ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.239 by root, Thu May 8 20:52:13 2008 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

422 W w; 422 W w;
423 int events; 423 int events;
424} ANPENDING; 424} ANPENDING;
425 425
426#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
427typedef struct 428typedef struct
428{ 429{
429 WL head; 430 WL head;
430} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
431#endif 451#endif
432 452
433#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
434 454
435 struct ev_loop 455 struct ev_loop
760} 780}
761 781
762/*****************************************************************************/ 782/*****************************************************************************/
763 783
764/* 784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
765 * at the moment we allow libev the luxury of two heaps, 791 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 793 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 794 * the difference is about 5% with 50000+ watchers.
769 */ 795 */
770#define USE_4HEAP !EV_MINIMAL 796#define EV_USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 797#if EV_USE_4HEAP
772 798
773#define DHEAP 4 799#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775 801
776/* towards the root */ 802/* towards the root */
777void inline_speed 803void inline_speed
778upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
779{ 805{
780 WT w = heap [k]; 806 ANHE he = heap [k];
781 807
782 for (;;) 808 for (;;)
783 { 809 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
785 811
786 if (p == k || heap [p]->at <= w->at) 812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
787 break; 813 break;
788 814
789 heap [k] = heap [p]; 815 heap [k] = heap [p];
790 ev_active (heap [k]) = k; 816 ev_active (ANHE_w (heap [k])) = k;
791 k = p; 817 k = p;
792 } 818 }
793 819
820 ev_active (ANHE_w (he)) = k;
794 heap [k] = w; 821 heap [k] = he;
795 ev_active (heap [k]) = k;
796} 822}
797 823
798/* away from the root */ 824/* away from the root */
799void inline_speed 825void inline_speed
800downheap (WT *heap, int N, int k) 826downheap (ANHE *heap, int N, int k)
801{ 827{
802 WT w = heap [k]; 828 ANHE he = heap [k];
803 WT *E = heap + N + HEAP0; 829 ANHE *E = heap + N + HEAP0;
804 830
805 for (;;) 831 for (;;)
806 { 832 {
807 ev_tstamp minat; 833 ev_tstamp minat;
808 WT *minpos; 834 ANHE *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
810 836
811 // find minimum child 837 // find minimum child
812 if (expect_true (pos + DHEAP - 1 < E)) 838 if (expect_true (pos + DHEAP - 1 < E))
813 { 839 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at); 840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 851 }
820 else 852 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break; 853 break;
833 854
855 if (ANHE_at (he) <= minat)
856 break;
857
834 ev_active (*minpos) = k; 858 ev_active (ANHE_w (*minpos)) = k;
835 heap [k] = *minpos; 859 heap [k] = *minpos;
836 860
837 k = minpos - heap; 861 k = minpos - heap;
838 } 862 }
839 863
864 ev_active (ANHE_w (he)) = k;
840 heap [k] = w; 865 heap [k] = he;
841 ev_active (heap [k]) = k;
842} 866}
843 867
844#else // 4HEAP 868#else // 4HEAP
845 869
846#define HEAP0 1 870#define HEAP0 1
847 871
848/* towards the root */ 872/* towards the root */
849void inline_speed 873void inline_speed
850upheap (WT *heap, int k) 874upheap (ANHE *heap, int k)
851{ 875{
852 WT w = heap [k]; 876 ANHE he = heap [k];
853 877
854 for (;;) 878 for (;;)
855 { 879 {
856 int p = k >> 1; 880 int p = k >> 1;
857 881
858 /* maybe we could use a dummy element at heap [0]? */ 882 /* maybe we could use a dummy element at heap [0]? */
859 if (!p || heap [p]->at <= w->at) 883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
860 break; 884 break;
861 885
862 heap [k] = heap [p]; 886 heap [k] = heap [p];
863 ev_active (heap [k]) = k; 887 ev_active (ANHE_w (heap [k])) = k;
864 k = p; 888 k = p;
865 } 889 }
866 890
867 heap [k] = w; 891 heap [k] = w;
868 ev_active (heap [k]) = k; 892 ev_active (ANHE_w (heap [k])) = k;
869} 893}
870 894
871/* away from the root */ 895/* away from the root */
872void inline_speed 896void inline_speed
873downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
874{ 898{
875 WT w = heap [k]; 899 ANHE he = heap [k];
876 900
877 for (;;) 901 for (;;)
878 { 902 {
879 int c = k << 1; 903 int c = k << 1;
880 904
881 if (c > N) 905 if (c > N)
882 break; 906 break;
883 907
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0; 909 ? 1 : 0;
886 910
887 if (w->at <= heap [c]->at) 911 if (w->at <= ANHE_at (heap [c]))
888 break; 912 break;
889 913
890 heap [k] = heap [c]; 914 heap [k] = heap [c];
891 ((W)heap [k])->active = k; 915 ev_active (ANHE_w (heap [k])) = k;
892 916
893 k = c; 917 k = c;
894 } 918 }
895 919
896 heap [k] = w; 920 heap [k] = he;
897 ev_active (heap [k]) = k; 921 ev_active (ANHE_w (he)) = k;
898} 922}
899#endif 923#endif
900 924
901void inline_size 925void inline_size
902adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
903{ 927{
904 upheap (heap, k); 928 upheap (heap, k);
905 downheap (heap, N, k); 929 downheap (heap, N, k);
906} 930}
907 931
1571#endif 1595#endif
1572 1596
1573void inline_size 1597void inline_size
1574timers_reify (EV_P) 1598timers_reify (EV_P)
1575{ 1599{
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1577 { 1601 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1579 1603
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581 1605
1582 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
1583 if (w->repeat) 1607 if (w->repeat)
1586 1610
1587 ev_at (w) += w->repeat; 1611 ev_at (w) += w->repeat;
1588 if (ev_at (w) < mn_now) 1612 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now; 1613 ev_at (w) = mn_now;
1590 1614
1615 ANHE_at_set (timers [HEAP0]);
1591 downheap (timers, timercnt, HEAP0); 1616 downheap (timers, timercnt, HEAP0);
1592 } 1617 }
1593 else 1618 else
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 1620
1599 1624
1600#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1601void inline_size 1626void inline_size
1602periodics_reify (EV_P) 1627periodics_reify (EV_P)
1603{ 1628{
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1605 { 1630 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1607 1632
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609 1634
1610 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
1611 if (w->reschedule_cb) 1636 if (w->reschedule_cb)
1612 { 1637 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 1641 downheap (periodics, periodiccnt, HEAP0);
1616 } 1642 }
1617 else if (w->interval) 1643 else if (w->interval)
1618 { 1644 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1622 downheap (periodics, periodiccnt, HEAP0); 1649 downheap (periodics, periodiccnt, HEAP0);
1623 } 1650 }
1624 else 1651 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1653
1632periodics_reschedule (EV_P) 1659periodics_reschedule (EV_P)
1633{ 1660{
1634 int i; 1661 int i;
1635 1662
1636 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 1665 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 1667
1641 if (w->reschedule_cb) 1668 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1670 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1645 }
1646 1672
1647 /* now rebuild the heap */ 1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1648 for (i = periodiccnt >> 1; --i; ) 1677 for (i = periodiccnt >> 1; --i; )
1649 downheap (periodics, periodiccnt, i + HEAP0); 1678 downheap (periodics, periodiccnt, i + HEAP0);
1650} 1679}
1651#endif 1680#endif
1652 1681
1708 { 1737 {
1709#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1711#endif 1740#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now; 1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1715 } 1748 }
1716 1749
1717 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1718 } 1751 }
1719} 1752}
1789 1822
1790 waittime = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1791 1824
1792 if (timercnt) 1825 if (timercnt)
1793 { 1826 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 1828 if (waittime > to) waittime = to;
1796 } 1829 }
1797 1830
1798#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 1832 if (periodiccnt)
1800 { 1833 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 1835 if (waittime > to) waittime = to;
1803 } 1836 }
1804#endif 1837#endif
1805 1838
1806 if (expect_false (waittime < timeout_blocktime)) 1839 if (expect_false (waittime < timeout_blocktime))
1958{ 1991{
1959 clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1961 return; 1994 return;
1962 1995
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1964 1997
1965 wlist_del (&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1967 2000
1968 fd_change (EV_A_ w->fd, 1); 2001 fd_change (EV_A_ w->fd, 1);
1977 ev_at (w) += mn_now; 2010 ev_at (w) += mn_now;
1978 2011
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2013
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2018 upheap (timers, ev_active (w));
1985 2019
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2021}
1988 2022
1989void noinline 2023void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2025{
1994 return; 2028 return;
1995 2029
1996 { 2030 {
1997 int active = ev_active (w); 2031 int active = ev_active (w);
1998 2032
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2034
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
2002 { 2036 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
2004 adjustheap (timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
2018 if (ev_is_active (w)) 2052 if (ev_is_active (w))
2019 { 2053 {
2020 if (w->repeat) 2054 if (w->repeat)
2021 { 2055 {
2022 ev_at (w) = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2058 adjustheap (timers, timercnt, ev_active (w));
2024 } 2059 }
2025 else 2060 else
2026 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
2027 } 2062 }
2049 } 2084 }
2050 else 2085 else
2051 ev_at (w) = w->offset; 2086 ev_at (w) = w->offset;
2052 2087
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2056 upheap (periodics, ev_active (w)); 2091 upheap (periodics, ev_active (w));
2057 2092
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2094}
2060 2095
2061void noinline 2096void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2098{
2066 return; 2101 return;
2067 2102
2068 { 2103 {
2069 int active = ev_active (w); 2104 int active = ev_active (w);
2070 2105
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2107
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
2074 { 2109 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2076 adjustheap (periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines