ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC vs.
Revision 1.407 by root, Wed Jan 25 01:32:12 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
154#ifndef _WIN32 188#ifndef _WIN32
155# include <sys/time.h> 189# include <sys/time.h>
156# include <sys/wait.h> 190# include <sys/wait.h>
157# include <unistd.h> 191# include <unistd.h>
158#else 192#else
193# include <io.h>
159# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 195# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
163# endif 198# endif
199# undef EV_AVOID_STDIO
164#endif 200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
165 209
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 210/* this block tries to deduce configuration from header-defined symbols and defaults */
167 211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
249# endif
250#endif
251
168#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
169# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
170#endif 258#endif
171 259
172#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 262#endif
175 263
176#ifndef EV_USE_NANOSLEEP 264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
177# define EV_USE_NANOSLEEP 0 268# define EV_USE_NANOSLEEP 0
269# endif
178#endif 270#endif
179 271
180#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 274#endif
183 275
184#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
185# ifdef _WIN32 277# ifdef _WIN32
186# define EV_USE_POLL 0 278# define EV_USE_POLL 0
187# else 279# else
188# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 281# endif
190#endif 282#endif
191 283
192#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 287# else
196# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
197# endif 289# endif
198#endif 290#endif
199 291
205# define EV_USE_PORT 0 297# define EV_USE_PORT 0
206#endif 298#endif
207 299
208#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 302# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 303# else
212# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
213# endif 305# endif
214#endif 306#endif
215 307
216#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 310#endif
223 311
224#ifndef EV_INOTIFY_HASHSIZE 312#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 314#endif
231 315
232#ifndef EV_USE_EVENTFD 316#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 318# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 319# else
236# define EV_USE_EVENTFD 0 320# define EV_USE_EVENTFD 0
237# endif 321# endif
238#endif 322#endif
239 323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
241 371
242#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
245#endif 375#endif
253# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
255#endif 385#endif
256 386
257#if !EV_USE_NANOSLEEP 387#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 390# include <sys/select.h>
260# endif 391# endif
261#endif 392#endif
262 393
263#if EV_USE_INOTIFY 394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
264# include <sys/inotify.h> 396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
265#endif 402#endif
266 403
267#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 405# include <winsock.h>
269#endif 406#endif
270 407
271#if EV_USE_EVENTFD 408#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 410# include <stdint.h>
274# ifdef __cplusplus 411# ifndef EFD_NONBLOCK
275extern "C" { 412# define EFD_NONBLOCK O_NONBLOCK
276# endif 413# endif
277int eventfd (unsigned int initval, int flags); 414# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 415# ifdef O_CLOEXEC
279} 416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
280# endif 420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
281#endif 444#endif
282 445
283/**/ 446/**/
284 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
285/* 454/*
286 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 457 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 460
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 508 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
302#else 515#else
303# define expect(expr,value) (expr) 516 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 531 #endif
532#endif
309 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 #if __i386 || __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif __sparc || __sparc__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 #endif
566 #endif
567#endif
568
569#ifndef ECB_MEMORY_FENCE
570 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
571 #define ECB_MEMORY_FENCE __sync_synchronize ()
572 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
573 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
574 #elif _MSC_VER >= 1400 /* VC++ 2005 */
575 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
576 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
577 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
578 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
579 #elif defined(_WIN32)
580 #include <WinNT.h>
581 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
582 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
583 #include <mbarrier.h>
584 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
585 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
586 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if !ECB_AVOID_PTHREADS
592 /*
593 * if you get undefined symbol references to pthread_mutex_lock,
594 * or failure to find pthread.h, then you should implement
595 * the ECB_MEMORY_FENCE operations for your cpu/compiler
596 * OR provide pthread.h and link against the posix thread library
597 * of your system.
598 */
599 #include <pthread.h>
600 #define ECB_NEEDS_PTHREADS 1
601 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
602
603 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
604 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
605 #endif
606#endif
607
608#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
609 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
610#endif
611
612#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
613 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
614#endif
615
616/*****************************************************************************/
617
618#define ECB_C99 (__STDC_VERSION__ >= 199901L)
619
620#if __cplusplus
621 #define ecb_inline static inline
622#elif ECB_GCC_VERSION(2,5)
623 #define ecb_inline static __inline__
624#elif ECB_C99
625 #define ecb_inline static inline
626#else
627 #define ecb_inline static
628#endif
629
630#if ECB_GCC_VERSION(3,3)
631 #define ecb_restrict __restrict__
632#elif ECB_C99
633 #define ecb_restrict restrict
634#else
635 #define ecb_restrict
636#endif
637
638typedef int ecb_bool;
639
640#define ECB_CONCAT_(a, b) a ## b
641#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
642#define ECB_STRINGIFY_(a) # a
643#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
644
645#define ecb_function_ ecb_inline
646
647#if ECB_GCC_VERSION(3,1)
648 #define ecb_attribute(attrlist) __attribute__(attrlist)
649 #define ecb_is_constant(expr) __builtin_constant_p (expr)
650 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
651 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
652#else
653 #define ecb_attribute(attrlist)
654 #define ecb_is_constant(expr) 0
655 #define ecb_expect(expr,value) (expr)
656 #define ecb_prefetch(addr,rw,locality)
657#endif
658
659/* no emulation for ecb_decltype */
660#if ECB_GCC_VERSION(4,5)
661 #define ecb_decltype(x) __decltype(x)
662#elif ECB_GCC_VERSION(3,0)
663 #define ecb_decltype(x) __typeof(x)
664#endif
665
666#define ecb_noinline ecb_attribute ((__noinline__))
667#define ecb_noreturn ecb_attribute ((__noreturn__))
668#define ecb_unused ecb_attribute ((__unused__))
669#define ecb_const ecb_attribute ((__const__))
670#define ecb_pure ecb_attribute ((__pure__))
671
672#if ECB_GCC_VERSION(4,3)
673 #define ecb_artificial ecb_attribute ((__artificial__))
674 #define ecb_hot ecb_attribute ((__hot__))
675 #define ecb_cold ecb_attribute ((__cold__))
676#else
677 #define ecb_artificial
678 #define ecb_hot
679 #define ecb_cold
680#endif
681
682/* put around conditional expressions if you are very sure that the */
683/* expression is mostly true or mostly false. note that these return */
684/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 685#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 686#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
687/* for compatibility to the rest of the world */
688#define ecb_likely(expr) ecb_expect_true (expr)
689#define ecb_unlikely(expr) ecb_expect_false (expr)
690
691/* count trailing zero bits and count # of one bits */
692#if ECB_GCC_VERSION(3,4)
693 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
694 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
695 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
696 #define ecb_ctz32(x) __builtin_ctz (x)
697 #define ecb_ctz64(x) __builtin_ctzll (x)
698 #define ecb_popcount32(x) __builtin_popcount (x)
699 /* no popcountll */
700#else
701 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
702 ecb_function_ int
703 ecb_ctz32 (uint32_t x)
704 {
705 int r = 0;
706
707 x &= ~x + 1; /* this isolates the lowest bit */
708
709#if ECB_branchless_on_i386
710 r += !!(x & 0xaaaaaaaa) << 0;
711 r += !!(x & 0xcccccccc) << 1;
712 r += !!(x & 0xf0f0f0f0) << 2;
713 r += !!(x & 0xff00ff00) << 3;
714 r += !!(x & 0xffff0000) << 4;
715#else
716 if (x & 0xaaaaaaaa) r += 1;
717 if (x & 0xcccccccc) r += 2;
718 if (x & 0xf0f0f0f0) r += 4;
719 if (x & 0xff00ff00) r += 8;
720 if (x & 0xffff0000) r += 16;
721#endif
722
723 return r;
724 }
725
726 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
727 ecb_function_ int
728 ecb_ctz64 (uint64_t x)
729 {
730 int shift = x & 0xffffffffU ? 0 : 32;
731 return ecb_ctz32 (x >> shift) + shift;
732 }
733
734 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
735 ecb_function_ int
736 ecb_popcount32 (uint32_t x)
737 {
738 x -= (x >> 1) & 0x55555555;
739 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
740 x = ((x >> 4) + x) & 0x0f0f0f0f;
741 x *= 0x01010101;
742
743 return x >> 24;
744 }
745
746 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
747 ecb_function_ int ecb_ld32 (uint32_t x)
748 {
749 int r = 0;
750
751 if (x >> 16) { x >>= 16; r += 16; }
752 if (x >> 8) { x >>= 8; r += 8; }
753 if (x >> 4) { x >>= 4; r += 4; }
754 if (x >> 2) { x >>= 2; r += 2; }
755 if (x >> 1) { r += 1; }
756
757 return r;
758 }
759
760 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
761 ecb_function_ int ecb_ld64 (uint64_t x)
762 {
763 int r = 0;
764
765 if (x >> 32) { x >>= 32; r += 32; }
766
767 return r + ecb_ld32 (x);
768 }
769#endif
770
771ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
772ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
773{
774 return ( (x * 0x0802U & 0x22110U)
775 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
776}
777
778ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
779ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
780{
781 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
782 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
783 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
784 x = ( x >> 8 ) | ( x << 8);
785
786 return x;
787}
788
789ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
790ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
791{
792 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
793 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
794 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
795 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
796 x = ( x >> 16 ) | ( x << 16);
797
798 return x;
799}
800
801/* popcount64 is only available on 64 bit cpus as gcc builtin */
802/* so for this version we are lazy */
803ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
804ecb_function_ int
805ecb_popcount64 (uint64_t x)
806{
807 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
808}
809
810ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
811ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
812ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
813ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
814ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
815ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
816ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
817ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
818
819ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
820ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
821ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
822ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
823ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
824ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
825ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
826ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
830 #define ecb_bswap32(x) __builtin_bswap32 (x)
831 #define ecb_bswap64(x) __builtin_bswap64 (x)
832#else
833 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
834 ecb_function_ uint16_t
835 ecb_bswap16 (uint16_t x)
836 {
837 return ecb_rotl16 (x, 8);
838 }
839
840 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
841 ecb_function_ uint32_t
842 ecb_bswap32 (uint32_t x)
843 {
844 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
845 }
846
847 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
848 ecb_function_ uint64_t
849 ecb_bswap64 (uint64_t x)
850 {
851 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
852 }
853#endif
854
855#if ECB_GCC_VERSION(4,5)
856 #define ecb_unreachable() __builtin_unreachable ()
857#else
858 /* this seems to work fine, but gcc always emits a warning for it :/ */
859 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
860 ecb_function_ void ecb_unreachable (void) { }
861#endif
862
863/* try to tell the compiler that some condition is definitely true */
864#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
865
866ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
867ecb_function_ unsigned char
868ecb_byteorder_helper (void)
869{
870 const uint32_t u = 0x11223344;
871 return *(unsigned char *)&u;
872}
873
874ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
875ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
876ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
877ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
878
879#if ECB_GCC_VERSION(3,0) || ECB_C99
880 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
881#else
882 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
883#endif
884
885#if __cplusplus
886 template<typename T>
887 static inline T ecb_div_rd (T val, T div)
888 {
889 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
890 }
891 template<typename T>
892 static inline T ecb_div_ru (T val, T div)
893 {
894 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
895 }
896#else
897 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
898 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
899#endif
900
901#if ecb_cplusplus_does_not_suck
902 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
903 template<typename T, int N>
904 static inline int ecb_array_length (const T (&arr)[N])
905 {
906 return N;
907 }
908#else
909 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
910#endif
911
912#endif
913
914/* ECB.H END */
915
916#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
917/* if your architecture doesn't need memory fences, e.g. because it is
918 * single-cpu/core, or if you use libev in a project that doesn't use libev
919 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
920 * libev, in which cases the memory fences become nops.
921 * alternatively, you can remove this #error and link against libpthread,
922 * which will then provide the memory fences.
923 */
924# error "memory fences not defined for your architecture, please report"
925#endif
926
927#ifndef ECB_MEMORY_FENCE
928# define ECB_MEMORY_FENCE do { } while (0)
929# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
931#endif
932
933#define expect_false(cond) ecb_expect_false (cond)
934#define expect_true(cond) ecb_expect_true (cond)
935#define noinline ecb_noinline
936
312#define inline_size static inline 937#define inline_size ecb_inline
313 938
314#if EV_MINIMAL 939#if EV_FEATURE_CODE
940# define inline_speed ecb_inline
941#else
315# define inline_speed static noinline 942# define inline_speed static noinline
943#endif
944
945#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
946
947#if EV_MINPRI == EV_MAXPRI
948# define ABSPRI(w) (((W)w), 0)
316#else 949#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 950# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
951#endif
322 952
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 953#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 954#define EMPTY2(a,b) /* used to suppress some warnings */
325 955
326typedef ev_watcher *W; 956typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 958typedef ev_watcher_time *WT;
329 959
330#define ev_active(w) ((W)(w))->active 960#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 961#define ev_at(w) ((WT)(w))->at
332 962
963#if EV_USE_REALTIME
964/* sig_atomic_t is used to avoid per-thread variables or locking but still */
965/* giving it a reasonably high chance of working on typical architectures */
966static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
967#endif
968
333#if EV_USE_MONOTONIC 969#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 970static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
971#endif
972
973#ifndef EV_FD_TO_WIN32_HANDLE
974# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
975#endif
976#ifndef EV_WIN32_HANDLE_TO_FD
977# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
978#endif
979#ifndef EV_WIN32_CLOSE_FD
980# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 981#endif
338 982
339#ifdef _WIN32 983#ifdef _WIN32
340# include "ev_win32.c" 984# include "ev_win32.c"
341#endif 985#endif
342 986
343/*****************************************************************************/ 987/*****************************************************************************/
344 988
989/* define a suitable floor function (only used by periodics atm) */
990
991#if EV_USE_FLOOR
992# include <math.h>
993# define ev_floor(v) floor (v)
994#else
995
996#include <float.h>
997
998/* a floor() replacement function, should be independent of ev_tstamp type */
999static ev_tstamp noinline
1000ev_floor (ev_tstamp v)
1001{
1002 /* the choice of shift factor is not terribly important */
1003#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1004 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1005#else
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1007#endif
1008
1009 /* argument too large for an unsigned long? */
1010 if (expect_false (v >= shift))
1011 {
1012 ev_tstamp f;
1013
1014 if (v == v - 1.)
1015 return v; /* very large number */
1016
1017 f = shift * ev_floor (v * (1. / shift));
1018 return f + ev_floor (v - f);
1019 }
1020
1021 /* special treatment for negative args? */
1022 if (expect_false (v < 0.))
1023 {
1024 ev_tstamp f = -ev_floor (-v);
1025
1026 return f - (f == v ? 0 : 1);
1027 }
1028
1029 /* fits into an unsigned long */
1030 return (unsigned long)v;
1031}
1032
1033#endif
1034
1035/*****************************************************************************/
1036
1037#ifdef __linux
1038# include <sys/utsname.h>
1039#endif
1040
1041static unsigned int noinline ecb_cold
1042ev_linux_version (void)
1043{
1044#ifdef __linux
1045 unsigned int v = 0;
1046 struct utsname buf;
1047 int i;
1048 char *p = buf.release;
1049
1050 if (uname (&buf))
1051 return 0;
1052
1053 for (i = 3+1; --i; )
1054 {
1055 unsigned int c = 0;
1056
1057 for (;;)
1058 {
1059 if (*p >= '0' && *p <= '9')
1060 c = c * 10 + *p++ - '0';
1061 else
1062 {
1063 p += *p == '.';
1064 break;
1065 }
1066 }
1067
1068 v = (v << 8) | c;
1069 }
1070
1071 return v;
1072#else
1073 return 0;
1074#endif
1075}
1076
1077/*****************************************************************************/
1078
1079#if EV_AVOID_STDIO
1080static void noinline ecb_cold
1081ev_printerr (const char *msg)
1082{
1083 write (STDERR_FILENO, msg, strlen (msg));
1084}
1085#endif
1086
345static void (*syserr_cb)(const char *msg); 1087static void (*syserr_cb)(const char *msg);
346 1088
347void 1089void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1090ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 1091{
350 syserr_cb = cb; 1092 syserr_cb = cb;
351} 1093}
352 1094
353static void noinline 1095static void noinline ecb_cold
354syserr (const char *msg) 1096ev_syserr (const char *msg)
355{ 1097{
356 if (!msg) 1098 if (!msg)
357 msg = "(libev) system error"; 1099 msg = "(libev) system error";
358 1100
359 if (syserr_cb) 1101 if (syserr_cb)
360 syserr_cb (msg); 1102 syserr_cb (msg);
361 else 1103 else
362 { 1104 {
1105#if EV_AVOID_STDIO
1106 ev_printerr (msg);
1107 ev_printerr (": ");
1108 ev_printerr (strerror (errno));
1109 ev_printerr ("\n");
1110#else
363 perror (msg); 1111 perror (msg);
1112#endif
364 abort (); 1113 abort ();
365 } 1114 }
366} 1115}
367 1116
368static void * 1117static void *
369ev_realloc_emul (void *ptr, long size) 1118ev_realloc_emul (void *ptr, long size)
370{ 1119{
1120#if __GLIBC__
1121 return realloc (ptr, size);
1122#else
371 /* some systems, notably openbsd and darwin, fail to properly 1123 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1124 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1125 * the single unix specification, so work around them here.
374 */ 1126 */
375 1127
376 if (size) 1128 if (size)
377 return realloc (ptr, size); 1129 return realloc (ptr, size);
378 1130
379 free (ptr); 1131 free (ptr);
380 return 0; 1132 return 0;
1133#endif
381} 1134}
382 1135
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1136static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 1137
385void 1138void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1139ev_set_allocator (void *(*cb)(void *ptr, long size))
387{ 1140{
388 alloc = cb; 1141 alloc = cb;
389} 1142}
390 1143
393{ 1146{
394 ptr = alloc (ptr, size); 1147 ptr = alloc (ptr, size);
395 1148
396 if (!ptr && size) 1149 if (!ptr && size)
397 { 1150 {
1151#if EV_AVOID_STDIO
1152 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1153#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1154 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1155#endif
399 abort (); 1156 abort ();
400 } 1157 }
401 1158
402 return ptr; 1159 return ptr;
403} 1160}
405#define ev_malloc(size) ev_realloc (0, (size)) 1162#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1163#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1164
408/*****************************************************************************/ 1165/*****************************************************************************/
409 1166
1167/* set in reify when reification needed */
1168#define EV_ANFD_REIFY 1
1169
1170/* file descriptor info structure */
410typedef struct 1171typedef struct
411{ 1172{
412 WL head; 1173 WL head;
413 unsigned char events; 1174 unsigned char events; /* the events watched for */
1175 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1176 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1177 unsigned char unused;
1178#if EV_USE_EPOLL
1179 unsigned int egen; /* generation counter to counter epoll bugs */
1180#endif
415#if EV_SELECT_IS_WINSOCKET 1181#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1182 SOCKET handle;
417#endif 1183#endif
1184#if EV_USE_IOCP
1185 OVERLAPPED or, ow;
1186#endif
418} ANFD; 1187} ANFD;
419 1188
1189/* stores the pending event set for a given watcher */
420typedef struct 1190typedef struct
421{ 1191{
422 W w; 1192 W w;
423 int events; 1193 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1194} ANPENDING;
425 1195
426#if EV_USE_INOTIFY 1196#if EV_USE_INOTIFY
1197/* hash table entry per inotify-id */
427typedef struct 1198typedef struct
428{ 1199{
429 WL head; 1200 WL head;
430} ANFS; 1201} ANFS;
1202#endif
1203
1204/* Heap Entry */
1205#if EV_HEAP_CACHE_AT
1206 /* a heap element */
1207 typedef struct {
1208 ev_tstamp at;
1209 WT w;
1210 } ANHE;
1211
1212 #define ANHE_w(he) (he).w /* access watcher, read-write */
1213 #define ANHE_at(he) (he).at /* access cached at, read-only */
1214 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1215#else
1216 /* a heap element */
1217 typedef WT ANHE;
1218
1219 #define ANHE_w(he) (he)
1220 #define ANHE_at(he) (he)->at
1221 #define ANHE_at_cache(he)
431#endif 1222#endif
432 1223
433#if EV_MULTIPLICITY 1224#if EV_MULTIPLICITY
434 1225
435 struct ev_loop 1226 struct ev_loop
441 #undef VAR 1232 #undef VAR
442 }; 1233 };
443 #include "ev_wrap.h" 1234 #include "ev_wrap.h"
444 1235
445 static struct ev_loop default_loop_struct; 1236 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr; 1237 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
447 1238
448#else 1239#else
449 1240
450 ev_tstamp ev_rt_now; 1241 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
451 #define VAR(name,decl) static decl; 1242 #define VAR(name,decl) static decl;
452 #include "ev_vars.h" 1243 #include "ev_vars.h"
453 #undef VAR 1244 #undef VAR
454 1245
455 static int ev_default_loop_ptr; 1246 static int ev_default_loop_ptr;
456 1247
457#endif 1248#endif
458 1249
1250#if EV_FEATURE_API
1251# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1252# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1253# define EV_INVOKE_PENDING invoke_cb (EV_A)
1254#else
1255# define EV_RELEASE_CB (void)0
1256# define EV_ACQUIRE_CB (void)0
1257# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1258#endif
1259
1260#define EVBREAK_RECURSE 0x80
1261
459/*****************************************************************************/ 1262/*****************************************************************************/
460 1263
1264#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1265ev_tstamp
462ev_time (void) 1266ev_time (void)
463{ 1267{
464#if EV_USE_REALTIME 1268#if EV_USE_REALTIME
1269 if (expect_true (have_realtime))
1270 {
465 struct timespec ts; 1271 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1272 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1273 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1274 }
1275#endif
1276
469 struct timeval tv; 1277 struct timeval tv;
470 gettimeofday (&tv, 0); 1278 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1279 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1280}
1281#endif
474 1282
475ev_tstamp inline_size 1283inline_size ev_tstamp
476get_clock (void) 1284get_clock (void)
477{ 1285{
478#if EV_USE_MONOTONIC 1286#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1287 if (expect_true (have_monotonic))
480 { 1288 {
501 if (delay > 0.) 1309 if (delay > 0.)
502 { 1310 {
503#if EV_USE_NANOSLEEP 1311#if EV_USE_NANOSLEEP
504 struct timespec ts; 1312 struct timespec ts;
505 1313
506 ts.tv_sec = (time_t)delay; 1314 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1315 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1316#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3)); 1317 Sleep ((unsigned long)(delay * 1e3));
512#else 1318#else
513 struct timeval tv; 1319 struct timeval tv;
514 1320
515 tv.tv_sec = (time_t)delay; 1321 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1322 /* something not guaranteed by newer posix versions, but guaranteed */
517 1323 /* by older ones */
1324 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1325 select (0, 0, 0, 0, &tv);
519#endif 1326#endif
520 } 1327 }
521} 1328}
522 1329
523/*****************************************************************************/ 1330/*****************************************************************************/
524 1331
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1332#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 1333
527int inline_size 1334/* find a suitable new size for the given array, */
1335/* hopefully by rounding to a nice-to-malloc size */
1336inline_size int
528array_nextsize (int elem, int cur, int cnt) 1337array_nextsize (int elem, int cur, int cnt)
529{ 1338{
530 int ncur = cur + 1; 1339 int ncur = cur + 1;
531 1340
532 do 1341 do
533 ncur <<= 1; 1342 ncur <<= 1;
534 while (cnt > ncur); 1343 while (cnt > ncur);
535 1344
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1345 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1346 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 { 1347 {
539 ncur *= elem; 1348 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1349 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4; 1350 ncur = ncur - sizeof (void *) * 4;
543 } 1352 }
544 1353
545 return ncur; 1354 return ncur;
546} 1355}
547 1356
548static noinline void * 1357static void * noinline ecb_cold
549array_realloc (int elem, void *base, int *cur, int cnt) 1358array_realloc (int elem, void *base, int *cur, int cnt)
550{ 1359{
551 *cur = array_nextsize (elem, *cur, cnt); 1360 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 1361 return ev_realloc (base, elem * *cur);
553} 1362}
1363
1364#define array_init_zero(base,count) \
1365 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 1366
555#define array_needsize(type,base,cur,cnt,init) \ 1367#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 1368 if (expect_false ((cnt) > (cur))) \
557 { \ 1369 { \
558 int ocur_ = (cur); \ 1370 int ecb_unused ocur_ = (cur); \
559 (base) = (type *)array_realloc \ 1371 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \ 1372 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \ 1373 init ((base) + (ocur_), (cur) - ocur_); \
562 } 1374 }
563 1375
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1382 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 1383 }
572#endif 1384#endif
573 1385
574#define array_free(stem, idx) \ 1386#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1387 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 1388
577/*****************************************************************************/ 1389/*****************************************************************************/
1390
1391/* dummy callback for pending events */
1392static void noinline
1393pendingcb (EV_P_ ev_prepare *w, int revents)
1394{
1395}
578 1396
579void noinline 1397void noinline
580ev_feed_event (EV_P_ void *w, int revents) 1398ev_feed_event (EV_P_ void *w, int revents)
581{ 1399{
582 W w_ = (W)w; 1400 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 1409 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 1410 pendings [pri][w_->pending - 1].events = revents;
593 } 1411 }
594} 1412}
595 1413
596void inline_speed 1414inline_speed void
1415feed_reverse (EV_P_ W w)
1416{
1417 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1418 rfeeds [rfeedcnt++] = w;
1419}
1420
1421inline_size void
1422feed_reverse_done (EV_P_ int revents)
1423{
1424 do
1425 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1426 while (rfeedcnt);
1427}
1428
1429inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 1430queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 1431{
599 int i; 1432 int i;
600 1433
601 for (i = 0; i < eventcnt; ++i) 1434 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 1435 ev_feed_event (EV_A_ events [i], type);
603} 1436}
604 1437
605/*****************************************************************************/ 1438/*****************************************************************************/
606 1439
607void inline_size 1440inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 1441fd_event_nocheck (EV_P_ int fd, int revents)
622{ 1442{
623 ANFD *anfd = anfds + fd; 1443 ANFD *anfd = anfds + fd;
624 ev_io *w; 1444 ev_io *w;
625 1445
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1446 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 1450 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 1451 ev_feed_event (EV_A_ (W)w, ev);
632 } 1452 }
633} 1453}
634 1454
1455/* do not submit kernel events for fds that have reify set */
1456/* because that means they changed while we were polling for new events */
1457inline_speed void
1458fd_event (EV_P_ int fd, int revents)
1459{
1460 ANFD *anfd = anfds + fd;
1461
1462 if (expect_true (!anfd->reify))
1463 fd_event_nocheck (EV_A_ fd, revents);
1464}
1465
635void 1466void
636ev_feed_fd_event (EV_P_ int fd, int revents) 1467ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 1468{
638 if (fd >= 0 && fd < anfdmax) 1469 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 1470 fd_event_nocheck (EV_A_ fd, revents);
640} 1471}
641 1472
642void inline_size 1473/* make sure the external fd watch events are in-sync */
1474/* with the kernel/libev internal state */
1475inline_size void
643fd_reify (EV_P) 1476fd_reify (EV_P)
644{ 1477{
645 int i; 1478 int i;
1479
1480#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1481 for (i = 0; i < fdchangecnt; ++i)
1482 {
1483 int fd = fdchanges [i];
1484 ANFD *anfd = anfds + fd;
1485
1486 if (anfd->reify & EV__IOFDSET && anfd->head)
1487 {
1488 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1489
1490 if (handle != anfd->handle)
1491 {
1492 unsigned long arg;
1493
1494 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1495
1496 /* handle changed, but fd didn't - we need to do it in two steps */
1497 backend_modify (EV_A_ fd, anfd->events, 0);
1498 anfd->events = 0;
1499 anfd->handle = handle;
1500 }
1501 }
1502 }
1503#endif
646 1504
647 for (i = 0; i < fdchangecnt; ++i) 1505 for (i = 0; i < fdchangecnt; ++i)
648 { 1506 {
649 int fd = fdchanges [i]; 1507 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd; 1508 ANFD *anfd = anfds + fd;
651 ev_io *w; 1509 ev_io *w;
652 1510
653 unsigned char events = 0; 1511 unsigned char o_events = anfd->events;
1512 unsigned char o_reify = anfd->reify;
654 1513
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1514 anfd->reify = 0;
656 events |= (unsigned char)w->events;
657 1515
658#if EV_SELECT_IS_WINSOCKET 1516 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
659 if (events)
660 { 1517 {
661 unsigned long argp; 1518 anfd->events = 0;
662 #ifdef EV_FD_TO_WIN32_HANDLE 1519
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1520 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
664 #else 1521 anfd->events |= (unsigned char)w->events;
665 anfd->handle = _get_osfhandle (fd); 1522
666 #endif 1523 if (o_events != anfd->events)
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1524 o_reify = EV__IOFDSET; /* actually |= */
668 } 1525 }
669#endif
670 1526
671 { 1527 if (o_reify & EV__IOFDSET)
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 1528 backend_modify (EV_A_ fd, o_events, anfd->events);
680 }
681 } 1529 }
682 1530
683 fdchangecnt = 0; 1531 fdchangecnt = 0;
684} 1532}
685 1533
686void inline_size 1534/* something about the given fd changed */
1535inline_size void
687fd_change (EV_P_ int fd, int flags) 1536fd_change (EV_P_ int fd, int flags)
688{ 1537{
689 unsigned char reify = anfds [fd].reify; 1538 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 1539 anfds [fd].reify |= flags;
691 1540
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1544 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 1545 fdchanges [fdchangecnt - 1] = fd;
697 } 1546 }
698} 1547}
699 1548
700void inline_speed 1549/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1550inline_speed void ecb_cold
701fd_kill (EV_P_ int fd) 1551fd_kill (EV_P_ int fd)
702{ 1552{
703 ev_io *w; 1553 ev_io *w;
704 1554
705 while ((w = (ev_io *)anfds [fd].head)) 1555 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 1557 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1558 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 1559 }
710} 1560}
711 1561
712int inline_size 1562/* check whether the given fd is actually valid, for error recovery */
1563inline_size int ecb_cold
713fd_valid (int fd) 1564fd_valid (int fd)
714{ 1565{
715#ifdef _WIN32 1566#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1567 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1568#else
718 return fcntl (fd, F_GETFD) != -1; 1569 return fcntl (fd, F_GETFD) != -1;
719#endif 1570#endif
720} 1571}
721 1572
722/* called on EBADF to verify fds */ 1573/* called on EBADF to verify fds */
723static void noinline 1574static void noinline ecb_cold
724fd_ebadf (EV_P) 1575fd_ebadf (EV_P)
725{ 1576{
726 int fd; 1577 int fd;
727 1578
728 for (fd = 0; fd < anfdmax; ++fd) 1579 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1580 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1581 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1582 fd_kill (EV_A_ fd);
732} 1583}
733 1584
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1585/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1586static void noinline ecb_cold
736fd_enomem (EV_P) 1587fd_enomem (EV_P)
737{ 1588{
738 int fd; 1589 int fd;
739 1590
740 for (fd = anfdmax; fd--; ) 1591 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1592 if (anfds [fd].events)
742 { 1593 {
743 fd_kill (EV_A_ fd); 1594 fd_kill (EV_A_ fd);
744 return; 1595 break;
745 } 1596 }
746} 1597}
747 1598
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1599/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1600static void noinline
753 1604
754 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1606 if (anfds [fd].events)
756 { 1607 {
757 anfds [fd].events = 0; 1608 anfds [fd].events = 0;
1609 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1610 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1611 }
760} 1612}
761 1613
1614/* used to prepare libev internal fd's */
1615/* this is not fork-safe */
1616inline_speed void
1617fd_intern (int fd)
1618{
1619#ifdef _WIN32
1620 unsigned long arg = 1;
1621 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1622#else
1623 fcntl (fd, F_SETFD, FD_CLOEXEC);
1624 fcntl (fd, F_SETFL, O_NONBLOCK);
1625#endif
1626}
1627
762/*****************************************************************************/ 1628/*****************************************************************************/
1629
1630/*
1631 * the heap functions want a real array index. array index 0 is guaranteed to not
1632 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1633 * the branching factor of the d-tree.
1634 */
763 1635
764/* 1636/*
765 * at the moment we allow libev the luxury of two heaps, 1637 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1638 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1639 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1640 * the difference is about 5% with 50000+ watchers.
769 */ 1641 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP 1642#if EV_USE_4HEAP
773 1643
774#define DHEAP 4 1644#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1645#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1646#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1647#define UPHEAP_DONE(p,k) ((p) == (k))
776 1648
777/* towards the root */ 1649/* away from the root */
778void inline_speed 1650inline_speed void
779upheap (WT *heap, int k) 1651downheap (ANHE *heap, int N, int k)
780{ 1652{
781 WT w = heap [k]; 1653 ANHE he = heap [k];
1654 ANHE *E = heap + N + HEAP0;
782 1655
783 for (;;) 1656 for (;;)
784 { 1657 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w->at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat; 1658 ev_tstamp minat;
809 WT *minpos; 1659 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1660 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 1661
812 // find minimum child 1662 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 1663 if (expect_true (pos + DHEAP - 1 < E))
814 { 1664 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at); 1665 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1666 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1667 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1668 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1669 }
1670 else if (pos < E)
1671 {
1672 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1673 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1674 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1675 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
820 } 1676 }
821 else 1677 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
831
832 if (w->at <= minat)
833 break; 1678 break;
834 1679
835 ev_active (*minpos) = k; 1680 if (ANHE_at (he) <= minat)
1681 break;
1682
836 heap [k] = *minpos; 1683 heap [k] = *minpos;
1684 ev_active (ANHE_w (*minpos)) = k;
837 1685
838 k = minpos - heap; 1686 k = minpos - heap;
839 } 1687 }
840 1688
841 heap [k] = w; 1689 heap [k] = he;
842 ev_active (heap [k]) = k; 1690 ev_active (ANHE_w (he)) = k;
843} 1691}
844 1692
845#else // 4HEAP 1693#else /* 4HEAP */
846 1694
847#define HEAP0 1 1695#define HEAP0 1
1696#define HPARENT(k) ((k) >> 1)
1697#define UPHEAP_DONE(p,k) (!(p))
848 1698
849/* towards the root */ 1699/* away from the root */
850void inline_speed 1700inline_speed void
851upheap (WT *heap, int k) 1701downheap (ANHE *heap, int N, int k)
852{ 1702{
853 WT w = heap [k]; 1703 ANHE he = heap [k];
854 1704
855 for (;;) 1705 for (;;)
856 { 1706 {
857 int p = k >> 1; 1707 int c = k << 1;
858 1708
859 /* maybe we could use a dummy element at heap [0]? */ 1709 if (c >= N + HEAP0)
860 if (!p || heap [p]->at <= w->at)
861 break; 1710 break;
862 1711
863 heap [k] = heap [p]; 1712 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
864 ev_active (heap [k]) = k; 1713 ? 1 : 0;
865 k = p;
866 }
867 1714
868 heap [k] = w; 1715 if (ANHE_at (he) <= ANHE_at (heap [c]))
869 ev_active (heap [k]) = k;
870}
871
872/* away from the root */
873void inline_speed
874downheap (WT *heap, int N, int k)
875{
876 WT w = heap [k];
877
878 for (;;)
879 {
880 int c = k << 1;
881
882 if (c > N)
883 break; 1716 break;
884 1717
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
886 ? 1 : 0;
887
888 if (w->at <= heap [c]->at)
889 break;
890
891 heap [k] = heap [c]; 1718 heap [k] = heap [c];
892 ((W)heap [k])->active = k; 1719 ev_active (ANHE_w (heap [k])) = k;
893 1720
894 k = c; 1721 k = c;
895 } 1722 }
896 1723
897 heap [k] = w; 1724 heap [k] = he;
1725 ev_active (ANHE_w (he)) = k;
1726}
1727#endif
1728
1729/* towards the root */
1730inline_speed void
1731upheap (ANHE *heap, int k)
1732{
1733 ANHE he = heap [k];
1734
1735 for (;;)
1736 {
1737 int p = HPARENT (k);
1738
1739 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1740 break;
1741
1742 heap [k] = heap [p];
898 ev_active (heap [k]) = k; 1743 ev_active (ANHE_w (heap [k])) = k;
899} 1744 k = p;
900#endif 1745 }
901 1746
902void inline_size 1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750
1751/* move an element suitably so it is in a correct place */
1752inline_size void
903adjustheap (WT *heap, int N, int k) 1753adjustheap (ANHE *heap, int N, int k)
904{ 1754{
1755 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
905 upheap (heap, k); 1756 upheap (heap, k);
1757 else
906 downheap (heap, N, k); 1758 downheap (heap, N, k);
1759}
1760
1761/* rebuild the heap: this function is used only once and executed rarely */
1762inline_size void
1763reheap (ANHE *heap, int N)
1764{
1765 int i;
1766
1767 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1768 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1769 for (i = 0; i < N; ++i)
1770 upheap (heap, i + HEAP0);
907} 1771}
908 1772
909/*****************************************************************************/ 1773/*****************************************************************************/
910 1774
1775/* associate signal watchers to a signal signal */
911typedef struct 1776typedef struct
912{ 1777{
1778 EV_ATOMIC_T pending;
1779#if EV_MULTIPLICITY
1780 EV_P;
1781#endif
913 WL head; 1782 WL head;
914 EV_ATOMIC_T gotsig;
915} ANSIG; 1783} ANSIG;
916 1784
917static ANSIG *signals; 1785static ANSIG signals [EV_NSIG - 1];
918static int signalmax;
919
920static EV_ATOMIC_T gotsig;
921
922void inline_size
923signals_init (ANSIG *base, int count)
924{
925 while (count--)
926 {
927 base->head = 0;
928 base->gotsig = 0;
929
930 ++base;
931 }
932}
933 1786
934/*****************************************************************************/ 1787/*****************************************************************************/
935 1788
936void inline_speed 1789#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
937fd_intern (int fd)
938{
939#ifdef _WIN32
940 int arg = 1;
941 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
942#else
943 fcntl (fd, F_SETFD, FD_CLOEXEC);
944 fcntl (fd, F_SETFL, O_NONBLOCK);
945#endif
946}
947 1790
948static void noinline 1791static void noinline ecb_cold
949evpipe_init (EV_P) 1792evpipe_init (EV_P)
950{ 1793{
951 if (!ev_is_active (&pipeev)) 1794 if (!ev_is_active (&pipe_w))
952 { 1795 {
953#if EV_USE_EVENTFD 1796# if EV_USE_EVENTFD
1797 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1798 if (evfd < 0 && errno == EINVAL)
954 if ((evfd = eventfd (0, 0)) >= 0) 1799 evfd = eventfd (0, 0);
1800
1801 if (evfd >= 0)
955 { 1802 {
956 evpipe [0] = -1; 1803 evpipe [0] = -1;
957 fd_intern (evfd); 1804 fd_intern (evfd); /* doing it twice doesn't hurt */
958 ev_io_set (&pipeev, evfd, EV_READ); 1805 ev_io_set (&pipe_w, evfd, EV_READ);
959 } 1806 }
960 else 1807 else
961#endif 1808# endif
962 { 1809 {
963 while (pipe (evpipe)) 1810 while (pipe (evpipe))
964 syserr ("(libev) error creating signal/async pipe"); 1811 ev_syserr ("(libev) error creating signal/async pipe");
965 1812
966 fd_intern (evpipe [0]); 1813 fd_intern (evpipe [0]);
967 fd_intern (evpipe [1]); 1814 fd_intern (evpipe [1]);
968 ev_io_set (&pipeev, evpipe [0], EV_READ); 1815 ev_io_set (&pipe_w, evpipe [0], EV_READ);
969 } 1816 }
970 1817
971 ev_io_start (EV_A_ &pipeev); 1818 ev_io_start (EV_A_ &pipe_w);
972 ev_unref (EV_A); /* watcher should not keep loop alive */ 1819 ev_unref (EV_A); /* watcher should not keep loop alive */
973 } 1820 }
974} 1821}
975 1822
976void inline_size 1823inline_speed void
977evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1824evpipe_write (EV_P_ EV_ATOMIC_T *flag)
978{ 1825{
979 if (!*flag) 1826 if (expect_true (*flag))
1827 return;
1828
1829 *flag = 1;
1830
1831 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1832
1833 pipe_write_skipped = 1;
1834
1835 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1836
1837 if (pipe_write_wanted)
980 { 1838 {
1839 int old_errno;
1840
1841 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1842
981 int old_errno = errno; /* save errno because write might clobber it */ 1843 old_errno = errno; /* save errno because write will clobber it */
982
983 *flag = 1;
984 1844
985#if EV_USE_EVENTFD 1845#if EV_USE_EVENTFD
986 if (evfd >= 0) 1846 if (evfd >= 0)
987 { 1847 {
988 uint64_t counter = 1; 1848 uint64_t counter = 1;
989 write (evfd, &counter, sizeof (uint64_t)); 1849 write (evfd, &counter, sizeof (uint64_t));
990 } 1850 }
991 else 1851 else
992#endif 1852#endif
1853 {
1854 /* win32 people keep sending patches that change this write() to send() */
1855 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1856 /* so when you think this write should be a send instead, please find out */
1857 /* where your send() is from - it's definitely not the microsoft send, and */
1858 /* tell me. thank you. */
993 write (evpipe [1], &old_errno, 1); 1859 write (evpipe [1], &(evpipe [1]), 1);
1860 }
994 1861
995 errno = old_errno; 1862 errno = old_errno;
996 } 1863 }
997} 1864}
998 1865
1866/* called whenever the libev signal pipe */
1867/* got some events (signal, async) */
999static void 1868static void
1000pipecb (EV_P_ ev_io *iow, int revents) 1869pipecb (EV_P_ ev_io *iow, int revents)
1001{ 1870{
1871 int i;
1872
1873 if (revents & EV_READ)
1874 {
1002#if EV_USE_EVENTFD 1875#if EV_USE_EVENTFD
1003 if (evfd >= 0) 1876 if (evfd >= 0)
1004 { 1877 {
1005 uint64_t counter; 1878 uint64_t counter;
1006 read (evfd, &counter, sizeof (uint64_t)); 1879 read (evfd, &counter, sizeof (uint64_t));
1007 } 1880 }
1008 else 1881 else
1009#endif 1882#endif
1010 { 1883 {
1011 char dummy; 1884 char dummy;
1885 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1012 read (evpipe [0], &dummy, 1); 1886 read (evpipe [0], &dummy, 1);
1887 }
1888 }
1889
1890 pipe_write_skipped = 0;
1891
1892#if EV_SIGNAL_ENABLE
1893 if (sig_pending)
1013 } 1894 {
1895 sig_pending = 0;
1014 1896
1015 if (gotsig && ev_is_default_loop (EV_A)) 1897 for (i = EV_NSIG - 1; i--; )
1016 { 1898 if (expect_false (signals [i].pending))
1017 int signum;
1018 gotsig = 0;
1019
1020 for (signum = signalmax; signum--; )
1021 if (signals [signum].gotsig)
1022 ev_feed_signal_event (EV_A_ signum + 1); 1899 ev_feed_signal_event (EV_A_ i + 1);
1023 } 1900 }
1901#endif
1024 1902
1025#if EV_ASYNC_ENABLE 1903#if EV_ASYNC_ENABLE
1026 if (gotasync) 1904 if (async_pending)
1027 { 1905 {
1028 int i; 1906 async_pending = 0;
1029 gotasync = 0;
1030 1907
1031 for (i = asynccnt; i--; ) 1908 for (i = asynccnt; i--; )
1032 if (asyncs [i]->sent) 1909 if (asyncs [i]->sent)
1033 { 1910 {
1034 asyncs [i]->sent = 0; 1911 asyncs [i]->sent = 0;
1038#endif 1915#endif
1039} 1916}
1040 1917
1041/*****************************************************************************/ 1918/*****************************************************************************/
1042 1919
1920void
1921ev_feed_signal (int signum)
1922{
1923#if EV_MULTIPLICITY
1924 EV_P = signals [signum - 1].loop;
1925
1926 if (!EV_A)
1927 return;
1928#endif
1929
1930 if (!ev_active (&pipe_w))
1931 return;
1932
1933 signals [signum - 1].pending = 1;
1934 evpipe_write (EV_A_ &sig_pending);
1935}
1936
1043static void 1937static void
1044ev_sighandler (int signum) 1938ev_sighandler (int signum)
1045{ 1939{
1046#if EV_MULTIPLICITY
1047 struct ev_loop *loop = &default_loop_struct;
1048#endif
1049
1050#if _WIN32 1940#ifdef _WIN32
1051 signal (signum, ev_sighandler); 1941 signal (signum, ev_sighandler);
1052#endif 1942#endif
1053 1943
1054 signals [signum - 1].gotsig = 1; 1944 ev_feed_signal (signum);
1055 evpipe_write (EV_A_ &gotsig);
1056} 1945}
1057 1946
1058void noinline 1947void noinline
1059ev_feed_signal_event (EV_P_ int signum) 1948ev_feed_signal_event (EV_P_ int signum)
1060{ 1949{
1061 WL w; 1950 WL w;
1062 1951
1952 if (expect_false (signum <= 0 || signum > EV_NSIG))
1953 return;
1954
1955 --signum;
1956
1063#if EV_MULTIPLICITY 1957#if EV_MULTIPLICITY
1064 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1958 /* it is permissible to try to feed a signal to the wrong loop */
1065#endif 1959 /* or, likely more useful, feeding a signal nobody is waiting for */
1066 1960
1067 --signum; 1961 if (expect_false (signals [signum].loop != EV_A))
1068
1069 if (signum < 0 || signum >= signalmax)
1070 return; 1962 return;
1963#endif
1071 1964
1072 signals [signum].gotsig = 0; 1965 signals [signum].pending = 0;
1073 1966
1074 for (w = signals [signum].head; w; w = w->next) 1967 for (w = signals [signum].head; w; w = w->next)
1075 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1968 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1076} 1969}
1077 1970
1971#if EV_USE_SIGNALFD
1972static void
1973sigfdcb (EV_P_ ev_io *iow, int revents)
1974{
1975 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1976
1977 for (;;)
1978 {
1979 ssize_t res = read (sigfd, si, sizeof (si));
1980
1981 /* not ISO-C, as res might be -1, but works with SuS */
1982 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1983 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1984
1985 if (res < (ssize_t)sizeof (si))
1986 break;
1987 }
1988}
1989#endif
1990
1991#endif
1992
1078/*****************************************************************************/ 1993/*****************************************************************************/
1079 1994
1995#if EV_CHILD_ENABLE
1080static WL childs [EV_PID_HASHSIZE]; 1996static WL childs [EV_PID_HASHSIZE];
1081
1082#ifndef _WIN32
1083 1997
1084static ev_signal childev; 1998static ev_signal childev;
1085 1999
1086#ifndef WIFCONTINUED 2000#ifndef WIFCONTINUED
1087# define WIFCONTINUED(status) 0 2001# define WIFCONTINUED(status) 0
1088#endif 2002#endif
1089 2003
1090void inline_speed 2004/* handle a single child status event */
2005inline_speed void
1091child_reap (EV_P_ int chain, int pid, int status) 2006child_reap (EV_P_ int chain, int pid, int status)
1092{ 2007{
1093 ev_child *w; 2008 ev_child *w;
1094 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2009 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1095 2010
1096 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2011 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1097 { 2012 {
1098 if ((w->pid == pid || !w->pid) 2013 if ((w->pid == pid || !w->pid)
1099 && (!traced || (w->flags & 1))) 2014 && (!traced || (w->flags & 1)))
1100 { 2015 {
1101 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2016 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1108 2023
1109#ifndef WCONTINUED 2024#ifndef WCONTINUED
1110# define WCONTINUED 0 2025# define WCONTINUED 0
1111#endif 2026#endif
1112 2027
2028/* called on sigchld etc., calls waitpid */
1113static void 2029static void
1114childcb (EV_P_ ev_signal *sw, int revents) 2030childcb (EV_P_ ev_signal *sw, int revents)
1115{ 2031{
1116 int pid, status; 2032 int pid, status;
1117 2033
1125 /* make sure we are called again until all children have been reaped */ 2041 /* make sure we are called again until all children have been reaped */
1126 /* we need to do it this way so that the callback gets called before we continue */ 2042 /* we need to do it this way so that the callback gets called before we continue */
1127 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2043 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1128 2044
1129 child_reap (EV_A_ pid, pid, status); 2045 child_reap (EV_A_ pid, pid, status);
1130 if (EV_PID_HASHSIZE > 1) 2046 if ((EV_PID_HASHSIZE) > 1)
1131 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2047 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1132} 2048}
1133 2049
1134#endif 2050#endif
1135 2051
1136/*****************************************************************************/ 2052/*****************************************************************************/
1137 2053
2054#if EV_USE_IOCP
2055# include "ev_iocp.c"
2056#endif
1138#if EV_USE_PORT 2057#if EV_USE_PORT
1139# include "ev_port.c" 2058# include "ev_port.c"
1140#endif 2059#endif
1141#if EV_USE_KQUEUE 2060#if EV_USE_KQUEUE
1142# include "ev_kqueue.c" 2061# include "ev_kqueue.c"
1149#endif 2068#endif
1150#if EV_USE_SELECT 2069#if EV_USE_SELECT
1151# include "ev_select.c" 2070# include "ev_select.c"
1152#endif 2071#endif
1153 2072
1154int 2073int ecb_cold
1155ev_version_major (void) 2074ev_version_major (void)
1156{ 2075{
1157 return EV_VERSION_MAJOR; 2076 return EV_VERSION_MAJOR;
1158} 2077}
1159 2078
1160int 2079int ecb_cold
1161ev_version_minor (void) 2080ev_version_minor (void)
1162{ 2081{
1163 return EV_VERSION_MINOR; 2082 return EV_VERSION_MINOR;
1164} 2083}
1165 2084
1166/* return true if we are running with elevated privileges and should ignore env variables */ 2085/* return true if we are running with elevated privileges and should ignore env variables */
1167int inline_size 2086int inline_size ecb_cold
1168enable_secure (void) 2087enable_secure (void)
1169{ 2088{
1170#ifdef _WIN32 2089#ifdef _WIN32
1171 return 0; 2090 return 0;
1172#else 2091#else
1173 return getuid () != geteuid () 2092 return getuid () != geteuid ()
1174 || getgid () != getegid (); 2093 || getgid () != getegid ();
1175#endif 2094#endif
1176} 2095}
1177 2096
1178unsigned int 2097unsigned int ecb_cold
1179ev_supported_backends (void) 2098ev_supported_backends (void)
1180{ 2099{
1181 unsigned int flags = 0; 2100 unsigned int flags = 0;
1182 2101
1183 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2102 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1187 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2106 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1188 2107
1189 return flags; 2108 return flags;
1190} 2109}
1191 2110
1192unsigned int 2111unsigned int ecb_cold
1193ev_recommended_backends (void) 2112ev_recommended_backends (void)
1194{ 2113{
1195 unsigned int flags = ev_supported_backends (); 2114 unsigned int flags = ev_supported_backends ();
1196 2115
1197#ifndef __NetBSD__ 2116#ifndef __NetBSD__
1198 /* kqueue is borked on everything but netbsd apparently */ 2117 /* kqueue is borked on everything but netbsd apparently */
1199 /* it usually doesn't work correctly on anything but sockets and pipes */ 2118 /* it usually doesn't work correctly on anything but sockets and pipes */
1200 flags &= ~EVBACKEND_KQUEUE; 2119 flags &= ~EVBACKEND_KQUEUE;
1201#endif 2120#endif
1202#ifdef __APPLE__ 2121#ifdef __APPLE__
1203 // flags &= ~EVBACKEND_KQUEUE; for documentation 2122 /* only select works correctly on that "unix-certified" platform */
1204 flags &= ~EVBACKEND_POLL; 2123 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2124 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2125#endif
2126#ifdef __FreeBSD__
2127 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1205#endif 2128#endif
1206 2129
1207 return flags; 2130 return flags;
1208} 2131}
1209 2132
1210unsigned int 2133unsigned int ecb_cold
1211ev_embeddable_backends (void) 2134ev_embeddable_backends (void)
1212{ 2135{
1213 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2136 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1214 2137
1215 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2138 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1216 /* please fix it and tell me how to detect the fix */ 2139 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1217 flags &= ~EVBACKEND_EPOLL; 2140 flags &= ~EVBACKEND_EPOLL;
1218 2141
1219 return flags; 2142 return flags;
1220} 2143}
1221 2144
1222unsigned int 2145unsigned int
1223ev_backend (EV_P) 2146ev_backend (EV_P)
1224{ 2147{
1225 return backend; 2148 return backend;
1226} 2149}
1227 2150
2151#if EV_FEATURE_API
1228unsigned int 2152unsigned int
1229ev_loop_count (EV_P) 2153ev_iteration (EV_P)
1230{ 2154{
1231 return loop_count; 2155 return loop_count;
2156}
2157
2158unsigned int
2159ev_depth (EV_P)
2160{
2161 return loop_depth;
1232} 2162}
1233 2163
1234void 2164void
1235ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2165ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1236{ 2166{
1241ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2171ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1242{ 2172{
1243 timeout_blocktime = interval; 2173 timeout_blocktime = interval;
1244} 2174}
1245 2175
2176void
2177ev_set_userdata (EV_P_ void *data)
2178{
2179 userdata = data;
2180}
2181
2182void *
2183ev_userdata (EV_P)
2184{
2185 return userdata;
2186}
2187
2188void
2189ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2190{
2191 invoke_cb = invoke_pending_cb;
2192}
2193
2194void
2195ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2196{
2197 release_cb = release;
2198 acquire_cb = acquire;
2199}
2200#endif
2201
2202/* initialise a loop structure, must be zero-initialised */
1246static void noinline 2203static void noinline ecb_cold
1247loop_init (EV_P_ unsigned int flags) 2204loop_init (EV_P_ unsigned int flags)
1248{ 2205{
1249 if (!backend) 2206 if (!backend)
1250 { 2207 {
2208 origflags = flags;
2209
2210#if EV_USE_REALTIME
2211 if (!have_realtime)
2212 {
2213 struct timespec ts;
2214
2215 if (!clock_gettime (CLOCK_REALTIME, &ts))
2216 have_realtime = 1;
2217 }
2218#endif
2219
1251#if EV_USE_MONOTONIC 2220#if EV_USE_MONOTONIC
2221 if (!have_monotonic)
1252 { 2222 {
1253 struct timespec ts; 2223 struct timespec ts;
2224
1254 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2225 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1255 have_monotonic = 1; 2226 have_monotonic = 1;
1256 } 2227 }
1257#endif
1258
1259 ev_rt_now = ev_time ();
1260 mn_now = get_clock ();
1261 now_floor = mn_now;
1262 rtmn_diff = ev_rt_now - mn_now;
1263
1264 io_blocktime = 0.;
1265 timeout_blocktime = 0.;
1266 backend = 0;
1267 backend_fd = -1;
1268 gotasync = 0;
1269#if EV_USE_INOTIFY
1270 fs_fd = -2;
1271#endif 2228#endif
1272 2229
1273 /* pid check not overridable via env */ 2230 /* pid check not overridable via env */
1274#ifndef _WIN32 2231#ifndef _WIN32
1275 if (flags & EVFLAG_FORKCHECK) 2232 if (flags & EVFLAG_FORKCHECK)
1279 if (!(flags & EVFLAG_NOENV) 2236 if (!(flags & EVFLAG_NOENV)
1280 && !enable_secure () 2237 && !enable_secure ()
1281 && getenv ("LIBEV_FLAGS")) 2238 && getenv ("LIBEV_FLAGS"))
1282 flags = atoi (getenv ("LIBEV_FLAGS")); 2239 flags = atoi (getenv ("LIBEV_FLAGS"));
1283 2240
1284 if (!(flags & 0x0000ffffU)) 2241 ev_rt_now = ev_time ();
2242 mn_now = get_clock ();
2243 now_floor = mn_now;
2244 rtmn_diff = ev_rt_now - mn_now;
2245#if EV_FEATURE_API
2246 invoke_cb = ev_invoke_pending;
2247#endif
2248
2249 io_blocktime = 0.;
2250 timeout_blocktime = 0.;
2251 backend = 0;
2252 backend_fd = -1;
2253 sig_pending = 0;
2254#if EV_ASYNC_ENABLE
2255 async_pending = 0;
2256#endif
2257 pipe_write_skipped = 0;
2258 pipe_write_wanted = 0;
2259#if EV_USE_INOTIFY
2260 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2261#endif
2262#if EV_USE_SIGNALFD
2263 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2264#endif
2265
2266 if (!(flags & EVBACKEND_MASK))
1285 flags |= ev_recommended_backends (); 2267 flags |= ev_recommended_backends ();
1286 2268
2269#if EV_USE_IOCP
2270 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2271#endif
1287#if EV_USE_PORT 2272#if EV_USE_PORT
1288 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2273 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1289#endif 2274#endif
1290#if EV_USE_KQUEUE 2275#if EV_USE_KQUEUE
1291 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2276 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1298#endif 2283#endif
1299#if EV_USE_SELECT 2284#if EV_USE_SELECT
1300 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2285 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1301#endif 2286#endif
1302 2287
2288 ev_prepare_init (&pending_w, pendingcb);
2289
2290#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1303 ev_init (&pipeev, pipecb); 2291 ev_init (&pipe_w, pipecb);
1304 ev_set_priority (&pipeev, EV_MAXPRI); 2292 ev_set_priority (&pipe_w, EV_MAXPRI);
2293#endif
1305 } 2294 }
1306} 2295}
1307 2296
1308static void noinline 2297/* free up a loop structure */
2298void ecb_cold
1309loop_destroy (EV_P) 2299ev_loop_destroy (EV_P)
1310{ 2300{
1311 int i; 2301 int i;
1312 2302
2303#if EV_MULTIPLICITY
2304 /* mimic free (0) */
2305 if (!EV_A)
2306 return;
2307#endif
2308
2309#if EV_CLEANUP_ENABLE
2310 /* queue cleanup watchers (and execute them) */
2311 if (expect_false (cleanupcnt))
2312 {
2313 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2314 EV_INVOKE_PENDING;
2315 }
2316#endif
2317
2318#if EV_CHILD_ENABLE
2319 if (ev_is_active (&childev))
2320 {
2321 ev_ref (EV_A); /* child watcher */
2322 ev_signal_stop (EV_A_ &childev);
2323 }
2324#endif
2325
1313 if (ev_is_active (&pipeev)) 2326 if (ev_is_active (&pipe_w))
1314 { 2327 {
1315 ev_ref (EV_A); /* signal watcher */ 2328 /*ev_ref (EV_A);*/
1316 ev_io_stop (EV_A_ &pipeev); 2329 /*ev_io_stop (EV_A_ &pipe_w);*/
1317 2330
1318#if EV_USE_EVENTFD 2331#if EV_USE_EVENTFD
1319 if (evfd >= 0) 2332 if (evfd >= 0)
1320 close (evfd); 2333 close (evfd);
1321#endif 2334#endif
1322 2335
1323 if (evpipe [0] >= 0) 2336 if (evpipe [0] >= 0)
1324 { 2337 {
1325 close (evpipe [0]); 2338 EV_WIN32_CLOSE_FD (evpipe [0]);
1326 close (evpipe [1]); 2339 EV_WIN32_CLOSE_FD (evpipe [1]);
1327 } 2340 }
1328 } 2341 }
2342
2343#if EV_USE_SIGNALFD
2344 if (ev_is_active (&sigfd_w))
2345 close (sigfd);
2346#endif
1329 2347
1330#if EV_USE_INOTIFY 2348#if EV_USE_INOTIFY
1331 if (fs_fd >= 0) 2349 if (fs_fd >= 0)
1332 close (fs_fd); 2350 close (fs_fd);
1333#endif 2351#endif
1334 2352
1335 if (backend_fd >= 0) 2353 if (backend_fd >= 0)
1336 close (backend_fd); 2354 close (backend_fd);
1337 2355
2356#if EV_USE_IOCP
2357 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2358#endif
1338#if EV_USE_PORT 2359#if EV_USE_PORT
1339 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2360 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1340#endif 2361#endif
1341#if EV_USE_KQUEUE 2362#if EV_USE_KQUEUE
1342 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2363 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1357#if EV_IDLE_ENABLE 2378#if EV_IDLE_ENABLE
1358 array_free (idle, [i]); 2379 array_free (idle, [i]);
1359#endif 2380#endif
1360 } 2381 }
1361 2382
1362 ev_free (anfds); anfdmax = 0; 2383 ev_free (anfds); anfds = 0; anfdmax = 0;
1363 2384
1364 /* have to use the microsoft-never-gets-it-right macro */ 2385 /* have to use the microsoft-never-gets-it-right macro */
2386 array_free (rfeed, EMPTY);
1365 array_free (fdchange, EMPTY); 2387 array_free (fdchange, EMPTY);
1366 array_free (timer, EMPTY); 2388 array_free (timer, EMPTY);
1367#if EV_PERIODIC_ENABLE 2389#if EV_PERIODIC_ENABLE
1368 array_free (periodic, EMPTY); 2390 array_free (periodic, EMPTY);
1369#endif 2391#endif
1370#if EV_FORK_ENABLE 2392#if EV_FORK_ENABLE
1371 array_free (fork, EMPTY); 2393 array_free (fork, EMPTY);
1372#endif 2394#endif
2395#if EV_CLEANUP_ENABLE
2396 array_free (cleanup, EMPTY);
2397#endif
1373 array_free (prepare, EMPTY); 2398 array_free (prepare, EMPTY);
1374 array_free (check, EMPTY); 2399 array_free (check, EMPTY);
1375#if EV_ASYNC_ENABLE 2400#if EV_ASYNC_ENABLE
1376 array_free (async, EMPTY); 2401 array_free (async, EMPTY);
1377#endif 2402#endif
1378 2403
1379 backend = 0; 2404 backend = 0;
2405
2406#if EV_MULTIPLICITY
2407 if (ev_is_default_loop (EV_A))
2408#endif
2409 ev_default_loop_ptr = 0;
2410#if EV_MULTIPLICITY
2411 else
2412 ev_free (EV_A);
2413#endif
1380} 2414}
1381 2415
1382#if EV_USE_INOTIFY 2416#if EV_USE_INOTIFY
1383void inline_size infy_fork (EV_P); 2417inline_size void infy_fork (EV_P);
1384#endif 2418#endif
1385 2419
1386void inline_size 2420inline_size void
1387loop_fork (EV_P) 2421loop_fork (EV_P)
1388{ 2422{
1389#if EV_USE_PORT 2423#if EV_USE_PORT
1390 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2424 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1391#endif 2425#endif
1397#endif 2431#endif
1398#if EV_USE_INOTIFY 2432#if EV_USE_INOTIFY
1399 infy_fork (EV_A); 2433 infy_fork (EV_A);
1400#endif 2434#endif
1401 2435
1402 if (ev_is_active (&pipeev)) 2436 if (ev_is_active (&pipe_w))
1403 { 2437 {
1404 /* this "locks" the handlers against writing to the pipe */ 2438 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1405 /* while we modify the fd vars */
1406 gotsig = 1;
1407#if EV_ASYNC_ENABLE
1408 gotasync = 1;
1409#endif
1410 2439
1411 ev_ref (EV_A); 2440 ev_ref (EV_A);
1412 ev_io_stop (EV_A_ &pipeev); 2441 ev_io_stop (EV_A_ &pipe_w);
1413 2442
1414#if EV_USE_EVENTFD 2443#if EV_USE_EVENTFD
1415 if (evfd >= 0) 2444 if (evfd >= 0)
1416 close (evfd); 2445 close (evfd);
1417#endif 2446#endif
1418 2447
1419 if (evpipe [0] >= 0) 2448 if (evpipe [0] >= 0)
1420 { 2449 {
1421 close (evpipe [0]); 2450 EV_WIN32_CLOSE_FD (evpipe [0]);
1422 close (evpipe [1]); 2451 EV_WIN32_CLOSE_FD (evpipe [1]);
1423 } 2452 }
1424 2453
2454#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1425 evpipe_init (EV_A); 2455 evpipe_init (EV_A);
1426 /* now iterate over everything, in case we missed something */ 2456 /* now iterate over everything, in case we missed something */
1427 pipecb (EV_A_ &pipeev, EV_READ); 2457 pipecb (EV_A_ &pipe_w, EV_READ);
2458#endif
1428 } 2459 }
1429 2460
1430 postfork = 0; 2461 postfork = 0;
1431} 2462}
1432 2463
1433#if EV_MULTIPLICITY 2464#if EV_MULTIPLICITY
2465
1434struct ev_loop * 2466struct ev_loop * ecb_cold
1435ev_loop_new (unsigned int flags) 2467ev_loop_new (unsigned int flags)
1436{ 2468{
1437 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2469 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1438 2470
1439 memset (loop, 0, sizeof (struct ev_loop)); 2471 memset (EV_A, 0, sizeof (struct ev_loop));
1440
1441 loop_init (EV_A_ flags); 2472 loop_init (EV_A_ flags);
1442 2473
1443 if (ev_backend (EV_A)) 2474 if (ev_backend (EV_A))
1444 return loop; 2475 return EV_A;
1445 2476
2477 ev_free (EV_A);
1446 return 0; 2478 return 0;
1447} 2479}
1448 2480
1449void 2481#endif /* multiplicity */
1450ev_loop_destroy (EV_P)
1451{
1452 loop_destroy (EV_A);
1453 ev_free (loop);
1454}
1455 2482
1456void 2483#if EV_VERIFY
1457ev_loop_fork (EV_P) 2484static void noinline ecb_cold
2485verify_watcher (EV_P_ W w)
1458{ 2486{
1459 postfork = 1; /* must be in line with ev_default_fork */ 2487 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2488
2489 if (w->pending)
2490 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2491}
2492
2493static void noinline ecb_cold
2494verify_heap (EV_P_ ANHE *heap, int N)
2495{
2496 int i;
2497
2498 for (i = HEAP0; i < N + HEAP0; ++i)
2499 {
2500 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2501 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2502 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2503
2504 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2505 }
2506}
2507
2508static void noinline ecb_cold
2509array_verify (EV_P_ W *ws, int cnt)
2510{
2511 while (cnt--)
2512 {
2513 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2514 verify_watcher (EV_A_ ws [cnt]);
2515 }
2516}
2517#endif
2518
2519#if EV_FEATURE_API
2520void ecb_cold
2521ev_verify (EV_P)
2522{
2523#if EV_VERIFY
2524 int i;
2525 WL w;
2526
2527 assert (activecnt >= -1);
2528
2529 assert (fdchangemax >= fdchangecnt);
2530 for (i = 0; i < fdchangecnt; ++i)
2531 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2532
2533 assert (anfdmax >= 0);
2534 for (i = 0; i < anfdmax; ++i)
2535 for (w = anfds [i].head; w; w = w->next)
2536 {
2537 verify_watcher (EV_A_ (W)w);
2538 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2539 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2540 }
2541
2542 assert (timermax >= timercnt);
2543 verify_heap (EV_A_ timers, timercnt);
2544
2545#if EV_PERIODIC_ENABLE
2546 assert (periodicmax >= periodiccnt);
2547 verify_heap (EV_A_ periodics, periodiccnt);
2548#endif
2549
2550 for (i = NUMPRI; i--; )
2551 {
2552 assert (pendingmax [i] >= pendingcnt [i]);
2553#if EV_IDLE_ENABLE
2554 assert (idleall >= 0);
2555 assert (idlemax [i] >= idlecnt [i]);
2556 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2557#endif
2558 }
2559
2560#if EV_FORK_ENABLE
2561 assert (forkmax >= forkcnt);
2562 array_verify (EV_A_ (W *)forks, forkcnt);
2563#endif
2564
2565#if EV_CLEANUP_ENABLE
2566 assert (cleanupmax >= cleanupcnt);
2567 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 assert (asyncmax >= asynccnt);
2572 array_verify (EV_A_ (W *)asyncs, asynccnt);
2573#endif
2574
2575#if EV_PREPARE_ENABLE
2576 assert (preparemax >= preparecnt);
2577 array_verify (EV_A_ (W *)prepares, preparecnt);
2578#endif
2579
2580#if EV_CHECK_ENABLE
2581 assert (checkmax >= checkcnt);
2582 array_verify (EV_A_ (W *)checks, checkcnt);
2583#endif
2584
2585# if 0
2586#if EV_CHILD_ENABLE
2587 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2588 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2589#endif
2590# endif
2591#endif
1460} 2592}
1461#endif 2593#endif
1462 2594
1463#if EV_MULTIPLICITY 2595#if EV_MULTIPLICITY
1464struct ev_loop * 2596struct ev_loop * ecb_cold
1465ev_default_loop_init (unsigned int flags)
1466#else 2597#else
1467int 2598int
2599#endif
1468ev_default_loop (unsigned int flags) 2600ev_default_loop (unsigned int flags)
1469#endif
1470{ 2601{
1471 if (!ev_default_loop_ptr) 2602 if (!ev_default_loop_ptr)
1472 { 2603 {
1473#if EV_MULTIPLICITY 2604#if EV_MULTIPLICITY
1474 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2605 EV_P = ev_default_loop_ptr = &default_loop_struct;
1475#else 2606#else
1476 ev_default_loop_ptr = 1; 2607 ev_default_loop_ptr = 1;
1477#endif 2608#endif
1478 2609
1479 loop_init (EV_A_ flags); 2610 loop_init (EV_A_ flags);
1480 2611
1481 if (ev_backend (EV_A)) 2612 if (ev_backend (EV_A))
1482 { 2613 {
1483#ifndef _WIN32 2614#if EV_CHILD_ENABLE
1484 ev_signal_init (&childev, childcb, SIGCHLD); 2615 ev_signal_init (&childev, childcb, SIGCHLD);
1485 ev_set_priority (&childev, EV_MAXPRI); 2616 ev_set_priority (&childev, EV_MAXPRI);
1486 ev_signal_start (EV_A_ &childev); 2617 ev_signal_start (EV_A_ &childev);
1487 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2618 ev_unref (EV_A); /* child watcher should not keep loop alive */
1488#endif 2619#endif
1493 2624
1494 return ev_default_loop_ptr; 2625 return ev_default_loop_ptr;
1495} 2626}
1496 2627
1497void 2628void
1498ev_default_destroy (void) 2629ev_loop_fork (EV_P)
1499{ 2630{
1500#if EV_MULTIPLICITY
1501 struct ev_loop *loop = ev_default_loop_ptr;
1502#endif
1503
1504#ifndef _WIN32
1505 ev_ref (EV_A); /* child watcher */
1506 ev_signal_stop (EV_A_ &childev);
1507#endif
1508
1509 loop_destroy (EV_A);
1510}
1511
1512void
1513ev_default_fork (void)
1514{
1515#if EV_MULTIPLICITY
1516 struct ev_loop *loop = ev_default_loop_ptr;
1517#endif
1518
1519 if (backend)
1520 postfork = 1; /* must be in line with ev_loop_fork */ 2631 postfork = 1; /* must be in line with ev_default_fork */
1521} 2632}
1522 2633
1523/*****************************************************************************/ 2634/*****************************************************************************/
1524 2635
1525void 2636void
1526ev_invoke (EV_P_ void *w, int revents) 2637ev_invoke (EV_P_ void *w, int revents)
1527{ 2638{
1528 EV_CB_INVOKE ((W)w, revents); 2639 EV_CB_INVOKE ((W)w, revents);
1529} 2640}
1530 2641
1531void inline_speed 2642unsigned int
1532call_pending (EV_P) 2643ev_pending_count (EV_P)
2644{
2645 int pri;
2646 unsigned int count = 0;
2647
2648 for (pri = NUMPRI; pri--; )
2649 count += pendingcnt [pri];
2650
2651 return count;
2652}
2653
2654void noinline
2655ev_invoke_pending (EV_P)
1533{ 2656{
1534 int pri; 2657 int pri;
1535 2658
1536 for (pri = NUMPRI; pri--; ) 2659 for (pri = NUMPRI; pri--; )
1537 while (pendingcnt [pri]) 2660 while (pendingcnt [pri])
1538 { 2661 {
1539 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2662 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1540 2663
1541 if (expect_true (p->w))
1542 {
1543 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1544
1545 p->w->pending = 0; 2664 p->w->pending = 0;
1546 EV_CB_INVOKE (p->w, p->events); 2665 EV_CB_INVOKE (p->w, p->events);
1547 } 2666 EV_FREQUENT_CHECK;
1548 } 2667 }
1549} 2668}
1550 2669
1551#if EV_IDLE_ENABLE 2670#if EV_IDLE_ENABLE
1552void inline_size 2671/* make idle watchers pending. this handles the "call-idle */
2672/* only when higher priorities are idle" logic */
2673inline_size void
1553idle_reify (EV_P) 2674idle_reify (EV_P)
1554{ 2675{
1555 if (expect_false (idleall)) 2676 if (expect_false (idleall))
1556 { 2677 {
1557 int pri; 2678 int pri;
1569 } 2690 }
1570 } 2691 }
1571} 2692}
1572#endif 2693#endif
1573 2694
1574void inline_size 2695/* make timers pending */
2696inline_size void
1575timers_reify (EV_P) 2697timers_reify (EV_P)
1576{ 2698{
2699 EV_FREQUENT_CHECK;
2700
1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2701 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1578 { 2702 {
1579 ev_timer *w = (ev_timer *)timers [HEAP0]; 2703 do
1580
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1582
1583 /* first reschedule or stop timer */
1584 if (w->repeat)
1585 { 2704 {
2705 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2706
2707 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2708
2709 /* first reschedule or stop timer */
2710 if (w->repeat)
2711 {
2712 ev_at (w) += w->repeat;
2713 if (ev_at (w) < mn_now)
2714 ev_at (w) = mn_now;
2715
1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2716 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1587 2717
1588 ev_at (w) += w->repeat; 2718 ANHE_at_cache (timers [HEAP0]);
1589 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now;
1591
1592 downheap (timers, timercnt, HEAP0); 2719 downheap (timers, timercnt, HEAP0);
2720 }
2721 else
2722 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2723
2724 EV_FREQUENT_CHECK;
2725 feed_reverse (EV_A_ (W)w);
1593 } 2726 }
1594 else 2727 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1596 2728
1597 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2729 feed_reverse_done (EV_A_ EV_TIMER);
1598 } 2730 }
1599} 2731}
1600 2732
1601#if EV_PERIODIC_ENABLE 2733#if EV_PERIODIC_ENABLE
1602void inline_size 2734
2735static void noinline
2736periodic_recalc (EV_P_ ev_periodic *w)
2737{
2738 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2739 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2740
2741 /* the above almost always errs on the low side */
2742 while (at <= ev_rt_now)
2743 {
2744 ev_tstamp nat = at + w->interval;
2745
2746 /* when resolution fails us, we use ev_rt_now */
2747 if (expect_false (nat == at))
2748 {
2749 at = ev_rt_now;
2750 break;
2751 }
2752
2753 at = nat;
2754 }
2755
2756 ev_at (w) = at;
2757}
2758
2759/* make periodics pending */
2760inline_size void
1603periodics_reify (EV_P) 2761periodics_reify (EV_P)
1604{ 2762{
2763 EV_FREQUENT_CHECK;
2764
1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1606 { 2766 {
1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2767 int feed_count = 0;
1608 2768
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2769 do
1610
1611 /* first reschedule or stop timer */
1612 if (w->reschedule_cb)
1613 { 2770 {
2771 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2772
2773 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2774
2775 /* first reschedule or stop timer */
2776 if (w->reschedule_cb)
2777 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2778 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2779
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2780 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2781
2782 ANHE_at_cache (periodics [HEAP0]);
1616 downheap (periodics, periodiccnt, 1); 2783 downheap (periodics, periodiccnt, HEAP0);
2784 }
2785 else if (w->interval)
2786 {
2787 periodic_recalc (EV_A_ w);
2788 ANHE_at_cache (periodics [HEAP0]);
2789 downheap (periodics, periodiccnt, HEAP0);
2790 }
2791 else
2792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2793
2794 EV_FREQUENT_CHECK;
2795 feed_reverse (EV_A_ (W)w);
1617 } 2796 }
1618 else if (w->interval) 2797 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1619 {
1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1623 downheap (periodics, periodiccnt, HEAP0);
1624 }
1625 else
1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1627 2798
1628 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2799 feed_reverse_done (EV_A_ EV_PERIODIC);
1629 } 2800 }
1630} 2801}
1631 2802
2803/* simply recalculate all periodics */
2804/* TODO: maybe ensure that at least one event happens when jumping forward? */
1632static void noinline 2805static void noinline ecb_cold
1633periodics_reschedule (EV_P) 2806periodics_reschedule (EV_P)
1634{ 2807{
1635 int i; 2808 int i;
1636 2809
1637 /* adjust periodics after time jump */ 2810 /* adjust periodics after time jump */
1638 for (i = 1; i <= periodiccnt; ++i) 2811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1639 { 2812 {
1640 ev_periodic *w = (ev_periodic *)periodics [i]; 2813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1641 2814
1642 if (w->reschedule_cb) 2815 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1644 else if (w->interval) 2817 else if (w->interval)
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2818 periodic_recalc (EV_A_ w);
2819
2820 ANHE_at_cache (periodics [i]);
2821 }
2822
2823 reheap (periodics, periodiccnt);
2824}
2825#endif
2826
2827/* adjust all timers by a given offset */
2828static void noinline ecb_cold
2829timers_reschedule (EV_P_ ev_tstamp adjust)
2830{
2831 int i;
2832
2833 for (i = 0; i < timercnt; ++i)
1646 } 2834 {
1647 2835 ANHE *he = timers + i + HEAP0;
1648 /* now rebuild the heap */ 2836 ANHE_w (*he)->at += adjust;
1649 for (i = periodiccnt >> 1; --i; ) 2837 ANHE_at_cache (*he);
1650 downheap (periodics, periodiccnt, i + HEAP0); 2838 }
1651} 2839}
1652#endif
1653 2840
1654void inline_speed 2841/* fetch new monotonic and realtime times from the kernel */
2842/* also detect if there was a timejump, and act accordingly */
2843inline_speed void
1655time_update (EV_P_ ev_tstamp max_block) 2844time_update (EV_P_ ev_tstamp max_block)
1656{ 2845{
1657 int i;
1658
1659#if EV_USE_MONOTONIC 2846#if EV_USE_MONOTONIC
1660 if (expect_true (have_monotonic)) 2847 if (expect_true (have_monotonic))
1661 { 2848 {
2849 int i;
1662 ev_tstamp odiff = rtmn_diff; 2850 ev_tstamp odiff = rtmn_diff;
1663 2851
1664 mn_now = get_clock (); 2852 mn_now = get_clock ();
1665 2853
1666 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2854 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1682 * doesn't hurt either as we only do this on time-jumps or 2870 * doesn't hurt either as we only do this on time-jumps or
1683 * in the unlikely event of having been preempted here. 2871 * in the unlikely event of having been preempted here.
1684 */ 2872 */
1685 for (i = 4; --i; ) 2873 for (i = 4; --i; )
1686 { 2874 {
2875 ev_tstamp diff;
1687 rtmn_diff = ev_rt_now - mn_now; 2876 rtmn_diff = ev_rt_now - mn_now;
1688 2877
2878 diff = odiff - rtmn_diff;
2879
1689 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2880 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1690 return; /* all is well */ 2881 return; /* all is well */
1691 2882
1692 ev_rt_now = ev_time (); 2883 ev_rt_now = ev_time ();
1693 mn_now = get_clock (); 2884 mn_now = get_clock ();
1694 now_floor = mn_now; 2885 now_floor = mn_now;
1695 } 2886 }
1696 2887
2888 /* no timer adjustment, as the monotonic clock doesn't jump */
2889 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1697# if EV_PERIODIC_ENABLE 2890# if EV_PERIODIC_ENABLE
1698 periodics_reschedule (EV_A); 2891 periodics_reschedule (EV_A);
1699# endif 2892# endif
1700 /* no timer adjustment, as the monotonic clock doesn't jump */
1701 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1702 } 2893 }
1703 else 2894 else
1704#endif 2895#endif
1705 { 2896 {
1706 ev_rt_now = ev_time (); 2897 ev_rt_now = ev_time ();
1707 2898
1708 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2899 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1709 { 2900 {
2901 /* adjust timers. this is easy, as the offset is the same for all of them */
2902 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1710#if EV_PERIODIC_ENABLE 2903#if EV_PERIODIC_ENABLE
1711 periodics_reschedule (EV_A); 2904 periodics_reschedule (EV_A);
1712#endif 2905#endif
1713 /* adjust timers. this is easy, as the offset is the same for all of them */
1714 for (i = 1; i <= timercnt; ++i)
1715 ev_at (timers [i]) += ev_rt_now - mn_now;
1716 } 2906 }
1717 2907
1718 mn_now = ev_rt_now; 2908 mn_now = ev_rt_now;
1719 } 2909 }
1720} 2910}
1721 2911
1722void 2912void
1723ev_ref (EV_P)
1724{
1725 ++activecnt;
1726}
1727
1728void
1729ev_unref (EV_P)
1730{
1731 --activecnt;
1732}
1733
1734static int loop_done;
1735
1736void
1737ev_loop (EV_P_ int flags) 2913ev_run (EV_P_ int flags)
1738{ 2914{
2915#if EV_FEATURE_API
2916 ++loop_depth;
2917#endif
2918
2919 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2920
1739 loop_done = EVUNLOOP_CANCEL; 2921 loop_done = EVBREAK_CANCEL;
1740 2922
1741 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2923 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1742 2924
1743 do 2925 do
1744 { 2926 {
2927#if EV_VERIFY >= 2
2928 ev_verify (EV_A);
2929#endif
2930
1745#ifndef _WIN32 2931#ifndef _WIN32
1746 if (expect_false (curpid)) /* penalise the forking check even more */ 2932 if (expect_false (curpid)) /* penalise the forking check even more */
1747 if (expect_false (getpid () != curpid)) 2933 if (expect_false (getpid () != curpid))
1748 { 2934 {
1749 curpid = getpid (); 2935 curpid = getpid ();
1755 /* we might have forked, so queue fork handlers */ 2941 /* we might have forked, so queue fork handlers */
1756 if (expect_false (postfork)) 2942 if (expect_false (postfork))
1757 if (forkcnt) 2943 if (forkcnt)
1758 { 2944 {
1759 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2945 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1760 call_pending (EV_A); 2946 EV_INVOKE_PENDING;
1761 } 2947 }
1762#endif 2948#endif
1763 2949
2950#if EV_PREPARE_ENABLE
1764 /* queue prepare watchers (and execute them) */ 2951 /* queue prepare watchers (and execute them) */
1765 if (expect_false (preparecnt)) 2952 if (expect_false (preparecnt))
1766 { 2953 {
1767 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2954 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1768 call_pending (EV_A); 2955 EV_INVOKE_PENDING;
1769 } 2956 }
2957#endif
1770 2958
1771 if (expect_false (!activecnt)) 2959 if (expect_false (loop_done))
1772 break; 2960 break;
1773 2961
1774 /* we might have forked, so reify kernel state if necessary */ 2962 /* we might have forked, so reify kernel state if necessary */
1775 if (expect_false (postfork)) 2963 if (expect_false (postfork))
1776 loop_fork (EV_A); 2964 loop_fork (EV_A);
1781 /* calculate blocking time */ 2969 /* calculate blocking time */
1782 { 2970 {
1783 ev_tstamp waittime = 0.; 2971 ev_tstamp waittime = 0.;
1784 ev_tstamp sleeptime = 0.; 2972 ev_tstamp sleeptime = 0.;
1785 2973
2974 /* remember old timestamp for io_blocktime calculation */
2975 ev_tstamp prev_mn_now = mn_now;
2976
2977 /* update time to cancel out callback processing overhead */
2978 time_update (EV_A_ 1e100);
2979
2980 /* from now on, we want a pipe-wake-up */
2981 pipe_write_wanted = 1;
2982
2983 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2984
1786 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2985 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1787 { 2986 {
1788 /* update time to cancel out callback processing overhead */
1789 time_update (EV_A_ 1e100);
1790
1791 waittime = MAX_BLOCKTIME; 2987 waittime = MAX_BLOCKTIME;
1792 2988
1793 if (timercnt) 2989 if (timercnt)
1794 { 2990 {
1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1796 if (waittime > to) waittime = to; 2992 if (waittime > to) waittime = to;
1797 } 2993 }
1798 2994
1799#if EV_PERIODIC_ENABLE 2995#if EV_PERIODIC_ENABLE
1800 if (periodiccnt) 2996 if (periodiccnt)
1801 { 2997 {
1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1803 if (waittime > to) waittime = to; 2999 if (waittime > to) waittime = to;
1804 } 3000 }
1805#endif 3001#endif
1806 3002
3003 /* don't let timeouts decrease the waittime below timeout_blocktime */
1807 if (expect_false (waittime < timeout_blocktime)) 3004 if (expect_false (waittime < timeout_blocktime))
1808 waittime = timeout_blocktime; 3005 waittime = timeout_blocktime;
1809 3006
1810 sleeptime = waittime - backend_fudge; 3007 /* at this point, we NEED to wait, so we have to ensure */
3008 /* to pass a minimum nonzero value to the backend */
3009 if (expect_false (waittime < backend_mintime))
3010 waittime = backend_mintime;
1811 3011
3012 /* extra check because io_blocktime is commonly 0 */
1812 if (expect_true (sleeptime > io_blocktime)) 3013 if (expect_false (io_blocktime))
1813 sleeptime = io_blocktime;
1814
1815 if (sleeptime)
1816 { 3014 {
3015 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3016
3017 if (sleeptime > waittime - backend_mintime)
3018 sleeptime = waittime - backend_mintime;
3019
3020 if (expect_true (sleeptime > 0.))
3021 {
1817 ev_sleep (sleeptime); 3022 ev_sleep (sleeptime);
1818 waittime -= sleeptime; 3023 waittime -= sleeptime;
3024 }
1819 } 3025 }
1820 } 3026 }
1821 3027
3028#if EV_FEATURE_API
1822 ++loop_count; 3029 ++loop_count;
3030#endif
3031 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1823 backend_poll (EV_A_ waittime); 3032 backend_poll (EV_A_ waittime);
3033 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3034
3035 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3036
3037 if (pipe_write_skipped)
3038 {
3039 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3040 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3041 }
3042
1824 3043
1825 /* update ev_rt_now, do magic */ 3044 /* update ev_rt_now, do magic */
1826 time_update (EV_A_ waittime + sleeptime); 3045 time_update (EV_A_ waittime + sleeptime);
1827 } 3046 }
1828 3047
1835#if EV_IDLE_ENABLE 3054#if EV_IDLE_ENABLE
1836 /* queue idle watchers unless other events are pending */ 3055 /* queue idle watchers unless other events are pending */
1837 idle_reify (EV_A); 3056 idle_reify (EV_A);
1838#endif 3057#endif
1839 3058
3059#if EV_CHECK_ENABLE
1840 /* queue check watchers, to be executed first */ 3060 /* queue check watchers, to be executed first */
1841 if (expect_false (checkcnt)) 3061 if (expect_false (checkcnt))
1842 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3062 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3063#endif
1843 3064
1844 call_pending (EV_A); 3065 EV_INVOKE_PENDING;
1845 } 3066 }
1846 while (expect_true ( 3067 while (expect_true (
1847 activecnt 3068 activecnt
1848 && !loop_done 3069 && !loop_done
1849 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3070 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1850 )); 3071 ));
1851 3072
1852 if (loop_done == EVUNLOOP_ONE) 3073 if (loop_done == EVBREAK_ONE)
1853 loop_done = EVUNLOOP_CANCEL; 3074 loop_done = EVBREAK_CANCEL;
3075
3076#if EV_FEATURE_API
3077 --loop_depth;
3078#endif
1854} 3079}
1855 3080
1856void 3081void
1857ev_unloop (EV_P_ int how) 3082ev_break (EV_P_ int how)
1858{ 3083{
1859 loop_done = how; 3084 loop_done = how;
1860} 3085}
1861 3086
3087void
3088ev_ref (EV_P)
3089{
3090 ++activecnt;
3091}
3092
3093void
3094ev_unref (EV_P)
3095{
3096 --activecnt;
3097}
3098
3099void
3100ev_now_update (EV_P)
3101{
3102 time_update (EV_A_ 1e100);
3103}
3104
3105void
3106ev_suspend (EV_P)
3107{
3108 ev_now_update (EV_A);
3109}
3110
3111void
3112ev_resume (EV_P)
3113{
3114 ev_tstamp mn_prev = mn_now;
3115
3116 ev_now_update (EV_A);
3117 timers_reschedule (EV_A_ mn_now - mn_prev);
3118#if EV_PERIODIC_ENABLE
3119 /* TODO: really do this? */
3120 periodics_reschedule (EV_A);
3121#endif
3122}
3123
1862/*****************************************************************************/ 3124/*****************************************************************************/
3125/* singly-linked list management, used when the expected list length is short */
1863 3126
1864void inline_size 3127inline_size void
1865wlist_add (WL *head, WL elem) 3128wlist_add (WL *head, WL elem)
1866{ 3129{
1867 elem->next = *head; 3130 elem->next = *head;
1868 *head = elem; 3131 *head = elem;
1869} 3132}
1870 3133
1871void inline_size 3134inline_size void
1872wlist_del (WL *head, WL elem) 3135wlist_del (WL *head, WL elem)
1873{ 3136{
1874 while (*head) 3137 while (*head)
1875 { 3138 {
1876 if (*head == elem) 3139 if (expect_true (*head == elem))
1877 { 3140 {
1878 *head = elem->next; 3141 *head = elem->next;
1879 return; 3142 break;
1880 } 3143 }
1881 3144
1882 head = &(*head)->next; 3145 head = &(*head)->next;
1883 } 3146 }
1884} 3147}
1885 3148
1886void inline_speed 3149/* internal, faster, version of ev_clear_pending */
3150inline_speed void
1887clear_pending (EV_P_ W w) 3151clear_pending (EV_P_ W w)
1888{ 3152{
1889 if (w->pending) 3153 if (w->pending)
1890 { 3154 {
1891 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3155 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1892 w->pending = 0; 3156 w->pending = 0;
1893 } 3157 }
1894} 3158}
1895 3159
1896int 3160int
1900 int pending = w_->pending; 3164 int pending = w_->pending;
1901 3165
1902 if (expect_true (pending)) 3166 if (expect_true (pending))
1903 { 3167 {
1904 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3168 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3169 p->w = (W)&pending_w;
1905 w_->pending = 0; 3170 w_->pending = 0;
1906 p->w = 0;
1907 return p->events; 3171 return p->events;
1908 } 3172 }
1909 else 3173 else
1910 return 0; 3174 return 0;
1911} 3175}
1912 3176
1913void inline_size 3177inline_size void
1914pri_adjust (EV_P_ W w) 3178pri_adjust (EV_P_ W w)
1915{ 3179{
1916 int pri = w->priority; 3180 int pri = ev_priority (w);
1917 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3181 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1918 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3182 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1919 w->priority = pri; 3183 ev_set_priority (w, pri);
1920} 3184}
1921 3185
1922void inline_speed 3186inline_speed void
1923ev_start (EV_P_ W w, int active) 3187ev_start (EV_P_ W w, int active)
1924{ 3188{
1925 pri_adjust (EV_A_ w); 3189 pri_adjust (EV_A_ w);
1926 w->active = active; 3190 w->active = active;
1927 ev_ref (EV_A); 3191 ev_ref (EV_A);
1928} 3192}
1929 3193
1930void inline_size 3194inline_size void
1931ev_stop (EV_P_ W w) 3195ev_stop (EV_P_ W w)
1932{ 3196{
1933 ev_unref (EV_A); 3197 ev_unref (EV_A);
1934 w->active = 0; 3198 w->active = 0;
1935} 3199}
1942 int fd = w->fd; 3206 int fd = w->fd;
1943 3207
1944 if (expect_false (ev_is_active (w))) 3208 if (expect_false (ev_is_active (w)))
1945 return; 3209 return;
1946 3210
1947 assert (("ev_io_start called with negative fd", fd >= 0)); 3211 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3212 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3213
3214 EV_FREQUENT_CHECK;
1948 3215
1949 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
1950 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3217 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1951 wlist_add (&anfds[fd].head, (WL)w); 3218 wlist_add (&anfds[fd].head, (WL)w);
1952 3219
1953 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3220 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1954 w->events &= ~EV_IOFDSET; 3221 w->events &= ~EV__IOFDSET;
3222
3223 EV_FREQUENT_CHECK;
1955} 3224}
1956 3225
1957void noinline 3226void noinline
1958ev_io_stop (EV_P_ ev_io *w) 3227ev_io_stop (EV_P_ ev_io *w)
1959{ 3228{
1960 clear_pending (EV_A_ (W)w); 3229 clear_pending (EV_A_ (W)w);
1961 if (expect_false (!ev_is_active (w))) 3230 if (expect_false (!ev_is_active (w)))
1962 return; 3231 return;
1963 3232
1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3233 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3234
3235 EV_FREQUENT_CHECK;
1965 3236
1966 wlist_del (&anfds[w->fd].head, (WL)w); 3237 wlist_del (&anfds[w->fd].head, (WL)w);
1967 ev_stop (EV_A_ (W)w); 3238 ev_stop (EV_A_ (W)w);
1968 3239
1969 fd_change (EV_A_ w->fd, 1); 3240 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3241
3242 EV_FREQUENT_CHECK;
1970} 3243}
1971 3244
1972void noinline 3245void noinline
1973ev_timer_start (EV_P_ ev_timer *w) 3246ev_timer_start (EV_P_ ev_timer *w)
1974{ 3247{
1975 if (expect_false (ev_is_active (w))) 3248 if (expect_false (ev_is_active (w)))
1976 return; 3249 return;
1977 3250
1978 ev_at (w) += mn_now; 3251 ev_at (w) += mn_now;
1979 3252
1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3253 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1981 3254
3255 EV_FREQUENT_CHECK;
3256
3257 ++timercnt;
1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3258 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 3259 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1984 timers [ev_active (w)] = (WT)w; 3260 ANHE_w (timers [ev_active (w)]) = (WT)w;
3261 ANHE_at_cache (timers [ev_active (w)]);
1985 upheap (timers, ev_active (w)); 3262 upheap (timers, ev_active (w));
1986 3263
3264 EV_FREQUENT_CHECK;
3265
1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 3266 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1988} 3267}
1989 3268
1990void noinline 3269void noinline
1991ev_timer_stop (EV_P_ ev_timer *w) 3270ev_timer_stop (EV_P_ ev_timer *w)
1992{ 3271{
1993 clear_pending (EV_A_ (W)w); 3272 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 3273 if (expect_false (!ev_is_active (w)))
1995 return; 3274 return;
1996 3275
3276 EV_FREQUENT_CHECK;
3277
1997 { 3278 {
1998 int active = ev_active (w); 3279 int active = ev_active (w);
1999 3280
2000 assert (("internal timer heap corruption", timers [active] == (WT)w)); 3281 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2001 3282
3283 --timercnt;
3284
2002 if (expect_true (active < timercnt + HEAP0 - 1)) 3285 if (expect_true (active < timercnt + HEAP0))
2003 { 3286 {
2004 timers [active] = timers [timercnt + HEAP0 - 1]; 3287 timers [active] = timers [timercnt + HEAP0];
2005 adjustheap (timers, timercnt, active); 3288 adjustheap (timers, timercnt, active);
2006 } 3289 }
2007
2008 --timercnt;
2009 } 3290 }
2010 3291
2011 ev_at (w) -= mn_now; 3292 ev_at (w) -= mn_now;
2012 3293
2013 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
2014} 3297}
2015 3298
2016void noinline 3299void noinline
2017ev_timer_again (EV_P_ ev_timer *w) 3300ev_timer_again (EV_P_ ev_timer *w)
2018{ 3301{
3302 EV_FREQUENT_CHECK;
3303
3304 clear_pending (EV_A_ (W)w);
3305
2019 if (ev_is_active (w)) 3306 if (ev_is_active (w))
2020 { 3307 {
2021 if (w->repeat) 3308 if (w->repeat)
2022 { 3309 {
2023 ev_at (w) = mn_now + w->repeat; 3310 ev_at (w) = mn_now + w->repeat;
3311 ANHE_at_cache (timers [ev_active (w)]);
2024 adjustheap (timers, timercnt, ev_active (w)); 3312 adjustheap (timers, timercnt, ev_active (w));
2025 } 3313 }
2026 else 3314 else
2027 ev_timer_stop (EV_A_ w); 3315 ev_timer_stop (EV_A_ w);
2028 } 3316 }
2029 else if (w->repeat) 3317 else if (w->repeat)
2030 { 3318 {
2031 ev_at (w) = w->repeat; 3319 ev_at (w) = w->repeat;
2032 ev_timer_start (EV_A_ w); 3320 ev_timer_start (EV_A_ w);
2033 } 3321 }
3322
3323 EV_FREQUENT_CHECK;
3324}
3325
3326ev_tstamp
3327ev_timer_remaining (EV_P_ ev_timer *w)
3328{
3329 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2034} 3330}
2035 3331
2036#if EV_PERIODIC_ENABLE 3332#if EV_PERIODIC_ENABLE
2037void noinline 3333void noinline
2038ev_periodic_start (EV_P_ ev_periodic *w) 3334ev_periodic_start (EV_P_ ev_periodic *w)
2042 3338
2043 if (w->reschedule_cb) 3339 if (w->reschedule_cb)
2044 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2045 else if (w->interval) 3341 else if (w->interval)
2046 { 3342 {
2047 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3343 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2048 /* this formula differs from the one in periodic_reify because we do not always round up */ 3344 periodic_recalc (EV_A_ w);
2049 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2050 } 3345 }
2051 else 3346 else
2052 ev_at (w) = w->offset; 3347 ev_at (w) = w->offset;
2053 3348
3349 EV_FREQUENT_CHECK;
3350
3351 ++periodiccnt;
2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3352 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 3353 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2056 periodics [ev_active (w)] = (WT)w; 3354 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3355 ANHE_at_cache (periodics [ev_active (w)]);
2057 upheap (periodics, ev_active (w)); 3356 upheap (periodics, ev_active (w));
2058 3357
3358 EV_FREQUENT_CHECK;
3359
2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 3360 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2060} 3361}
2061 3362
2062void noinline 3363void noinline
2063ev_periodic_stop (EV_P_ ev_periodic *w) 3364ev_periodic_stop (EV_P_ ev_periodic *w)
2064{ 3365{
2065 clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
2067 return; 3368 return;
2068 3369
3370 EV_FREQUENT_CHECK;
3371
2069 { 3372 {
2070 int active = ev_active (w); 3373 int active = ev_active (w);
2071 3374
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 3375 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2073 3376
3377 --periodiccnt;
3378
2074 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3379 if (expect_true (active < periodiccnt + HEAP0))
2075 { 3380 {
2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3381 periodics [active] = periodics [periodiccnt + HEAP0];
2077 adjustheap (periodics, periodiccnt, active); 3382 adjustheap (periodics, periodiccnt, active);
2078 } 3383 }
2079
2080 --periodiccnt;
2081 } 3384 }
2082 3385
2083 ev_stop (EV_A_ (W)w); 3386 ev_stop (EV_A_ (W)w);
3387
3388 EV_FREQUENT_CHECK;
2084} 3389}
2085 3390
2086void noinline 3391void noinline
2087ev_periodic_again (EV_P_ ev_periodic *w) 3392ev_periodic_again (EV_P_ ev_periodic *w)
2088{ 3393{
2094 3399
2095#ifndef SA_RESTART 3400#ifndef SA_RESTART
2096# define SA_RESTART 0 3401# define SA_RESTART 0
2097#endif 3402#endif
2098 3403
3404#if EV_SIGNAL_ENABLE
3405
2099void noinline 3406void noinline
2100ev_signal_start (EV_P_ ev_signal *w) 3407ev_signal_start (EV_P_ ev_signal *w)
2101{ 3408{
2102#if EV_MULTIPLICITY
2103 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2104#endif
2105 if (expect_false (ev_is_active (w))) 3409 if (expect_false (ev_is_active (w)))
2106 return; 3410 return;
2107 3411
2108 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3412 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2109 3413
2110 evpipe_init (EV_A); 3414#if EV_MULTIPLICITY
3415 assert (("libev: a signal must not be attached to two different loops",
3416 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2111 3417
3418 signals [w->signum - 1].loop = EV_A;
3419#endif
3420
3421 EV_FREQUENT_CHECK;
3422
3423#if EV_USE_SIGNALFD
3424 if (sigfd == -2)
2112 { 3425 {
2113#ifndef _WIN32 3426 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2114 sigset_t full, prev; 3427 if (sigfd < 0 && errno == EINVAL)
2115 sigfillset (&full); 3428 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2116 sigprocmask (SIG_SETMASK, &full, &prev);
2117#endif
2118 3429
2119 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3430 if (sigfd >= 0)
3431 {
3432 fd_intern (sigfd); /* doing it twice will not hurt */
2120 3433
2121#ifndef _WIN32 3434 sigemptyset (&sigfd_set);
2122 sigprocmask (SIG_SETMASK, &prev, 0); 3435
2123#endif 3436 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3437 ev_set_priority (&sigfd_w, EV_MAXPRI);
3438 ev_io_start (EV_A_ &sigfd_w);
3439 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3440 }
2124 } 3441 }
3442
3443 if (sigfd >= 0)
3444 {
3445 /* TODO: check .head */
3446 sigaddset (&sigfd_set, w->signum);
3447 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3448
3449 signalfd (sigfd, &sigfd_set, 0);
3450 }
3451#endif
2125 3452
2126 ev_start (EV_A_ (W)w, 1); 3453 ev_start (EV_A_ (W)w, 1);
2127 wlist_add (&signals [w->signum - 1].head, (WL)w); 3454 wlist_add (&signals [w->signum - 1].head, (WL)w);
2128 3455
2129 if (!((WL)w)->next) 3456 if (!((WL)w)->next)
3457# if EV_USE_SIGNALFD
3458 if (sigfd < 0) /*TODO*/
3459# endif
2130 { 3460 {
2131#if _WIN32 3461# ifdef _WIN32
3462 evpipe_init (EV_A);
3463
2132 signal (w->signum, ev_sighandler); 3464 signal (w->signum, ev_sighandler);
2133#else 3465# else
2134 struct sigaction sa; 3466 struct sigaction sa;
3467
3468 evpipe_init (EV_A);
3469
2135 sa.sa_handler = ev_sighandler; 3470 sa.sa_handler = ev_sighandler;
2136 sigfillset (&sa.sa_mask); 3471 sigfillset (&sa.sa_mask);
2137 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3472 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2138 sigaction (w->signum, &sa, 0); 3473 sigaction (w->signum, &sa, 0);
3474
3475 if (origflags & EVFLAG_NOSIGMASK)
3476 {
3477 sigemptyset (&sa.sa_mask);
3478 sigaddset (&sa.sa_mask, w->signum);
3479 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3480 }
2139#endif 3481#endif
2140 } 3482 }
3483
3484 EV_FREQUENT_CHECK;
2141} 3485}
2142 3486
2143void noinline 3487void noinline
2144ev_signal_stop (EV_P_ ev_signal *w) 3488ev_signal_stop (EV_P_ ev_signal *w)
2145{ 3489{
2146 clear_pending (EV_A_ (W)w); 3490 clear_pending (EV_A_ (W)w);
2147 if (expect_false (!ev_is_active (w))) 3491 if (expect_false (!ev_is_active (w)))
2148 return; 3492 return;
2149 3493
3494 EV_FREQUENT_CHECK;
3495
2150 wlist_del (&signals [w->signum - 1].head, (WL)w); 3496 wlist_del (&signals [w->signum - 1].head, (WL)w);
2151 ev_stop (EV_A_ (W)w); 3497 ev_stop (EV_A_ (W)w);
2152 3498
2153 if (!signals [w->signum - 1].head) 3499 if (!signals [w->signum - 1].head)
3500 {
3501#if EV_MULTIPLICITY
3502 signals [w->signum - 1].loop = 0; /* unattach from signal */
3503#endif
3504#if EV_USE_SIGNALFD
3505 if (sigfd >= 0)
3506 {
3507 sigset_t ss;
3508
3509 sigemptyset (&ss);
3510 sigaddset (&ss, w->signum);
3511 sigdelset (&sigfd_set, w->signum);
3512
3513 signalfd (sigfd, &sigfd_set, 0);
3514 sigprocmask (SIG_UNBLOCK, &ss, 0);
3515 }
3516 else
3517#endif
2154 signal (w->signum, SIG_DFL); 3518 signal (w->signum, SIG_DFL);
3519 }
3520
3521 EV_FREQUENT_CHECK;
2155} 3522}
3523
3524#endif
3525
3526#if EV_CHILD_ENABLE
2156 3527
2157void 3528void
2158ev_child_start (EV_P_ ev_child *w) 3529ev_child_start (EV_P_ ev_child *w)
2159{ 3530{
2160#if EV_MULTIPLICITY 3531#if EV_MULTIPLICITY
2161 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2162#endif 3533#endif
2163 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2164 return; 3535 return;
2165 3536
3537 EV_FREQUENT_CHECK;
3538
2166 ev_start (EV_A_ (W)w, 1); 3539 ev_start (EV_A_ (W)w, 1);
2167 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3540 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3541
3542 EV_FREQUENT_CHECK;
2168} 3543}
2169 3544
2170void 3545void
2171ev_child_stop (EV_P_ ev_child *w) 3546ev_child_stop (EV_P_ ev_child *w)
2172{ 3547{
2173 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2174 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2175 return; 3550 return;
2176 3551
3552 EV_FREQUENT_CHECK;
3553
2177 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3554 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2178 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2179} 3558}
3559
3560#endif
2180 3561
2181#if EV_STAT_ENABLE 3562#if EV_STAT_ENABLE
2182 3563
2183# ifdef _WIN32 3564# ifdef _WIN32
2184# undef lstat 3565# undef lstat
2185# define lstat(a,b) _stati64 (a,b) 3566# define lstat(a,b) _stati64 (a,b)
2186# endif 3567# endif
2187 3568
2188#define DEF_STAT_INTERVAL 5.0074891 3569#define DEF_STAT_INTERVAL 5.0074891
3570#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2189#define MIN_STAT_INTERVAL 0.1074891 3571#define MIN_STAT_INTERVAL 0.1074891
2190 3572
2191static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3573static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2192 3574
2193#if EV_USE_INOTIFY 3575#if EV_USE_INOTIFY
2194# define EV_INOTIFY_BUFSIZE 8192 3576
3577/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3578# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2195 3579
2196static void noinline 3580static void noinline
2197infy_add (EV_P_ ev_stat *w) 3581infy_add (EV_P_ ev_stat *w)
2198{ 3582{
2199 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3583 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2200 3584
2201 if (w->wd < 0) 3585 if (w->wd >= 0)
3586 {
3587 struct statfs sfs;
3588
3589 /* now local changes will be tracked by inotify, but remote changes won't */
3590 /* unless the filesystem is known to be local, we therefore still poll */
3591 /* also do poll on <2.6.25, but with normal frequency */
3592
3593 if (!fs_2625)
3594 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3595 else if (!statfs (w->path, &sfs)
3596 && (sfs.f_type == 0x1373 /* devfs */
3597 || sfs.f_type == 0xEF53 /* ext2/3 */
3598 || sfs.f_type == 0x3153464a /* jfs */
3599 || sfs.f_type == 0x52654973 /* reiser3 */
3600 || sfs.f_type == 0x01021994 /* tempfs */
3601 || sfs.f_type == 0x58465342 /* xfs */))
3602 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3603 else
3604 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2202 { 3605 }
2203 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3606 else
3607 {
3608 /* can't use inotify, continue to stat */
3609 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2204 3610
2205 /* monitor some parent directory for speedup hints */ 3611 /* if path is not there, monitor some parent directory for speedup hints */
2206 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3612 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2207 /* but an efficiency issue only */ 3613 /* but an efficiency issue only */
2208 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3614 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2209 { 3615 {
2210 char path [4096]; 3616 char path [4096];
2211 strcpy (path, w->path); 3617 strcpy (path, w->path);
2215 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3621 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2216 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3622 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2217 3623
2218 char *pend = strrchr (path, '/'); 3624 char *pend = strrchr (path, '/');
2219 3625
2220 if (!pend) 3626 if (!pend || pend == path)
2221 break; /* whoops, no '/', complain to your admin */ 3627 break;
2222 3628
2223 *pend = 0; 3629 *pend = 0;
2224 w->wd = inotify_add_watch (fs_fd, path, mask); 3630 w->wd = inotify_add_watch (fs_fd, path, mask);
2225 } 3631 }
2226 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3632 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2227 } 3633 }
2228 } 3634 }
2229 else
2230 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2231 3635
2232 if (w->wd >= 0) 3636 if (w->wd >= 0)
2233 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3637 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3638
3639 /* now re-arm timer, if required */
3640 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3641 ev_timer_again (EV_A_ &w->timer);
3642 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2234} 3643}
2235 3644
2236static void noinline 3645static void noinline
2237infy_del (EV_P_ ev_stat *w) 3646infy_del (EV_P_ ev_stat *w)
2238{ 3647{
2241 3650
2242 if (wd < 0) 3651 if (wd < 0)
2243 return; 3652 return;
2244 3653
2245 w->wd = -2; 3654 w->wd = -2;
2246 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3655 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2247 wlist_del (&fs_hash [slot].head, (WL)w); 3656 wlist_del (&fs_hash [slot].head, (WL)w);
2248 3657
2249 /* remove this watcher, if others are watching it, they will rearm */ 3658 /* remove this watcher, if others are watching it, they will rearm */
2250 inotify_rm_watch (fs_fd, wd); 3659 inotify_rm_watch (fs_fd, wd);
2251} 3660}
2252 3661
2253static void noinline 3662static void noinline
2254infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3663infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2255{ 3664{
2256 if (slot < 0) 3665 if (slot < 0)
2257 /* overflow, need to check for all hahs slots */ 3666 /* overflow, need to check for all hash slots */
2258 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3667 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2259 infy_wd (EV_A_ slot, wd, ev); 3668 infy_wd (EV_A_ slot, wd, ev);
2260 else 3669 else
2261 { 3670 {
2262 WL w_; 3671 WL w_;
2263 3672
2264 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3673 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2265 { 3674 {
2266 ev_stat *w = (ev_stat *)w_; 3675 ev_stat *w = (ev_stat *)w_;
2267 w_ = w_->next; /* lets us remove this watcher and all before it */ 3676 w_ = w_->next; /* lets us remove this watcher and all before it */
2268 3677
2269 if (w->wd == wd || wd == -1) 3678 if (w->wd == wd || wd == -1)
2270 { 3679 {
2271 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3680 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2272 { 3681 {
3682 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2273 w->wd = -1; 3683 w->wd = -1;
2274 infy_add (EV_A_ w); /* re-add, no matter what */ 3684 infy_add (EV_A_ w); /* re-add, no matter what */
2275 } 3685 }
2276 3686
2277 stat_timer_cb (EV_A_ &w->timer, 0); 3687 stat_timer_cb (EV_A_ &w->timer, 0);
2282 3692
2283static void 3693static void
2284infy_cb (EV_P_ ev_io *w, int revents) 3694infy_cb (EV_P_ ev_io *w, int revents)
2285{ 3695{
2286 char buf [EV_INOTIFY_BUFSIZE]; 3696 char buf [EV_INOTIFY_BUFSIZE];
2287 struct inotify_event *ev = (struct inotify_event *)buf;
2288 int ofs; 3697 int ofs;
2289 int len = read (fs_fd, buf, sizeof (buf)); 3698 int len = read (fs_fd, buf, sizeof (buf));
2290 3699
2291 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3700 for (ofs = 0; ofs < len; )
3701 {
3702 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2292 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3703 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3704 ofs += sizeof (struct inotify_event) + ev->len;
3705 }
2293} 3706}
2294 3707
2295void inline_size 3708inline_size void ecb_cold
3709ev_check_2625 (EV_P)
3710{
3711 /* kernels < 2.6.25 are borked
3712 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3713 */
3714 if (ev_linux_version () < 0x020619)
3715 return;
3716
3717 fs_2625 = 1;
3718}
3719
3720inline_size int
3721infy_newfd (void)
3722{
3723#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3724 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3725 if (fd >= 0)
3726 return fd;
3727#endif
3728 return inotify_init ();
3729}
3730
3731inline_size void
2296infy_init (EV_P) 3732infy_init (EV_P)
2297{ 3733{
2298 if (fs_fd != -2) 3734 if (fs_fd != -2)
2299 return; 3735 return;
2300 3736
3737 fs_fd = -1;
3738
3739 ev_check_2625 (EV_A);
3740
2301 fs_fd = inotify_init (); 3741 fs_fd = infy_newfd ();
2302 3742
2303 if (fs_fd >= 0) 3743 if (fs_fd >= 0)
2304 { 3744 {
3745 fd_intern (fs_fd);
2305 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3746 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2306 ev_set_priority (&fs_w, EV_MAXPRI); 3747 ev_set_priority (&fs_w, EV_MAXPRI);
2307 ev_io_start (EV_A_ &fs_w); 3748 ev_io_start (EV_A_ &fs_w);
3749 ev_unref (EV_A);
2308 } 3750 }
2309} 3751}
2310 3752
2311void inline_size 3753inline_size void
2312infy_fork (EV_P) 3754infy_fork (EV_P)
2313{ 3755{
2314 int slot; 3756 int slot;
2315 3757
2316 if (fs_fd < 0) 3758 if (fs_fd < 0)
2317 return; 3759 return;
2318 3760
3761 ev_ref (EV_A);
3762 ev_io_stop (EV_A_ &fs_w);
2319 close (fs_fd); 3763 close (fs_fd);
2320 fs_fd = inotify_init (); 3764 fs_fd = infy_newfd ();
2321 3765
3766 if (fs_fd >= 0)
3767 {
3768 fd_intern (fs_fd);
3769 ev_io_set (&fs_w, fs_fd, EV_READ);
3770 ev_io_start (EV_A_ &fs_w);
3771 ev_unref (EV_A);
3772 }
3773
2322 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3774 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2323 { 3775 {
2324 WL w_ = fs_hash [slot].head; 3776 WL w_ = fs_hash [slot].head;
2325 fs_hash [slot].head = 0; 3777 fs_hash [slot].head = 0;
2326 3778
2327 while (w_) 3779 while (w_)
2332 w->wd = -1; 3784 w->wd = -1;
2333 3785
2334 if (fs_fd >= 0) 3786 if (fs_fd >= 0)
2335 infy_add (EV_A_ w); /* re-add, no matter what */ 3787 infy_add (EV_A_ w); /* re-add, no matter what */
2336 else 3788 else
3789 {
3790 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3791 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2337 ev_timer_start (EV_A_ &w->timer); 3792 ev_timer_again (EV_A_ &w->timer);
3793 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3794 }
2338 } 3795 }
2339
2340 } 3796 }
2341} 3797}
2342 3798
3799#endif
3800
3801#ifdef _WIN32
3802# define EV_LSTAT(p,b) _stati64 (p, b)
3803#else
3804# define EV_LSTAT(p,b) lstat (p, b)
2343#endif 3805#endif
2344 3806
2345void 3807void
2346ev_stat_stat (EV_P_ ev_stat *w) 3808ev_stat_stat (EV_P_ ev_stat *w)
2347{ 3809{
2354static void noinline 3816static void noinline
2355stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3817stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2356{ 3818{
2357 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3819 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2358 3820
2359 /* we copy this here each the time so that */ 3821 ev_statdata prev = w->attr;
2360 /* prev has the old value when the callback gets invoked */
2361 w->prev = w->attr;
2362 ev_stat_stat (EV_A_ w); 3822 ev_stat_stat (EV_A_ w);
2363 3823
2364 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3824 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2365 if ( 3825 if (
2366 w->prev.st_dev != w->attr.st_dev 3826 prev.st_dev != w->attr.st_dev
2367 || w->prev.st_ino != w->attr.st_ino 3827 || prev.st_ino != w->attr.st_ino
2368 || w->prev.st_mode != w->attr.st_mode 3828 || prev.st_mode != w->attr.st_mode
2369 || w->prev.st_nlink != w->attr.st_nlink 3829 || prev.st_nlink != w->attr.st_nlink
2370 || w->prev.st_uid != w->attr.st_uid 3830 || prev.st_uid != w->attr.st_uid
2371 || w->prev.st_gid != w->attr.st_gid 3831 || prev.st_gid != w->attr.st_gid
2372 || w->prev.st_rdev != w->attr.st_rdev 3832 || prev.st_rdev != w->attr.st_rdev
2373 || w->prev.st_size != w->attr.st_size 3833 || prev.st_size != w->attr.st_size
2374 || w->prev.st_atime != w->attr.st_atime 3834 || prev.st_atime != w->attr.st_atime
2375 || w->prev.st_mtime != w->attr.st_mtime 3835 || prev.st_mtime != w->attr.st_mtime
2376 || w->prev.st_ctime != w->attr.st_ctime 3836 || prev.st_ctime != w->attr.st_ctime
2377 ) { 3837 ) {
3838 /* we only update w->prev on actual differences */
3839 /* in case we test more often than invoke the callback, */
3840 /* to ensure that prev is always different to attr */
3841 w->prev = prev;
3842
2378 #if EV_USE_INOTIFY 3843 #if EV_USE_INOTIFY
3844 if (fs_fd >= 0)
3845 {
2379 infy_del (EV_A_ w); 3846 infy_del (EV_A_ w);
2380 infy_add (EV_A_ w); 3847 infy_add (EV_A_ w);
2381 ev_stat_stat (EV_A_ w); /* avoid race... */ 3848 ev_stat_stat (EV_A_ w); /* avoid race... */
3849 }
2382 #endif 3850 #endif
2383 3851
2384 ev_feed_event (EV_A_ w, EV_STAT); 3852 ev_feed_event (EV_A_ w, EV_STAT);
2385 } 3853 }
2386} 3854}
2389ev_stat_start (EV_P_ ev_stat *w) 3857ev_stat_start (EV_P_ ev_stat *w)
2390{ 3858{
2391 if (expect_false (ev_is_active (w))) 3859 if (expect_false (ev_is_active (w)))
2392 return; 3860 return;
2393 3861
2394 /* since we use memcmp, we need to clear any padding data etc. */
2395 memset (&w->prev, 0, sizeof (ev_statdata));
2396 memset (&w->attr, 0, sizeof (ev_statdata));
2397
2398 ev_stat_stat (EV_A_ w); 3862 ev_stat_stat (EV_A_ w);
2399 3863
3864 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2400 if (w->interval < MIN_STAT_INTERVAL) 3865 w->interval = MIN_STAT_INTERVAL;
2401 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2402 3866
2403 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3867 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2404 ev_set_priority (&w->timer, ev_priority (w)); 3868 ev_set_priority (&w->timer, ev_priority (w));
2405 3869
2406#if EV_USE_INOTIFY 3870#if EV_USE_INOTIFY
2407 infy_init (EV_A); 3871 infy_init (EV_A);
2408 3872
2409 if (fs_fd >= 0) 3873 if (fs_fd >= 0)
2410 infy_add (EV_A_ w); 3874 infy_add (EV_A_ w);
2411 else 3875 else
2412#endif 3876#endif
3877 {
2413 ev_timer_start (EV_A_ &w->timer); 3878 ev_timer_again (EV_A_ &w->timer);
3879 ev_unref (EV_A);
3880 }
2414 3881
2415 ev_start (EV_A_ (W)w, 1); 3882 ev_start (EV_A_ (W)w, 1);
3883
3884 EV_FREQUENT_CHECK;
2416} 3885}
2417 3886
2418void 3887void
2419ev_stat_stop (EV_P_ ev_stat *w) 3888ev_stat_stop (EV_P_ ev_stat *w)
2420{ 3889{
2421 clear_pending (EV_A_ (W)w); 3890 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 3891 if (expect_false (!ev_is_active (w)))
2423 return; 3892 return;
2424 3893
3894 EV_FREQUENT_CHECK;
3895
2425#if EV_USE_INOTIFY 3896#if EV_USE_INOTIFY
2426 infy_del (EV_A_ w); 3897 infy_del (EV_A_ w);
2427#endif 3898#endif
3899
3900 if (ev_is_active (&w->timer))
3901 {
3902 ev_ref (EV_A);
2428 ev_timer_stop (EV_A_ &w->timer); 3903 ev_timer_stop (EV_A_ &w->timer);
3904 }
2429 3905
2430 ev_stop (EV_A_ (W)w); 3906 ev_stop (EV_A_ (W)w);
3907
3908 EV_FREQUENT_CHECK;
2431} 3909}
2432#endif 3910#endif
2433 3911
2434#if EV_IDLE_ENABLE 3912#if EV_IDLE_ENABLE
2435void 3913void
2438 if (expect_false (ev_is_active (w))) 3916 if (expect_false (ev_is_active (w)))
2439 return; 3917 return;
2440 3918
2441 pri_adjust (EV_A_ (W)w); 3919 pri_adjust (EV_A_ (W)w);
2442 3920
3921 EV_FREQUENT_CHECK;
3922
2443 { 3923 {
2444 int active = ++idlecnt [ABSPRI (w)]; 3924 int active = ++idlecnt [ABSPRI (w)];
2445 3925
2446 ++idleall; 3926 ++idleall;
2447 ev_start (EV_A_ (W)w, active); 3927 ev_start (EV_A_ (W)w, active);
2448 3928
2449 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3929 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2450 idles [ABSPRI (w)][active - 1] = w; 3930 idles [ABSPRI (w)][active - 1] = w;
2451 } 3931 }
3932
3933 EV_FREQUENT_CHECK;
2452} 3934}
2453 3935
2454void 3936void
2455ev_idle_stop (EV_P_ ev_idle *w) 3937ev_idle_stop (EV_P_ ev_idle *w)
2456{ 3938{
2457 clear_pending (EV_A_ (W)w); 3939 clear_pending (EV_A_ (W)w);
2458 if (expect_false (!ev_is_active (w))) 3940 if (expect_false (!ev_is_active (w)))
2459 return; 3941 return;
2460 3942
3943 EV_FREQUENT_CHECK;
3944
2461 { 3945 {
2462 int active = ev_active (w); 3946 int active = ev_active (w);
2463 3947
2464 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3948 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2465 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3949 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2466 3950
2467 ev_stop (EV_A_ (W)w); 3951 ev_stop (EV_A_ (W)w);
2468 --idleall; 3952 --idleall;
2469 } 3953 }
2470}
2471#endif
2472 3954
3955 EV_FREQUENT_CHECK;
3956}
3957#endif
3958
3959#if EV_PREPARE_ENABLE
2473void 3960void
2474ev_prepare_start (EV_P_ ev_prepare *w) 3961ev_prepare_start (EV_P_ ev_prepare *w)
2475{ 3962{
2476 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
2477 return; 3964 return;
3965
3966 EV_FREQUENT_CHECK;
2478 3967
2479 ev_start (EV_A_ (W)w, ++preparecnt); 3968 ev_start (EV_A_ (W)w, ++preparecnt);
2480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3969 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2481 prepares [preparecnt - 1] = w; 3970 prepares [preparecnt - 1] = w;
3971
3972 EV_FREQUENT_CHECK;
2482} 3973}
2483 3974
2484void 3975void
2485ev_prepare_stop (EV_P_ ev_prepare *w) 3976ev_prepare_stop (EV_P_ ev_prepare *w)
2486{ 3977{
2487 clear_pending (EV_A_ (W)w); 3978 clear_pending (EV_A_ (W)w);
2488 if (expect_false (!ev_is_active (w))) 3979 if (expect_false (!ev_is_active (w)))
2489 return; 3980 return;
2490 3981
3982 EV_FREQUENT_CHECK;
3983
2491 { 3984 {
2492 int active = ev_active (w); 3985 int active = ev_active (w);
2493 3986
2494 prepares [active - 1] = prepares [--preparecnt]; 3987 prepares [active - 1] = prepares [--preparecnt];
2495 ev_active (prepares [active - 1]) = active; 3988 ev_active (prepares [active - 1]) = active;
2496 } 3989 }
2497 3990
2498 ev_stop (EV_A_ (W)w); 3991 ev_stop (EV_A_ (W)w);
2499}
2500 3992
3993 EV_FREQUENT_CHECK;
3994}
3995#endif
3996
3997#if EV_CHECK_ENABLE
2501void 3998void
2502ev_check_start (EV_P_ ev_check *w) 3999ev_check_start (EV_P_ ev_check *w)
2503{ 4000{
2504 if (expect_false (ev_is_active (w))) 4001 if (expect_false (ev_is_active (w)))
2505 return; 4002 return;
4003
4004 EV_FREQUENT_CHECK;
2506 4005
2507 ev_start (EV_A_ (W)w, ++checkcnt); 4006 ev_start (EV_A_ (W)w, ++checkcnt);
2508 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4007 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2509 checks [checkcnt - 1] = w; 4008 checks [checkcnt - 1] = w;
4009
4010 EV_FREQUENT_CHECK;
2510} 4011}
2511 4012
2512void 4013void
2513ev_check_stop (EV_P_ ev_check *w) 4014ev_check_stop (EV_P_ ev_check *w)
2514{ 4015{
2515 clear_pending (EV_A_ (W)w); 4016 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 4017 if (expect_false (!ev_is_active (w)))
2517 return; 4018 return;
2518 4019
4020 EV_FREQUENT_CHECK;
4021
2519 { 4022 {
2520 int active = ev_active (w); 4023 int active = ev_active (w);
2521 4024
2522 checks [active - 1] = checks [--checkcnt]; 4025 checks [active - 1] = checks [--checkcnt];
2523 ev_active (checks [active - 1]) = active; 4026 ev_active (checks [active - 1]) = active;
2524 } 4027 }
2525 4028
2526 ev_stop (EV_A_ (W)w); 4029 ev_stop (EV_A_ (W)w);
4030
4031 EV_FREQUENT_CHECK;
2527} 4032}
4033#endif
2528 4034
2529#if EV_EMBED_ENABLE 4035#if EV_EMBED_ENABLE
2530void noinline 4036void noinline
2531ev_embed_sweep (EV_P_ ev_embed *w) 4037ev_embed_sweep (EV_P_ ev_embed *w)
2532{ 4038{
2533 ev_loop (w->other, EVLOOP_NONBLOCK); 4039 ev_run (w->other, EVRUN_NOWAIT);
2534} 4040}
2535 4041
2536static void 4042static void
2537embed_io_cb (EV_P_ ev_io *io, int revents) 4043embed_io_cb (EV_P_ ev_io *io, int revents)
2538{ 4044{
2539 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4045 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2540 4046
2541 if (ev_cb (w)) 4047 if (ev_cb (w))
2542 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4048 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2543 else 4049 else
2544 ev_loop (w->other, EVLOOP_NONBLOCK); 4050 ev_run (w->other, EVRUN_NOWAIT);
2545} 4051}
2546 4052
2547static void 4053static void
2548embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4054embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2549{ 4055{
2550 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4056 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2551 4057
2552 { 4058 {
2553 struct ev_loop *loop = w->other; 4059 EV_P = w->other;
2554 4060
2555 while (fdchangecnt) 4061 while (fdchangecnt)
2556 { 4062 {
2557 fd_reify (EV_A); 4063 fd_reify (EV_A);
2558 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4064 ev_run (EV_A_ EVRUN_NOWAIT);
2559 } 4065 }
2560 } 4066 }
4067}
4068
4069static void
4070embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4071{
4072 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4073
4074 ev_embed_stop (EV_A_ w);
4075
4076 {
4077 EV_P = w->other;
4078
4079 ev_loop_fork (EV_A);
4080 ev_run (EV_A_ EVRUN_NOWAIT);
4081 }
4082
4083 ev_embed_start (EV_A_ w);
2561} 4084}
2562 4085
2563#if 0 4086#if 0
2564static void 4087static void
2565embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4088embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2573{ 4096{
2574 if (expect_false (ev_is_active (w))) 4097 if (expect_false (ev_is_active (w)))
2575 return; 4098 return;
2576 4099
2577 { 4100 {
2578 struct ev_loop *loop = w->other; 4101 EV_P = w->other;
2579 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4102 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2580 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4103 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2581 } 4104 }
4105
4106 EV_FREQUENT_CHECK;
2582 4107
2583 ev_set_priority (&w->io, ev_priority (w)); 4108 ev_set_priority (&w->io, ev_priority (w));
2584 ev_io_start (EV_A_ &w->io); 4109 ev_io_start (EV_A_ &w->io);
2585 4110
2586 ev_prepare_init (&w->prepare, embed_prepare_cb); 4111 ev_prepare_init (&w->prepare, embed_prepare_cb);
2587 ev_set_priority (&w->prepare, EV_MINPRI); 4112 ev_set_priority (&w->prepare, EV_MINPRI);
2588 ev_prepare_start (EV_A_ &w->prepare); 4113 ev_prepare_start (EV_A_ &w->prepare);
2589 4114
4115 ev_fork_init (&w->fork, embed_fork_cb);
4116 ev_fork_start (EV_A_ &w->fork);
4117
2590 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4118 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2591 4119
2592 ev_start (EV_A_ (W)w, 1); 4120 ev_start (EV_A_ (W)w, 1);
4121
4122 EV_FREQUENT_CHECK;
2593} 4123}
2594 4124
2595void 4125void
2596ev_embed_stop (EV_P_ ev_embed *w) 4126ev_embed_stop (EV_P_ ev_embed *w)
2597{ 4127{
2598 clear_pending (EV_A_ (W)w); 4128 clear_pending (EV_A_ (W)w);
2599 if (expect_false (!ev_is_active (w))) 4129 if (expect_false (!ev_is_active (w)))
2600 return; 4130 return;
2601 4131
4132 EV_FREQUENT_CHECK;
4133
2602 ev_io_stop (EV_A_ &w->io); 4134 ev_io_stop (EV_A_ &w->io);
2603 ev_prepare_stop (EV_A_ &w->prepare); 4135 ev_prepare_stop (EV_A_ &w->prepare);
4136 ev_fork_stop (EV_A_ &w->fork);
2604 4137
2605 ev_stop (EV_A_ (W)w); 4138 ev_stop (EV_A_ (W)w);
4139
4140 EV_FREQUENT_CHECK;
2606} 4141}
2607#endif 4142#endif
2608 4143
2609#if EV_FORK_ENABLE 4144#if EV_FORK_ENABLE
2610void 4145void
2611ev_fork_start (EV_P_ ev_fork *w) 4146ev_fork_start (EV_P_ ev_fork *w)
2612{ 4147{
2613 if (expect_false (ev_is_active (w))) 4148 if (expect_false (ev_is_active (w)))
2614 return; 4149 return;
2615 4150
4151 EV_FREQUENT_CHECK;
4152
2616 ev_start (EV_A_ (W)w, ++forkcnt); 4153 ev_start (EV_A_ (W)w, ++forkcnt);
2617 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4154 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2618 forks [forkcnt - 1] = w; 4155 forks [forkcnt - 1] = w;
4156
4157 EV_FREQUENT_CHECK;
2619} 4158}
2620 4159
2621void 4160void
2622ev_fork_stop (EV_P_ ev_fork *w) 4161ev_fork_stop (EV_P_ ev_fork *w)
2623{ 4162{
2624 clear_pending (EV_A_ (W)w); 4163 clear_pending (EV_A_ (W)w);
2625 if (expect_false (!ev_is_active (w))) 4164 if (expect_false (!ev_is_active (w)))
2626 return; 4165 return;
2627 4166
4167 EV_FREQUENT_CHECK;
4168
2628 { 4169 {
2629 int active = ev_active (w); 4170 int active = ev_active (w);
2630 4171
2631 forks [active - 1] = forks [--forkcnt]; 4172 forks [active - 1] = forks [--forkcnt];
2632 ev_active (forks [active - 1]) = active; 4173 ev_active (forks [active - 1]) = active;
2633 } 4174 }
2634 4175
2635 ev_stop (EV_A_ (W)w); 4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
4179}
4180#endif
4181
4182#if EV_CLEANUP_ENABLE
4183void
4184ev_cleanup_start (EV_P_ ev_cleanup *w)
4185{
4186 if (expect_false (ev_is_active (w)))
4187 return;
4188
4189 EV_FREQUENT_CHECK;
4190
4191 ev_start (EV_A_ (W)w, ++cleanupcnt);
4192 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4193 cleanups [cleanupcnt - 1] = w;
4194
4195 /* cleanup watchers should never keep a refcount on the loop */
4196 ev_unref (EV_A);
4197 EV_FREQUENT_CHECK;
4198}
4199
4200void
4201ev_cleanup_stop (EV_P_ ev_cleanup *w)
4202{
4203 clear_pending (EV_A_ (W)w);
4204 if (expect_false (!ev_is_active (w)))
4205 return;
4206
4207 EV_FREQUENT_CHECK;
4208 ev_ref (EV_A);
4209
4210 {
4211 int active = ev_active (w);
4212
4213 cleanups [active - 1] = cleanups [--cleanupcnt];
4214 ev_active (cleanups [active - 1]) = active;
4215 }
4216
4217 ev_stop (EV_A_ (W)w);
4218
4219 EV_FREQUENT_CHECK;
2636} 4220}
2637#endif 4221#endif
2638 4222
2639#if EV_ASYNC_ENABLE 4223#if EV_ASYNC_ENABLE
2640void 4224void
2641ev_async_start (EV_P_ ev_async *w) 4225ev_async_start (EV_P_ ev_async *w)
2642{ 4226{
2643 if (expect_false (ev_is_active (w))) 4227 if (expect_false (ev_is_active (w)))
2644 return; 4228 return;
2645 4229
4230 w->sent = 0;
4231
2646 evpipe_init (EV_A); 4232 evpipe_init (EV_A);
4233
4234 EV_FREQUENT_CHECK;
2647 4235
2648 ev_start (EV_A_ (W)w, ++asynccnt); 4236 ev_start (EV_A_ (W)w, ++asynccnt);
2649 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2650 asyncs [asynccnt - 1] = w; 4238 asyncs [asynccnt - 1] = w;
4239
4240 EV_FREQUENT_CHECK;
2651} 4241}
2652 4242
2653void 4243void
2654ev_async_stop (EV_P_ ev_async *w) 4244ev_async_stop (EV_P_ ev_async *w)
2655{ 4245{
2656 clear_pending (EV_A_ (W)w); 4246 clear_pending (EV_A_ (W)w);
2657 if (expect_false (!ev_is_active (w))) 4247 if (expect_false (!ev_is_active (w)))
2658 return; 4248 return;
2659 4249
4250 EV_FREQUENT_CHECK;
4251
2660 { 4252 {
2661 int active = ev_active (w); 4253 int active = ev_active (w);
2662 4254
2663 asyncs [active - 1] = asyncs [--asynccnt]; 4255 asyncs [active - 1] = asyncs [--asynccnt];
2664 ev_active (asyncs [active - 1]) = active; 4256 ev_active (asyncs [active - 1]) = active;
2665 } 4257 }
2666 4258
2667 ev_stop (EV_A_ (W)w); 4259 ev_stop (EV_A_ (W)w);
4260
4261 EV_FREQUENT_CHECK;
2668} 4262}
2669 4263
2670void 4264void
2671ev_async_send (EV_P_ ev_async *w) 4265ev_async_send (EV_P_ ev_async *w)
2672{ 4266{
2673 w->sent = 1; 4267 w->sent = 1;
2674 evpipe_write (EV_A_ &gotasync); 4268 evpipe_write (EV_A_ &async_pending);
2675} 4269}
2676#endif 4270#endif
2677 4271
2678/*****************************************************************************/ 4272/*****************************************************************************/
2679 4273
2689once_cb (EV_P_ struct ev_once *once, int revents) 4283once_cb (EV_P_ struct ev_once *once, int revents)
2690{ 4284{
2691 void (*cb)(int revents, void *arg) = once->cb; 4285 void (*cb)(int revents, void *arg) = once->cb;
2692 void *arg = once->arg; 4286 void *arg = once->arg;
2693 4287
2694 ev_io_stop (EV_A_ &once->io); 4288 ev_io_stop (EV_A_ &once->io);
2695 ev_timer_stop (EV_A_ &once->to); 4289 ev_timer_stop (EV_A_ &once->to);
2696 ev_free (once); 4290 ev_free (once);
2697 4291
2698 cb (revents, arg); 4292 cb (revents, arg);
2699} 4293}
2700 4294
2701static void 4295static void
2702once_cb_io (EV_P_ ev_io *w, int revents) 4296once_cb_io (EV_P_ ev_io *w, int revents)
2703{ 4297{
2704 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4299
4300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2705} 4301}
2706 4302
2707static void 4303static void
2708once_cb_to (EV_P_ ev_timer *w, int revents) 4304once_cb_to (EV_P_ ev_timer *w, int revents)
2709{ 4305{
2710 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4307
4308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2711} 4309}
2712 4310
2713void 4311void
2714ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2715{ 4313{
2716 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4314 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2717 4315
2718 if (expect_false (!once)) 4316 if (expect_false (!once))
2719 { 4317 {
2720 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4318 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2721 return; 4319 return;
2722 } 4320 }
2723 4321
2724 once->cb = cb; 4322 once->cb = cb;
2725 once->arg = arg; 4323 once->arg = arg;
2737 ev_timer_set (&once->to, timeout, 0.); 4335 ev_timer_set (&once->to, timeout, 0.);
2738 ev_timer_start (EV_A_ &once->to); 4336 ev_timer_start (EV_A_ &once->to);
2739 } 4337 }
2740} 4338}
2741 4339
4340/*****************************************************************************/
4341
4342#if EV_WALK_ENABLE
4343void ecb_cold
4344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4345{
4346 int i, j;
4347 ev_watcher_list *wl, *wn;
4348
4349 if (types & (EV_IO | EV_EMBED))
4350 for (i = 0; i < anfdmax; ++i)
4351 for (wl = anfds [i].head; wl; )
4352 {
4353 wn = wl->next;
4354
4355#if EV_EMBED_ENABLE
4356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4357 {
4358 if (types & EV_EMBED)
4359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4360 }
4361 else
4362#endif
4363#if EV_USE_INOTIFY
4364 if (ev_cb ((ev_io *)wl) == infy_cb)
4365 ;
4366 else
4367#endif
4368 if ((ev_io *)wl != &pipe_w)
4369 if (types & EV_IO)
4370 cb (EV_A_ EV_IO, wl);
4371
4372 wl = wn;
4373 }
4374
4375 if (types & (EV_TIMER | EV_STAT))
4376 for (i = timercnt + HEAP0; i-- > HEAP0; )
4377#if EV_STAT_ENABLE
4378 /*TODO: timer is not always active*/
4379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4380 {
4381 if (types & EV_STAT)
4382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4383 }
4384 else
4385#endif
4386 if (types & EV_TIMER)
4387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4388
4389#if EV_PERIODIC_ENABLE
4390 if (types & EV_PERIODIC)
4391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4393#endif
4394
4395#if EV_IDLE_ENABLE
4396 if (types & EV_IDLE)
4397 for (j = NUMPRI; j--; )
4398 for (i = idlecnt [j]; i--; )
4399 cb (EV_A_ EV_IDLE, idles [j][i]);
4400#endif
4401
4402#if EV_FORK_ENABLE
4403 if (types & EV_FORK)
4404 for (i = forkcnt; i--; )
4405 if (ev_cb (forks [i]) != embed_fork_cb)
4406 cb (EV_A_ EV_FORK, forks [i]);
4407#endif
4408
4409#if EV_ASYNC_ENABLE
4410 if (types & EV_ASYNC)
4411 for (i = asynccnt; i--; )
4412 cb (EV_A_ EV_ASYNC, asyncs [i]);
4413#endif
4414
4415#if EV_PREPARE_ENABLE
4416 if (types & EV_PREPARE)
4417 for (i = preparecnt; i--; )
4418# if EV_EMBED_ENABLE
4419 if (ev_cb (prepares [i]) != embed_prepare_cb)
4420# endif
4421 cb (EV_A_ EV_PREPARE, prepares [i]);
4422#endif
4423
4424#if EV_CHECK_ENABLE
4425 if (types & EV_CHECK)
4426 for (i = checkcnt; i--; )
4427 cb (EV_A_ EV_CHECK, checks [i]);
4428#endif
4429
4430#if EV_SIGNAL_ENABLE
4431 if (types & EV_SIGNAL)
4432 for (i = 0; i < EV_NSIG - 1; ++i)
4433 for (wl = signals [i].head; wl; )
4434 {
4435 wn = wl->next;
4436 cb (EV_A_ EV_SIGNAL, wl);
4437 wl = wn;
4438 }
4439#endif
4440
4441#if EV_CHILD_ENABLE
4442 if (types & EV_CHILD)
4443 for (i = (EV_PID_HASHSIZE); i--; )
4444 for (wl = childs [i]; wl; )
4445 {
4446 wn = wl->next;
4447 cb (EV_A_ EV_CHILD, wl);
4448 wl = wn;
4449 }
4450#endif
4451/* EV_STAT 0x00001000 /* stat data changed */
4452/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4453}
4454#endif
4455
2742#if EV_MULTIPLICITY 4456#if EV_MULTIPLICITY
2743 #include "ev_wrap.h" 4457 #include "ev_wrap.h"
2744#endif 4458#endif
2745 4459
2746#ifdef __cplusplus
2747}
2748#endif
2749

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines