ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC vs.
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
47#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
48# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
49#endif 163# endif
50#include <sys/time.h> 164#endif
51#include <time.h>
52 165
53/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
54 167
55#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
57#endif 178#endif
58 179
59#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
61#endif 182#endif
62 183
63#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
65#endif 190#endif
66 191
67#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
68# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
69#endif 198#endif
70 199
71#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
73#endif 202#endif
74 203
75#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
77#endif 213# endif
214#endif
78 215
79/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 241
81#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
84#endif 245#endif
86#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
89#endif 250#endif
90 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
91/**/ 283/**/
92 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 298
98#include "ev.h"
99
100#if __GNUC__ >= 3 299#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 301# define noinline __attribute__ ((noinline))
103#else 302#else
104# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
105# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
106#endif 308#endif
107 309
108#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
110 319
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
113 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
114typedef struct ev_watcher *W; 326typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
117 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
338
339#ifdef _WIN32
340# include "ev_win32.c"
341#endif
119 342
120/*****************************************************************************/ 343/*****************************************************************************/
121 344
345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
122typedef struct 410typedef struct
123{ 411{
124 struct ev_watcher_list *head; 412 WL head;
125 unsigned char events; 413 unsigned char events;
126 unsigned char reify; 414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
127} ANFD; 418} ANFD;
128 419
129typedef struct 420typedef struct
130{ 421{
131 W w; 422 W w;
132 int events; 423 int events;
133} ANPENDING; 424} ANPENDING;
134 425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
135#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
136 434
137struct ev_loop 435 struct ev_loop
138{ 436 {
437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 439 #define VAR(name,decl) decl;
140# include "ev_vars.h" 440 #include "ev_vars.h"
141};
142# undef VAR 441 #undef VAR
442 };
143# include "ev_wrap.h" 443 #include "ev_wrap.h"
444
445 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr;
144 447
145#else 448#else
146 449
450 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 451 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 452 #include "ev_vars.h"
149# undef VAR 453 #undef VAR
454
455 static int ev_default_loop_ptr;
150 456
151#endif 457#endif
152 458
153/*****************************************************************************/ 459/*****************************************************************************/
154 460
155inline ev_tstamp 461ev_tstamp
156ev_time (void) 462ev_time (void)
157{ 463{
158#if EV_USE_REALTIME 464#if EV_USE_REALTIME
159 struct timespec ts; 465 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 466 clock_gettime (CLOCK_REALTIME, &ts);
164 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif 472#endif
167} 473}
168 474
169inline ev_tstamp 475ev_tstamp inline_size
170get_clock (void) 476get_clock (void)
171{ 477{
172#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
174 { 480 {
179#endif 485#endif
180 486
181 return ev_time (); 487 return ev_time ();
182} 488}
183 489
490#if EV_MULTIPLICITY
184ev_tstamp 491ev_tstamp
185ev_now (EV_P) 492ev_now (EV_P)
186{ 493{
187 return rt_now; 494 return ev_rt_now;
188} 495}
496#endif
189 497
190#define array_roundsize(base,n) ((n) | 4 & ~3) 498void
191 499ev_sleep (ev_tstamp delay)
192#define array_needsize(base,cur,cnt,init) \ 500{
193 if (expect_false ((cnt) > cur)) \ 501 if (delay > 0.)
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 } 502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
206 522
207/*****************************************************************************/ 523/*****************************************************************************/
208 524
209static void 525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
554
555#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \
557 { \
558 int ocur_ = (cur); \
559 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \
562 }
563
564#if 0
565#define array_slim(type,stem) \
566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
567 { \
568 stem ## max = array_roundsize (stem ## cnt >> 1); \
569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 }
572#endif
573
574#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
576
577/*****************************************************************************/
578
579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
210anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
211{ 609{
212 while (count--) 610 while (count--)
213 { 611 {
214 base->head = 0; 612 base->head = 0;
217 615
218 ++base; 616 ++base;
219 } 617 }
220} 618}
221 619
222static void 620void inline_speed
223event (EV_P_ W w, int events)
224{
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
247fd_event (EV_P_ int fd, int events) 621fd_event (EV_P_ int fd, int revents)
248{ 622{
249 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 624 ev_io *w;
251 625
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 627 {
254 int ev = w->events & events; 628 int ev = w->events & revents;
255 629
256 if (ev) 630 if (ev)
257 event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
258 } 632 }
259} 633}
260 634
261/*****************************************************************************/ 635void
636ev_feed_fd_event (EV_P_ int fd, int revents)
637{
638 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents);
640}
262 641
263static void 642void inline_size
264fd_reify (EV_P) 643fd_reify (EV_P)
265{ 644{
266 int i; 645 int i;
267 646
268 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
269 { 648 {
270 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 651 ev_io *w;
273 652
274 int events = 0; 653 unsigned char events = 0;
275 654
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 656 events |= (unsigned char)w->events;
278 657
279 anfd->reify = 0; 658#if EV_SELECT_IS_WINSOCKET
280 659 if (events)
281 if (anfd->events != events)
282 { 660 {
283 method_modify (EV_A_ fd, anfd->events, events); 661 unsigned long argp;
284 anfd->events = events; 662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
285 } 668 }
669#endif
670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
286 } 681 }
287 682
288 fdchangecnt = 0; 683 fdchangecnt = 0;
289} 684}
290 685
291static void 686void inline_size
292fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
293{ 688{
294 if (anfds [fd].reify || fdchangecnt < 0) 689 unsigned char reify = anfds [fd].reify;
295 return;
296
297 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
298 691
692 if (expect_true (!reify))
693 {
299 ++fdchangecnt; 694 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
302} 698}
303 699
304static void 700void inline_speed
305fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
306{ 702{
307 struct ev_io *w; 703 ev_io *w;
308 704
309 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
310 { 706 {
311 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 709 }
710}
711
712int inline_size
713fd_valid (int fd)
714{
715#ifdef _WIN32
716 return _get_osfhandle (fd) != -1;
717#else
718 return fcntl (fd, F_GETFD) != -1;
719#endif
314} 720}
315 721
316/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
317static void 723static void noinline
318fd_ebadf (EV_P) 724fd_ebadf (EV_P)
319{ 725{
320 int fd; 726 int fd;
321 727
322 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 729 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
326} 732}
327 733
328/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 735static void noinline
330fd_enomem (EV_P) 736fd_enomem (EV_P)
331{ 737{
332 int fd = anfdmax; 738 int fd;
333 739
334 while (fd--) 740 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 741 if (anfds [fd].events)
336 { 742 {
337 close (fd);
338 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
339 return; 744 return;
340 } 745 }
341} 746}
342 747
343/* susually called after fork if method needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 749static void noinline
345fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
346{ 751{
347 int fd; 752 int fd;
348 753
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 755 if (anfds [fd].events)
352 { 756 {
353 anfds [fd].events = 0; 757 anfds [fd].events = 0;
354 fd_change (fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
355 } 759 }
356} 760}
357 761
358/*****************************************************************************/ 762/*****************************************************************************/
359 763
360static void 764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP
773
774#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */
776
777/* towards the root */
778void inline_speed
361upheap (WT *heap, int k) 779upheap (WT *heap, int k)
362{ 780{
363 WT w = heap [k]; 781 WT w = heap [k];
364 782
365 while (k && heap [k >> 1]->at > w->at) 783 for (;;)
366 { 784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w->at)
788 break;
789
367 heap [k] = heap [k >> 1]; 790 heap [k] = heap [p];
368 heap [k]->active = k + 1; 791 ev_active (heap [k]) = k;
369 k >>= 1; 792 k = p;
370 } 793 }
371 794
372 heap [k] = w; 795 heap [k] = w;
373 heap [k]->active = k + 1; 796 ev_active (heap [k]) = k;
374
375} 797}
376 798
377static void 799/* away from the root */
800void inline_speed
378downheap (WT *heap, int N, int k) 801downheap (WT *heap, int N, int k)
379{ 802{
380 WT w = heap [k]; 803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
381 805
382 while (k < (N >> 1)) 806 for (;;)
383 { 807 {
384 int j = k << 1; 808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
385 811
386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
387 ++j; 814 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at);
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
820 }
821 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
388 831
389 if (w->at <= heap [j]->at) 832 if (w->at <= minat)
390 break; 833 break;
391 834
392 heap [k] = heap [j]; 835 ev_active (*minpos) = k;
393 heap [k]->active = k + 1; 836 heap [k] = *minpos;
394 k = j; 837
838 k = minpos - heap;
395 } 839 }
396 840
397 heap [k] = w; 841 heap [k] = w;
842 ev_active (heap [k]) = k;
843}
844
845#else // 4HEAP
846
847#define HEAP0 1
848
849/* towards the root */
850void inline_speed
851upheap (WT *heap, int k)
852{
853 WT w = heap [k];
854
855 for (;;)
856 {
857 int p = k >> 1;
858
859 /* maybe we could use a dummy element at heap [0]? */
860 if (!p || heap [p]->at <= w->at)
861 break;
862
863 heap [k] = heap [p];
864 ev_active (heap [k]) = k;
865 k = p;
866 }
867
868 heap [k] = w;
869 ev_active (heap [k]) = k;
870}
871
872/* away from the root */
873void inline_speed
874downheap (WT *heap, int N, int k)
875{
876 WT w = heap [k];
877
878 for (;;)
879 {
880 int c = k << 1;
881
882 if (c > N)
883 break;
884
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
886 ? 1 : 0;
887
888 if (w->at <= heap [c]->at)
889 break;
890
891 heap [k] = heap [c];
398 heap [k]->active = k + 1; 892 ((W)heap [k])->active = k;
893
894 k = c;
895 }
896
897 heap [k] = w;
898 ev_active (heap [k]) = k;
899}
900#endif
901
902void inline_size
903adjustheap (WT *heap, int N, int k)
904{
905 upheap (heap, k);
906 downheap (heap, N, k);
399} 907}
400 908
401/*****************************************************************************/ 909/*****************************************************************************/
402 910
403typedef struct 911typedef struct
404{ 912{
405 struct ev_watcher_list *head; 913 WL head;
406 sig_atomic_t volatile gotsig; 914 EV_ATOMIC_T gotsig;
407} ANSIG; 915} ANSIG;
408 916
409static ANSIG *signals; 917static ANSIG *signals;
410static int signalmax; 918static int signalmax;
411 919
412static int sigpipe [2]; 920static EV_ATOMIC_T gotsig;
413static sig_atomic_t volatile gotsig;
414static struct ev_io sigev;
415 921
416static void 922void inline_size
417signals_init (ANSIG *base, int count) 923signals_init (ANSIG *base, int count)
418{ 924{
419 while (count--) 925 while (count--)
420 { 926 {
421 base->head = 0; 927 base->head = 0;
423 929
424 ++base; 930 ++base;
425 } 931 }
426} 932}
427 933
934/*****************************************************************************/
935
936void inline_speed
937fd_intern (int fd)
938{
939#ifdef _WIN32
940 int arg = 1;
941 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
942#else
943 fcntl (fd, F_SETFD, FD_CLOEXEC);
944 fcntl (fd, F_SETFL, O_NONBLOCK);
945#endif
946}
947
948static void noinline
949evpipe_init (EV_P)
950{
951 if (!ev_is_active (&pipeev))
952 {
953#if EV_USE_EVENTFD
954 if ((evfd = eventfd (0, 0)) >= 0)
955 {
956 evpipe [0] = -1;
957 fd_intern (evfd);
958 ev_io_set (&pipeev, evfd, EV_READ);
959 }
960 else
961#endif
962 {
963 while (pipe (evpipe))
964 syserr ("(libev) error creating signal/async pipe");
965
966 fd_intern (evpipe [0]);
967 fd_intern (evpipe [1]);
968 ev_io_set (&pipeev, evpipe [0], EV_READ);
969 }
970
971 ev_io_start (EV_A_ &pipeev);
972 ev_unref (EV_A); /* watcher should not keep loop alive */
973 }
974}
975
976void inline_size
977evpipe_write (EV_P_ EV_ATOMIC_T *flag)
978{
979 if (!*flag)
980 {
981 int old_errno = errno; /* save errno because write might clobber it */
982
983 *flag = 1;
984
985#if EV_USE_EVENTFD
986 if (evfd >= 0)
987 {
988 uint64_t counter = 1;
989 write (evfd, &counter, sizeof (uint64_t));
990 }
991 else
992#endif
993 write (evpipe [1], &old_errno, 1);
994
995 errno = old_errno;
996 }
997}
998
428static void 999static void
1000pipecb (EV_P_ ev_io *iow, int revents)
1001{
1002#if EV_USE_EVENTFD
1003 if (evfd >= 0)
1004 {
1005 uint64_t counter;
1006 read (evfd, &counter, sizeof (uint64_t));
1007 }
1008 else
1009#endif
1010 {
1011 char dummy;
1012 read (evpipe [0], &dummy, 1);
1013 }
1014
1015 if (gotsig && ev_is_default_loop (EV_A))
1016 {
1017 int signum;
1018 gotsig = 0;
1019
1020 for (signum = signalmax; signum--; )
1021 if (signals [signum].gotsig)
1022 ev_feed_signal_event (EV_A_ signum + 1);
1023 }
1024
1025#if EV_ASYNC_ENABLE
1026 if (gotasync)
1027 {
1028 int i;
1029 gotasync = 0;
1030
1031 for (i = asynccnt; i--; )
1032 if (asyncs [i]->sent)
1033 {
1034 asyncs [i]->sent = 0;
1035 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1036 }
1037 }
1038#endif
1039}
1040
1041/*****************************************************************************/
1042
1043static void
429sighandler (int signum) 1044ev_sighandler (int signum)
430{ 1045{
1046#if EV_MULTIPLICITY
1047 struct ev_loop *loop = &default_loop_struct;
1048#endif
1049
1050#if _WIN32
1051 signal (signum, ev_sighandler);
1052#endif
1053
431 signals [signum - 1].gotsig = 1; 1054 signals [signum - 1].gotsig = 1;
432 1055 evpipe_write (EV_A_ &gotsig);
433 if (!gotsig)
434 {
435 int old_errno = errno;
436 gotsig = 1;
437 write (sigpipe [1], &signum, 1);
438 errno = old_errno;
439 }
440} 1056}
441 1057
442static void 1058void noinline
443sigcb (EV_P_ struct ev_io *iow, int revents) 1059ev_feed_signal_event (EV_P_ int signum)
444{ 1060{
445 struct ev_watcher_list *w; 1061 WL w;
1062
1063#if EV_MULTIPLICITY
1064 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1065#endif
1066
446 int signum; 1067 --signum;
447 1068
448 read (sigpipe [0], &revents, 1); 1069 if (signum < 0 || signum >= signalmax)
449 gotsig = 0; 1070 return;
450 1071
451 for (signum = signalmax; signum--; )
452 if (signals [signum].gotsig)
453 {
454 signals [signum].gotsig = 0; 1072 signals [signum].gotsig = 0;
455 1073
456 for (w = signals [signum].head; w; w = w->next) 1074 for (w = signals [signum].head; w; w = w->next)
457 event (EV_A_ (W)w, EV_SIGNAL); 1075 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
458 }
459}
460
461static void
462siginit (EV_P)
463{
464#ifndef WIN32
465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
467
468 /* rather than sort out wether we really need nb, set it */
469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
471#endif
472
473 ev_io_set (&sigev, sigpipe [0], EV_READ);
474 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */
476} 1076}
477 1077
478/*****************************************************************************/ 1078/*****************************************************************************/
479 1079
1080static WL childs [EV_PID_HASHSIZE];
1081
480#ifndef WIN32 1082#ifndef _WIN32
481 1083
482static struct ev_child *childs [PID_HASHSIZE];
483static struct ev_signal childev; 1084static ev_signal childev;
1085
1086#ifndef WIFCONTINUED
1087# define WIFCONTINUED(status) 0
1088#endif
1089
1090void inline_speed
1091child_reap (EV_P_ int chain, int pid, int status)
1092{
1093 ev_child *w;
1094 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1095
1096 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1097 {
1098 if ((w->pid == pid || !w->pid)
1099 && (!traced || (w->flags & 1)))
1100 {
1101 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1102 w->rpid = pid;
1103 w->rstatus = status;
1104 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1105 }
1106 }
1107}
484 1108
485#ifndef WCONTINUED 1109#ifndef WCONTINUED
486# define WCONTINUED 0 1110# define WCONTINUED 0
487#endif 1111#endif
488 1112
489static void 1113static void
490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
491{
492 struct ev_child *w;
493
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid)
496 {
497 w->priority = sw->priority; /* need to do it *now* */
498 w->rpid = pid;
499 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD);
501 }
502}
503
504static void
505childcb (EV_P_ struct ev_signal *sw, int revents) 1114childcb (EV_P_ ev_signal *sw, int revents)
506{ 1115{
507 int pid, status; 1116 int pid, status;
508 1117
1118 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1119 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510 { 1120 if (!WCONTINUED
1121 || errno != EINVAL
1122 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1123 return;
1124
511 /* make sure we are called again until all childs have been reaped */ 1125 /* make sure we are called again until all children have been reaped */
1126 /* we need to do it this way so that the callback gets called before we continue */
512 event (EV_A_ (W)sw, EV_SIGNAL); 1127 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
513 1128
514 child_reap (EV_A_ sw, pid, pid, status); 1129 child_reap (EV_A_ pid, pid, status);
1130 if (EV_PID_HASHSIZE > 1)
515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1131 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
516 }
517} 1132}
518 1133
519#endif 1134#endif
520 1135
521/*****************************************************************************/ 1136/*****************************************************************************/
522 1137
1138#if EV_USE_PORT
1139# include "ev_port.c"
1140#endif
523#if EV_USE_KQUEUE 1141#if EV_USE_KQUEUE
524# include "ev_kqueue.c" 1142# include "ev_kqueue.c"
525#endif 1143#endif
526#if EV_USE_EPOLL 1144#if EV_USE_EPOLL
527# include "ev_epoll.c" 1145# include "ev_epoll.c"
544{ 1162{
545 return EV_VERSION_MINOR; 1163 return EV_VERSION_MINOR;
546} 1164}
547 1165
548/* return true if we are running with elevated privileges and should ignore env variables */ 1166/* return true if we are running with elevated privileges and should ignore env variables */
549static int 1167int inline_size
550enable_secure (void) 1168enable_secure (void)
551{ 1169{
552#ifdef WIN32 1170#ifdef _WIN32
553 return 0; 1171 return 0;
554#else 1172#else
555 return getuid () != geteuid () 1173 return getuid () != geteuid ()
556 || getgid () != getegid (); 1174 || getgid () != getegid ();
557#endif 1175#endif
558} 1176}
559 1177
560int 1178unsigned int
561ev_method (EV_P) 1179ev_supported_backends (void)
562{ 1180{
563 return method; 1181 unsigned int flags = 0;
564}
565 1182
566static void 1183 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
567loop_init (EV_P_ int methods) 1184 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1185 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1186 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1187 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1188
1189 return flags;
1190}
1191
1192unsigned int
1193ev_recommended_backends (void)
568{ 1194{
569 if (!method) 1195 unsigned int flags = ev_supported_backends ();
1196
1197#ifndef __NetBSD__
1198 /* kqueue is borked on everything but netbsd apparently */
1199 /* it usually doesn't work correctly on anything but sockets and pipes */
1200 flags &= ~EVBACKEND_KQUEUE;
1201#endif
1202#ifdef __APPLE__
1203 // flags &= ~EVBACKEND_KQUEUE; for documentation
1204 flags &= ~EVBACKEND_POLL;
1205#endif
1206
1207 return flags;
1208}
1209
1210unsigned int
1211ev_embeddable_backends (void)
1212{
1213 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1214
1215 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1216 /* please fix it and tell me how to detect the fix */
1217 flags &= ~EVBACKEND_EPOLL;
1218
1219 return flags;
1220}
1221
1222unsigned int
1223ev_backend (EV_P)
1224{
1225 return backend;
1226}
1227
1228unsigned int
1229ev_loop_count (EV_P)
1230{
1231 return loop_count;
1232}
1233
1234void
1235ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1236{
1237 io_blocktime = interval;
1238}
1239
1240void
1241ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1242{
1243 timeout_blocktime = interval;
1244}
1245
1246static void noinline
1247loop_init (EV_P_ unsigned int flags)
1248{
1249 if (!backend)
570 { 1250 {
571#if EV_USE_MONOTONIC 1251#if EV_USE_MONOTONIC
572 { 1252 {
573 struct timespec ts; 1253 struct timespec ts;
574 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1254 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
575 have_monotonic = 1; 1255 have_monotonic = 1;
576 } 1256 }
577#endif 1257#endif
578 1258
579 rt_now = ev_time (); 1259 ev_rt_now = ev_time ();
580 mn_now = get_clock (); 1260 mn_now = get_clock ();
581 now_floor = mn_now; 1261 now_floor = mn_now;
582 rtmn_diff = rt_now - mn_now; 1262 rtmn_diff = ev_rt_now - mn_now;
583 1263
584 if (methods == EVMETHOD_AUTO) 1264 io_blocktime = 0.;
585 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1265 timeout_blocktime = 0.;
1266 backend = 0;
1267 backend_fd = -1;
1268 gotasync = 0;
1269#if EV_USE_INOTIFY
1270 fs_fd = -2;
1271#endif
1272
1273 /* pid check not overridable via env */
1274#ifndef _WIN32
1275 if (flags & EVFLAG_FORKCHECK)
1276 curpid = getpid ();
1277#endif
1278
1279 if (!(flags & EVFLAG_NOENV)
1280 && !enable_secure ()
1281 && getenv ("LIBEV_FLAGS"))
586 methods = atoi (getenv ("LIBEV_METHODS")); 1282 flags = atoi (getenv ("LIBEV_FLAGS"));
587 else
588 methods = EVMETHOD_ANY;
589 1283
590 method = 0; 1284 if (!(flags & 0x0000ffffU))
1285 flags |= ev_recommended_backends ();
1286
1287#if EV_USE_PORT
1288 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1289#endif
591#if EV_USE_KQUEUE 1290#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1291 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
593#endif 1292#endif
594#if EV_USE_EPOLL 1293#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1294 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
596#endif 1295#endif
597#if EV_USE_POLL 1296#if EV_USE_POLL
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1297 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
599#endif 1298#endif
600#if EV_USE_SELECT 1299#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1300 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
602#endif 1301#endif
603 }
604}
605 1302
606void 1303 ev_init (&pipeev, pipecb);
1304 ev_set_priority (&pipeev, EV_MAXPRI);
1305 }
1306}
1307
1308static void noinline
607loop_destroy (EV_P) 1309loop_destroy (EV_P)
608{ 1310{
1311 int i;
1312
1313 if (ev_is_active (&pipeev))
1314 {
1315 ev_ref (EV_A); /* signal watcher */
1316 ev_io_stop (EV_A_ &pipeev);
1317
1318#if EV_USE_EVENTFD
1319 if (evfd >= 0)
1320 close (evfd);
1321#endif
1322
1323 if (evpipe [0] >= 0)
1324 {
1325 close (evpipe [0]);
1326 close (evpipe [1]);
1327 }
1328 }
1329
1330#if EV_USE_INOTIFY
1331 if (fs_fd >= 0)
1332 close (fs_fd);
1333#endif
1334
1335 if (backend_fd >= 0)
1336 close (backend_fd);
1337
1338#if EV_USE_PORT
1339 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1340#endif
609#if EV_USE_KQUEUE 1341#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1342 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
611#endif 1343#endif
612#if EV_USE_EPOLL 1344#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1345 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
614#endif 1346#endif
615#if EV_USE_POLL 1347#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1348 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
617#endif 1349#endif
618#if EV_USE_SELECT 1350#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1351 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
620#endif 1352#endif
621 1353
622 method = 0; 1354 for (i = NUMPRI; i--; )
623 /*TODO*/ 1355 {
624} 1356 array_free (pending, [i]);
1357#if EV_IDLE_ENABLE
1358 array_free (idle, [i]);
1359#endif
1360 }
625 1361
626void 1362 ev_free (anfds); anfdmax = 0;
1363
1364 /* have to use the microsoft-never-gets-it-right macro */
1365 array_free (fdchange, EMPTY);
1366 array_free (timer, EMPTY);
1367#if EV_PERIODIC_ENABLE
1368 array_free (periodic, EMPTY);
1369#endif
1370#if EV_FORK_ENABLE
1371 array_free (fork, EMPTY);
1372#endif
1373 array_free (prepare, EMPTY);
1374 array_free (check, EMPTY);
1375#if EV_ASYNC_ENABLE
1376 array_free (async, EMPTY);
1377#endif
1378
1379 backend = 0;
1380}
1381
1382#if EV_USE_INOTIFY
1383void inline_size infy_fork (EV_P);
1384#endif
1385
1386void inline_size
627loop_fork (EV_P) 1387loop_fork (EV_P)
628{ 1388{
629 /*TODO*/ 1389#if EV_USE_PORT
1390 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1391#endif
1392#if EV_USE_KQUEUE
1393 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1394#endif
630#if EV_USE_EPOLL 1395#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1396 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
632#endif 1397#endif
633#if EV_USE_KQUEUE 1398#if EV_USE_INOTIFY
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1399 infy_fork (EV_A);
635#endif 1400#endif
1401
1402 if (ev_is_active (&pipeev))
1403 {
1404 /* this "locks" the handlers against writing to the pipe */
1405 /* while we modify the fd vars */
1406 gotsig = 1;
1407#if EV_ASYNC_ENABLE
1408 gotasync = 1;
1409#endif
1410
1411 ev_ref (EV_A);
1412 ev_io_stop (EV_A_ &pipeev);
1413
1414#if EV_USE_EVENTFD
1415 if (evfd >= 0)
1416 close (evfd);
1417#endif
1418
1419 if (evpipe [0] >= 0)
1420 {
1421 close (evpipe [0]);
1422 close (evpipe [1]);
1423 }
1424
1425 evpipe_init (EV_A);
1426 /* now iterate over everything, in case we missed something */
1427 pipecb (EV_A_ &pipeev, EV_READ);
1428 }
1429
1430 postfork = 0;
636} 1431}
637 1432
638#if EV_MULTIPLICITY 1433#if EV_MULTIPLICITY
639struct ev_loop * 1434struct ev_loop *
640ev_loop_new (int methods) 1435ev_loop_new (unsigned int flags)
641{ 1436{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1437 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
643 1438
1439 memset (loop, 0, sizeof (struct ev_loop));
1440
644 loop_init (EV_A_ methods); 1441 loop_init (EV_A_ flags);
645 1442
646 if (ev_methods (EV_A)) 1443 if (ev_backend (EV_A))
647 return loop; 1444 return loop;
648 1445
649 return 0; 1446 return 0;
650} 1447}
651 1448
652void 1449void
653ev_loop_destroy (EV_P) 1450ev_loop_destroy (EV_P)
654{ 1451{
655 loop_destroy (EV_A); 1452 loop_destroy (EV_A);
656 free (loop); 1453 ev_free (loop);
657} 1454}
658 1455
659void 1456void
660ev_loop_fork (EV_P) 1457ev_loop_fork (EV_P)
661{ 1458{
662 loop_fork (EV_A); 1459 postfork = 1; /* must be in line with ev_default_fork */
663} 1460}
664
665#endif 1461#endif
666 1462
667#if EV_MULTIPLICITY 1463#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop * 1464struct ev_loop *
1465ev_default_loop_init (unsigned int flags)
672#else 1466#else
673static int default_loop;
674
675int 1467int
1468ev_default_loop (unsigned int flags)
676#endif 1469#endif
677ev_default_loop (int methods)
678{ 1470{
679 if (sigpipe [0] == sigpipe [1])
680 if (pipe (sigpipe))
681 return 0;
682
683 if (!default_loop) 1471 if (!ev_default_loop_ptr)
684 { 1472 {
685#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct; 1474 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
687#else 1475#else
688 default_loop = 1; 1476 ev_default_loop_ptr = 1;
689#endif 1477#endif
690 1478
691 loop_init (EV_A_ methods); 1479 loop_init (EV_A_ flags);
692 1480
693 if (ev_method (EV_A)) 1481 if (ev_backend (EV_A))
694 { 1482 {
695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
697 siginit (EV_A);
698
699#ifndef WIN32 1483#ifndef _WIN32
700 ev_signal_init (&childev, childcb, SIGCHLD); 1484 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI); 1485 ev_set_priority (&childev, EV_MAXPRI);
702 ev_signal_start (EV_A_ &childev); 1486 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1487 ev_unref (EV_A); /* child watcher should not keep loop alive */
704#endif 1488#endif
705 } 1489 }
706 else 1490 else
707 default_loop = 0; 1491 ev_default_loop_ptr = 0;
708 } 1492 }
709 1493
710 return default_loop; 1494 return ev_default_loop_ptr;
711} 1495}
712 1496
713void 1497void
714ev_default_destroy (void) 1498ev_default_destroy (void)
715{ 1499{
716#if EV_MULTIPLICITY 1500#if EV_MULTIPLICITY
717 struct ev_loop *loop = default_loop; 1501 struct ev_loop *loop = ev_default_loop_ptr;
718#endif 1502#endif
719 1503
1504#ifndef _WIN32
720 ev_ref (EV_A); /* child watcher */ 1505 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev); 1506 ev_signal_stop (EV_A_ &childev);
722 1507#endif
723 ev_ref (EV_A); /* signal watcher */
724 ev_io_stop (EV_A_ &sigev);
725
726 close (sigpipe [0]); sigpipe [0] = 0;
727 close (sigpipe [1]); sigpipe [1] = 0;
728 1508
729 loop_destroy (EV_A); 1509 loop_destroy (EV_A);
730} 1510}
731 1511
732void 1512void
733ev_default_fork (EV_P) 1513ev_default_fork (void)
734{ 1514{
735 loop_fork (EV_A); 1515#if EV_MULTIPLICITY
1516 struct ev_loop *loop = ev_default_loop_ptr;
1517#endif
736 1518
737 ev_io_stop (EV_A_ &sigev); 1519 if (backend)
738 close (sigpipe [0]); 1520 postfork = 1; /* must be in line with ev_loop_fork */
739 close (sigpipe [1]);
740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
743 siginit (EV_A);
744} 1521}
745 1522
746/*****************************************************************************/ 1523/*****************************************************************************/
747 1524
748static void 1525void
1526ev_invoke (EV_P_ void *w, int revents)
1527{
1528 EV_CB_INVOKE ((W)w, revents);
1529}
1530
1531void inline_speed
749call_pending (EV_P) 1532call_pending (EV_P)
750{ 1533{
751 int pri; 1534 int pri;
752 1535
753 for (pri = NUMPRI; pri--; ) 1536 for (pri = NUMPRI; pri--; )
754 while (pendingcnt [pri]) 1537 while (pendingcnt [pri])
755 { 1538 {
756 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1539 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
757 1540
758 if (p->w) 1541 if (expect_true (p->w))
759 { 1542 {
1543 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1544
760 p->w->pending = 0; 1545 p->w->pending = 0;
761 p->w->cb (EV_A_ p->w, p->events); 1546 EV_CB_INVOKE (p->w, p->events);
762 } 1547 }
763 } 1548 }
764} 1549}
765 1550
766static void 1551#if EV_IDLE_ENABLE
1552void inline_size
1553idle_reify (EV_P)
1554{
1555 if (expect_false (idleall))
1556 {
1557 int pri;
1558
1559 for (pri = NUMPRI; pri--; )
1560 {
1561 if (pendingcnt [pri])
1562 break;
1563
1564 if (idlecnt [pri])
1565 {
1566 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1567 break;
1568 }
1569 }
1570 }
1571}
1572#endif
1573
1574void inline_size
767timers_reify (EV_P) 1575timers_reify (EV_P)
768{ 1576{
769 while (timercnt && timers [0]->at <= mn_now) 1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
770 { 1578 {
771 struct ev_timer *w = timers [0]; 1579 ev_timer *w = (ev_timer *)timers [HEAP0];
1580
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
772 1582
773 /* first reschedule or stop timer */ 1583 /* first reschedule or stop timer */
774 if (w->repeat) 1584 if (w->repeat)
775 { 1585 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
777 w->at = mn_now + w->repeat; 1587
1588 ev_at (w) += w->repeat;
1589 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now;
1591
778 downheap ((WT *)timers, timercnt, 0); 1592 downheap (timers, timercnt, HEAP0);
779 } 1593 }
780 else 1594 else
781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 1596
783 event (EV_A_ (W)w, EV_TIMEOUT); 1597 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
784 } 1598 }
785} 1599}
786 1600
787static void 1601#if EV_PERIODIC_ENABLE
1602void inline_size
788periodics_reify (EV_P) 1603periodics_reify (EV_P)
789{ 1604{
790 while (periodiccnt && periodics [0]->at <= rt_now) 1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
791 { 1606 {
792 struct ev_periodic *w = periodics [0]; 1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1608
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
793 1610
794 /* first reschedule or stop timer */ 1611 /* first reschedule or stop timer */
795 if (w->interval) 1612 if (w->reschedule_cb)
796 { 1613 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1616 downheap (periodics, periodiccnt, 1);
1617 }
1618 else if (w->interval)
1619 {
797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
799 downheap ((WT *)periodics, periodiccnt, 0); 1623 downheap (periodics, periodiccnt, HEAP0);
800 } 1624 }
801 else 1625 else
802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803 1627
804 event (EV_A_ (W)w, EV_PERIODIC); 1628 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
805 } 1629 }
806} 1630}
807 1631
808static void 1632static void noinline
809periodics_reschedule (EV_P) 1633periodics_reschedule (EV_P)
810{ 1634{
811 int i; 1635 int i;
812 1636
813 /* adjust periodics after time jump */ 1637 /* adjust periodics after time jump */
814 for (i = 0; i < periodiccnt; ++i) 1638 for (i = 1; i <= periodiccnt; ++i)
815 { 1639 {
816 struct ev_periodic *w = periodics [i]; 1640 ev_periodic *w = (ev_periodic *)periodics [i];
817 1641
1642 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
818 if (w->interval) 1644 else if (w->interval)
819 {
820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
821
822 if (fabs (diff) >= 1e-4)
823 {
824 ev_periodic_stop (EV_A_ w);
825 ev_periodic_start (EV_A_ w);
826
827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
828 }
829 }
830 }
831}
832
833inline int
834time_update_monotonic (EV_P)
835{
836 mn_now = get_clock ();
837
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 { 1646 }
840 rt_now = rtmn_diff + mn_now;
841 return 0;
842 }
843 else
844 {
845 now_floor = mn_now;
846 rt_now = ev_time ();
847 return 1;
848 }
849}
850 1647
851static void 1648 /* now rebuild the heap */
852time_update (EV_P) 1649 for (i = periodiccnt >> 1; --i; )
1650 downheap (periodics, periodiccnt, i + HEAP0);
1651}
1652#endif
1653
1654void inline_speed
1655time_update (EV_P_ ev_tstamp max_block)
853{ 1656{
854 int i; 1657 int i;
855 1658
856#if EV_USE_MONOTONIC 1659#if EV_USE_MONOTONIC
857 if (expect_true (have_monotonic)) 1660 if (expect_true (have_monotonic))
858 { 1661 {
859 if (time_update_monotonic (EV_A)) 1662 ev_tstamp odiff = rtmn_diff;
1663
1664 mn_now = get_clock ();
1665
1666 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1667 /* interpolate in the meantime */
1668 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
860 { 1669 {
861 ev_tstamp odiff = rtmn_diff; 1670 ev_rt_now = rtmn_diff + mn_now;
1671 return;
1672 }
862 1673
1674 now_floor = mn_now;
1675 ev_rt_now = ev_time ();
1676
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1677 /* loop a few times, before making important decisions.
1678 * on the choice of "4": one iteration isn't enough,
1679 * in case we get preempted during the calls to
1680 * ev_time and get_clock. a second call is almost guaranteed
1681 * to succeed in that case, though. and looping a few more times
1682 * doesn't hurt either as we only do this on time-jumps or
1683 * in the unlikely event of having been preempted here.
1684 */
1685 for (i = 4; --i; )
864 { 1686 {
865 rtmn_diff = rt_now - mn_now; 1687 rtmn_diff = ev_rt_now - mn_now;
866 1688
867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1689 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
868 return; /* all is well */ 1690 return; /* all is well */
869 1691
870 rt_now = ev_time (); 1692 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1693 mn_now = get_clock ();
872 now_floor = mn_now; 1694 now_floor = mn_now;
873 } 1695 }
874 1696
1697# if EV_PERIODIC_ENABLE
1698 periodics_reschedule (EV_A);
1699# endif
1700 /* no timer adjustment, as the monotonic clock doesn't jump */
1701 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1702 }
1703 else
1704#endif
1705 {
1706 ev_rt_now = ev_time ();
1707
1708 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1709 {
1710#if EV_PERIODIC_ENABLE
875 periodics_reschedule (EV_A); 1711 periodics_reschedule (EV_A);
876 /* no timer adjustment, as the monotonic clock doesn't jump */ 1712#endif
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1713 /* adjust timers. this is easy, as the offset is the same for all of them */
1714 for (i = 1; i <= timercnt; ++i)
1715 ev_at (timers [i]) += ev_rt_now - mn_now;
878 } 1716 }
879 }
880 else
881#endif
882 {
883 rt_now = ev_time ();
884 1717
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
886 {
887 periodics_reschedule (EV_A);
888
889 /* adjust timers. this is easy, as the offset is the same for all */
890 for (i = 0; i < timercnt; ++i)
891 timers [i]->at += rt_now - mn_now;
892 }
893
894 mn_now = rt_now; 1718 mn_now = ev_rt_now;
895 } 1719 }
896} 1720}
897 1721
898void 1722void
899ev_ref (EV_P) 1723ev_ref (EV_P)
910static int loop_done; 1734static int loop_done;
911 1735
912void 1736void
913ev_loop (EV_P_ int flags) 1737ev_loop (EV_P_ int flags)
914{ 1738{
915 double block; 1739 loop_done = EVUNLOOP_CANCEL;
916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1740
1741 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
917 1742
918 do 1743 do
919 { 1744 {
1745#ifndef _WIN32
1746 if (expect_false (curpid)) /* penalise the forking check even more */
1747 if (expect_false (getpid () != curpid))
1748 {
1749 curpid = getpid ();
1750 postfork = 1;
1751 }
1752#endif
1753
1754#if EV_FORK_ENABLE
1755 /* we might have forked, so queue fork handlers */
1756 if (expect_false (postfork))
1757 if (forkcnt)
1758 {
1759 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1760 call_pending (EV_A);
1761 }
1762#endif
1763
920 /* queue check watchers (and execute them) */ 1764 /* queue prepare watchers (and execute them) */
921 if (expect_false (preparecnt)) 1765 if (expect_false (preparecnt))
922 { 1766 {
923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1767 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924 call_pending (EV_A); 1768 call_pending (EV_A);
925 } 1769 }
926 1770
1771 if (expect_false (!activecnt))
1772 break;
1773
1774 /* we might have forked, so reify kernel state if necessary */
1775 if (expect_false (postfork))
1776 loop_fork (EV_A);
1777
927 /* update fd-related kernel structures */ 1778 /* update fd-related kernel structures */
928 fd_reify (EV_A); 1779 fd_reify (EV_A);
929 1780
930 /* calculate blocking time */ 1781 /* calculate blocking time */
1782 {
1783 ev_tstamp waittime = 0.;
1784 ev_tstamp sleeptime = 0.;
931 1785
932 /* we only need this for !monotonic clockor timers, but as we basically 1786 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
933 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A);
937 else
938#endif
939 { 1787 {
940 rt_now = ev_time (); 1788 /* update time to cancel out callback processing overhead */
941 mn_now = rt_now; 1789 time_update (EV_A_ 1e100);
942 }
943 1790
944 if (flags & EVLOOP_NONBLOCK || idlecnt)
945 block = 0.;
946 else
947 {
948 block = MAX_BLOCKTIME; 1791 waittime = MAX_BLOCKTIME;
949 1792
950 if (timercnt) 1793 if (timercnt)
951 { 1794 {
952 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
953 if (block > to) block = to; 1796 if (waittime > to) waittime = to;
954 } 1797 }
955 1798
1799#if EV_PERIODIC_ENABLE
956 if (periodiccnt) 1800 if (periodiccnt)
957 { 1801 {
958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
959 if (block > to) block = to; 1803 if (waittime > to) waittime = to;
960 } 1804 }
1805#endif
961 1806
962 if (block < 0.) block = 0.; 1807 if (expect_false (waittime < timeout_blocktime))
1808 waittime = timeout_blocktime;
1809
1810 sleeptime = waittime - backend_fudge;
1811
1812 if (expect_true (sleeptime > io_blocktime))
1813 sleeptime = io_blocktime;
1814
1815 if (sleeptime)
1816 {
1817 ev_sleep (sleeptime);
1818 waittime -= sleeptime;
1819 }
963 } 1820 }
964 1821
965 method_poll (EV_A_ block); 1822 ++loop_count;
1823 backend_poll (EV_A_ waittime);
966 1824
967 /* update rt_now, do magic */ 1825 /* update ev_rt_now, do magic */
968 time_update (EV_A); 1826 time_update (EV_A_ waittime + sleeptime);
1827 }
969 1828
970 /* queue pending timers and reschedule them */ 1829 /* queue pending timers and reschedule them */
971 timers_reify (EV_A); /* relative timers called last */ 1830 timers_reify (EV_A); /* relative timers called last */
1831#if EV_PERIODIC_ENABLE
972 periodics_reify (EV_A); /* absolute timers called first */ 1832 periodics_reify (EV_A); /* absolute timers called first */
1833#endif
973 1834
1835#if EV_IDLE_ENABLE
974 /* queue idle watchers unless io or timers are pending */ 1836 /* queue idle watchers unless other events are pending */
975 if (!pendingcnt) 1837 idle_reify (EV_A);
976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1838#endif
977 1839
978 /* queue check watchers, to be executed first */ 1840 /* queue check watchers, to be executed first */
979 if (checkcnt) 1841 if (expect_false (checkcnt))
980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1842 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
981 1843
982 call_pending (EV_A); 1844 call_pending (EV_A);
983 } 1845 }
984 while (activecnt && !loop_done); 1846 while (expect_true (
1847 activecnt
1848 && !loop_done
1849 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1850 ));
985 1851
986 if (loop_done != 2) 1852 if (loop_done == EVUNLOOP_ONE)
987 loop_done = 0; 1853 loop_done = EVUNLOOP_CANCEL;
988} 1854}
989 1855
990void 1856void
991ev_unloop (EV_P_ int how) 1857ev_unloop (EV_P_ int how)
992{ 1858{
993 loop_done = how; 1859 loop_done = how;
994} 1860}
995 1861
996/*****************************************************************************/ 1862/*****************************************************************************/
997 1863
998inline void 1864void inline_size
999wlist_add (WL *head, WL elem) 1865wlist_add (WL *head, WL elem)
1000{ 1866{
1001 elem->next = *head; 1867 elem->next = *head;
1002 *head = elem; 1868 *head = elem;
1003} 1869}
1004 1870
1005inline void 1871void inline_size
1006wlist_del (WL *head, WL elem) 1872wlist_del (WL *head, WL elem)
1007{ 1873{
1008 while (*head) 1874 while (*head)
1009 { 1875 {
1010 if (*head == elem) 1876 if (*head == elem)
1015 1881
1016 head = &(*head)->next; 1882 head = &(*head)->next;
1017 } 1883 }
1018} 1884}
1019 1885
1020inline void 1886void inline_speed
1021ev_clear_pending (EV_P_ W w) 1887clear_pending (EV_P_ W w)
1022{ 1888{
1023 if (w->pending) 1889 if (w->pending)
1024 { 1890 {
1025 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1891 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1026 w->pending = 0; 1892 w->pending = 0;
1027 } 1893 }
1028} 1894}
1029 1895
1030inline void 1896int
1897ev_clear_pending (EV_P_ void *w)
1898{
1899 W w_ = (W)w;
1900 int pending = w_->pending;
1901
1902 if (expect_true (pending))
1903 {
1904 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1905 w_->pending = 0;
1906 p->w = 0;
1907 return p->events;
1908 }
1909 else
1910 return 0;
1911}
1912
1913void inline_size
1914pri_adjust (EV_P_ W w)
1915{
1916 int pri = w->priority;
1917 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1918 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1919 w->priority = pri;
1920}
1921
1922void inline_speed
1031ev_start (EV_P_ W w, int active) 1923ev_start (EV_P_ W w, int active)
1032{ 1924{
1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1925 pri_adjust (EV_A_ w);
1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1035
1036 w->active = active; 1926 w->active = active;
1037 ev_ref (EV_A); 1927 ev_ref (EV_A);
1038} 1928}
1039 1929
1040inline void 1930void inline_size
1041ev_stop (EV_P_ W w) 1931ev_stop (EV_P_ W w)
1042{ 1932{
1043 ev_unref (EV_A); 1933 ev_unref (EV_A);
1044 w->active = 0; 1934 w->active = 0;
1045} 1935}
1046 1936
1047/*****************************************************************************/ 1937/*****************************************************************************/
1048 1938
1049void 1939void noinline
1050ev_io_start (EV_P_ struct ev_io *w) 1940ev_io_start (EV_P_ ev_io *w)
1051{ 1941{
1052 int fd = w->fd; 1942 int fd = w->fd;
1053 1943
1054 if (ev_is_active (w)) 1944 if (expect_false (ev_is_active (w)))
1055 return; 1945 return;
1056 1946
1057 assert (("ev_io_start called with negative fd", fd >= 0)); 1947 assert (("ev_io_start called with negative fd", fd >= 0));
1058 1948
1059 ev_start (EV_A_ (W)w, 1); 1949 ev_start (EV_A_ (W)w, 1);
1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1950 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1061 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1951 wlist_add (&anfds[fd].head, (WL)w);
1062 1952
1063 fd_change (EV_A_ fd); 1953 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1954 w->events &= ~EV_IOFDSET;
1064} 1955}
1065 1956
1066void 1957void noinline
1067ev_io_stop (EV_P_ struct ev_io *w) 1958ev_io_stop (EV_P_ ev_io *w)
1068{ 1959{
1069 ev_clear_pending (EV_A_ (W)w); 1960 clear_pending (EV_A_ (W)w);
1070 if (!ev_is_active (w)) 1961 if (expect_false (!ev_is_active (w)))
1071 return; 1962 return;
1072 1963
1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1965
1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1966 wlist_del (&anfds[w->fd].head, (WL)w);
1074 ev_stop (EV_A_ (W)w); 1967 ev_stop (EV_A_ (W)w);
1075 1968
1076 fd_change (EV_A_ w->fd); 1969 fd_change (EV_A_ w->fd, 1);
1077} 1970}
1078 1971
1079void 1972void noinline
1080ev_timer_start (EV_P_ struct ev_timer *w) 1973ev_timer_start (EV_P_ ev_timer *w)
1081{ 1974{
1082 if (ev_is_active (w)) 1975 if (expect_false (ev_is_active (w)))
1083 return; 1976 return;
1084 1977
1085 w->at += mn_now; 1978 ev_at (w) += mn_now;
1086 1979
1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 1981
1089 ev_start (EV_A_ (W)w, ++timercnt); 1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1090 array_needsize (timers, timermax, timercnt, ); 1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1091 timers [timercnt - 1] = w; 1984 timers [ev_active (w)] = (WT)w;
1092 upheap ((WT *)timers, timercnt - 1); 1985 upheap (timers, ev_active (w));
1093}
1094 1986
1095void 1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1988}
1989
1990void noinline
1096ev_timer_stop (EV_P_ struct ev_timer *w) 1991ev_timer_stop (EV_P_ ev_timer *w)
1097{ 1992{
1098 ev_clear_pending (EV_A_ (W)w); 1993 clear_pending (EV_A_ (W)w);
1099 if (!ev_is_active (w)) 1994 if (expect_false (!ev_is_active (w)))
1100 return; 1995 return;
1101 1996
1102 if (w->active < timercnt--) 1997 {
1998 int active = ev_active (w);
1999
2000 assert (("internal timer heap corruption", timers [active] == (WT)w));
2001
2002 if (expect_true (active < timercnt + HEAP0 - 1))
1103 { 2003 {
1104 timers [w->active - 1] = timers [timercnt]; 2004 timers [active] = timers [timercnt + HEAP0 - 1];
1105 downheap ((WT *)timers, timercnt, w->active - 1); 2005 adjustheap (timers, timercnt, active);
1106 } 2006 }
1107 2007
1108 w->at = w->repeat; 2008 --timercnt;
2009 }
2010
2011 ev_at (w) -= mn_now;
1109 2012
1110 ev_stop (EV_A_ (W)w); 2013 ev_stop (EV_A_ (W)w);
1111} 2014}
1112 2015
1113void 2016void noinline
1114ev_timer_again (EV_P_ struct ev_timer *w) 2017ev_timer_again (EV_P_ ev_timer *w)
1115{ 2018{
1116 if (ev_is_active (w)) 2019 if (ev_is_active (w))
1117 { 2020 {
1118 if (w->repeat) 2021 if (w->repeat)
1119 { 2022 {
1120 w->at = mn_now + w->repeat; 2023 ev_at (w) = mn_now + w->repeat;
1121 downheap ((WT *)timers, timercnt, w->active - 1); 2024 adjustheap (timers, timercnt, ev_active (w));
1122 } 2025 }
1123 else 2026 else
1124 ev_timer_stop (EV_A_ w); 2027 ev_timer_stop (EV_A_ w);
1125 } 2028 }
1126 else if (w->repeat) 2029 else if (w->repeat)
2030 {
2031 ev_at (w) = w->repeat;
1127 ev_timer_start (EV_A_ w); 2032 ev_timer_start (EV_A_ w);
2033 }
1128} 2034}
1129 2035
1130void 2036#if EV_PERIODIC_ENABLE
2037void noinline
1131ev_periodic_start (EV_P_ struct ev_periodic *w) 2038ev_periodic_start (EV_P_ ev_periodic *w)
1132{ 2039{
1133 if (ev_is_active (w)) 2040 if (expect_false (ev_is_active (w)))
1134 return; 2041 return;
1135 2042
2043 if (w->reschedule_cb)
2044 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2045 else if (w->interval)
2046 {
1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2047 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1137
1138 /* this formula differs from the one in periodic_reify because we do not always round up */ 2048 /* this formula differs from the one in periodic_reify because we do not always round up */
1139 if (w->interval)
1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2049 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2050 }
2051 else
2052 ev_at (w) = w->offset;
1141 2053
1142 ev_start (EV_A_ (W)w, ++periodiccnt); 2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1143 array_needsize (periodics, periodicmax, periodiccnt, ); 2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1144 periodics [periodiccnt - 1] = w; 2056 periodics [ev_active (w)] = (WT)w;
1145 upheap ((WT *)periodics, periodiccnt - 1); 2057 upheap (periodics, ev_active (w));
1146}
1147 2058
1148void 2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
2060}
2061
2062void noinline
1149ev_periodic_stop (EV_P_ struct ev_periodic *w) 2063ev_periodic_stop (EV_P_ ev_periodic *w)
1150{ 2064{
1151 ev_clear_pending (EV_A_ (W)w); 2065 clear_pending (EV_A_ (W)w);
1152 if (!ev_is_active (w)) 2066 if (expect_false (!ev_is_active (w)))
1153 return; 2067 return;
1154 2068
1155 if (w->active < periodiccnt--) 2069 {
2070 int active = ev_active (w);
2071
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2073
2074 if (expect_true (active < periodiccnt + HEAP0 - 1))
1156 { 2075 {
1157 periodics [w->active - 1] = periodics [periodiccnt]; 2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1158 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2077 adjustheap (periodics, periodiccnt, active);
1159 } 2078 }
2079
2080 --periodiccnt;
2081 }
1160 2082
1161 ev_stop (EV_A_ (W)w); 2083 ev_stop (EV_A_ (W)w);
1162} 2084}
1163 2085
1164void 2086void noinline
1165ev_idle_start (EV_P_ struct ev_idle *w) 2087ev_periodic_again (EV_P_ ev_periodic *w)
1166{ 2088{
1167 if (ev_is_active (w)) 2089 /* TODO: use adjustheap and recalculation */
1168 return;
1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173}
1174
1175void
1176ev_idle_stop (EV_P_ struct ev_idle *w)
1177{
1178 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w); 2090 ev_periodic_stop (EV_A_ w);
2091 ev_periodic_start (EV_A_ w);
1184} 2092}
1185 2093#endif
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1228}
1229 2094
1230#ifndef SA_RESTART 2095#ifndef SA_RESTART
1231# define SA_RESTART 0 2096# define SA_RESTART 0
1232#endif 2097#endif
1233 2098
1234void 2099void noinline
1235ev_signal_start (EV_P_ struct ev_signal *w) 2100ev_signal_start (EV_P_ ev_signal *w)
1236{ 2101{
1237#if EV_MULTIPLICITY 2102#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2103 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1239#endif 2104#endif
1240 if (ev_is_active (w)) 2105 if (expect_false (ev_is_active (w)))
1241 return; 2106 return;
1242 2107
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2108 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244 2109
2110 evpipe_init (EV_A);
2111
2112 {
2113#ifndef _WIN32
2114 sigset_t full, prev;
2115 sigfillset (&full);
2116 sigprocmask (SIG_SETMASK, &full, &prev);
2117#endif
2118
2119 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2120
2121#ifndef _WIN32
2122 sigprocmask (SIG_SETMASK, &prev, 0);
2123#endif
2124 }
2125
1245 ev_start (EV_A_ (W)w, 1); 2126 ev_start (EV_A_ (W)w, 1);
1246 array_needsize (signals, signalmax, w->signum, signals_init);
1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2127 wlist_add (&signals [w->signum - 1].head, (WL)w);
1248 2128
1249 if (!w->next) 2129 if (!((WL)w)->next)
1250 { 2130 {
2131#if _WIN32
2132 signal (w->signum, ev_sighandler);
2133#else
1251 struct sigaction sa; 2134 struct sigaction sa;
1252 sa.sa_handler = sighandler; 2135 sa.sa_handler = ev_sighandler;
1253 sigfillset (&sa.sa_mask); 2136 sigfillset (&sa.sa_mask);
1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2137 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255 sigaction (w->signum, &sa, 0); 2138 sigaction (w->signum, &sa, 0);
2139#endif
1256 } 2140 }
1257} 2141}
1258 2142
1259void 2143void noinline
1260ev_signal_stop (EV_P_ struct ev_signal *w) 2144ev_signal_stop (EV_P_ ev_signal *w)
1261{ 2145{
1262 ev_clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 2147 if (expect_false (!ev_is_active (w)))
1264 return; 2148 return;
1265 2149
1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2150 wlist_del (&signals [w->signum - 1].head, (WL)w);
1267 ev_stop (EV_A_ (W)w); 2151 ev_stop (EV_A_ (W)w);
1268 2152
1269 if (!signals [w->signum - 1].head) 2153 if (!signals [w->signum - 1].head)
1270 signal (w->signum, SIG_DFL); 2154 signal (w->signum, SIG_DFL);
1271} 2155}
1272 2156
1273void 2157void
1274ev_child_start (EV_P_ struct ev_child *w) 2158ev_child_start (EV_P_ ev_child *w)
1275{ 2159{
1276#if EV_MULTIPLICITY 2160#if EV_MULTIPLICITY
1277 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2161 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1278#endif 2162#endif
1279 if (ev_is_active (w)) 2163 if (expect_false (ev_is_active (w)))
1280 return; 2164 return;
1281 2165
1282 ev_start (EV_A_ (W)w, 1); 2166 ev_start (EV_A_ (W)w, 1);
1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2167 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1284} 2168}
1285 2169
1286void 2170void
1287ev_child_stop (EV_P_ struct ev_child *w) 2171ev_child_stop (EV_P_ ev_child *w)
1288{ 2172{
1289 ev_clear_pending (EV_A_ (W)w); 2173 clear_pending (EV_A_ (W)w);
1290 if (ev_is_active (w)) 2174 if (expect_false (!ev_is_active (w)))
1291 return; 2175 return;
1292 2176
1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2177 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1294 ev_stop (EV_A_ (W)w); 2178 ev_stop (EV_A_ (W)w);
1295} 2179}
1296 2180
2181#if EV_STAT_ENABLE
2182
2183# ifdef _WIN32
2184# undef lstat
2185# define lstat(a,b) _stati64 (a,b)
2186# endif
2187
2188#define DEF_STAT_INTERVAL 5.0074891
2189#define MIN_STAT_INTERVAL 0.1074891
2190
2191static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2192
2193#if EV_USE_INOTIFY
2194# define EV_INOTIFY_BUFSIZE 8192
2195
2196static void noinline
2197infy_add (EV_P_ ev_stat *w)
2198{
2199 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2200
2201 if (w->wd < 0)
2202 {
2203 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2204
2205 /* monitor some parent directory for speedup hints */
2206 /* note that exceeding the hardcoded limit is not a correctness issue, */
2207 /* but an efficiency issue only */
2208 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2209 {
2210 char path [4096];
2211 strcpy (path, w->path);
2212
2213 do
2214 {
2215 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2216 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2217
2218 char *pend = strrchr (path, '/');
2219
2220 if (!pend)
2221 break; /* whoops, no '/', complain to your admin */
2222
2223 *pend = 0;
2224 w->wd = inotify_add_watch (fs_fd, path, mask);
2225 }
2226 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2227 }
2228 }
2229 else
2230 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2231
2232 if (w->wd >= 0)
2233 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2234}
2235
2236static void noinline
2237infy_del (EV_P_ ev_stat *w)
2238{
2239 int slot;
2240 int wd = w->wd;
2241
2242 if (wd < 0)
2243 return;
2244
2245 w->wd = -2;
2246 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2247 wlist_del (&fs_hash [slot].head, (WL)w);
2248
2249 /* remove this watcher, if others are watching it, they will rearm */
2250 inotify_rm_watch (fs_fd, wd);
2251}
2252
2253static void noinline
2254infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2255{
2256 if (slot < 0)
2257 /* overflow, need to check for all hahs slots */
2258 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2259 infy_wd (EV_A_ slot, wd, ev);
2260 else
2261 {
2262 WL w_;
2263
2264 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2265 {
2266 ev_stat *w = (ev_stat *)w_;
2267 w_ = w_->next; /* lets us remove this watcher and all before it */
2268
2269 if (w->wd == wd || wd == -1)
2270 {
2271 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2272 {
2273 w->wd = -1;
2274 infy_add (EV_A_ w); /* re-add, no matter what */
2275 }
2276
2277 stat_timer_cb (EV_A_ &w->timer, 0);
2278 }
2279 }
2280 }
2281}
2282
2283static void
2284infy_cb (EV_P_ ev_io *w, int revents)
2285{
2286 char buf [EV_INOTIFY_BUFSIZE];
2287 struct inotify_event *ev = (struct inotify_event *)buf;
2288 int ofs;
2289 int len = read (fs_fd, buf, sizeof (buf));
2290
2291 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2292 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2293}
2294
2295void inline_size
2296infy_init (EV_P)
2297{
2298 if (fs_fd != -2)
2299 return;
2300
2301 fs_fd = inotify_init ();
2302
2303 if (fs_fd >= 0)
2304 {
2305 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2306 ev_set_priority (&fs_w, EV_MAXPRI);
2307 ev_io_start (EV_A_ &fs_w);
2308 }
2309}
2310
2311void inline_size
2312infy_fork (EV_P)
2313{
2314 int slot;
2315
2316 if (fs_fd < 0)
2317 return;
2318
2319 close (fs_fd);
2320 fs_fd = inotify_init ();
2321
2322 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2323 {
2324 WL w_ = fs_hash [slot].head;
2325 fs_hash [slot].head = 0;
2326
2327 while (w_)
2328 {
2329 ev_stat *w = (ev_stat *)w_;
2330 w_ = w_->next; /* lets us add this watcher */
2331
2332 w->wd = -1;
2333
2334 if (fs_fd >= 0)
2335 infy_add (EV_A_ w); /* re-add, no matter what */
2336 else
2337 ev_timer_start (EV_A_ &w->timer);
2338 }
2339
2340 }
2341}
2342
2343#endif
2344
2345void
2346ev_stat_stat (EV_P_ ev_stat *w)
2347{
2348 if (lstat (w->path, &w->attr) < 0)
2349 w->attr.st_nlink = 0;
2350 else if (!w->attr.st_nlink)
2351 w->attr.st_nlink = 1;
2352}
2353
2354static void noinline
2355stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2356{
2357 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2358
2359 /* we copy this here each the time so that */
2360 /* prev has the old value when the callback gets invoked */
2361 w->prev = w->attr;
2362 ev_stat_stat (EV_A_ w);
2363
2364 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2365 if (
2366 w->prev.st_dev != w->attr.st_dev
2367 || w->prev.st_ino != w->attr.st_ino
2368 || w->prev.st_mode != w->attr.st_mode
2369 || w->prev.st_nlink != w->attr.st_nlink
2370 || w->prev.st_uid != w->attr.st_uid
2371 || w->prev.st_gid != w->attr.st_gid
2372 || w->prev.st_rdev != w->attr.st_rdev
2373 || w->prev.st_size != w->attr.st_size
2374 || w->prev.st_atime != w->attr.st_atime
2375 || w->prev.st_mtime != w->attr.st_mtime
2376 || w->prev.st_ctime != w->attr.st_ctime
2377 ) {
2378 #if EV_USE_INOTIFY
2379 infy_del (EV_A_ w);
2380 infy_add (EV_A_ w);
2381 ev_stat_stat (EV_A_ w); /* avoid race... */
2382 #endif
2383
2384 ev_feed_event (EV_A_ w, EV_STAT);
2385 }
2386}
2387
2388void
2389ev_stat_start (EV_P_ ev_stat *w)
2390{
2391 if (expect_false (ev_is_active (w)))
2392 return;
2393
2394 /* since we use memcmp, we need to clear any padding data etc. */
2395 memset (&w->prev, 0, sizeof (ev_statdata));
2396 memset (&w->attr, 0, sizeof (ev_statdata));
2397
2398 ev_stat_stat (EV_A_ w);
2399
2400 if (w->interval < MIN_STAT_INTERVAL)
2401 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2402
2403 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2404 ev_set_priority (&w->timer, ev_priority (w));
2405
2406#if EV_USE_INOTIFY
2407 infy_init (EV_A);
2408
2409 if (fs_fd >= 0)
2410 infy_add (EV_A_ w);
2411 else
2412#endif
2413 ev_timer_start (EV_A_ &w->timer);
2414
2415 ev_start (EV_A_ (W)w, 1);
2416}
2417
2418void
2419ev_stat_stop (EV_P_ ev_stat *w)
2420{
2421 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w)))
2423 return;
2424
2425#if EV_USE_INOTIFY
2426 infy_del (EV_A_ w);
2427#endif
2428 ev_timer_stop (EV_A_ &w->timer);
2429
2430 ev_stop (EV_A_ (W)w);
2431}
2432#endif
2433
2434#if EV_IDLE_ENABLE
2435void
2436ev_idle_start (EV_P_ ev_idle *w)
2437{
2438 if (expect_false (ev_is_active (w)))
2439 return;
2440
2441 pri_adjust (EV_A_ (W)w);
2442
2443 {
2444 int active = ++idlecnt [ABSPRI (w)];
2445
2446 ++idleall;
2447 ev_start (EV_A_ (W)w, active);
2448
2449 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2450 idles [ABSPRI (w)][active - 1] = w;
2451 }
2452}
2453
2454void
2455ev_idle_stop (EV_P_ ev_idle *w)
2456{
2457 clear_pending (EV_A_ (W)w);
2458 if (expect_false (!ev_is_active (w)))
2459 return;
2460
2461 {
2462 int active = ev_active (w);
2463
2464 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2465 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2466
2467 ev_stop (EV_A_ (W)w);
2468 --idleall;
2469 }
2470}
2471#endif
2472
2473void
2474ev_prepare_start (EV_P_ ev_prepare *w)
2475{
2476 if (expect_false (ev_is_active (w)))
2477 return;
2478
2479 ev_start (EV_A_ (W)w, ++preparecnt);
2480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2481 prepares [preparecnt - 1] = w;
2482}
2483
2484void
2485ev_prepare_stop (EV_P_ ev_prepare *w)
2486{
2487 clear_pending (EV_A_ (W)w);
2488 if (expect_false (!ev_is_active (w)))
2489 return;
2490
2491 {
2492 int active = ev_active (w);
2493
2494 prepares [active - 1] = prepares [--preparecnt];
2495 ev_active (prepares [active - 1]) = active;
2496 }
2497
2498 ev_stop (EV_A_ (W)w);
2499}
2500
2501void
2502ev_check_start (EV_P_ ev_check *w)
2503{
2504 if (expect_false (ev_is_active (w)))
2505 return;
2506
2507 ev_start (EV_A_ (W)w, ++checkcnt);
2508 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2509 checks [checkcnt - 1] = w;
2510}
2511
2512void
2513ev_check_stop (EV_P_ ev_check *w)
2514{
2515 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w)))
2517 return;
2518
2519 {
2520 int active = ev_active (w);
2521
2522 checks [active - 1] = checks [--checkcnt];
2523 ev_active (checks [active - 1]) = active;
2524 }
2525
2526 ev_stop (EV_A_ (W)w);
2527}
2528
2529#if EV_EMBED_ENABLE
2530void noinline
2531ev_embed_sweep (EV_P_ ev_embed *w)
2532{
2533 ev_loop (w->other, EVLOOP_NONBLOCK);
2534}
2535
2536static void
2537embed_io_cb (EV_P_ ev_io *io, int revents)
2538{
2539 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2540
2541 if (ev_cb (w))
2542 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2543 else
2544 ev_loop (w->other, EVLOOP_NONBLOCK);
2545}
2546
2547static void
2548embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2549{
2550 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2551
2552 {
2553 struct ev_loop *loop = w->other;
2554
2555 while (fdchangecnt)
2556 {
2557 fd_reify (EV_A);
2558 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2559 }
2560 }
2561}
2562
2563#if 0
2564static void
2565embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2566{
2567 ev_idle_stop (EV_A_ idle);
2568}
2569#endif
2570
2571void
2572ev_embed_start (EV_P_ ev_embed *w)
2573{
2574 if (expect_false (ev_is_active (w)))
2575 return;
2576
2577 {
2578 struct ev_loop *loop = w->other;
2579 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2580 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2581 }
2582
2583 ev_set_priority (&w->io, ev_priority (w));
2584 ev_io_start (EV_A_ &w->io);
2585
2586 ev_prepare_init (&w->prepare, embed_prepare_cb);
2587 ev_set_priority (&w->prepare, EV_MINPRI);
2588 ev_prepare_start (EV_A_ &w->prepare);
2589
2590 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2591
2592 ev_start (EV_A_ (W)w, 1);
2593}
2594
2595void
2596ev_embed_stop (EV_P_ ev_embed *w)
2597{
2598 clear_pending (EV_A_ (W)w);
2599 if (expect_false (!ev_is_active (w)))
2600 return;
2601
2602 ev_io_stop (EV_A_ &w->io);
2603 ev_prepare_stop (EV_A_ &w->prepare);
2604
2605 ev_stop (EV_A_ (W)w);
2606}
2607#endif
2608
2609#if EV_FORK_ENABLE
2610void
2611ev_fork_start (EV_P_ ev_fork *w)
2612{
2613 if (expect_false (ev_is_active (w)))
2614 return;
2615
2616 ev_start (EV_A_ (W)w, ++forkcnt);
2617 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2618 forks [forkcnt - 1] = w;
2619}
2620
2621void
2622ev_fork_stop (EV_P_ ev_fork *w)
2623{
2624 clear_pending (EV_A_ (W)w);
2625 if (expect_false (!ev_is_active (w)))
2626 return;
2627
2628 {
2629 int active = ev_active (w);
2630
2631 forks [active - 1] = forks [--forkcnt];
2632 ev_active (forks [active - 1]) = active;
2633 }
2634
2635 ev_stop (EV_A_ (W)w);
2636}
2637#endif
2638
2639#if EV_ASYNC_ENABLE
2640void
2641ev_async_start (EV_P_ ev_async *w)
2642{
2643 if (expect_false (ev_is_active (w)))
2644 return;
2645
2646 evpipe_init (EV_A);
2647
2648 ev_start (EV_A_ (W)w, ++asynccnt);
2649 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2650 asyncs [asynccnt - 1] = w;
2651}
2652
2653void
2654ev_async_stop (EV_P_ ev_async *w)
2655{
2656 clear_pending (EV_A_ (W)w);
2657 if (expect_false (!ev_is_active (w)))
2658 return;
2659
2660 {
2661 int active = ev_active (w);
2662
2663 asyncs [active - 1] = asyncs [--asynccnt];
2664 ev_active (asyncs [active - 1]) = active;
2665 }
2666
2667 ev_stop (EV_A_ (W)w);
2668}
2669
2670void
2671ev_async_send (EV_P_ ev_async *w)
2672{
2673 w->sent = 1;
2674 evpipe_write (EV_A_ &gotasync);
2675}
2676#endif
2677
1297/*****************************************************************************/ 2678/*****************************************************************************/
1298 2679
1299struct ev_once 2680struct ev_once
1300{ 2681{
1301 struct ev_io io; 2682 ev_io io;
1302 struct ev_timer to; 2683 ev_timer to;
1303 void (*cb)(int revents, void *arg); 2684 void (*cb)(int revents, void *arg);
1304 void *arg; 2685 void *arg;
1305}; 2686};
1306 2687
1307static void 2688static void
1310 void (*cb)(int revents, void *arg) = once->cb; 2691 void (*cb)(int revents, void *arg) = once->cb;
1311 void *arg = once->arg; 2692 void *arg = once->arg;
1312 2693
1313 ev_io_stop (EV_A_ &once->io); 2694 ev_io_stop (EV_A_ &once->io);
1314 ev_timer_stop (EV_A_ &once->to); 2695 ev_timer_stop (EV_A_ &once->to);
1315 free (once); 2696 ev_free (once);
1316 2697
1317 cb (revents, arg); 2698 cb (revents, arg);
1318} 2699}
1319 2700
1320static void 2701static void
1321once_cb_io (EV_P_ struct ev_io *w, int revents) 2702once_cb_io (EV_P_ ev_io *w, int revents)
1322{ 2703{
1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2704 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1324} 2705}
1325 2706
1326static void 2707static void
1327once_cb_to (EV_P_ struct ev_timer *w, int revents) 2708once_cb_to (EV_P_ ev_timer *w, int revents)
1328{ 2709{
1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2710 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1330} 2711}
1331 2712
1332void 2713void
1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2714ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1334{ 2715{
1335 struct ev_once *once = malloc (sizeof (struct ev_once)); 2716 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1336 2717
1337 if (!once) 2718 if (expect_false (!once))
2719 {
1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2720 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1339 else 2721 return;
1340 { 2722 }
2723
1341 once->cb = cb; 2724 once->cb = cb;
1342 once->arg = arg; 2725 once->arg = arg;
1343 2726
1344 ev_watcher_init (&once->io, once_cb_io); 2727 ev_init (&once->io, once_cb_io);
1345 if (fd >= 0) 2728 if (fd >= 0)
1346 { 2729 {
1347 ev_io_set (&once->io, fd, events); 2730 ev_io_set (&once->io, fd, events);
1348 ev_io_start (EV_A_ &once->io); 2731 ev_io_start (EV_A_ &once->io);
1349 } 2732 }
1350 2733
1351 ev_watcher_init (&once->to, once_cb_to); 2734 ev_init (&once->to, once_cb_to);
1352 if (timeout >= 0.) 2735 if (timeout >= 0.)
1353 { 2736 {
1354 ev_timer_set (&once->to, timeout, 0.); 2737 ev_timer_set (&once->to, timeout, 0.);
1355 ev_timer_start (EV_A_ &once->to); 2738 ev_timer_start (EV_A_ &once->to);
1356 }
1357 } 2739 }
1358} 2740}
1359 2741
2742#if EV_MULTIPLICITY
2743 #include "ev_wrap.h"
2744#endif
2745
2746#ifdef __cplusplus
2747}
2748#endif
2749

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines