for (fd = 0; fd < anfdmax; ++fd) 886 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 887 if (anfds [fd].events)
756 { 888 {
757 anfds [fd].events = 0; 889 anfds [fd].events = 0;
890 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 891 fd_change (EV_A_ fd, EV__IOFDSET | 1);
759 } 892 }
760} 893}
761 894
762/*****************************************************************************/ 895/*****************************************************************************/
896
897/*
898 * the heap functions want a real array index. array index 0 uis guaranteed to not
899 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
900 * the branching factor of the d-tree.
901 */
763 902
764/* 903/*
765 * at the moment we allow libev the luxury of two heaps, 904 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 905 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 906 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 907 * the difference is about 5% with 50000+ watchers.
769 */ 908 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP 909#if EV_USE_4HEAP
773 910
774#define DHEAP 4 911#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 912#define HEAP0 (DHEAP - 1) /* index of first element in heap */
913#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
914#define UPHEAP_DONE(p,k) ((p) == (k))
776 915
777/* towards the root */ 916/* away from the root */
778void inline_speed 917inline_speed void
779upheap (WT *heap, int k) 918downheap (ANHE *heap, int N, int k)
780{ 919{
781 WT w = heap [k]; 920 ANHE he = heap [k];
921 ANHE *E = heap + N + HEAP0;
782 922
783 for (;;) 923 for (;;)
784 { 924 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w->at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat; 925 ev_tstamp minat;
809 WT *minpos; 926 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 927 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 928
812 // find minimum child 929 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 930 if (expect_true (pos + DHEAP - 1 < E))
814 { 931 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at); 932 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 933 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 934 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 935 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else if (pos < E)
938 {
939 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
820 } 943 }
821 else 944 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
831
832 if (w->at <= minat)
833 break; 945 break;
834 946
835 ev_active (*minpos) = k; 947 if (ANHE_at (he) <= minat)
948 break;
949
836 heap [k] = *minpos; 950 heap [k] = *minpos;
951 ev_active (ANHE_w (*minpos)) = k;
837 952
838 k = minpos - heap; 953 k = minpos - heap;
839 } 954 }
840 955
841 heap [k] = w; 956 heap [k] = he;
842 ev_active (heap [k]) = k; 957 ev_active (ANHE_w (he)) = k;
843} 958}
844 959
845#else // 4HEAP 960#else /* 4HEAP */
846 961
847#define HEAP0 1 962#define HEAP0 1
963#define HPARENT(k) ((k) >> 1)
964#define UPHEAP_DONE(p,k) (!(p))
848 965
849/* towards the root */ 966/* away from the root */
850void inline_speed 967inline_speed void
851upheap (WT *heap, int k) 968downheap (ANHE *heap, int N, int k)
852{ 969{
853 WT w = heap [k]; 970 ANHE he = heap [k];
854 971
855 for (;;) 972 for (;;)
856 { 973 {
857 int p = k >> 1; 974 int c = k << 1;
858 975
859 /* maybe we could use a dummy element at heap [0]? */ 976 if (c > N + HEAP0 - 1)
860 if (!p || heap [p]->at <= w->at)
861 break; 977 break;
862 978
863 heap [k] = heap [p]; 979 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
864 ev_active (heap [k]) = k; 980 ? 1 : 0;
865 k = p;
866 }
867 981
868 heap [k] = w; 982 if (ANHE_at (he) <= ANHE_at (heap [c]))
869 ev_active (heap [k]) = k;
870}
871
872/* away from the root */
873void inline_speed
874downheap (WT *heap, int N, int k)
875{
876 WT w = heap [k];
877
878 for (;;)
879 {
880 int c = k << 1;
881
882 if (c > N)
883 break; 983 break;
884 984
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
886 ? 1 : 0;
887
888 if (w->at <= heap [c]->at)
889 break;
890
891 heap [k] = heap [c]; 985 heap [k] = heap [c];
892 ((W)heap [k])->active = k; 986 ev_active (ANHE_w (heap [k])) = k;
893 987
894 k = c; 988 k = c;
895 } 989 }
896 990
897 heap [k] = w; 991 heap [k] = he;
992 ev_active (ANHE_w (he)) = k;
993}
994#endif
995
996/* towards the root */
997inline_speed void
998upheap (ANHE *heap, int k)
999{
1000 ANHE he = heap [k];
1001
1002 for (;;)
1003 {
1004 int p = HPARENT (k);
1005
1006 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1007 break;
1008
1009 heap [k] = heap [p];
898 ev_active (heap [k]) = k; 1010 ev_active (ANHE_w (heap [k])) = k;
899} 1011 k = p;
900#endif 1012 }
901 1013
902void inline_size 1014 heap [k] = he;
1015 ev_active (ANHE_w (he)) = k;
1016}
1017
1018/* move an element suitably so it is in a correct place */
1019inline_size void
903adjustheap (WT *heap, int N, int k) 1020adjustheap (ANHE *heap, int N, int k)
904{ 1021{
1022 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
905 upheap (heap, k); 1023 upheap (heap, k);
1024 else
906 downheap (heap, N, k); 1025 downheap (heap, N, k);
1026}
1027
1028/* rebuild the heap: this function is used only once and executed rarely */
1029inline_size void
1030reheap (ANHE *heap, int N)
1031{
1032 int i;
1033
1034 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1035 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1036 for (i = 0; i < N; ++i)
1037 upheap (heap, i + HEAP0);
907} 1038}
908 1039
909/*****************************************************************************/ 1040/*****************************************************************************/
910 1041
1042/* associate signal watchers to a signal signal */
911typedef struct 1043typedef struct
912{ 1044{
913 WL head; 1045 WL head;
914 EV_ATOMIC_T gotsig; 1046 EV_ATOMIC_T gotsig;
915} ANSIG; 1047} ANSIG;
917static ANSIG *signals; 1049static ANSIG *signals;
918static int signalmax; 1050static int signalmax;
919 1051
920static EV_ATOMIC_T gotsig; 1052static EV_ATOMIC_T gotsig;
921 1053
922void inline_size
923signals_init (ANSIG *base, int count)
924{
925 while (count--)
926 {
927 base->head = 0;
928 base->gotsig = 0;
929
930 ++base;
931 }
932}
933
934/*****************************************************************************/ 1054/*****************************************************************************/
935 1055
936void inline_speed 1056/* used to prepare libev internal fd's */
1057/* this is not fork-safe */
1058inline_speed void
937fd_intern (int fd) 1059fd_intern (int fd)
938{ 1060{
939#ifdef _WIN32 1061#ifdef _WIN32
940 int arg = 1; 1062 unsigned long arg = 1;
941 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1063 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
942#else 1064#else
943 fcntl (fd, F_SETFD, FD_CLOEXEC); 1065 fcntl (fd, F_SETFD, FD_CLOEXEC);
944 fcntl (fd, F_SETFL, O_NONBLOCK); 1066 fcntl (fd, F_SETFL, O_NONBLOCK);
945#endif 1067#endif
946} 1068}
947 1069
948static void noinline 1070static void noinline
949evpipe_init (EV_P) 1071evpipe_init (EV_P)
950{ 1072{
951 if (!ev_is_active (&pipeev)) 1073 if (!ev_is_active (&pipe_w))
952 { 1074 {
953#if EV_USE_EVENTFD 1075#if EV_USE_EVENTFD
954 if ((evfd = eventfd (0, 0)) >= 0) 1076 if ((evfd = eventfd (0, 0)) >= 0)
955 { 1077 {
956 evpipe [0] = -1; 1078 evpipe [0] = -1;
957 fd_intern (evfd); 1079 fd_intern (evfd);
958 ev_io_set (&pipeev, evfd, EV_READ); 1080 ev_io_set (&pipe_w, evfd, EV_READ);
959 } 1081 }
960 else 1082 else
961#endif 1083#endif
962 { 1084 {
963 while (pipe (evpipe)) 1085 while (pipe (evpipe))
964 syserr ("(libev) error creating signal/async pipe"); 1086 ev_syserr ("(libev) error creating signal/async pipe");
965 1087
966 fd_intern (evpipe [0]); 1088 fd_intern (evpipe [0]);
967 fd_intern (evpipe [1]); 1089 fd_intern (evpipe [1]);
968 ev_io_set (&pipeev, evpipe [0], EV_READ); 1090 ev_io_set (&pipe_w, evpipe [0], EV_READ);
969 } 1091 }
970 1092
971 ev_io_start (EV_A_ &pipeev); 1093 ev_io_start (EV_A_ &pipe_w);
972 ev_unref (EV_A); /* watcher should not keep loop alive */ 1094 ev_unref (EV_A); /* watcher should not keep loop alive */
973 } 1095 }
974} 1096}
975 1097
976void inline_size 1098inline_size void
977evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1099evpipe_write (EV_P_ EV_ATOMIC_T *flag)
978{ 1100{
979 if (!*flag) 1101 if (!*flag)
980 { 1102 {
981 int old_errno = errno; /* save errno because write might clobber it */ 1103 int old_errno = errno; /* save errno because write might clobber it */
994 1116
995 errno = old_errno; 1117 errno = old_errno;
996 } 1118 }
997} 1119}
998 1120
1121/* called whenever the libev signal pipe */
1122/* got some events (signal, async) */
999static void 1123static void
1000pipecb (EV_P_ ev_io *iow, int revents) 1124pipecb (EV_P_ ev_io *iow, int revents)
1001{ 1125{
1002#if EV_USE_EVENTFD 1126#if EV_USE_EVENTFD
1003 if (evfd >= 0) 1127 if (evfd >= 0)
1059ev_feed_signal_event (EV_P_ int signum) 1183ev_feed_signal_event (EV_P_ int signum)
1060{ 1184{
1061 WL w; 1185 WL w;
1062 1186
1063#if EV_MULTIPLICITY 1187#if EV_MULTIPLICITY
1064 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1188 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1065#endif 1189#endif
1066 1190
1067 --signum; 1191 --signum;
1068 1192
1069 if (signum < 0 || signum >= signalmax) 1193 if (signum < 0 || signum >= signalmax)
1085 1209
1086#ifndef WIFCONTINUED 1210#ifndef WIFCONTINUED
1087# define WIFCONTINUED(status) 0 1211# define WIFCONTINUED(status) 0
1088#endif 1212#endif
1089 1213
1090void inline_speed 1214/* handle a single child status event */
1215inline_speed void
1091child_reap (EV_P_ int chain, int pid, int status) 1216child_reap (EV_P_ int chain, int pid, int status)
1092{ 1217{
1093 ev_child *w; 1218 ev_child *w;
1094 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1219 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1095 1220
1108 1233
1109#ifndef WCONTINUED 1234#ifndef WCONTINUED
1110# define WCONTINUED 0 1235# define WCONTINUED 0
1111#endif 1236#endif
1112 1237
1238/* called on sigchld etc., calls waitpid */
1113static void 1239static void
1114childcb (EV_P_ ev_signal *sw, int revents) 1240childcb (EV_P_ ev_signal *sw, int revents)
1115{ 1241{
1116 int pid, status; 1242 int pid, status;
1117 1243
1198 /* kqueue is borked on everything but netbsd apparently */ 1324 /* kqueue is borked on everything but netbsd apparently */
1199 /* it usually doesn't work correctly on anything but sockets and pipes */ 1325 /* it usually doesn't work correctly on anything but sockets and pipes */
1200 flags &= ~EVBACKEND_KQUEUE; 1326 flags &= ~EVBACKEND_KQUEUE;
1201#endif 1327#endif
1202#ifdef __APPLE__ 1328#ifdef __APPLE__
1203 // flags &= ~EVBACKEND_KQUEUE; for documentation 1329 /* only select works correctly on that "unix-certified" platform */
1204 flags &= ~EVBACKEND_POLL; 1330 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1331 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1205#endif 1332#endif
1206 1333
1207 return flags; 1334 return flags;
1208} 1335}
1209 1336
1241ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1368ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1242{ 1369{
1243 timeout_blocktime = interval; 1370 timeout_blocktime = interval;
1244} 1371}
1245 1372
1373/* initialise a loop structure, must be zero-initialised */
1246static void noinline 1374static void noinline
1247loop_init (EV_P_ unsigned int flags) 1375loop_init (EV_P_ unsigned int flags)
1248{ 1376{
1249 if (!backend) 1377 if (!backend)
1250 { 1378 {
1379#if EV_USE_REALTIME
1380 if (!have_realtime)
1381 {
1382 struct timespec ts;
1383
1384 if (!clock_gettime (CLOCK_REALTIME, &ts))
1385 have_realtime = 1;
1386 }
1387#endif
1388
1251#if EV_USE_MONOTONIC 1389#if EV_USE_MONOTONIC
1390 if (!have_monotonic)
1252 { 1391 {
1253 struct timespec ts; 1392 struct timespec ts;
1393
1254 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1394 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1255 have_monotonic = 1; 1395 have_monotonic = 1;
1256 } 1396 }
1257#endif 1397#endif
1258 1398
1259 ev_rt_now = ev_time (); 1399 ev_rt_now = ev_time ();
1260 mn_now = get_clock (); 1400 mn_now = get_clock ();
1261 now_floor = mn_now; 1401 now_floor = mn_now;
1298#endif 1438#endif
1299#if EV_USE_SELECT 1439#if EV_USE_SELECT
1300 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1440 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1301#endif 1441#endif
1302 1442
1443 ev_prepare_init (&pending_w, pendingcb);
1444
1303 ev_init (&pipeev, pipecb); 1445 ev_init (&pipe_w, pipecb);
1304 ev_set_priority (&pipeev, EV_MAXPRI); 1446 ev_set_priority (&pipe_w, EV_MAXPRI);
1305 } 1447 }
1306} 1448}
1307 1449
1450/* free up a loop structure */
1308static void noinline 1451static void noinline
1309loop_destroy (EV_P) 1452loop_destroy (EV_P)
1310{ 1453{
1311 int i; 1454 int i;
1312 1455
1313 if (ev_is_active (&pipeev)) 1456 if (ev_is_active (&pipe_w))
1314 { 1457 {
1315 ev_ref (EV_A); /* signal watcher */ 1458 ev_ref (EV_A); /* signal watcher */
1316 ev_io_stop (EV_A_ &pipeev); 1459 ev_io_stop (EV_A_ &pipe_w);
1317 1460
1318#if EV_USE_EVENTFD 1461#if EV_USE_EVENTFD
1319 if (evfd >= 0) 1462 if (evfd >= 0)
1320 close (evfd); 1463 close (evfd);
1321#endif 1464#endif
1360 } 1503 }
1361 1504
1362 ev_free (anfds); anfdmax = 0; 1505 ev_free (anfds); anfdmax = 0;
1363 1506
1364 /* have to use the microsoft-never-gets-it-right macro */ 1507 /* have to use the microsoft-never-gets-it-right macro */
1508 array_free (rfeed, EMPTY);
1365 array_free (fdchange, EMPTY); 1509 array_free (fdchange, EMPTY);
1366 array_free (timer, EMPTY); 1510 array_free (timer, EMPTY);
1367#if EV_PERIODIC_ENABLE 1511#if EV_PERIODIC_ENABLE
1368 array_free (periodic, EMPTY); 1512 array_free (periodic, EMPTY);
1369#endif 1513#endif
1378 1522
1379 backend = 0; 1523 backend = 0;
1380} 1524}
1381 1525
1382#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1383void inline_size infy_fork (EV_P); 1527inline_size void infy_fork (EV_P);
1384#endif 1528#endif
1385 1529
1386void inline_size 1530inline_size void
1387loop_fork (EV_P) 1531loop_fork (EV_P)
1388{ 1532{
1389#if EV_USE_PORT 1533#if EV_USE_PORT
1390 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1534 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1391#endif 1535#endif
1397#endif 1541#endif
1398#if EV_USE_INOTIFY 1542#if EV_USE_INOTIFY
1399 infy_fork (EV_A); 1543 infy_fork (EV_A);
1400#endif 1544#endif
1401 1545
1402 if (ev_is_active (&pipeev)) 1546 if (ev_is_active (&pipe_w))
1403 { 1547 {
1404 /* this "locks" the handlers against writing to the pipe */ 1548 /* this "locks" the handlers against writing to the pipe */
1405 /* while we modify the fd vars */ 1549 /* while we modify the fd vars */
1406 gotsig = 1; 1550 gotsig = 1;
1407#if EV_ASYNC_ENABLE 1551#if EV_ASYNC_ENABLE
1408 gotasync = 1; 1552 gotasync = 1;
1409#endif 1553#endif
1410 1554
1411 ev_ref (EV_A); 1555 ev_ref (EV_A);
1412 ev_io_stop (EV_A_ &pipeev); 1556 ev_io_stop (EV_A_ &pipe_w);
1413 1557
1414#if EV_USE_EVENTFD 1558#if EV_USE_EVENTFD
1415 if (evfd >= 0) 1559 if (evfd >= 0)
1416 close (evfd); 1560 close (evfd);
1417#endif 1561#endif
1422 close (evpipe [1]); 1566 close (evpipe [1]);
1423 } 1567 }
1424 1568
1425 evpipe_init (EV_A); 1569 evpipe_init (EV_A);
1426 /* now iterate over everything, in case we missed something */ 1570 /* now iterate over everything, in case we missed something */
1427 pipecb (EV_A_ &pipeev, EV_READ); 1571 pipecb (EV_A_ &pipe_w, EV_READ);
1428 } 1572 }
1429 1573
1430 postfork = 0; 1574 postfork = 0;
1431} 1575}
1432 1576
1433#if EV_MULTIPLICITY 1577#if EV_MULTIPLICITY
1578
1434struct ev_loop * 1579struct ev_loop *
1435ev_loop_new (unsigned int flags) 1580ev_loop_new (unsigned int flags)
1436{ 1581{
1437 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1582 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1438 1583
1456void 1601void
1457ev_loop_fork (EV_P) 1602ev_loop_fork (EV_P)
1458{ 1603{
1459 postfork = 1; /* must be in line with ev_default_fork */ 1604 postfork = 1; /* must be in line with ev_default_fork */
1460} 1605}
1606
1607#if EV_VERIFY
1608static void noinline
1609verify_watcher (EV_P_ W w)
1610{
1611 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1612
1613 if (w->pending)
1614 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1615}
1616
1617static void noinline
1618verify_heap (EV_P_ ANHE *heap, int N)
1619{
1620 int i;
1621
1622 for (i = HEAP0; i < N + HEAP0; ++i)
1623 {
1624 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1625 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1626 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1627
1628 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1629 }
1630}
1631
1632static void noinline
1633array_verify (EV_P_ W *ws, int cnt)
1634{
1635 while (cnt--)
1636 {
1637 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1638 verify_watcher (EV_A_ ws [cnt]);
1639 }
1640}
1641#endif
1642
1643void
1644ev_loop_verify (EV_P)
1645{
1646#if EV_VERIFY
1647 int i;
1648 WL w;
1649
1650 assert (activecnt >= -1);
1651
1652 assert (fdchangemax >= fdchangecnt);
1653 for (i = 0; i < fdchangecnt; ++i)
1654 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1655
1656 assert (anfdmax >= 0);
1657 for (i = 0; i < anfdmax; ++i)
1658 for (w = anfds [i].head; w; w = w->next)
1659 {
1660 verify_watcher (EV_A_ (W)w);
1661 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1662 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1663 }
1664
1665 assert (timermax >= timercnt);
1666 verify_heap (EV_A_ timers, timercnt);
1667
1668#if EV_PERIODIC_ENABLE
1669 assert (periodicmax >= periodiccnt);
1670 verify_heap (EV_A_ periodics, periodiccnt);
1671#endif
1672
1673 for (i = NUMPRI; i--; )
1674 {
1675 assert (pendingmax [i] >= pendingcnt [i]);
1676#if EV_IDLE_ENABLE
1677 assert (idleall >= 0);
1678 assert (idlemax [i] >= idlecnt [i]);
1679 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1680#endif
1681 }
1682
1683#if EV_FORK_ENABLE
1684 assert (forkmax >= forkcnt);
1685 array_verify (EV_A_ (W *)forks, forkcnt);
1686#endif
1687
1688#if EV_ASYNC_ENABLE
1689 assert (asyncmax >= asynccnt);
1690 array_verify (EV_A_ (W *)asyncs, asynccnt);
1691#endif
1692
1693 assert (preparemax >= preparecnt);
1694 array_verify (EV_A_ (W *)prepares, preparecnt);
1695
1696 assert (checkmax >= checkcnt);
1697 array_verify (EV_A_ (W *)checks, checkcnt);
1698
1699# if 0
1700 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1701 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1461#endif 1702# endif
1703#endif
1704}
1705
1706#endif /* multiplicity */
1462 1707
1463#if EV_MULTIPLICITY 1708#if EV_MULTIPLICITY
1464struct ev_loop * 1709struct ev_loop *
1465ev_default_loop_init (unsigned int flags) 1710ev_default_loop_init (unsigned int flags)
1466#else 1711#else
1499{ 1744{
1500#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1501 struct ev_loop *loop = ev_default_loop_ptr; 1746 struct ev_loop *loop = ev_default_loop_ptr;
1502#endif 1747#endif
1503 1748
1749 ev_default_loop_ptr = 0;
1750
1504#ifndef _WIN32 1751#ifndef _WIN32
1505 ev_ref (EV_A); /* child watcher */ 1752 ev_ref (EV_A); /* child watcher */
1506 ev_signal_stop (EV_A_ &childev); 1753 ev_signal_stop (EV_A_ &childev);
1507#endif 1754#endif
1508 1755
1514{ 1761{
1515#if EV_MULTIPLICITY 1762#if EV_MULTIPLICITY
1516 struct ev_loop *loop = ev_default_loop_ptr; 1763 struct ev_loop *loop = ev_default_loop_ptr;
1517#endif 1764#endif
1518 1765
1519 if (backend)
1520 postfork = 1; /* must be in line with ev_loop_fork */ 1766 postfork = 1; /* must be in line with ev_loop_fork */
1521} 1767}
1522 1768
1523/*****************************************************************************/ 1769/*****************************************************************************/
1524 1770
1525void 1771void
1526ev_invoke (EV_P_ void *w, int revents) 1772ev_invoke (EV_P_ void *w, int revents)
1527{ 1773{
1528 EV_CB_INVOKE ((W)w, revents); 1774 EV_CB_INVOKE ((W)w, revents);
1529} 1775}
1530 1776
1531void inline_speed 1777inline_speed void
1532call_pending (EV_P) 1778call_pending (EV_P)
1533{ 1779{
1534 int pri; 1780 int pri;
1535 1781
1536 for (pri = NUMPRI; pri--; ) 1782 for (pri = NUMPRI; pri--; )
1537 while (pendingcnt [pri]) 1783 while (pendingcnt [pri])
1538 { 1784 {
1539 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1785 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1540 1786
1541 if (expect_true (p->w))
1542 {
1543 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1787 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1788 /* ^ this is no longer true, as pending_w could be here */
1544 1789
1545 p->w->pending = 0; 1790 p->w->pending = 0;
1546 EV_CB_INVOKE (p->w, p->events); 1791 EV_CB_INVOKE (p->w, p->events);
1547 } 1792 EV_FREQUENT_CHECK;
1548 } 1793 }
1549} 1794}
1550 1795
1551#if EV_IDLE_ENABLE 1796#if EV_IDLE_ENABLE
1552void inline_size 1797/* make idle watchers pending. this handles the "call-idle */
1798/* only when higher priorities are idle" logic */
1799inline_size void
1553idle_reify (EV_P) 1800idle_reify (EV_P)
1554{ 1801{
1555 if (expect_false (idleall)) 1802 if (expect_false (idleall))
1556 { 1803 {
1557 int pri; 1804 int pri;
1569 } 1816 }
1570 } 1817 }
1571} 1818}
1572#endif 1819#endif
1573 1820
1574void inline_size 1821/* make timers pending */
1822inline_size void
1575timers_reify (EV_P) 1823timers_reify (EV_P)
1576{ 1824{
1825 EV_FREQUENT_CHECK;
1826
1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1827 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1578 { 1828 {
1579 ev_timer *w = (ev_timer *)timers [HEAP0]; 1829 do
1580
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1582
1583 /* first reschedule or stop timer */
1584 if (w->repeat)
1585 { 1830 {
1831 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1832
1833 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1834
1835 /* first reschedule or stop timer */
1836 if (w->repeat)
1837 {
1838 ev_at (w) += w->repeat;
1839 if (ev_at (w) < mn_now)
1840 ev_at (w) = mn_now;
1841
1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1842 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1587 1843
1588 ev_at (w) += w->repeat; 1844 ANHE_at_cache (timers [HEAP0]);
1589 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now;
1591
1592 downheap (timers, timercnt, HEAP0); 1845 downheap (timers, timercnt, HEAP0);
1846 }
1847 else
1848 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1849
1850 EV_FREQUENT_CHECK;
1851 feed_reverse (EV_A_ (W)w);
1593 } 1852 }
1594 else 1853 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1596 1854
1597 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1855 feed_reverse_done (EV_A_ EV_TIMEOUT);
1598 } 1856 }
1599} 1857}
1600 1858
1601#if EV_PERIODIC_ENABLE 1859#if EV_PERIODIC_ENABLE
1602void inline_size 1860/* make periodics pending */
1861inline_size void
1603periodics_reify (EV_P) 1862periodics_reify (EV_P)
1604{ 1863{
1864 EV_FREQUENT_CHECK;
1865
1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1866 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1606 { 1867 {
1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1868 int feed_count = 0;
1608 1869
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1870 do
1610
1611 /* first reschedule or stop timer */
1612 if (w->reschedule_cb)
1613 { 1871 {
1872 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1873
1874 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1875
1876 /* first reschedule or stop timer */
1877 if (w->reschedule_cb)
1878 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1879 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1880
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1881 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1882
1883 ANHE_at_cache (periodics [HEAP0]);
1616 downheap (periodics, periodiccnt, 1); 1884 downheap (periodics, periodiccnt, HEAP0);
1885 }
1886 else if (w->interval)
1887 {
1888 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1889 /* if next trigger time is not sufficiently in the future, put it there */
1890 /* this might happen because of floating point inexactness */
1891 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1892 {
1893 ev_at (w) += w->interval;
1894
1895 /* if interval is unreasonably low we might still have a time in the past */
1896 /* so correct this. this will make the periodic very inexact, but the user */
1897 /* has effectively asked to get triggered more often than possible */
1898 if (ev_at (w) < ev_rt_now)
1899 ev_at (w) = ev_rt_now;
1900 }
1901
1902 ANHE_at_cache (periodics [HEAP0]);
1903 downheap (periodics, periodiccnt, HEAP0);
1904 }
1905 else
1906 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1907
1908 EV_FREQUENT_CHECK;
1909 feed_reverse (EV_A_ (W)w);
1617 } 1910 }
1618 else if (w->interval) 1911 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1619 {
1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1623 downheap (periodics, periodiccnt, HEAP0);
1624 }
1625 else
1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1627 1912
1628 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1913 feed_reverse_done (EV_A_ EV_PERIODIC);
1629 } 1914 }
1630} 1915}
1631 1916
1917/* simply recalculate all periodics */
1918/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1632static void noinline 1919static void noinline
1633periodics_reschedule (EV_P) 1920periodics_reschedule (EV_P)
1634{ 1921{
1635 int i; 1922 int i;
1636 1923
1637 /* adjust periodics after time jump */ 1924 /* adjust periodics after time jump */
1638 for (i = 1; i <= periodiccnt; ++i) 1925 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1639 { 1926 {
1640 ev_periodic *w = (ev_periodic *)periodics [i]; 1927 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1641 1928
1642 if (w->reschedule_cb) 1929 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1930 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1644 else if (w->interval) 1931 else if (w->interval)
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1932 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1933
1934 ANHE_at_cache (periodics [i]);
1935 }
1936
1937 reheap (periodics, periodiccnt);
1938}
1939#endif
1940
1941/* adjust all timers by a given offset */
1942static void noinline
1943timers_reschedule (EV_P_ ev_tstamp adjust)
1944{
1945 int i;
1946
1947 for (i = 0; i < timercnt; ++i)
1646 } 1948 {
1647 1949 ANHE *he = timers + i + HEAP0;
1648 /* now rebuild the heap */ 1950 ANHE_w (*he)->at += adjust;
1649 for (i = periodiccnt >> 1; --i; ) 1951 ANHE_at_cache (*he);
1650 downheap (periodics, periodiccnt, i + HEAP0); 1952 }
1651} 1953}
1652#endif
1653 1954
1654void inline_speed 1955/* fetch new monotonic and realtime times from the kernel */
1956/* also detetc if there was a timejump, and act accordingly */
1957inline_speed void
1655time_update (EV_P_ ev_tstamp max_block) 1958time_update (EV_P_ ev_tstamp max_block)
1656{ 1959{
1657 int i;
1658
1659#if EV_USE_MONOTONIC 1960#if EV_USE_MONOTONIC
1660 if (expect_true (have_monotonic)) 1961 if (expect_true (have_monotonic))
1661 { 1962 {
1963 int i;
1662 ev_tstamp odiff = rtmn_diff; 1964 ev_tstamp odiff = rtmn_diff;
1663 1965
1664 mn_now = get_clock (); 1966 mn_now = get_clock ();
1665 1967
1666 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1968 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1692 ev_rt_now = ev_time (); 1994 ev_rt_now = ev_time ();
1693 mn_now = get_clock (); 1995 mn_now = get_clock ();
1694 now_floor = mn_now; 1996 now_floor = mn_now;
1695 } 1997 }
1696 1998
1999 /* no timer adjustment, as the monotonic clock doesn't jump */
2000 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1697# if EV_PERIODIC_ENABLE 2001# if EV_PERIODIC_ENABLE
1698 periodics_reschedule (EV_A); 2002 periodics_reschedule (EV_A);
1699# endif 2003# endif
1700 /* no timer adjustment, as the monotonic clock doesn't jump */
1701 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1702 } 2004 }
1703 else 2005 else
1704#endif 2006#endif
1705 { 2007 {
1706 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1707 2009
1708 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2010 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1709 { 2011 {
2012 /* adjust timers. this is easy, as the offset is the same for all of them */
2013 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1710#if EV_PERIODIC_ENABLE 2014#if EV_PERIODIC_ENABLE
1711 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1712#endif 2016#endif
1713 /* adjust timers. this is easy, as the offset is the same for all of them */
1714 for (i = 1; i <= timercnt; ++i)
1715 ev_at (timers [i]) += ev_rt_now - mn_now;
1716 } 2017 }
1717 2018
1718 mn_now = ev_rt_now; 2019 mn_now = ev_rt_now;
1719 } 2020 }
1720} 2021}
1721 2022
1722void
1723ev_ref (EV_P)
1724{
1725 ++activecnt;
1726}
1727
1728void
1729ev_unref (EV_P)
1730{
1731 --activecnt;
1732}
1733
1734static int loop_done; 2023static int loop_done;
1735 2024
1736void 2025void
1737ev_loop (EV_P_ int flags) 2026ev_loop (EV_P_ int flags)
1738{ 2027{
1740 2029
1741 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2030 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1742 2031
1743 do 2032 do
1744 { 2033 {
2034#if EV_VERIFY >= 2
2035 ev_loop_verify (EV_A);
2036#endif
2037
1745#ifndef _WIN32 2038#ifndef _WIN32
1746 if (expect_false (curpid)) /* penalise the forking check even more */ 2039 if (expect_false (curpid)) /* penalise the forking check even more */
1747 if (expect_false (getpid () != curpid)) 2040 if (expect_false (getpid () != curpid))
1748 { 2041 {
1749 curpid = getpid (); 2042 curpid = getpid ();
1766 { 2059 {
1767 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1768 call_pending (EV_A); 2061 call_pending (EV_A);
1769 } 2062 }
1770 2063
1771 if (expect_false (!activecnt))
1772 break;
1773
1774 /* we might have forked, so reify kernel state if necessary */ 2064 /* we might have forked, so reify kernel state if necessary */
1775 if (expect_false (postfork)) 2065 if (expect_false (postfork))
1776 loop_fork (EV_A); 2066 loop_fork (EV_A);
1777 2067
1778 /* update fd-related kernel structures */ 2068 /* update fd-related kernel structures */
1790 2080
1791 waittime = MAX_BLOCKTIME; 2081 waittime = MAX_BLOCKTIME;
1792 2082
1793 if (timercnt) 2083 if (timercnt)
1794 { 2084 {
1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2085 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1796 if (waittime > to) waittime = to; 2086 if (waittime > to) waittime = to;
1797 } 2087 }
1798 2088
1799#if EV_PERIODIC_ENABLE 2089#if EV_PERIODIC_ENABLE
1800 if (periodiccnt) 2090 if (periodiccnt)
1801 { 2091 {
1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2092 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1803 if (waittime > to) waittime = to; 2093 if (waittime > to) waittime = to;
1804 } 2094 }
1805#endif 2095#endif
1806 2096
1807 if (expect_false (waittime < timeout_blocktime)) 2097 if (expect_false (waittime < timeout_blocktime))
1857ev_unloop (EV_P_ int how) 2147ev_unloop (EV_P_ int how)
1858{ 2148{
1859 loop_done = how; 2149 loop_done = how;
1860} 2150}
1861 2151
2152void
2153ev_ref (EV_P)
2154{
2155 ++activecnt;
2156}
2157
2158void
2159ev_unref (EV_P)
2160{
2161 --activecnt;
2162}
2163
2164void
2165ev_now_update (EV_P)
2166{
2167 time_update (EV_A_ 1e100);
2168}
2169
2170void
2171ev_suspend (EV_P)
2172{
2173 ev_now_update (EV_A);
2174}
2175
2176void
2177ev_resume (EV_P)
2178{
2179 ev_tstamp mn_prev = mn_now;
2180
2181 ev_now_update (EV_A);
2182 timers_reschedule (EV_A_ mn_now - mn_prev);
2183#if EV_PERIODIC_ENABLE
2184 /* TODO: really do this? */
2185 periodics_reschedule (EV_A);
2186#endif
2187}
2188
1862/*****************************************************************************/ 2189/*****************************************************************************/
2190/* singly-linked list management, used when the expected list length is short */
1863 2191
1864void inline_size 2192inline_size void
1865wlist_add (WL *head, WL elem) 2193wlist_add (WL *head, WL elem)
1866{ 2194{
1867 elem->next = *head; 2195 elem->next = *head;
1868 *head = elem; 2196 *head = elem;
1869} 2197}
1870 2198
1871void inline_size 2199inline_size void
1872wlist_del (WL *head, WL elem) 2200wlist_del (WL *head, WL elem)
1873{ 2201{
1874 while (*head) 2202 while (*head)
1875 { 2203 {
1876 if (*head == elem) 2204 if (*head == elem)
1881 2209
1882 head = &(*head)->next; 2210 head = &(*head)->next;
1883 } 2211 }
1884} 2212}
1885 2213
1886void inline_speed 2214/* internal, faster, version of ev_clear_pending */
2215inline_speed void
1887clear_pending (EV_P_ W w) 2216clear_pending (EV_P_ W w)
1888{ 2217{
1889 if (w->pending) 2218 if (w->pending)
1890 { 2219 {
1891 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2220 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1892 w->pending = 0; 2221 w->pending = 0;
1893 } 2222 }
1894} 2223}
1895 2224
1896int 2225int
1900 int pending = w_->pending; 2229 int pending = w_->pending;
1901 2230
1902 if (expect_true (pending)) 2231 if (expect_true (pending))
1903 { 2232 {
1904 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2233 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2234 p->w = (W)&pending_w;
1905 w_->pending = 0; 2235 w_->pending = 0;
1906 p->w = 0;
1907 return p->events; 2236 return p->events;
1908 } 2237 }
1909 else 2238 else
1910 return 0; 2239 return 0;
1911} 2240}
1912 2241
1913void inline_size 2242inline_size void
1914pri_adjust (EV_P_ W w) 2243pri_adjust (EV_P_ W w)
1915{ 2244{
1916 int pri = w->priority; 2245 int pri = w->priority;
1917 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2246 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1918 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2247 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1919 w->priority = pri; 2248 w->priority = pri;
1920} 2249}
1921 2250
1922void inline_speed 2251inline_speed void
1923ev_start (EV_P_ W w, int active) 2252ev_start (EV_P_ W w, int active)
1924{ 2253{
1925 pri_adjust (EV_A_ w); 2254 pri_adjust (EV_A_ w);
1926 w->active = active; 2255 w->active = active;
1927 ev_ref (EV_A); 2256 ev_ref (EV_A);
1928} 2257}
1929 2258
1930void inline_size 2259inline_size void
1931ev_stop (EV_P_ W w) 2260ev_stop (EV_P_ W w)
1932{ 2261{
1933 ev_unref (EV_A); 2262 ev_unref (EV_A);
1934 w->active = 0; 2263 w->active = 0;
1935} 2264}
1942 int fd = w->fd; 2271 int fd = w->fd;
1943 2272
1944 if (expect_false (ev_is_active (w))) 2273 if (expect_false (ev_is_active (w)))
1945 return; 2274 return;
1946 2275
1947 assert (("ev_io_start called with negative fd", fd >= 0)); 2276 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2277 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2278
2279 EV_FREQUENT_CHECK;
1948 2280
1949 ev_start (EV_A_ (W)w, 1); 2281 ev_start (EV_A_ (W)w, 1);
1950 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2282 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1951 wlist_add (&anfds[fd].head, (WL)w); 2283 wlist_add (&anfds[fd].head, (WL)w);
1952 2284
1953 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2285 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1954 w->events &= ~EV_IOFDSET; 2286 w->events &= ~EV__IOFDSET;
2287
2288 EV_FREQUENT_CHECK;
1955} 2289}
1956 2290
1957void noinline 2291void noinline
1958ev_io_stop (EV_P_ ev_io *w) 2292ev_io_stop (EV_P_ ev_io *w)
1959{ 2293{
1960 clear_pending (EV_A_ (W)w); 2294 clear_pending (EV_A_ (W)w);
1961 if (expect_false (!ev_is_active (w))) 2295 if (expect_false (!ev_is_active (w)))
1962 return; 2296 return;
1963 2297
1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2298 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2299
2300 EV_FREQUENT_CHECK;
1965 2301
1966 wlist_del (&anfds[w->fd].head, (WL)w); 2302 wlist_del (&anfds[w->fd].head, (WL)w);
1967 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1968 2304
1969 fd_change (EV_A_ w->fd, 1); 2305 fd_change (EV_A_ w->fd, 1);
2306
2307 EV_FREQUENT_CHECK;
1970} 2308}
1971 2309
1972void noinline 2310void noinline
1973ev_timer_start (EV_P_ ev_timer *w) 2311ev_timer_start (EV_P_ ev_timer *w)
1974{ 2312{
1975 if (expect_false (ev_is_active (w))) 2313 if (expect_false (ev_is_active (w)))
1976 return; 2314 return;
1977 2315
1978 ev_at (w) += mn_now; 2316 ev_at (w) += mn_now;
1979 2317
1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2318 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1981 2319
2320 EV_FREQUENT_CHECK;
2321
2322 ++timercnt;
1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2323 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2324 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1984 timers [ev_active (w)] = (WT)w; 2325 ANHE_w (timers [ev_active (w)]) = (WT)w;
2326 ANHE_at_cache (timers [ev_active (w)]);
1985 upheap (timers, ev_active (w)); 2327 upheap (timers, ev_active (w));
1986 2328
2329 EV_FREQUENT_CHECK;
2330
1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2331 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1988} 2332}
1989 2333
1990void noinline 2334void noinline
1991ev_timer_stop (EV_P_ ev_timer *w) 2335ev_timer_stop (EV_P_ ev_timer *w)
1992{ 2336{
1993 clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1995 return; 2339 return;
1996 2340
2341 EV_FREQUENT_CHECK;
2342
1997 { 2343 {
1998 int active = ev_active (w); 2344 int active = ev_active (w);
1999 2345
2000 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2346 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2001 2347
2348 --timercnt;
2349
2002 if (expect_true (active < timercnt + HEAP0 - 1)) 2350 if (expect_true (active < timercnt + HEAP0))
2003 { 2351 {
2004 timers [active] = timers [timercnt + HEAP0 - 1]; 2352 timers [active] = timers [timercnt + HEAP0];
2005 adjustheap (timers, timercnt, active); 2353 adjustheap (timers, timercnt, active);
2006 } 2354 }
2007
2008 --timercnt;
2009 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2010 2358
2011 ev_at (w) -= mn_now; 2359 ev_at (w) -= mn_now;
2012 2360
2013 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
2014} 2362}
2015 2363
2016void noinline 2364void noinline
2017ev_timer_again (EV_P_ ev_timer *w) 2365ev_timer_again (EV_P_ ev_timer *w)
2018{ 2366{
2367 EV_FREQUENT_CHECK;
2368
2019 if (ev_is_active (w)) 2369 if (ev_is_active (w))
2020 { 2370 {
2021 if (w->repeat) 2371 if (w->repeat)
2022 { 2372 {
2023 ev_at (w) = mn_now + w->repeat; 2373 ev_at (w) = mn_now + w->repeat;
2374 ANHE_at_cache (timers [ev_active (w)]);
2024 adjustheap (timers, timercnt, ev_active (w)); 2375 adjustheap (timers, timercnt, ev_active (w));
2025 } 2376 }
2026 else 2377 else
2027 ev_timer_stop (EV_A_ w); 2378 ev_timer_stop (EV_A_ w);
2028 } 2379 }
2029 else if (w->repeat) 2380 else if (w->repeat)
2030 { 2381 {
2031 ev_at (w) = w->repeat; 2382 ev_at (w) = w->repeat;
2032 ev_timer_start (EV_A_ w); 2383 ev_timer_start (EV_A_ w);
2033 } 2384 }
2385
2386 EV_FREQUENT_CHECK;
2034} 2387}
2035 2388
2036#if EV_PERIODIC_ENABLE 2389#if EV_PERIODIC_ENABLE
2037void noinline 2390void noinline
2038ev_periodic_start (EV_P_ ev_periodic *w) 2391ev_periodic_start (EV_P_ ev_periodic *w)
2042 2395
2043 if (w->reschedule_cb) 2396 if (w->reschedule_cb)
2044 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2397 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2045 else if (w->interval) 2398 else if (w->interval)
2046 { 2399 {
2047 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2400 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2048 /* this formula differs from the one in periodic_reify because we do not always round up */ 2401 /* this formula differs from the one in periodic_reify because we do not always round up */
2049 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2402 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2050 } 2403 }
2051 else 2404 else
2052 ev_at (w) = w->offset; 2405 ev_at (w) = w->offset;
2053 2406
2407 EV_FREQUENT_CHECK;
2408
2409 ++periodiccnt;
2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2410 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2411 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2056 periodics [ev_active (w)] = (WT)w; 2412 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2413 ANHE_at_cache (periodics [ev_active (w)]);
2057 upheap (periodics, ev_active (w)); 2414 upheap (periodics, ev_active (w));
2058 2415
2416 EV_FREQUENT_CHECK;
2417
2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2418 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2060} 2419}
2061 2420
2062void noinline 2421void noinline
2063ev_periodic_stop (EV_P_ ev_periodic *w) 2422ev_periodic_stop (EV_P_ ev_periodic *w)
2064{ 2423{
2065 clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 2425 if (expect_false (!ev_is_active (w)))
2067 return; 2426 return;
2068 2427
2428 EV_FREQUENT_CHECK;
2429
2069 { 2430 {
2070 int active = ev_active (w); 2431 int active = ev_active (w);
2071 2432
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2433 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2073 2434
2435 --periodiccnt;
2436
2074 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2437 if (expect_true (active < periodiccnt + HEAP0))
2075 { 2438 {
2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2439 periodics [active] = periodics [periodiccnt + HEAP0];
2077 adjustheap (periodics, periodiccnt, active); 2440 adjustheap (periodics, periodiccnt, active);
2078 } 2441 }
2079
2080 --periodiccnt;
2081 } 2442 }
2443
2444 EV_FREQUENT_CHECK;
2082 2445
2083 ev_stop (EV_A_ (W)w); 2446 ev_stop (EV_A_ (W)w);
2084} 2447}
2085 2448
2086void noinline 2449void noinline
2098 2461
2099void noinline 2462void noinline
2100ev_signal_start (EV_P_ ev_signal *w) 2463ev_signal_start (EV_P_ ev_signal *w)
2101{ 2464{
2102#if EV_MULTIPLICITY 2465#if EV_MULTIPLICITY
2103 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2466 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2104#endif 2467#endif
2105 if (expect_false (ev_is_active (w))) 2468 if (expect_false (ev_is_active (w)))
2106 return; 2469 return;
2107 2470
2108 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2471 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2109 2472
2110 evpipe_init (EV_A); 2473 evpipe_init (EV_A);
2474
2475 EV_FREQUENT_CHECK;
2111 2476
2112 { 2477 {
2113#ifndef _WIN32 2478#ifndef _WIN32
2114 sigset_t full, prev; 2479 sigset_t full, prev;
2115 sigfillset (&full); 2480 sigfillset (&full);
2116 sigprocmask (SIG_SETMASK, &full, &prev); 2481 sigprocmask (SIG_SETMASK, &full, &prev);
2117#endif 2482#endif
2118 2483
2119 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2484 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2120 2485
2121#ifndef _WIN32 2486#ifndef _WIN32
2122 sigprocmask (SIG_SETMASK, &prev, 0); 2487 sigprocmask (SIG_SETMASK, &prev, 0);
2123#endif 2488#endif
2124 } 2489 }
2136 sigfillset (&sa.sa_mask); 2501 sigfillset (&sa.sa_mask);
2137 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2502 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2138 sigaction (w->signum, &sa, 0); 2503 sigaction (w->signum, &sa, 0);
2139#endif 2504#endif
2140 } 2505 }
2506
2507 EV_FREQUENT_CHECK;
2141} 2508}
2142 2509
2143void noinline 2510void noinline
2144ev_signal_stop (EV_P_ ev_signal *w) 2511ev_signal_stop (EV_P_ ev_signal *w)
2145{ 2512{
2146 clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
2147 if (expect_false (!ev_is_active (w))) 2514 if (expect_false (!ev_is_active (w)))
2148 return; 2515 return;
2149 2516
2517 EV_FREQUENT_CHECK;
2518
2150 wlist_del (&signals [w->signum - 1].head, (WL)w); 2519 wlist_del (&signals [w->signum - 1].head, (WL)w);
2151 ev_stop (EV_A_ (W)w); 2520 ev_stop (EV_A_ (W)w);
2152 2521
2153 if (!signals [w->signum - 1].head) 2522 if (!signals [w->signum - 1].head)
2154 signal (w->signum, SIG_DFL); 2523 signal (w->signum, SIG_DFL);
2524
2525 EV_FREQUENT_CHECK;
2155} 2526}
2156 2527
2157void 2528void
2158ev_child_start (EV_P_ ev_child *w) 2529ev_child_start (EV_P_ ev_child *w)
2159{ 2530{
2160#if EV_MULTIPLICITY 2531#if EV_MULTIPLICITY
2161 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2162#endif 2533#endif
2163 if (expect_false (ev_is_active (w))) 2534 if (expect_false (ev_is_active (w)))
2164 return; 2535 return;
2165 2536
2537 EV_FREQUENT_CHECK;
2538
2166 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
2167 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2540 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2541
2542 EV_FREQUENT_CHECK;
2168} 2543}
2169 2544
2170void 2545void
2171ev_child_stop (EV_P_ ev_child *w) 2546ev_child_stop (EV_P_ ev_child *w)
2172{ 2547{
2173 clear_pending (EV_A_ (W)w); 2548 clear_pending (EV_A_ (W)w);
2174 if (expect_false (!ev_is_active (w))) 2549 if (expect_false (!ev_is_active (w)))
2175 return; 2550 return;
2176 2551
2552 EV_FREQUENT_CHECK;
2553
2177 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2554 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2178 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
2556
2557 EV_FREQUENT_CHECK;
2179} 2558}
2180 2559
2181#if EV_STAT_ENABLE 2560#if EV_STAT_ENABLE
2182 2561
2183# ifdef _WIN32 2562# ifdef _WIN32
2184# undef lstat 2563# undef lstat
2185# define lstat(a,b) _stati64 (a,b) 2564# define lstat(a,b) _stati64 (a,b)
2186# endif 2565# endif
2187 2566
2188#define DEF_STAT_INTERVAL 5.0074891 2567#define DEF_STAT_INTERVAL 5.0074891
2568#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2189#define MIN_STAT_INTERVAL 0.1074891 2569#define MIN_STAT_INTERVAL 0.1074891
2190 2570
2191static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2571static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2192 2572
2193#if EV_USE_INOTIFY 2573#if EV_USE_INOTIFY
2194# define EV_INOTIFY_BUFSIZE 8192 2574# define EV_INOTIFY_BUFSIZE 8192
2198{ 2578{
2199 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2579 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2200 2580
2201 if (w->wd < 0) 2581 if (w->wd < 0)
2202 { 2582 {
2583 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2203 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2584 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2204 2585
2205 /* monitor some parent directory for speedup hints */ 2586 /* monitor some parent directory for speedup hints */
2206 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2587 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2207 /* but an efficiency issue only */ 2588 /* but an efficiency issue only */
2208 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2589 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2209 { 2590 {
2210 char path [4096]; 2591 char path [4096];
2211 strcpy (path, w->path); 2592 strcpy (path, w->path);
2215 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2596 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2216 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2597 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2217 2598
2218 char *pend = strrchr (path, '/'); 2599 char *pend = strrchr (path, '/');
2219 2600
2220 if (!pend) 2601 if (!pend || pend == path)
2221 break; /* whoops, no '/', complain to your admin */ 2602 break;
2222 2603
2223 *pend = 0; 2604 *pend = 0;
2224 w->wd = inotify_add_watch (fs_fd, path, mask); 2605 w->wd = inotify_add_watch (fs_fd, path, mask);
2225 } 2606 }
2226 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2607 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2227 } 2608 }
2228 } 2609 }
2229 else
2230 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2231 2610
2232 if (w->wd >= 0) 2611 if (w->wd >= 0)
2612 {
2233 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2613 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2614
2615 /* now local changes will be tracked by inotify, but remote changes won't */
2616 /* unless the filesystem it known to be local, we therefore still poll */
2617 /* also do poll on <2.6.25, but with normal frequency */
2618 struct statfs sfs;
2619
2620 if (fs_2625 && !statfs (w->path, &sfs))
2621 if (sfs.f_type == 0x1373 /* devfs */
2622 || sfs.f_type == 0xEF53 /* ext2/3 */
2623 || sfs.f_type == 0x3153464a /* jfs */
2624 || sfs.f_type == 0x52654973 /* reiser3 */
2625 || sfs.f_type == 0x01021994 /* tempfs */
2626 || sfs.f_type == 0x58465342 /* xfs */)
2627 return;
2628
2629 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2630 ev_timer_again (EV_A_ &w->timer);
2631 }
2234} 2632}
2235 2633
2236static void noinline 2634static void noinline
2237infy_del (EV_P_ ev_stat *w) 2635infy_del (EV_P_ ev_stat *w)
2238{ 2636{
2252 2650
2253static void noinline 2651static void noinline
2254infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2652infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2255{ 2653{
2256 if (slot < 0) 2654 if (slot < 0)
2257 /* overflow, need to check for all hahs slots */ 2655 /* overflow, need to check for all hash slots */
2258 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2656 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2259 infy_wd (EV_A_ slot, wd, ev); 2657 infy_wd (EV_A_ slot, wd, ev);
2260 else 2658 else
2261 { 2659 {
2262 WL w_; 2660 WL w_;
2268 2666
2269 if (w->wd == wd || wd == -1) 2667 if (w->wd == wd || wd == -1)
2270 { 2668 {
2271 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2669 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2272 { 2670 {
2671 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2273 w->wd = -1; 2672 w->wd = -1;
2274 infy_add (EV_A_ w); /* re-add, no matter what */ 2673 infy_add (EV_A_ w); /* re-add, no matter what */
2275 } 2674 }
2276 2675
2277 stat_timer_cb (EV_A_ &w->timer, 0); 2676 stat_timer_cb (EV_A_ &w->timer, 0);
2290 2689
2291 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2690 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2292 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2691 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2293} 2692}
2294 2693
2295void inline_size 2694inline_size void
2695check_2625 (EV_P)
2696{
2697 /* kernels < 2.6.25 are borked
2698 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2699 */
2700 struct utsname buf;
2701 int major, minor, micro;
2702
2703 if (uname (&buf))
2704 return;
2705
2706 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2707 return;
2708
2709 if (major < 2
2710 || (major == 2 && minor < 6)
2711 || (major == 2 && minor == 6 && micro < 25))
2712 return;
2713
2714 fs_2625 = 1;
2715}
2716
2717inline_size void
2296infy_init (EV_P) 2718infy_init (EV_P)
2297{ 2719{
2298 if (fs_fd != -2) 2720 if (fs_fd != -2)
2299 return; 2721 return;
2722
2723 fs_fd = -1;
2724
2725 check_2625 (EV_A);
2300 2726
2301 fs_fd = inotify_init (); 2727 fs_fd = inotify_init ();
2302 2728
2303 if (fs_fd >= 0) 2729 if (fs_fd >= 0)
2304 { 2730 {
2306 ev_set_priority (&fs_w, EV_MAXPRI); 2732 ev_set_priority (&fs_w, EV_MAXPRI);
2307 ev_io_start (EV_A_ &fs_w); 2733 ev_io_start (EV_A_ &fs_w);
2308 } 2734 }
2309} 2735}
2310 2736
2311void inline_size 2737inline_size void
2312infy_fork (EV_P) 2738infy_fork (EV_P)
2313{ 2739{
2314 int slot; 2740 int slot;
2315 2741
2316 if (fs_fd < 0) 2742 if (fs_fd < 0)
2332 w->wd = -1; 2758 w->wd = -1;
2333 2759
2334 if (fs_fd >= 0) 2760 if (fs_fd >= 0)
2335 infy_add (EV_A_ w); /* re-add, no matter what */ 2761 infy_add (EV_A_ w); /* re-add, no matter what */
2336 else 2762 else
2337 ev_timer_start (EV_A_ &w->timer); 2763 ev_timer_again (EV_A_ &w->timer);
2338 } 2764 }
2339
2340 } 2765 }
2341} 2766}
2342 2767
2768#endif
2769
2770#ifdef _WIN32
2771# define EV_LSTAT(p,b) _stati64 (p, b)
2772#else
2773# define EV_LSTAT(p,b) lstat (p, b)
2343#endif 2774#endif
2344 2775
2345void 2776void
2346ev_stat_stat (EV_P_ ev_stat *w) 2777ev_stat_stat (EV_P_ ev_stat *w)
2347{ 2778{
2374 || w->prev.st_atime != w->attr.st_atime 2805 || w->prev.st_atime != w->attr.st_atime
2375 || w->prev.st_mtime != w->attr.st_mtime 2806 || w->prev.st_mtime != w->attr.st_mtime
2376 || w->prev.st_ctime != w->attr.st_ctime 2807 || w->prev.st_ctime != w->attr.st_ctime
2377 ) { 2808 ) {
2378 #if EV_USE_INOTIFY 2809 #if EV_USE_INOTIFY
2810 if (fs_fd >= 0)
2811 {
2379 infy_del (EV_A_ w); 2812 infy_del (EV_A_ w);
2380 infy_add (EV_A_ w); 2813 infy_add (EV_A_ w);
2381 ev_stat_stat (EV_A_ w); /* avoid race... */ 2814 ev_stat_stat (EV_A_ w); /* avoid race... */
2815 }
2382 #endif 2816 #endif
2383 2817
2384 ev_feed_event (EV_A_ w, EV_STAT); 2818 ev_feed_event (EV_A_ w, EV_STAT);
2385 } 2819 }
2386} 2820}
2389ev_stat_start (EV_P_ ev_stat *w) 2823ev_stat_start (EV_P_ ev_stat *w)
2390{ 2824{
2391 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
2392 return; 2826 return;
2393 2827
2394 /* since we use memcmp, we need to clear any padding data etc. */
2395 memset (&w->prev, 0, sizeof (ev_statdata));
2396 memset (&w->attr, 0, sizeof (ev_statdata));
2397
2398 ev_stat_stat (EV_A_ w); 2828 ev_stat_stat (EV_A_ w);
2399 2829
2830 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2400 if (w->interval < MIN_STAT_INTERVAL) 2831 w->interval = MIN_STAT_INTERVAL;
2401 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2402 2832
2403 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2833 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2404 ev_set_priority (&w->timer, ev_priority (w)); 2834 ev_set_priority (&w->timer, ev_priority (w));
2405 2835
2406#if EV_USE_INOTIFY 2836#if EV_USE_INOTIFY
2407 infy_init (EV_A); 2837 infy_init (EV_A);
2408 2838
2409 if (fs_fd >= 0) 2839 if (fs_fd >= 0)
2410 infy_add (EV_A_ w); 2840 infy_add (EV_A_ w);
2411 else 2841 else
2412#endif 2842#endif
2413 ev_timer_start (EV_A_ &w->timer); 2843 ev_timer_again (EV_A_ &w->timer);
2414 2844
2415 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2416} 2848}
2417 2849
2418void 2850void
2419ev_stat_stop (EV_P_ ev_stat *w) 2851ev_stat_stop (EV_P_ ev_stat *w)
2420{ 2852{
2421 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2423 return; 2855 return;
2424 2856
2857 EV_FREQUENT_CHECK;
2858
2425#if EV_USE_INOTIFY 2859#if EV_USE_INOTIFY
2426 infy_del (EV_A_ w); 2860 infy_del (EV_A_ w);
2427#endif 2861#endif
2428 ev_timer_stop (EV_A_ &w->timer); 2862 ev_timer_stop (EV_A_ &w->timer);
2429 2863
2430 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2431} 2867}
2432#endif 2868#endif
2433 2869
2434#if EV_IDLE_ENABLE 2870#if EV_IDLE_ENABLE
2435void 2871void
2437{ 2873{
2438 if (expect_false (ev_is_active (w))) 2874 if (expect_false (ev_is_active (w)))
2439 return; 2875 return;
2440 2876
2441 pri_adjust (EV_A_ (W)w); 2877 pri_adjust (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2442 2880
2443 { 2881 {
2444 int active = ++idlecnt [ABSPRI (w)]; 2882 int active = ++idlecnt [ABSPRI (w)];
2445 2883
2446 ++idleall; 2884 ++idleall;
2447 ev_start (EV_A_ (W)w, active); 2885 ev_start (EV_A_ (W)w, active);
2448 2886
2449 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2887 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2450 idles [ABSPRI (w)][active - 1] = w; 2888 idles [ABSPRI (w)][active - 1] = w;
2451 } 2889 }
2890
2891 EV_FREQUENT_CHECK;
2452} 2892}
2453 2893
2454void 2894void
2455ev_idle_stop (EV_P_ ev_idle *w) 2895ev_idle_stop (EV_P_ ev_idle *w)
2456{ 2896{
2457 clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
2458 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
2459 return; 2899 return;
2460 2900
2901 EV_FREQUENT_CHECK;
2902
2461 { 2903 {
2462 int active = ev_active (w); 2904 int active = ev_active (w);
2463 2905
2464 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2906 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2465 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2907 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2466 2908
2467 ev_stop (EV_A_ (W)w); 2909 ev_stop (EV_A_ (W)w);
2468 --idleall; 2910 --idleall;
2469 } 2911 }
2912
2913 EV_FREQUENT_CHECK;
2470} 2914}
2471#endif 2915#endif
2472 2916
2473void 2917void
2474ev_prepare_start (EV_P_ ev_prepare *w) 2918ev_prepare_start (EV_P_ ev_prepare *w)
2475{ 2919{
2476 if (expect_false (ev_is_active (w))) 2920 if (expect_false (ev_is_active (w)))
2477 return; 2921 return;
2922
2923 EV_FREQUENT_CHECK;
2478 2924
2479 ev_start (EV_A_ (W)w, ++preparecnt); 2925 ev_start (EV_A_ (W)w, ++preparecnt);
2480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2926 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2481 prepares [preparecnt - 1] = w; 2927 prepares [preparecnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2482} 2930}
2483 2931
2484void 2932void
2485ev_prepare_stop (EV_P_ ev_prepare *w) 2933ev_prepare_stop (EV_P_ ev_prepare *w)
2486{ 2934{
2487 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2488 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2489 return; 2937 return;
2490 2938
2939 EV_FREQUENT_CHECK;
2940
2491 { 2941 {
2492 int active = ev_active (w); 2942 int active = ev_active (w);
2493 2943
2494 prepares [active - 1] = prepares [--preparecnt]; 2944 prepares [active - 1] = prepares [--preparecnt];
2495 ev_active (prepares [active - 1]) = active; 2945 ev_active (prepares [active - 1]) = active;
2496 } 2946 }
2497 2947
2498 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2499} 2951}
2500 2952
2501void 2953void
2502ev_check_start (EV_P_ ev_check *w) 2954ev_check_start (EV_P_ ev_check *w)
2503{ 2955{
2504 if (expect_false (ev_is_active (w))) 2956 if (expect_false (ev_is_active (w)))
2505 return; 2957 return;
2958
2959 EV_FREQUENT_CHECK;
2506 2960
2507 ev_start (EV_A_ (W)w, ++checkcnt); 2961 ev_start (EV_A_ (W)w, ++checkcnt);
2508 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2962 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2509 checks [checkcnt - 1] = w; 2963 checks [checkcnt - 1] = w;
2964
2965 EV_FREQUENT_CHECK;
2510} 2966}
2511 2967
2512void 2968void
2513ev_check_stop (EV_P_ ev_check *w) 2969ev_check_stop (EV_P_ ev_check *w)
2514{ 2970{
2515 clear_pending (EV_A_ (W)w); 2971 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 2972 if (expect_false (!ev_is_active (w)))
2517 return; 2973 return;
2518 2974
2975 EV_FREQUENT_CHECK;
2976
2519 { 2977 {
2520 int active = ev_active (w); 2978 int active = ev_active (w);
2521 2979
2522 checks [active - 1] = checks [--checkcnt]; 2980 checks [active - 1] = checks [--checkcnt];
2523 ev_active (checks [active - 1]) = active; 2981 ev_active (checks [active - 1]) = active;
2524 } 2982 }
2525 2983
2526 ev_stop (EV_A_ (W)w); 2984 ev_stop (EV_A_ (W)w);
2985
2986 EV_FREQUENT_CHECK;
2527} 2987}
2528 2988
2529#if EV_EMBED_ENABLE 2989#if EV_EMBED_ENABLE
2530void noinline 2990void noinline
2531ev_embed_sweep (EV_P_ ev_embed *w) 2991ev_embed_sweep (EV_P_ ev_embed *w)
2558 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3018 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2559 } 3019 }
2560 } 3020 }
2561} 3021}
2562 3022
3023static void
3024embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3025{
3026 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3027
3028 ev_embed_stop (EV_A_ w);
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 ev_loop_fork (EV_A);
3034 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3035 }
3036
3037 ev_embed_start (EV_A_ w);
3038}
3039
2563#if 0 3040#if 0
2564static void 3041static void
2565embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3042embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2566{ 3043{
2567 ev_idle_stop (EV_A_ idle); 3044 ev_idle_stop (EV_A_ idle);
2574 if (expect_false (ev_is_active (w))) 3051 if (expect_false (ev_is_active (w)))
2575 return; 3052 return;
2576 3053
2577 { 3054 {
2578 struct ev_loop *loop = w->other; 3055 struct ev_loop *loop = w->other;
2579 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3056 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2580 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3057 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2581 } 3058 }
3059
3060 EV_FREQUENT_CHECK;
2582 3061
2583 ev_set_priority (&w->io, ev_priority (w)); 3062 ev_set_priority (&w->io, ev_priority (w));
2584 ev_io_start (EV_A_ &w->io); 3063 ev_io_start (EV_A_ &w->io);
2585 3064
2586 ev_prepare_init (&w->prepare, embed_prepare_cb); 3065 ev_prepare_init (&w->prepare, embed_prepare_cb);
2587 ev_set_priority (&w->prepare, EV_MINPRI); 3066 ev_set_priority (&w->prepare, EV_MINPRI);
2588 ev_prepare_start (EV_A_ &w->prepare); 3067 ev_prepare_start (EV_A_ &w->prepare);
2589 3068
3069 ev_fork_init (&w->fork, embed_fork_cb);
3070 ev_fork_start (EV_A_ &w->fork);
3071
2590 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3072 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2591 3073
2592 ev_start (EV_A_ (W)w, 1); 3074 ev_start (EV_A_ (W)w, 1);
3075
3076 EV_FREQUENT_CHECK;
2593} 3077}
2594 3078
2595void 3079void
2596ev_embed_stop (EV_P_ ev_embed *w) 3080ev_embed_stop (EV_P_ ev_embed *w)
2597{ 3081{
2598 clear_pending (EV_A_ (W)w); 3082 clear_pending (EV_A_ (W)w);
2599 if (expect_false (!ev_is_active (w))) 3083 if (expect_false (!ev_is_active (w)))
2600 return; 3084 return;
2601 3085
3086 EV_FREQUENT_CHECK;
3087
2602 ev_io_stop (EV_A_ &w->io); 3088 ev_io_stop (EV_A_ &w->io);
2603 ev_prepare_stop (EV_A_ &w->prepare); 3089 ev_prepare_stop (EV_A_ &w->prepare);
3090 ev_fork_stop (EV_A_ &w->fork);
2604 3091
2605 ev_stop (EV_A_ (W)w); 3092 EV_FREQUENT_CHECK;
2606} 3093}
2607#endif 3094#endif
2608 3095
2609#if EV_FORK_ENABLE 3096#if EV_FORK_ENABLE
2610void 3097void
2611ev_fork_start (EV_P_ ev_fork *w) 3098ev_fork_start (EV_P_ ev_fork *w)
2612{ 3099{
2613 if (expect_false (ev_is_active (w))) 3100 if (expect_false (ev_is_active (w)))
2614 return; 3101 return;
3102
3103 EV_FREQUENT_CHECK;
2615 3104
2616 ev_start (EV_A_ (W)w, ++forkcnt); 3105 ev_start (EV_A_ (W)w, ++forkcnt);
2617 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3106 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2618 forks [forkcnt - 1] = w; 3107 forks [forkcnt - 1] = w;
3108
3109 EV_FREQUENT_CHECK;
2619} 3110}
2620 3111
2621void 3112void
2622ev_fork_stop (EV_P_ ev_fork *w) 3113ev_fork_stop (EV_P_ ev_fork *w)
2623{ 3114{
2624 clear_pending (EV_A_ (W)w); 3115 clear_pending (EV_A_ (W)w);
2625 if (expect_false (!ev_is_active (w))) 3116 if (expect_false (!ev_is_active (w)))
2626 return; 3117 return;
2627 3118
3119 EV_FREQUENT_CHECK;
3120
2628 { 3121 {
2629 int active = ev_active (w); 3122 int active = ev_active (w);
2630 3123
2631 forks [active - 1] = forks [--forkcnt]; 3124 forks [active - 1] = forks [--forkcnt];
2632 ev_active (forks [active - 1]) = active; 3125 ev_active (forks [active - 1]) = active;
2633 } 3126 }
2634 3127
2635 ev_stop (EV_A_ (W)w); 3128 ev_stop (EV_A_ (W)w);
3129
3130 EV_FREQUENT_CHECK;
2636} 3131}
2637#endif 3132#endif
2638 3133
2639#if EV_ASYNC_ENABLE 3134#if EV_ASYNC_ENABLE
2640void 3135void
2642{ 3137{
2643 if (expect_false (ev_is_active (w))) 3138 if (expect_false (ev_is_active (w)))
2644 return; 3139 return;
2645 3140
2646 evpipe_init (EV_A); 3141 evpipe_init (EV_A);
3142
3143 EV_FREQUENT_CHECK;
2647 3144
2648 ev_start (EV_A_ (W)w, ++asynccnt); 3145 ev_start (EV_A_ (W)w, ++asynccnt);
2649 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3146 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2650 asyncs [asynccnt - 1] = w; 3147 asyncs [asynccnt - 1] = w;
3148
3149 EV_FREQUENT_CHECK;
2651} 3150}
2652 3151
2653void 3152void
2654ev_async_stop (EV_P_ ev_async *w) 3153ev_async_stop (EV_P_ ev_async *w)
2655{ 3154{
2656 clear_pending (EV_A_ (W)w); 3155 clear_pending (EV_A_ (W)w);
2657 if (expect_false (!ev_is_active (w))) 3156 if (expect_false (!ev_is_active (w)))
2658 return; 3157 return;
2659 3158
3159 EV_FREQUENT_CHECK;
3160
2660 { 3161 {
2661 int active = ev_active (w); 3162 int active = ev_active (w);
2662 3163
2663 asyncs [active - 1] = asyncs [--asynccnt]; 3164 asyncs [active - 1] = asyncs [--asynccnt];
2664 ev_active (asyncs [active - 1]) = active; 3165 ev_active (asyncs [active - 1]) = active;
2665 } 3166 }
2666 3167
2667 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
2668} 3171}
2669 3172
2670void 3173void
2671ev_async_send (EV_P_ ev_async *w) 3174ev_async_send (EV_P_ ev_async *w)
2672{ 3175{
2689once_cb (EV_P_ struct ev_once *once, int revents) 3192once_cb (EV_P_ struct ev_once *once, int revents)
2690{ 3193{
2691 void (*cb)(int revents, void *arg) = once->cb; 3194 void (*cb)(int revents, void *arg) = once->cb;
2692 void *arg = once->arg; 3195 void *arg = once->arg;
2693 3196
2694 ev_io_stop (EV_A_ &once->io); 3197 ev_io_stop (EV_A_ &once->io);
2695 ev_timer_stop (EV_A_ &once->to); 3198 ev_timer_stop (EV_A_ &once->to);
2696 ev_free (once); 3199 ev_free (once);
2697 3200
2698 cb (revents, arg); 3201 cb (revents, arg);
2699} 3202}
2700 3203
2701static void 3204static void
2702once_cb_io (EV_P_ ev_io *w, int revents) 3205once_cb_io (EV_P_ ev_io *w, int revents)
2703{ 3206{
2704 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3207 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3208
3209 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2705} 3210}
2706 3211
2707static void 3212static void
2708once_cb_to (EV_P_ ev_timer *w, int revents) 3213once_cb_to (EV_P_ ev_timer *w, int revents)
2709{ 3214{
2710 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3215 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3216
3217 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2711} 3218}
2712 3219
2713void 3220void
2714ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3221ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2715{ 3222{
2737 ev_timer_set (&once->to, timeout, 0.); 3244 ev_timer_set (&once->to, timeout, 0.);
2738 ev_timer_start (EV_A_ &once->to); 3245 ev_timer_start (EV_A_ &once->to);
2739 } 3246 }
2740} 3247}
2741 3248
3249/*****************************************************************************/
3250
3251#if EV_WALK_ENABLE
3252void
3253ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3254{
3255 int i, j;
3256 ev_watcher_list *wl, *wn;
3257
3258 if (types & (EV_IO | EV_EMBED))
3259 for (i = 0; i < anfdmax; ++i)
3260 for (wl = anfds [i].head; wl; )
3261 {
3262 wn = wl->next;
3263
3264#if EV_EMBED_ENABLE
3265 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3266 {
3267 if (types & EV_EMBED)
3268 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3269 }
3270 else
3271#endif
3272#if EV_USE_INOTIFY
3273 if (ev_cb ((ev_io *)wl) == infy_cb)
3274 ;
3275 else
3276#endif
3277 if ((ev_io *)wl != &pipe_w)
3278 if (types & EV_IO)
3279 cb (EV_A_ EV_IO, wl);
3280
3281 wl = wn;
3282 }
3283
3284 if (types & (EV_TIMER | EV_STAT))
3285 for (i = timercnt + HEAP0; i-- > HEAP0; )
3286#if EV_STAT_ENABLE
3287 /*TODO: timer is not always active*/
3288 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3289 {
3290 if (types & EV_STAT)
3291 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3292 }
3293 else
3294#endif
3295 if (types & EV_TIMER)
3296 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3297
3298#if EV_PERIODIC_ENABLE
3299 if (types & EV_PERIODIC)
3300 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3301 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3302#endif
3303
3304#if EV_IDLE_ENABLE
3305 if (types & EV_IDLE)
3306 for (j = NUMPRI; i--; )
3307 for (i = idlecnt [j]; i--; )
3308 cb (EV_A_ EV_IDLE, idles [j][i]);
3309#endif
3310
3311#if EV_FORK_ENABLE
3312 if (types & EV_FORK)
3313 for (i = forkcnt; i--; )
3314 if (ev_cb (forks [i]) != embed_fork_cb)
3315 cb (EV_A_ EV_FORK, forks [i]);
3316#endif
3317
3318#if EV_ASYNC_ENABLE
3319 if (types & EV_ASYNC)
3320 for (i = asynccnt; i--; )
3321 cb (EV_A_ EV_ASYNC, asyncs [i]);
3322#endif
3323
3324 if (types & EV_PREPARE)
3325 for (i = preparecnt; i--; )
3326#if EV_EMBED_ENABLE
3327 if (ev_cb (prepares [i]) != embed_prepare_cb)
3328#endif
3329 cb (EV_A_ EV_PREPARE, prepares [i]);
3330
3331 if (types & EV_CHECK)
3332 for (i = checkcnt; i--; )
3333 cb (EV_A_ EV_CHECK, checks [i]);
3334
3335 if (types & EV_SIGNAL)
3336 for (i = 0; i < signalmax; ++i)
3337 for (wl = signals [i].head; wl; )
3338 {
3339 wn = wl->next;
3340 cb (EV_A_ EV_SIGNAL, wl);
3341 wl = wn;
3342 }
3343
3344 if (types & EV_CHILD)
3345 for (i = EV_PID_HASHSIZE; i--; )
3346 for (wl = childs [i]; wl; )
3347 {
3348 wn = wl->next;
3349 cb (EV_A_ EV_CHILD, wl);
3350 wl = wn;
3351 }
3352/* EV_STAT 0x00001000 /* stat data changed */
3353/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3354}
3355#endif
3356
2742#if EV_MULTIPLICITY 3357#if EV_MULTIPLICITY
2743 #include "ev_wrap.h" 3358 #include "ev_wrap.h"
2744#endif 3359#endif
2745 3360
2746#ifdef __cplusplus 3361#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines