ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.239 by root, Thu May 8 20:52:13 2008 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
279} 287}
280# endif 288# endif
281#endif 289#endif
282 290
283/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
284 303
285/* 304/*
286 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
422 W w; 441 W w;
423 int events; 442 int events;
424} ANPENDING; 443} ANPENDING;
425 444
426#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
427typedef struct 447typedef struct
428{ 448{
429 WL head; 449 WL head;
430} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
431#endif 469#endif
432 470
433#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
434 472
435 struct ev_loop 473 struct ev_loop
760} 798}
761 799
762/*****************************************************************************/ 800/*****************************************************************************/
763 801
764/* 802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
765 * at the moment we allow libev the luxury of two heaps, 809 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 811 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 812 * the difference is about 5% with 50000+ watchers.
769 */ 813 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 814#if EV_USE_4HEAP
772 815
773#define DHEAP 4 816#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
775 900
776/* towards the root */ 901/* towards the root */
777void inline_speed 902void inline_speed
778upheap (WT *heap, int k) 903upheap (ANHE *heap, int k)
779{ 904{
780 WT w = heap [k]; 905 ANHE he = heap [k];
781 906
782 for (;;) 907 for (;;)
783 { 908 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 909 int p = HPARENT (k);
785 910
786 if (p == k || heap [p]->at <= w->at) 911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
787 break; 912 break;
788 913
789 heap [k] = heap [p]; 914 heap [k] = heap [p];
790 ev_active (heap [k]) = k; 915 ev_active (ANHE_w (heap [k])) = k;
791 k = p; 916 k = p;
792 } 917 }
793 918
794 heap [k] = w; 919 heap [k] = he;
795 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (he)) = k;
796} 921}
797
798/* away from the root */
799void inline_speed
800downheap (WT *heap, int N, int k)
801{
802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
804
805 for (;;)
806 {
807 ev_tstamp minat;
808 WT *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
810
811 // find minimum child
812 if (expect_true (pos + DHEAP - 1 < E))
813 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at);
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break;
833
834 ev_active (*minpos) = k;
835 heap [k] = *minpos;
836
837 k = minpos - heap;
838 }
839
840 heap [k] = w;
841 ev_active (heap [k]) = k;
842}
843
844#else // 4HEAP
845
846#define HEAP0 1
847
848/* towards the root */
849void inline_speed
850upheap (WT *heap, int k)
851{
852 WT w = heap [k];
853
854 for (;;)
855 {
856 int p = k >> 1;
857
858 /* maybe we could use a dummy element at heap [0]? */
859 if (!p || heap [p]->at <= w->at)
860 break;
861
862 heap [k] = heap [p];
863 ev_active (heap [k]) = k;
864 k = p;
865 }
866
867 heap [k] = w;
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break;
883
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c];
891 ((W)heap [k])->active = k;
892
893 k = c;
894 }
895
896 heap [k] = w;
897 ev_active (heap [k]) = k;
898}
899#endif
900 922
901void inline_size 923void inline_size
902adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
903{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
904 upheap (heap, k); 927 upheap (heap, k);
928 else
905 downheap (heap, N, k); 929 downheap (heap, N, k);
906} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
907 957
908/*****************************************************************************/ 958/*****************************************************************************/
909 959
910typedef struct 960typedef struct
911{ 961{
1455void 1505void
1456ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1457{ 1507{
1458 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1459} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1543
1460#endif 1544#endif
1461 1545
1462#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1463struct ev_loop * 1547struct ev_loop *
1464ev_default_loop_init (unsigned int flags) 1548ev_default_loop_init (unsigned int flags)
1530void inline_speed 1614void inline_speed
1531call_pending (EV_P) 1615call_pending (EV_P)
1532{ 1616{
1533 int pri; 1617 int pri;
1534 1618
1619 EV_FREQUENT_CHECK;
1620
1535 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1536 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1537 { 1623 {
1538 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1539 1625
1543 1629
1544 p->w->pending = 0; 1630 p->w->pending = 0;
1545 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1546 } 1632 }
1547 } 1633 }
1634
1635 EV_FREQUENT_CHECK;
1548} 1636}
1549 1637
1550#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1551void inline_size 1639void inline_size
1552idle_reify (EV_P) 1640idle_reify (EV_P)
1571#endif 1659#endif
1572 1660
1573void inline_size 1661void inline_size
1574timers_reify (EV_P) 1662timers_reify (EV_P)
1575{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 1667 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1579 1669
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581 1671
1582 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
1583 if (w->repeat) 1673 if (w->repeat)
1584 { 1674 {
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586
1587 ev_at (w) += w->repeat; 1675 ev_at (w) += w->repeat;
1588 if (ev_at (w) < mn_now) 1676 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now; 1677 ev_at (w) = mn_now;
1590 1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1591 downheap (timers, timercnt, HEAP0); 1682 downheap (timers, timercnt, HEAP0);
1592 } 1683 }
1593 else 1684 else
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 1686
1687 EV_FREQUENT_CHECK;
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1597 } 1689 }
1598} 1690}
1599 1691
1600#if EV_PERIODIC_ENABLE 1692#if EV_PERIODIC_ENABLE
1601void inline_size 1693void inline_size
1602periodics_reify (EV_P) 1694periodics_reify (EV_P)
1603{ 1695{
1696 EV_FREQUENT_CHECK;
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 1698 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1607 1700
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609 1702
1610 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
1611 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
1612 { 1705 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1616 } 1713 }
1617 else if (w->interval) 1714 else if (w->interval)
1618 { 1715 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1622 downheap (periodics, periodiccnt, HEAP0); 1731 downheap (periodics, periodiccnt, HEAP0);
1623 } 1732 }
1624 else 1733 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1735
1736 EV_FREQUENT_CHECK;
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1628 } 1738 }
1629} 1739}
1630 1740
1631static void noinline 1741static void noinline
1632periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1633{ 1743{
1634 int i; 1744 int i;
1635 1745
1636 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 1748 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 1750
1641 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1753 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1645 }
1646 1755
1647 /* now rebuild the heap */ 1756 ANHE_at_cache (periodics [i]);
1648 for (i = periodiccnt >> 1; --i; ) 1757 }
1758
1649 downheap (periodics, periodiccnt, i + HEAP0); 1759 reheap (periodics, periodiccnt);
1650} 1760}
1651#endif 1761#endif
1652 1762
1653void inline_speed 1763void inline_speed
1654time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1708 { 1818 {
1709#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1711#endif 1821#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now; 1824 {
1825 ANHE *he = timers + i + HEAP0;
1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1715 } 1829 }
1716 1830
1717 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1718 } 1832 }
1719} 1833}
1789 1903
1790 waittime = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1791 1905
1792 if (timercnt) 1906 if (timercnt)
1793 { 1907 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 1909 if (waittime > to) waittime = to;
1796 } 1910 }
1797 1911
1798#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 1913 if (periodiccnt)
1800 { 1914 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 1916 if (waittime > to) waittime = to;
1803 } 1917 }
1804#endif 1918#endif
1805 1919
1806 if (expect_false (waittime < timeout_blocktime)) 1920 if (expect_false (waittime < timeout_blocktime))
1943 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1944 return; 2058 return;
1945 2059
1946 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1947 2061
2062 EV_FREQUENT_CHECK;
2063
1948 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1950 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1951 2067
1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1953 w->events &= ~EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1954} 2072}
1955 2073
1956void noinline 2074void noinline
1957ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1958{ 2076{
1959 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1961 return; 2079 return;
1962 2080
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1964 2084
1965 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1967 2087
1968 fd_change (EV_A_ w->fd, 1); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1969} 2091}
1970 2092
1971void noinline 2093void noinline
1972ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1973{ 2095{
1976 2098
1977 ev_at (w) += mn_now; 2099 ev_at (w) += mn_now;
1978 2100
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
2109 ANHE_at_cache (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2110 upheap (timers, ev_active (w));
1985 2111
2112 EV_FREQUENT_CHECK;
2113
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2115}
1988 2116
1989void noinline 2117void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2119{
1992 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1994 return; 2122 return;
1995 2123
2124 EV_FREQUENT_CHECK;
2125
1996 { 2126 {
1997 int active = ev_active (w); 2127 int active = ev_active (w);
1998 2128
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2130
2131 --timercnt;
2132
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2133 if (expect_true (active < timercnt + HEAP0))
2002 { 2134 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2135 timers [active] = timers [timercnt + HEAP0];
2004 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
2005 } 2137 }
2006
2007 --timercnt;
2008 } 2138 }
2139
2140 EV_FREQUENT_CHECK;
2009 2141
2010 ev_at (w) -= mn_now; 2142 ev_at (w) -= mn_now;
2011 2143
2012 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
2013} 2145}
2014 2146
2015void noinline 2147void noinline
2016ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
2017{ 2149{
2150 EV_FREQUENT_CHECK;
2151
2018 if (ev_is_active (w)) 2152 if (ev_is_active (w))
2019 { 2153 {
2020 if (w->repeat) 2154 if (w->repeat)
2021 { 2155 {
2022 ev_at (w) = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2158 adjustheap (timers, timercnt, ev_active (w));
2024 } 2159 }
2025 else 2160 else
2026 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
2027 } 2162 }
2028 else if (w->repeat) 2163 else if (w->repeat)
2029 { 2164 {
2030 ev_at (w) = w->repeat; 2165 ev_at (w) = w->repeat;
2031 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
2032 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
2033} 2170}
2034 2171
2035#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
2036void noinline 2173void noinline
2037ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2049 } 2186 }
2050 else 2187 else
2051 ev_at (w) = w->offset; 2188 ev_at (w) = w->offset;
2052 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2196 ANHE_at_cache (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 2197 upheap (periodics, ev_active (w));
2057 2198
2199 EV_FREQUENT_CHECK;
2200
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2202}
2060 2203
2061void noinline 2204void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2206{
2064 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
2066 return; 2209 return;
2067 2210
2211 EV_FREQUENT_CHECK;
2212
2068 { 2213 {
2069 int active = ev_active (w); 2214 int active = ev_active (w);
2070 2215
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2217
2218 --periodiccnt;
2219
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2220 if (expect_true (active < periodiccnt + HEAP0))
2074 { 2221 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
2076 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
2077 } 2224 }
2078
2079 --periodiccnt;
2080 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
2081 2228
2082 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
2083} 2230}
2084 2231
2085void noinline 2232void noinline
2105 return; 2252 return;
2106 2253
2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2108 2255
2109 evpipe_init (EV_A); 2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2110 2259
2111 { 2260 {
2112#ifndef _WIN32 2261#ifndef _WIN32
2113 sigset_t full, prev; 2262 sigset_t full, prev;
2114 sigfillset (&full); 2263 sigfillset (&full);
2135 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2137 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
2138#endif 2287#endif
2139 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
2140} 2291}
2141 2292
2142void noinline 2293void noinline
2143ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
2144{ 2295{
2145 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
2147 return; 2298 return;
2148 2299
2300 EV_FREQUENT_CHECK;
2301
2149 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
2151 2304
2152 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
2153 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
2154} 2309}
2155 2310
2156void 2311void
2157ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
2158{ 2313{
2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2161#endif 2316#endif
2162 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
2163 return; 2318 return;
2164 2319
2320 EV_FREQUENT_CHECK;
2321
2165 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
2167} 2326}
2168 2327
2169void 2328void
2170ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
2171{ 2330{
2172 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
2173 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2174 return; 2333 return;
2175 2334
2335 EV_FREQUENT_CHECK;
2336
2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2177 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
2178} 2341}
2179 2342
2180#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
2181 2344
2182# ifdef _WIN32 2345# ifdef _WIN32
2410 else 2573 else
2411#endif 2574#endif
2412 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2413 2576
2414 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2415} 2580}
2416 2581
2417void 2582void
2418ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2419{ 2584{
2420 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2422 return; 2587 return;
2423 2588
2589 EV_FREQUENT_CHECK;
2590
2424#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2426#endif 2593#endif
2427 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2428 2595
2429 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2430} 2599}
2431#endif 2600#endif
2432 2601
2433#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2434void 2603void
2436{ 2605{
2437 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2438 return; 2607 return;
2439 2608
2440 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2441 2612
2442 { 2613 {
2443 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2444 2615
2445 ++idleall; 2616 ++idleall;
2446 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2447 2618
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2449 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2450 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2451} 2624}
2452 2625
2453void 2626void
2454ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2455{ 2628{
2456 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2458 return; 2631 return;
2459 2632
2633 EV_FREQUENT_CHECK;
2634
2460 { 2635 {
2461 int active = ev_active (w); 2636 int active = ev_active (w);
2462 2637
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465 2640
2466 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2467 --idleall; 2642 --idleall;
2468 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2469} 2646}
2470#endif 2647#endif
2471 2648
2472void 2649void
2473ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2474{ 2651{
2475 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2476 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2477 2656
2478 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2480 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2481} 2662}
2482 2663
2483void 2664void
2484ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2485{ 2666{
2486 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2488 return; 2669 return;
2489 2670
2671 EV_FREQUENT_CHECK;
2672
2490 { 2673 {
2491 int active = ev_active (w); 2674 int active = ev_active (w);
2492 2675
2493 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active; 2677 ev_active (prepares [active - 1]) = active;
2495 } 2678 }
2496 2679
2497 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2498} 2683}
2499 2684
2500void 2685void
2501ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2502{ 2687{
2503 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2504 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2505 2692
2506 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2508 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2509} 2698}
2510 2699
2511void 2700void
2512ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2513{ 2702{
2514 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2516 return; 2705 return;
2517 2706
2707 EV_FREQUENT_CHECK;
2708
2518 { 2709 {
2519 int active = ev_active (w); 2710 int active = ev_active (w);
2520 2711
2521 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active; 2713 ev_active (checks [active - 1]) = active;
2523 } 2714 }
2524 2715
2525 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2526} 2719}
2527 2720
2528#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2529void noinline 2722void noinline
2530ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2577 struct ev_loop *loop = w->other; 2770 struct ev_loop *loop = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 } 2773 }
2581 2774
2775 EV_FREQUENT_CHECK;
2776
2582 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2584 2779
2585 ev_prepare_init (&w->prepare, embed_prepare_cb); 2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI); 2781 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare); 2782 ev_prepare_start (EV_A_ &w->prepare);
2588 2783
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590 2785
2591 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2592} 2789}
2593 2790
2594void 2791void
2595ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2596{ 2793{
2597 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2599 return; 2796 return;
2600 2797
2798 EV_FREQUENT_CHECK;
2799
2601 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare); 2801 ev_prepare_stop (EV_A_ &w->prepare);
2603 2802
2604 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2605} 2806}
2606#endif 2807#endif
2607 2808
2608#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2609void 2810void
2610ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2611{ 2812{
2612 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2613 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2614 2817
2615 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2617 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2618} 2823}
2619 2824
2620void 2825void
2621ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2622{ 2827{
2623 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2625 return; 2830 return;
2626 2831
2832 EV_FREQUENT_CHECK;
2833
2627 { 2834 {
2628 int active = ev_active (w); 2835 int active = ev_active (w);
2629 2836
2630 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active; 2838 ev_active (forks [active - 1]) = active;
2632 } 2839 }
2633 2840
2634 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2635} 2844}
2636#endif 2845#endif
2637 2846
2638#if EV_ASYNC_ENABLE 2847#if EV_ASYNC_ENABLE
2639void 2848void
2641{ 2850{
2642 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
2643 return; 2852 return;
2644 2853
2645 evpipe_init (EV_A); 2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2646 2857
2647 ev_start (EV_A_ (W)w, ++asynccnt); 2858 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2649 asyncs [asynccnt - 1] = w; 2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2650} 2863}
2651 2864
2652void 2865void
2653ev_async_stop (EV_P_ ev_async *w) 2866ev_async_stop (EV_P_ ev_async *w)
2654{ 2867{
2655 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2657 return; 2870 return;
2658 2871
2872 EV_FREQUENT_CHECK;
2873
2659 { 2874 {
2660 int active = ev_active (w); 2875 int active = ev_active (w);
2661 2876
2662 asyncs [active - 1] = asyncs [--asynccnt]; 2877 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active; 2878 ev_active (asyncs [active - 1]) = active;
2664 } 2879 }
2665 2880
2666 ev_stop (EV_A_ (W)w); 2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2667} 2884}
2668 2885
2669void 2886void
2670ev_async_send (EV_P_ ev_async *w) 2887ev_async_send (EV_P_ ev_async *w)
2671{ 2888{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines