ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.239 by root, Thu May 8 20:52:13 2008 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
52# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
55# endif 67# endif
56# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
58# endif 70# endif
59# else 71# else
60# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
62# endif 74# endif
126# define EV_USE_EVENTFD 1 138# define EV_USE_EVENTFD 1
127# else 139# else
128# define EV_USE_EVENTFD 0 140# define EV_USE_EVENTFD 0
129# endif 141# endif
130# endif 142# endif
131 143
132#endif 144#endif
133 145
134#include <math.h> 146#include <math.h>
135#include <stdlib.h> 147#include <stdlib.h>
136#include <fcntl.h> 148#include <fcntl.h>
154#ifndef _WIN32 166#ifndef _WIN32
155# include <sys/time.h> 167# include <sys/time.h>
156# include <sys/wait.h> 168# include <sys/wait.h>
157# include <unistd.h> 169# include <unistd.h>
158#else 170#else
171# include <io.h>
159# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 173# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
163# endif 176# endif
164#endif 177#endif
165 178
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
167 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
168#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
169# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
170#endif 195#endif
171 196
172#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 199#endif
175 200
176#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
177# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
178#endif 207#endif
179 208
180#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
182#endif 211#endif
235# else 264# else
236# define EV_USE_EVENTFD 0 265# define EV_USE_EVENTFD 0
237# endif 266# endif
238#endif 267#endif
239 268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 288
242#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 306# include <sys/select.h>
260# endif 307# endif
261#endif 308#endif
262 309
263#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
264# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
265#endif 319#endif
266 320
267#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
269#endif 332#endif
270 333
271#if EV_USE_EVENTFD 334#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 336# include <stdint.h>
279} 342}
280# endif 343# endif
281#endif 344#endif
282 345
283/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
284 353
285/* 354/*
286 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
328typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
329 398
330#define ev_active(w) ((W)(w))->active 399#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 400#define ev_at(w) ((WT)(w))->at
332 401
333#if EV_USE_MONOTONIC 402#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 410#endif
338 411
339#ifdef _WIN32 412#ifdef _WIN32
340# include "ev_win32.c" 413# include "ev_win32.c"
349{ 422{
350 syserr_cb = cb; 423 syserr_cb = cb;
351} 424}
352 425
353static void noinline 426static void noinline
354syserr (const char *msg) 427ev_syserr (const char *msg)
355{ 428{
356 if (!msg) 429 if (!msg)
357 msg = "(libev) system error"; 430 msg = "(libev) system error";
358 431
359 if (syserr_cb) 432 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
407 480
408/*****************************************************************************/ 481/*****************************************************************************/
409 482
483/* file descriptor info structure */
410typedef struct 484typedef struct
411{ 485{
412 WL head; 486 WL head;
413 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
415#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 495 SOCKET handle;
417#endif 496#endif
418} ANFD; 497} ANFD;
419 498
499/* stores the pending event set for a given watcher */
420typedef struct 500typedef struct
421{ 501{
422 W w; 502 W w;
423 int events; 503 int events; /* the pending event set for the given watcher */
424} ANPENDING; 504} ANPENDING;
425 505
426#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
427typedef struct 508typedef struct
428{ 509{
429 WL head; 510 WL head;
430} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
431#endif 532#endif
432 533
433#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
434 535
435 struct ev_loop 536 struct ev_loop
460 561
461ev_tstamp 562ev_tstamp
462ev_time (void) 563ev_time (void)
463{ 564{
464#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
465 struct timespec ts; 568 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 571 }
572#endif
573
469 struct timeval tv; 574 struct timeval tv;
470 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 577}
474 578
475ev_tstamp inline_size 579inline_size ev_tstamp
476get_clock (void) 580get_clock (void)
477{ 581{
478#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
480 { 584 {
513 struct timeval tv; 617 struct timeval tv;
514 618
515 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
518 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
519#endif 626#endif
520 } 627 }
521} 628}
522 629
523/*****************************************************************************/ 630/*****************************************************************************/
524 631
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 633
527int inline_size 634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
528array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
529{ 638{
530 int ncur = cur + 1; 639 int ncur = cur + 1;
531 640
532 do 641 do
549array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
550{ 659{
551 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
553} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 666
555#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
557 { \ 669 { \
558 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 683 }
572#endif 684#endif
573 685
574#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 688
577/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
578 696
579void noinline 697void noinline
580ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
581{ 699{
582 W w_ = (W)w; 700 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
593 } 711 }
594} 712}
595 713
596void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 731{
599 int i; 732 int i;
600 733
601 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
603} 736}
604 737
605/*****************************************************************************/ 738/*****************************************************************************/
606 739
607void inline_size 740inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
622{ 742{
623 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
624 ev_io *w; 744 ev_io *w;
625 745
637{ 757{
638 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
640} 760}
641 761
642void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
643fd_reify (EV_P) 765fd_reify (EV_P)
644{ 766{
645 int i; 767 int i;
646 768
647 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
657 779
658#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
659 if (events) 781 if (events)
660 { 782 {
661 unsigned long argp; 783 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 784 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 786 #else
665 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
666 #endif 788 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 790 }
669#endif 791#endif
670 792
671 { 793 {
672 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
674 796
675 anfd->reify = 0; 797 anfd->reify = 0;
676 anfd->events = events; 798 anfd->events = events;
677 799
678 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
680 } 802 }
681 } 803 }
682 804
683 fdchangecnt = 0; 805 fdchangecnt = 0;
684} 806}
685 807
686void inline_size 808/* something about the given fd changed */
809inline_size void
687fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
688{ 811{
689 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
691 814
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
697 } 820 }
698} 821}
699 822
700void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
701fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
702{ 826{
703 ev_io *w; 827 ev_io *w;
704 828
705 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 833 }
710} 834}
711 835
712int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
713fd_valid (int fd) 838fd_valid (int fd)
714{ 839{
715#ifdef _WIN32 840#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
717#else 842#else
725{ 850{
726 int fd; 851 int fd;
727 852
728 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 854 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
732} 857}
733 858
734/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 860static void noinline
753 878
754 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 880 if (anfds [fd].events)
756 { 881 {
757 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
759 } 885 }
760} 886}
761 887
762/*****************************************************************************/ 888/*****************************************************************************/
889
890/*
891 * the heap functions want a real array index. array index 0 uis guaranteed to not
892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
893 * the branching factor of the d-tree.
894 */
763 895
764/* 896/*
765 * at the moment we allow libev the luxury of two heaps, 897 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 899 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 900 * the difference is about 5% with 50000+ watchers.
769 */ 901 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 902#if EV_USE_4HEAP
772 903
773#define DHEAP 4 904#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
775 908
776/* towards the root */ 909/* away from the root */
777void inline_speed 910inline_speed void
778upheap (WT *heap, int k) 911downheap (ANHE *heap, int N, int k)
779{ 912{
780 WT w = heap [k]; 913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
781 915
782 for (;;) 916 for (;;)
783 { 917 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
785
786 if (p == k || heap [p]->at <= w->at)
787 break;
788
789 heap [k] = heap [p];
790 ev_active (heap [k]) = k;
791 k = p;
792 }
793
794 heap [k] = w;
795 ev_active (heap [k]) = k;
796}
797
798/* away from the root */
799void inline_speed
800downheap (WT *heap, int N, int k)
801{
802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
804
805 for (;;)
806 {
807 ev_tstamp minat; 918 ev_tstamp minat;
808 WT *minpos; 919 ANHE *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
810 921
811 // find minimum child 922 /* find minimum child */
812 if (expect_true (pos + DHEAP - 1 < E)) 923 if (expect_true (pos + DHEAP - 1 < E))
813 { 924 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at); 925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 936 }
820 else 937 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break; 938 break;
833 939
834 ev_active (*minpos) = k; 940 if (ANHE_at (he) <= minat)
941 break;
942
835 heap [k] = *minpos; 943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
836 945
837 k = minpos - heap; 946 k = minpos - heap;
838 } 947 }
839 948
840 heap [k] = w; 949 heap [k] = he;
841 ev_active (heap [k]) = k; 950 ev_active (ANHE_w (he)) = k;
842} 951}
843 952
844#else // 4HEAP 953#else /* 4HEAP */
845 954
846#define HEAP0 1 955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
847 958
848/* towards the root */ 959/* away from the root */
849void inline_speed 960inline_speed void
850upheap (WT *heap, int k) 961downheap (ANHE *heap, int N, int k)
851{ 962{
852 WT w = heap [k]; 963 ANHE he = heap [k];
853 964
854 for (;;) 965 for (;;)
855 { 966 {
856 int p = k >> 1; 967 int c = k << 1;
857 968
858 /* maybe we could use a dummy element at heap [0]? */ 969 if (c > N + HEAP0 - 1)
859 if (!p || heap [p]->at <= w->at)
860 break; 970 break;
861 971
862 heap [k] = heap [p]; 972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
863 ev_active (heap [k]) = k; 973 ? 1 : 0;
864 k = p;
865 }
866 974
867 heap [k] = w; 975 if (ANHE_at (he) <= ANHE_at (heap [c]))
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break; 976 break;
883 977
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c]; 978 heap [k] = heap [c];
891 ((W)heap [k])->active = k; 979 ev_active (ANHE_w (heap [k])) = k;
892 980
893 k = c; 981 k = c;
894 } 982 }
895 983
896 heap [k] = w; 984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
1002 heap [k] = heap [p];
897 ev_active (heap [k]) = k; 1003 ev_active (ANHE_w (heap [k])) = k;
898} 1004 k = p;
899#endif 1005 }
900 1006
901void inline_size 1007 heap [k] = he;
1008 ev_active (ANHE_w (he)) = k;
1009}
1010
1011/* move an element suitably so it is in a correct place */
1012inline_size void
902adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
903{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
904 upheap (heap, k); 1016 upheap (heap, k);
1017 else
905 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
906} 1031}
907 1032
908/*****************************************************************************/ 1033/*****************************************************************************/
909 1034
1035/* associate signal watchers to a signal signal */
910typedef struct 1036typedef struct
911{ 1037{
912 WL head; 1038 WL head;
913 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
914} ANSIG; 1040} ANSIG;
916static ANSIG *signals; 1042static ANSIG *signals;
917static int signalmax; 1043static int signalmax;
918 1044
919static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
920 1046
921void inline_size
922signals_init (ANSIG *base, int count)
923{
924 while (count--)
925 {
926 base->head = 0;
927 base->gotsig = 0;
928
929 ++base;
930 }
931}
932
933/*****************************************************************************/ 1047/*****************************************************************************/
934 1048
935void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
936fd_intern (int fd) 1052fd_intern (int fd)
937{ 1053{
938#ifdef _WIN32 1054#ifdef _WIN32
939 int arg = 1; 1055 unsigned long arg = 1;
940 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
941#else 1057#else
942 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
943 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
944#endif 1060#endif
945} 1061}
946 1062
947static void noinline 1063static void noinline
948evpipe_init (EV_P) 1064evpipe_init (EV_P)
949{ 1065{
950 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
951 { 1067 {
952#if EV_USE_EVENTFD 1068#if EV_USE_EVENTFD
953 if ((evfd = eventfd (0, 0)) >= 0) 1069 if ((evfd = eventfd (0, 0)) >= 0)
954 { 1070 {
955 evpipe [0] = -1; 1071 evpipe [0] = -1;
956 fd_intern (evfd); 1072 fd_intern (evfd);
957 ev_io_set (&pipeev, evfd, EV_READ); 1073 ev_io_set (&pipe_w, evfd, EV_READ);
958 } 1074 }
959 else 1075 else
960#endif 1076#endif
961 { 1077 {
962 while (pipe (evpipe)) 1078 while (pipe (evpipe))
963 syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
964 1080
965 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
966 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
967 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
968 } 1084 }
969 1085
970 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
971 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
972 } 1088 }
973} 1089}
974 1090
975void inline_size 1091inline_size void
976evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
977{ 1093{
978 if (!*flag) 1094 if (!*flag)
979 { 1095 {
980 int old_errno = errno; /* save errno because write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
993 1109
994 errno = old_errno; 1110 errno = old_errno;
995 } 1111 }
996} 1112}
997 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
998static void 1116static void
999pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
1000{ 1118{
1001#if EV_USE_EVENTFD 1119#if EV_USE_EVENTFD
1002 if (evfd >= 0) 1120 if (evfd >= 0)
1058ev_feed_signal_event (EV_P_ int signum) 1176ev_feed_signal_event (EV_P_ int signum)
1059{ 1177{
1060 WL w; 1178 WL w;
1061 1179
1062#if EV_MULTIPLICITY 1180#if EV_MULTIPLICITY
1063 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1064#endif 1182#endif
1065 1183
1066 --signum; 1184 --signum;
1067 1185
1068 if (signum < 0 || signum >= signalmax) 1186 if (signum < 0 || signum >= signalmax)
1084 1202
1085#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
1086# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
1087#endif 1205#endif
1088 1206
1089void inline_speed 1207/* handle a single child status event */
1208inline_speed void
1090child_reap (EV_P_ int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
1091{ 1210{
1092 ev_child *w; 1211 ev_child *w;
1093 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1094 1213
1107 1226
1108#ifndef WCONTINUED 1227#ifndef WCONTINUED
1109# define WCONTINUED 0 1228# define WCONTINUED 0
1110#endif 1229#endif
1111 1230
1231/* called on sigchld etc., calls waitpid */
1112static void 1232static void
1113childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
1114{ 1234{
1115 int pid, status; 1235 int pid, status;
1116 1236
1197 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
1198 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1199 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
1200#endif 1320#endif
1201#ifdef __APPLE__ 1321#ifdef __APPLE__
1202 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
1203 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1204#endif 1325#endif
1205 1326
1206 return flags; 1327 return flags;
1207} 1328}
1208 1329
1240ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1241{ 1362{
1242 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1243} 1364}
1244 1365
1366/* initialise a loop structure, must be zero-initialised */
1245static void noinline 1367static void noinline
1246loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1247{ 1369{
1248 if (!backend) 1370 if (!backend)
1249 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1250#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1251 { 1384 {
1252 struct timespec ts; 1385 struct timespec ts;
1386
1253 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1254 have_monotonic = 1; 1388 have_monotonic = 1;
1255 } 1389 }
1256#endif 1390#endif
1257 1391
1258 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1259 mn_now = get_clock (); 1393 mn_now = get_clock ();
1260 now_floor = mn_now; 1394 now_floor = mn_now;
1297#endif 1431#endif
1298#if EV_USE_SELECT 1432#if EV_USE_SELECT
1299 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1300#endif 1434#endif
1301 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1302 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1303 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1304 } 1440 }
1305} 1441}
1306 1442
1443/* free up a loop structure */
1307static void noinline 1444static void noinline
1308loop_destroy (EV_P) 1445loop_destroy (EV_P)
1309{ 1446{
1310 int i; 1447 int i;
1311 1448
1312 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1313 { 1450 {
1314 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1315 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1316 1453
1317#if EV_USE_EVENTFD 1454#if EV_USE_EVENTFD
1318 if (evfd >= 0) 1455 if (evfd >= 0)
1319 close (evfd); 1456 close (evfd);
1320#endif 1457#endif
1359 } 1496 }
1360 1497
1361 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1362 1499
1363 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1364 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1365 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1366#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1367 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1368#endif 1506#endif
1377 1515
1378 backend = 0; 1516 backend = 0;
1379} 1517}
1380 1518
1381#if EV_USE_INOTIFY 1519#if EV_USE_INOTIFY
1382void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1383#endif 1521#endif
1384 1522
1385void inline_size 1523inline_size void
1386loop_fork (EV_P) 1524loop_fork (EV_P)
1387{ 1525{
1388#if EV_USE_PORT 1526#if EV_USE_PORT
1389 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1390#endif 1528#endif
1396#endif 1534#endif
1397#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1398 infy_fork (EV_A); 1536 infy_fork (EV_A);
1399#endif 1537#endif
1400 1538
1401 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1402 { 1540 {
1403 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1404 /* while we modify the fd vars */ 1542 /* while we modify the fd vars */
1405 gotsig = 1; 1543 gotsig = 1;
1406#if EV_ASYNC_ENABLE 1544#if EV_ASYNC_ENABLE
1407 gotasync = 1; 1545 gotasync = 1;
1408#endif 1546#endif
1409 1547
1410 ev_ref (EV_A); 1548 ev_ref (EV_A);
1411 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1412 1550
1413#if EV_USE_EVENTFD 1551#if EV_USE_EVENTFD
1414 if (evfd >= 0) 1552 if (evfd >= 0)
1415 close (evfd); 1553 close (evfd);
1416#endif 1554#endif
1421 close (evpipe [1]); 1559 close (evpipe [1]);
1422 } 1560 }
1423 1561
1424 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1425 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1426 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1427 } 1565 }
1428 1566
1429 postfork = 0; 1567 postfork = 0;
1430} 1568}
1431 1569
1432#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1433struct ev_loop * 1572struct ev_loop *
1434ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1435{ 1574{
1436 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1437 1576
1455void 1594void
1456ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1457{ 1596{
1458 postfork = 1; /* must be in line with ev_default_fork */ 1597 postfork = 1; /* must be in line with ev_default_fork */
1459} 1598}
1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1460#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1461 1700
1462#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1463struct ev_loop * 1702struct ev_loop *
1464ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1465#else 1704#else
1498{ 1737{
1499#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1500 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1501#endif 1740#endif
1502 1741
1742 ev_default_loop_ptr = 0;
1743
1503#ifndef _WIN32 1744#ifndef _WIN32
1504 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1505 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1506#endif 1747#endif
1507 1748
1513{ 1754{
1514#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1515 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1516#endif 1757#endif
1517 1758
1518 if (backend)
1519 postfork = 1; /* must be in line with ev_loop_fork */ 1759 postfork = 1; /* must be in line with ev_loop_fork */
1520} 1760}
1521 1761
1522/*****************************************************************************/ 1762/*****************************************************************************/
1523 1763
1524void 1764void
1525ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1526{ 1766{
1527 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1528} 1768}
1529 1769
1530void inline_speed 1770inline_speed void
1531call_pending (EV_P) 1771call_pending (EV_P)
1532{ 1772{
1533 int pri; 1773 int pri;
1534 1774
1535 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1536 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1537 { 1777 {
1538 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1539 1779
1540 if (expect_true (p->w))
1541 {
1542 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1543 1782
1544 p->w->pending = 0; 1783 p->w->pending = 0;
1545 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1546 } 1785 EV_FREQUENT_CHECK;
1547 } 1786 }
1548} 1787}
1549 1788
1550#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1551void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1552idle_reify (EV_P) 1793idle_reify (EV_P)
1553{ 1794{
1554 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1555 { 1796 {
1556 int pri; 1797 int pri;
1568 } 1809 }
1569 } 1810 }
1570} 1811}
1571#endif 1812#endif
1572 1813
1573void inline_size 1814/* make timers pending */
1815inline_size void
1574timers_reify (EV_P) 1816timers_reify (EV_P)
1575{ 1817{
1818 EV_FREQUENT_CHECK;
1819
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 1821 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 1822 do
1579
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581
1582 /* first reschedule or stop timer */
1583 if (w->repeat)
1584 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586 1836
1587 ev_at (w) += w->repeat; 1837 ANHE_at_cache (timers [HEAP0]);
1588 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now;
1590
1591 downheap (timers, timercnt, HEAP0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1592 } 1845 }
1593 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 1847
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1597 } 1849 }
1598} 1850}
1599 1851
1600#if EV_PERIODIC_ENABLE 1852#if EV_PERIODIC_ENABLE
1601void inline_size 1853/* make periodics pending */
1854inline_size void
1602periodics_reify (EV_P) 1855periodics_reify (EV_P)
1603{ 1856{
1857 EV_FREQUENT_CHECK;
1858
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 1860 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1861 int feed_count = 0;
1607 1862
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1863 do
1609
1610 /* first reschedule or stop timer */
1611 if (w->reschedule_cb)
1612 { 1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1616 } 1903 }
1617 else if (w->interval) 1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1618 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1622 downheap (periodics, periodiccnt, HEAP0);
1623 }
1624 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1905
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1628 } 1907 }
1629} 1908}
1630 1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1631static void noinline 1912static void noinline
1632periodics_reschedule (EV_P) 1913periodics_reschedule (EV_P)
1633{ 1914{
1634 int i; 1915 int i;
1635 1916
1636 /* adjust periodics after time jump */ 1917 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 1919 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 1921
1641 if (w->reschedule_cb) 1922 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1924 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1645 } 1941 {
1646 1942 ANHE *he = timers + i + HEAP0;
1647 /* now rebuild the heap */ 1943 ANHE_w (*he)->at += adjust;
1648 for (i = periodiccnt >> 1; --i; ) 1944 ANHE_at_cache (*he);
1649 downheap (periodics, periodiccnt, i + HEAP0); 1945 }
1650} 1946}
1651#endif
1652 1947
1653void inline_speed 1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1654time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1655{ 1952{
1656 int i; 1953 int i;
1657 1954
1658#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1691 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1692 mn_now = get_clock (); 1989 mn_now = get_clock ();
1693 now_floor = mn_now; 1990 now_floor = mn_now;
1694 } 1991 }
1695 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1696# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1697 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1698# endif 1997# endif
1699 /* no timer adjustment, as the monotonic clock doesn't jump */
1700 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1701 } 1998 }
1702 else 1999 else
1703#endif 2000#endif
1704 { 2001 {
1705 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1706 2003
1707 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1708 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1709#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1711#endif 2010#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now;
1715 } 2011 }
1716 2012
1717 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1718 } 2014 }
1719} 2015}
1720 2016
1721void
1722ev_ref (EV_P)
1723{
1724 ++activecnt;
1725}
1726
1727void
1728ev_unref (EV_P)
1729{
1730 --activecnt;
1731}
1732
1733static int loop_done; 2017static int loop_done;
1734 2018
1735void 2019void
1736ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1737{ 2021{
1739 2023
1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1741 2025
1742 do 2026 do
1743 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
1744#ifndef _WIN32 2032#ifndef _WIN32
1745 if (expect_false (curpid)) /* penalise the forking check even more */ 2033 if (expect_false (curpid)) /* penalise the forking check even more */
1746 if (expect_false (getpid () != curpid)) 2034 if (expect_false (getpid () != curpid))
1747 { 2035 {
1748 curpid = getpid (); 2036 curpid = getpid ();
1765 { 2053 {
1766 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1767 call_pending (EV_A); 2055 call_pending (EV_A);
1768 } 2056 }
1769 2057
1770 if (expect_false (!activecnt))
1771 break;
1772
1773 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1774 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1775 loop_fork (EV_A); 2060 loop_fork (EV_A);
1776 2061
1777 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1789 2074
1790 waittime = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1791 2076
1792 if (timercnt) 2077 if (timercnt)
1793 { 2078 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 2080 if (waittime > to) waittime = to;
1796 } 2081 }
1797 2082
1798#if EV_PERIODIC_ENABLE 2083#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 2084 if (periodiccnt)
1800 { 2085 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 2087 if (waittime > to) waittime = to;
1803 } 2088 }
1804#endif 2089#endif
1805 2090
1806 if (expect_false (waittime < timeout_blocktime)) 2091 if (expect_false (waittime < timeout_blocktime))
1856ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1857{ 2142{
1858 loop_done = how; 2143 loop_done = how;
1859} 2144}
1860 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1861/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1862 2185
1863void inline_size 2186inline_size void
1864wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1865{ 2188{
1866 elem->next = *head; 2189 elem->next = *head;
1867 *head = elem; 2190 *head = elem;
1868} 2191}
1869 2192
1870void inline_size 2193inline_size void
1871wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1872{ 2195{
1873 while (*head) 2196 while (*head)
1874 { 2197 {
1875 if (*head == elem) 2198 if (*head == elem)
1880 2203
1881 head = &(*head)->next; 2204 head = &(*head)->next;
1882 } 2205 }
1883} 2206}
1884 2207
1885void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
1886clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1887{ 2211{
1888 if (w->pending) 2212 if (w->pending)
1889 { 2213 {
1890 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1891 w->pending = 0; 2215 w->pending = 0;
1892 } 2216 }
1893} 2217}
1894 2218
1895int 2219int
1899 int pending = w_->pending; 2223 int pending = w_->pending;
1900 2224
1901 if (expect_true (pending)) 2225 if (expect_true (pending))
1902 { 2226 {
1903 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
1904 w_->pending = 0; 2229 w_->pending = 0;
1905 p->w = 0;
1906 return p->events; 2230 return p->events;
1907 } 2231 }
1908 else 2232 else
1909 return 0; 2233 return 0;
1910} 2234}
1911 2235
1912void inline_size 2236inline_size void
1913pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
1914{ 2238{
1915 int pri = w->priority; 2239 int pri = w->priority;
1916 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1917 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1918 w->priority = pri; 2242 w->priority = pri;
1919} 2243}
1920 2244
1921void inline_speed 2245inline_speed void
1922ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1923{ 2247{
1924 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
1925 w->active = active; 2249 w->active = active;
1926 ev_ref (EV_A); 2250 ev_ref (EV_A);
1927} 2251}
1928 2252
1929void inline_size 2253inline_size void
1930ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1931{ 2255{
1932 ev_unref (EV_A); 2256 ev_unref (EV_A);
1933 w->active = 0; 2257 w->active = 0;
1934} 2258}
1941 int fd = w->fd; 2265 int fd = w->fd;
1942 2266
1943 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
1944 return; 2268 return;
1945 2269
1946 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1947 2274
1948 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1950 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1951 2278
1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1953 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2281
2282 EV_FREQUENT_CHECK;
1954} 2283}
1955 2284
1956void noinline 2285void noinline
1957ev_io_stop (EV_P_ ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1958{ 2287{
1959 clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
1961 return; 2290 return;
1962 2291
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
1964 2295
1965 wlist_del (&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1967 2298
1968 fd_change (EV_A_ w->fd, 1); 2299 fd_change (EV_A_ w->fd, 1);
2300
2301 EV_FREQUENT_CHECK;
1969} 2302}
1970 2303
1971void noinline 2304void noinline
1972ev_timer_start (EV_P_ ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1973{ 2306{
1974 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
1975 return; 2308 return;
1976 2309
1977 ev_at (w) += mn_now; 2310 ev_at (w) += mn_now;
1978 2311
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
2320 ANHE_at_cache (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2321 upheap (timers, ev_active (w));
1985 2322
2323 EV_FREQUENT_CHECK;
2324
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2326}
1988 2327
1989void noinline 2328void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2330{
1992 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1994 return; 2333 return;
1995 2334
2335 EV_FREQUENT_CHECK;
2336
1996 { 2337 {
1997 int active = ev_active (w); 2338 int active = ev_active (w);
1998 2339
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2341
2342 --timercnt;
2343
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2344 if (expect_true (active < timercnt + HEAP0))
2002 { 2345 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2346 timers [active] = timers [timercnt + HEAP0];
2004 adjustheap (timers, timercnt, active); 2347 adjustheap (timers, timercnt, active);
2005 } 2348 }
2006
2007 --timercnt;
2008 } 2349 }
2350
2351 EV_FREQUENT_CHECK;
2009 2352
2010 ev_at (w) -= mn_now; 2353 ev_at (w) -= mn_now;
2011 2354
2012 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
2013} 2356}
2014 2357
2015void noinline 2358void noinline
2016ev_timer_again (EV_P_ ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
2017{ 2360{
2361 EV_FREQUENT_CHECK;
2362
2018 if (ev_is_active (w)) 2363 if (ev_is_active (w))
2019 { 2364 {
2020 if (w->repeat) 2365 if (w->repeat)
2021 { 2366 {
2022 ev_at (w) = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2369 adjustheap (timers, timercnt, ev_active (w));
2024 } 2370 }
2025 else 2371 else
2026 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
2027 } 2373 }
2028 else if (w->repeat) 2374 else if (w->repeat)
2029 { 2375 {
2030 ev_at (w) = w->repeat; 2376 ev_at (w) = w->repeat;
2031 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
2032 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
2033} 2381}
2034 2382
2035#if EV_PERIODIC_ENABLE 2383#if EV_PERIODIC_ENABLE
2036void noinline 2384void noinline
2037ev_periodic_start (EV_P_ ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
2041 2389
2042 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
2043 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2044 else if (w->interval) 2392 else if (w->interval)
2045 { 2393 {
2046 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2047 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2049 } 2397 }
2050 else 2398 else
2051 ev_at (w) = w->offset; 2399 ev_at (w) = w->offset;
2052 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2407 ANHE_at_cache (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 2408 upheap (periodics, ev_active (w));
2057 2409
2410 EV_FREQUENT_CHECK;
2411
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2413}
2060 2414
2061void noinline 2415void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2417{
2064 clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 2419 if (expect_false (!ev_is_active (w)))
2066 return; 2420 return;
2067 2421
2422 EV_FREQUENT_CHECK;
2423
2068 { 2424 {
2069 int active = ev_active (w); 2425 int active = ev_active (w);
2070 2426
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2428
2429 --periodiccnt;
2430
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2431 if (expect_true (active < periodiccnt + HEAP0))
2074 { 2432 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
2076 adjustheap (periodics, periodiccnt, active); 2434 adjustheap (periodics, periodiccnt, active);
2077 } 2435 }
2078
2079 --periodiccnt;
2080 } 2436 }
2437
2438 EV_FREQUENT_CHECK;
2081 2439
2082 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
2083} 2441}
2084 2442
2085void noinline 2443void noinline
2097 2455
2098void noinline 2456void noinline
2099ev_signal_start (EV_P_ ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
2100{ 2458{
2101#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
2102 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2103#endif 2461#endif
2104 if (expect_false (ev_is_active (w))) 2462 if (expect_false (ev_is_active (w)))
2105 return; 2463 return;
2106 2464
2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2108 2466
2109 evpipe_init (EV_A); 2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
2110 2470
2111 { 2471 {
2112#ifndef _WIN32 2472#ifndef _WIN32
2113 sigset_t full, prev; 2473 sigset_t full, prev;
2114 sigfillset (&full); 2474 sigfillset (&full);
2115 sigprocmask (SIG_SETMASK, &full, &prev); 2475 sigprocmask (SIG_SETMASK, &full, &prev);
2116#endif 2476#endif
2117 2477
2118 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2119 2479
2120#ifndef _WIN32 2480#ifndef _WIN32
2121 sigprocmask (SIG_SETMASK, &prev, 0); 2481 sigprocmask (SIG_SETMASK, &prev, 0);
2122#endif 2482#endif
2123 } 2483 }
2135 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2137 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
2138#endif 2498#endif
2139 } 2499 }
2500
2501 EV_FREQUENT_CHECK;
2140} 2502}
2141 2503
2142void noinline 2504void noinline
2143ev_signal_stop (EV_P_ ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
2144{ 2506{
2145 clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 2508 if (expect_false (!ev_is_active (w)))
2147 return; 2509 return;
2148 2510
2511 EV_FREQUENT_CHECK;
2512
2149 wlist_del (&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
2151 2515
2152 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
2153 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
2518
2519 EV_FREQUENT_CHECK;
2154} 2520}
2155 2521
2156void 2522void
2157ev_child_start (EV_P_ ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
2158{ 2524{
2159#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2161#endif 2527#endif
2162 if (expect_false (ev_is_active (w))) 2528 if (expect_false (ev_is_active (w)))
2163 return; 2529 return;
2164 2530
2531 EV_FREQUENT_CHECK;
2532
2165 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535
2536 EV_FREQUENT_CHECK;
2167} 2537}
2168 2538
2169void 2539void
2170ev_child_stop (EV_P_ ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
2171{ 2541{
2172 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2173 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2174 return; 2544 return;
2175 2545
2546 EV_FREQUENT_CHECK;
2547
2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2177 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
2178} 2552}
2179 2553
2180#if EV_STAT_ENABLE 2554#if EV_STAT_ENABLE
2181 2555
2182# ifdef _WIN32 2556# ifdef _WIN32
2183# undef lstat 2557# undef lstat
2184# define lstat(a,b) _stati64 (a,b) 2558# define lstat(a,b) _stati64 (a,b)
2185# endif 2559# endif
2186 2560
2187#define DEF_STAT_INTERVAL 5.0074891 2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2188#define MIN_STAT_INTERVAL 0.1074891 2563#define MIN_STAT_INTERVAL 0.1074891
2189 2564
2190static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2191 2566
2192#if EV_USE_INOTIFY 2567#if EV_USE_INOTIFY
2193# define EV_INOTIFY_BUFSIZE 8192 2568# define EV_INOTIFY_BUFSIZE 8192
2197{ 2572{
2198 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2199 2574
2200 if (w->wd < 0) 2575 if (w->wd < 0)
2201 { 2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2202 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2203 2579
2204 /* monitor some parent directory for speedup hints */ 2580 /* monitor some parent directory for speedup hints */
2205 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2206 /* but an efficiency issue only */ 2582 /* but an efficiency issue only */
2207 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2208 { 2584 {
2209 char path [4096]; 2585 char path [4096];
2210 strcpy (path, w->path); 2586 strcpy (path, w->path);
2214 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2215 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2216 2592
2217 char *pend = strrchr (path, '/'); 2593 char *pend = strrchr (path, '/');
2218 2594
2219 if (!pend) 2595 if (!pend || pend == path)
2220 break; /* whoops, no '/', complain to your admin */ 2596 break;
2221 2597
2222 *pend = 0; 2598 *pend = 0;
2223 w->wd = inotify_add_watch (fs_fd, path, mask); 2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2224 } 2600 }
2225 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2226 } 2602 }
2227 } 2603 }
2228 else
2229 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2230 2604
2231 if (w->wd >= 0) 2605 if (w->wd >= 0)
2606 {
2232 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2233} 2626}
2234 2627
2235static void noinline 2628static void noinline
2236infy_del (EV_P_ ev_stat *w) 2629infy_del (EV_P_ ev_stat *w)
2237{ 2630{
2251 2644
2252static void noinline 2645static void noinline
2253infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2254{ 2647{
2255 if (slot < 0) 2648 if (slot < 0)
2256 /* overflow, need to check for all hahs slots */ 2649 /* overflow, need to check for all hash slots */
2257 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2258 infy_wd (EV_A_ slot, wd, ev); 2651 infy_wd (EV_A_ slot, wd, ev);
2259 else 2652 else
2260 { 2653 {
2261 WL w_; 2654 WL w_;
2267 2660
2268 if (w->wd == wd || wd == -1) 2661 if (w->wd == wd || wd == -1)
2269 { 2662 {
2270 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2271 { 2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2272 w->wd = -1; 2666 w->wd = -1;
2273 infy_add (EV_A_ w); /* re-add, no matter what */ 2667 infy_add (EV_A_ w); /* re-add, no matter what */
2274 } 2668 }
2275 2669
2276 stat_timer_cb (EV_A_ &w->timer, 0); 2670 stat_timer_cb (EV_A_ &w->timer, 0);
2289 2683
2290 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2291 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2292} 2686}
2293 2687
2294void inline_size 2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2295infy_init (EV_P) 2712infy_init (EV_P)
2296{ 2713{
2297 if (fs_fd != -2) 2714 if (fs_fd != -2)
2298 return; 2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2299 2720
2300 fs_fd = inotify_init (); 2721 fs_fd = inotify_init ();
2301 2722
2302 if (fs_fd >= 0) 2723 if (fs_fd >= 0)
2303 { 2724 {
2305 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2306 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2307 } 2728 }
2308} 2729}
2309 2730
2310void inline_size 2731inline_size void
2311infy_fork (EV_P) 2732infy_fork (EV_P)
2312{ 2733{
2313 int slot; 2734 int slot;
2314 2735
2315 if (fs_fd < 0) 2736 if (fs_fd < 0)
2331 w->wd = -1; 2752 w->wd = -1;
2332 2753
2333 if (fs_fd >= 0) 2754 if (fs_fd >= 0)
2334 infy_add (EV_A_ w); /* re-add, no matter what */ 2755 infy_add (EV_A_ w); /* re-add, no matter what */
2335 else 2756 else
2336 ev_timer_start (EV_A_ &w->timer); 2757 ev_timer_again (EV_A_ &w->timer);
2337 } 2758 }
2338
2339 } 2759 }
2340} 2760}
2341 2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2342#endif 2768#endif
2343 2769
2344void 2770void
2345ev_stat_stat (EV_P_ ev_stat *w) 2771ev_stat_stat (EV_P_ ev_stat *w)
2346{ 2772{
2373 || w->prev.st_atime != w->attr.st_atime 2799 || w->prev.st_atime != w->attr.st_atime
2374 || w->prev.st_mtime != w->attr.st_mtime 2800 || w->prev.st_mtime != w->attr.st_mtime
2375 || w->prev.st_ctime != w->attr.st_ctime 2801 || w->prev.st_ctime != w->attr.st_ctime
2376 ) { 2802 ) {
2377 #if EV_USE_INOTIFY 2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2378 infy_del (EV_A_ w); 2806 infy_del (EV_A_ w);
2379 infy_add (EV_A_ w); 2807 infy_add (EV_A_ w);
2380 ev_stat_stat (EV_A_ w); /* avoid race... */ 2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2381 #endif 2810 #endif
2382 2811
2383 ev_feed_event (EV_A_ w, EV_STAT); 2812 ev_feed_event (EV_A_ w, EV_STAT);
2384 } 2813 }
2385} 2814}
2388ev_stat_start (EV_P_ ev_stat *w) 2817ev_stat_start (EV_P_ ev_stat *w)
2389{ 2818{
2390 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2391 return; 2820 return;
2392 2821
2393 /* since we use memcmp, we need to clear any padding data etc. */
2394 memset (&w->prev, 0, sizeof (ev_statdata));
2395 memset (&w->attr, 0, sizeof (ev_statdata));
2396
2397 ev_stat_stat (EV_A_ w); 2822 ev_stat_stat (EV_A_ w);
2398 2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2399 if (w->interval < MIN_STAT_INTERVAL) 2825 w->interval = MIN_STAT_INTERVAL;
2400 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2401 2826
2402 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2403 ev_set_priority (&w->timer, ev_priority (w)); 2828 ev_set_priority (&w->timer, ev_priority (w));
2404 2829
2405#if EV_USE_INOTIFY 2830#if EV_USE_INOTIFY
2406 infy_init (EV_A); 2831 infy_init (EV_A);
2407 2832
2408 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
2409 infy_add (EV_A_ w); 2834 infy_add (EV_A_ w);
2410 else 2835 else
2411#endif 2836#endif
2412 ev_timer_start (EV_A_ &w->timer); 2837 ev_timer_again (EV_A_ &w->timer);
2413 2838
2414 ev_start (EV_A_ (W)w, 1); 2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2415} 2842}
2416 2843
2417void 2844void
2418ev_stat_stop (EV_P_ ev_stat *w) 2845ev_stat_stop (EV_P_ ev_stat *w)
2419{ 2846{
2420 clear_pending (EV_A_ (W)w); 2847 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 2848 if (expect_false (!ev_is_active (w)))
2422 return; 2849 return;
2423 2850
2851 EV_FREQUENT_CHECK;
2852
2424#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w); 2854 infy_del (EV_A_ w);
2426#endif 2855#endif
2427 ev_timer_stop (EV_A_ &w->timer); 2856 ev_timer_stop (EV_A_ &w->timer);
2428 2857
2429 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2430} 2861}
2431#endif 2862#endif
2432 2863
2433#if EV_IDLE_ENABLE 2864#if EV_IDLE_ENABLE
2434void 2865void
2436{ 2867{
2437 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2438 return; 2869 return;
2439 2870
2440 pri_adjust (EV_A_ (W)w); 2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2441 2874
2442 { 2875 {
2443 int active = ++idlecnt [ABSPRI (w)]; 2876 int active = ++idlecnt [ABSPRI (w)];
2444 2877
2445 ++idleall; 2878 ++idleall;
2446 ev_start (EV_A_ (W)w, active); 2879 ev_start (EV_A_ (W)w, active);
2447 2880
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2449 idles [ABSPRI (w)][active - 1] = w; 2882 idles [ABSPRI (w)][active - 1] = w;
2450 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2451} 2886}
2452 2887
2453void 2888void
2454ev_idle_stop (EV_P_ ev_idle *w) 2889ev_idle_stop (EV_P_ ev_idle *w)
2455{ 2890{
2456 clear_pending (EV_A_ (W)w); 2891 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 2892 if (expect_false (!ev_is_active (w)))
2458 return; 2893 return;
2459 2894
2895 EV_FREQUENT_CHECK;
2896
2460 { 2897 {
2461 int active = ev_active (w); 2898 int active = ev_active (w);
2462 2899
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465 2902
2466 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2467 --idleall; 2904 --idleall;
2468 } 2905 }
2906
2907 EV_FREQUENT_CHECK;
2469} 2908}
2470#endif 2909#endif
2471 2910
2472void 2911void
2473ev_prepare_start (EV_P_ ev_prepare *w) 2912ev_prepare_start (EV_P_ ev_prepare *w)
2474{ 2913{
2475 if (expect_false (ev_is_active (w))) 2914 if (expect_false (ev_is_active (w)))
2476 return; 2915 return;
2916
2917 EV_FREQUENT_CHECK;
2477 2918
2478 ev_start (EV_A_ (W)w, ++preparecnt); 2919 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2480 prepares [preparecnt - 1] = w; 2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2481} 2924}
2482 2925
2483void 2926void
2484ev_prepare_stop (EV_P_ ev_prepare *w) 2927ev_prepare_stop (EV_P_ ev_prepare *w)
2485{ 2928{
2486 clear_pending (EV_A_ (W)w); 2929 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w))) 2930 if (expect_false (!ev_is_active (w)))
2488 return; 2931 return;
2489 2932
2933 EV_FREQUENT_CHECK;
2934
2490 { 2935 {
2491 int active = ev_active (w); 2936 int active = ev_active (w);
2492 2937
2493 prepares [active - 1] = prepares [--preparecnt]; 2938 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active; 2939 ev_active (prepares [active - 1]) = active;
2495 } 2940 }
2496 2941
2497 ev_stop (EV_A_ (W)w); 2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2498} 2945}
2499 2946
2500void 2947void
2501ev_check_start (EV_P_ ev_check *w) 2948ev_check_start (EV_P_ ev_check *w)
2502{ 2949{
2503 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2504 return; 2951 return;
2952
2953 EV_FREQUENT_CHECK;
2505 2954
2506 ev_start (EV_A_ (W)w, ++checkcnt); 2955 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2508 checks [checkcnt - 1] = w; 2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2509} 2960}
2510 2961
2511void 2962void
2512ev_check_stop (EV_P_ ev_check *w) 2963ev_check_stop (EV_P_ ev_check *w)
2513{ 2964{
2514 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2516 return; 2967 return;
2517 2968
2969 EV_FREQUENT_CHECK;
2970
2518 { 2971 {
2519 int active = ev_active (w); 2972 int active = ev_active (w);
2520 2973
2521 checks [active - 1] = checks [--checkcnt]; 2974 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active; 2975 ev_active (checks [active - 1]) = active;
2523 } 2976 }
2524 2977
2525 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2526} 2981}
2527 2982
2528#if EV_EMBED_ENABLE 2983#if EV_EMBED_ENABLE
2529void noinline 2984void noinline
2530ev_embed_sweep (EV_P_ ev_embed *w) 2985ev_embed_sweep (EV_P_ ev_embed *w)
2557 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2558 } 3013 }
2559 } 3014 }
2560} 3015}
2561 3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
2562#if 0 3034#if 0
2563static void 3035static void
2564embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2565{ 3037{
2566 ev_idle_stop (EV_A_ idle); 3038 ev_idle_stop (EV_A_ idle);
2573 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2574 return; 3046 return;
2575 3047
2576 { 3048 {
2577 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 } 3052 }
3053
3054 EV_FREQUENT_CHECK;
2581 3055
2582 ev_set_priority (&w->io, ev_priority (w)); 3056 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io); 3057 ev_io_start (EV_A_ &w->io);
2584 3058
2585 ev_prepare_init (&w->prepare, embed_prepare_cb); 3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI); 3060 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare); 3061 ev_prepare_start (EV_A_ &w->prepare);
2588 3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590 3067
2591 ev_start (EV_A_ (W)w, 1); 3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
2592} 3071}
2593 3072
2594void 3073void
2595ev_embed_stop (EV_P_ ev_embed *w) 3074ev_embed_stop (EV_P_ ev_embed *w)
2596{ 3075{
2597 clear_pending (EV_A_ (W)w); 3076 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w))) 3077 if (expect_false (!ev_is_active (w)))
2599 return; 3078 return;
2600 3079
3080 EV_FREQUENT_CHECK;
3081
2601 ev_io_stop (EV_A_ &w->io); 3082 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare); 3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
2603 3085
2604 ev_stop (EV_A_ (W)w); 3086 EV_FREQUENT_CHECK;
2605} 3087}
2606#endif 3088#endif
2607 3089
2608#if EV_FORK_ENABLE 3090#if EV_FORK_ENABLE
2609void 3091void
2610ev_fork_start (EV_P_ ev_fork *w) 3092ev_fork_start (EV_P_ ev_fork *w)
2611{ 3093{
2612 if (expect_false (ev_is_active (w))) 3094 if (expect_false (ev_is_active (w)))
2613 return; 3095 return;
3096
3097 EV_FREQUENT_CHECK;
2614 3098
2615 ev_start (EV_A_ (W)w, ++forkcnt); 3099 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2617 forks [forkcnt - 1] = w; 3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
2618} 3104}
2619 3105
2620void 3106void
2621ev_fork_stop (EV_P_ ev_fork *w) 3107ev_fork_stop (EV_P_ ev_fork *w)
2622{ 3108{
2623 clear_pending (EV_A_ (W)w); 3109 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w))) 3110 if (expect_false (!ev_is_active (w)))
2625 return; 3111 return;
2626 3112
3113 EV_FREQUENT_CHECK;
3114
2627 { 3115 {
2628 int active = ev_active (w); 3116 int active = ev_active (w);
2629 3117
2630 forks [active - 1] = forks [--forkcnt]; 3118 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active; 3119 ev_active (forks [active - 1]) = active;
2632 } 3120 }
2633 3121
2634 ev_stop (EV_A_ (W)w); 3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
2635} 3125}
2636#endif 3126#endif
2637 3127
2638#if EV_ASYNC_ENABLE 3128#if EV_ASYNC_ENABLE
2639void 3129void
2641{ 3131{
2642 if (expect_false (ev_is_active (w))) 3132 if (expect_false (ev_is_active (w)))
2643 return; 3133 return;
2644 3134
2645 evpipe_init (EV_A); 3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
2646 3138
2647 ev_start (EV_A_ (W)w, ++asynccnt); 3139 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2649 asyncs [asynccnt - 1] = w; 3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
2650} 3144}
2651 3145
2652void 3146void
2653ev_async_stop (EV_P_ ev_async *w) 3147ev_async_stop (EV_P_ ev_async *w)
2654{ 3148{
2655 clear_pending (EV_A_ (W)w); 3149 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w))) 3150 if (expect_false (!ev_is_active (w)))
2657 return; 3151 return;
2658 3152
3153 EV_FREQUENT_CHECK;
3154
2659 { 3155 {
2660 int active = ev_active (w); 3156 int active = ev_active (w);
2661 3157
2662 asyncs [active - 1] = asyncs [--asynccnt]; 3158 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active; 3159 ev_active (asyncs [active - 1]) = active;
2664 } 3160 }
2665 3161
2666 ev_stop (EV_A_ (W)w); 3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
2667} 3165}
2668 3166
2669void 3167void
2670ev_async_send (EV_P_ ev_async *w) 3168ev_async_send (EV_P_ ev_async *w)
2671{ 3169{
2688once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
2689{ 3187{
2690 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
2691 void *arg = once->arg; 3189 void *arg = once->arg;
2692 3190
2693 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
2694 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
2695 ev_free (once); 3193 ev_free (once);
2696 3194
2697 cb (revents, arg); 3195 cb (revents, arg);
2698} 3196}
2699 3197
2700static void 3198static void
2701once_cb_io (EV_P_ ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
2702{ 3200{
2703 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2704} 3204}
2705 3205
2706static void 3206static void
2707once_cb_to (EV_P_ ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
2708{ 3208{
2709 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2710} 3212}
2711 3213
2712void 3214void
2713ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2714{ 3216{
2736 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
2737 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
2738 } 3240 }
2739} 3241}
2740 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
2741#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
2742 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
2743#endif 3353#endif
2744 3354
2745#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines