ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.239 by root, Thu May 8 20:52:13 2008 UTC vs.
Revision 1.461 by root, Fri Dec 27 06:01:22 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
168#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
169# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
266# endif
170#endif 267#endif
171 268
172#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 271#endif
175 272
176#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
177# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
278# endif
178#endif 279#endif
179 280
180#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 283#endif
183 284
184#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
185# ifdef _WIN32 286# ifdef _WIN32
186# define EV_USE_POLL 0 287# define EV_USE_POLL 0
187# else 288# else
188# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 290# endif
190#endif 291#endif
191 292
192#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 296# else
196# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
197# endif 298# endif
198#endif 299#endif
199 300
205# define EV_USE_PORT 0 306# define EV_USE_PORT 0
206#endif 307#endif
207 308
208#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 312# else
212# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
213# endif 314# endif
214#endif 315#endif
215 316
216#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 319#endif
223 320
224#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 323#endif
231 324
232#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 328# else
236# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
237# endif 330# endif
238#endif 331#endif
239 332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
338# endif
339#endif
340
341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 390
242#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
255#endif 404#endif
256 405
257#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 409# include <sys/select.h>
260# endif 410# endif
261#endif 411#endif
262 412
263#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
264# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
265#endif 420# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 421#endif
270 422
271#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 425# include <stdint.h>
274# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
275extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
276# endif 428# endif
277int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 430# ifdef O_CLOEXEC
279} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
280# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
281#endif 459#endif
282 460
283/**/ 461/**/
284 462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
285/* 469/*
286 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 472 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 475
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 526 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
302#else 542#else
303# define expect(expr,value) (expr) 543 #include <inttypes.h>
304# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 545 #define ECB_PTRSIZE 8
306# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
307# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __x86_64 || _M_AMD64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
308#endif 557 #endif
558#endif
309 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576#define ECB_C99 (__STDC_VERSION__ >= 199901L)
577#define ECB_C11 (__STDC_VERSION__ >= 201112L)
578#define ECB_CPP (__cplusplus+0)
579#define ECB_CPP11 (__cplusplus >= 201103L)
580
581#if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
585#else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589#endif
590
591/*****************************************************************************/
592
593/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596#if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598#endif
599
600#if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602#endif
603
604#ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif __sparc || __sparc__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647#endif
648
649#ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1400 /* VC++ 2005 */
666 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
667 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
668 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
669 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
670 #elif defined _WIN32
671 #include <WinNT.h>
672 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
673 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
674 #include <mbarrier.h>
675 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
676 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
677 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
678 #elif __xlC__
679 #define ECB_MEMORY_FENCE __sync ()
680 #endif
681#endif
682
683#ifndef ECB_MEMORY_FENCE
684 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
685 /* we assume that these memory fences work on all variables/all memory accesses, */
686 /* not just C11 atomics and atomic accesses */
687 #include <stdatomic.h>
688 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
689 /* any fence other than seq_cst, which isn't very efficient for us. */
690 /* Why that is, we don't know - either the C11 memory model is quite useless */
691 /* for most usages, or gcc and clang have a bug */
692 /* I *currently* lean towards the latter, and inefficiently implement */
693 /* all three of ecb's fences as a seq_cst fence */
694 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
695 #endif
696#endif
697
698#ifndef ECB_MEMORY_FENCE
699 #if !ECB_AVOID_PTHREADS
700 /*
701 * if you get undefined symbol references to pthread_mutex_lock,
702 * or failure to find pthread.h, then you should implement
703 * the ECB_MEMORY_FENCE operations for your cpu/compiler
704 * OR provide pthread.h and link against the posix thread library
705 * of your system.
706 */
707 #include <pthread.h>
708 #define ECB_NEEDS_PTHREADS 1
709 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
710
711 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
712 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
713 #endif
714#endif
715
716#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
717 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
718#endif
719
720#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
721 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
722#endif
723
724/*****************************************************************************/
725
726#if __cplusplus
727 #define ecb_inline static inline
728#elif ECB_GCC_VERSION(2,5)
729 #define ecb_inline static __inline__
730#elif ECB_C99
731 #define ecb_inline static inline
732#else
733 #define ecb_inline static
734#endif
735
736#if ECB_GCC_VERSION(3,3)
737 #define ecb_restrict __restrict__
738#elif ECB_C99
739 #define ecb_restrict restrict
740#else
741 #define ecb_restrict
742#endif
743
744typedef int ecb_bool;
745
746#define ECB_CONCAT_(a, b) a ## b
747#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
748#define ECB_STRINGIFY_(a) # a
749#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
750
751#define ecb_function_ ecb_inline
752
753#if ECB_GCC_VERSION(3,1)
754 #define ecb_attribute(attrlist) __attribute__(attrlist)
755 #define ecb_is_constant(expr) __builtin_constant_p (expr)
756 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
757 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
758#else
759 #define ecb_attribute(attrlist)
760 #define ecb_is_constant(expr) 0
761 #define ecb_expect(expr,value) (expr)
762 #define ecb_prefetch(addr,rw,locality)
763#endif
764
765/* no emulation for ecb_decltype */
766#if ECB_GCC_VERSION(4,5)
767 #define ecb_decltype(x) __decltype(x)
768#elif ECB_GCC_VERSION(3,0)
769 #define ecb_decltype(x) __typeof(x)
770#endif
771
772#define ecb_noinline ecb_attribute ((__noinline__))
773#define ecb_unused ecb_attribute ((__unused__))
774#define ecb_const ecb_attribute ((__const__))
775#define ecb_pure ecb_attribute ((__pure__))
776
777#if ECB_C11
778 #define ecb_noreturn _Noreturn
779#else
780 #define ecb_noreturn ecb_attribute ((__noreturn__))
781#endif
782
783#if ECB_GCC_VERSION(4,3)
784 #define ecb_artificial ecb_attribute ((__artificial__))
785 #define ecb_hot ecb_attribute ((__hot__))
786 #define ecb_cold ecb_attribute ((__cold__))
787#else
788 #define ecb_artificial
789 #define ecb_hot
790 #define ecb_cold
791#endif
792
793/* put around conditional expressions if you are very sure that the */
794/* expression is mostly true or mostly false. note that these return */
795/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 796#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 797#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
798/* for compatibility to the rest of the world */
799#define ecb_likely(expr) ecb_expect_true (expr)
800#define ecb_unlikely(expr) ecb_expect_false (expr)
801
802/* count trailing zero bits and count # of one bits */
803#if ECB_GCC_VERSION(3,4)
804 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
805 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
806 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
807 #define ecb_ctz32(x) __builtin_ctz (x)
808 #define ecb_ctz64(x) __builtin_ctzll (x)
809 #define ecb_popcount32(x) __builtin_popcount (x)
810 /* no popcountll */
811#else
812 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
813 ecb_function_ int
814 ecb_ctz32 (uint32_t x)
815 {
816 int r = 0;
817
818 x &= ~x + 1; /* this isolates the lowest bit */
819
820#if ECB_branchless_on_i386
821 r += !!(x & 0xaaaaaaaa) << 0;
822 r += !!(x & 0xcccccccc) << 1;
823 r += !!(x & 0xf0f0f0f0) << 2;
824 r += !!(x & 0xff00ff00) << 3;
825 r += !!(x & 0xffff0000) << 4;
826#else
827 if (x & 0xaaaaaaaa) r += 1;
828 if (x & 0xcccccccc) r += 2;
829 if (x & 0xf0f0f0f0) r += 4;
830 if (x & 0xff00ff00) r += 8;
831 if (x & 0xffff0000) r += 16;
832#endif
833
834 return r;
835 }
836
837 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
838 ecb_function_ int
839 ecb_ctz64 (uint64_t x)
840 {
841 int shift = x & 0xffffffffU ? 0 : 32;
842 return ecb_ctz32 (x >> shift) + shift;
843 }
844
845 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
846 ecb_function_ int
847 ecb_popcount32 (uint32_t x)
848 {
849 x -= (x >> 1) & 0x55555555;
850 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
851 x = ((x >> 4) + x) & 0x0f0f0f0f;
852 x *= 0x01010101;
853
854 return x >> 24;
855 }
856
857 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
858 ecb_function_ int ecb_ld32 (uint32_t x)
859 {
860 int r = 0;
861
862 if (x >> 16) { x >>= 16; r += 16; }
863 if (x >> 8) { x >>= 8; r += 8; }
864 if (x >> 4) { x >>= 4; r += 4; }
865 if (x >> 2) { x >>= 2; r += 2; }
866 if (x >> 1) { r += 1; }
867
868 return r;
869 }
870
871 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
872 ecb_function_ int ecb_ld64 (uint64_t x)
873 {
874 int r = 0;
875
876 if (x >> 32) { x >>= 32; r += 32; }
877
878 return r + ecb_ld32 (x);
879 }
880#endif
881
882ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
883ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
884ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
885ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
886
887ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
888ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
889{
890 return ( (x * 0x0802U & 0x22110U)
891 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
892}
893
894ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
895ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
896{
897 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
898 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
899 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
900 x = ( x >> 8 ) | ( x << 8);
901
902 return x;
903}
904
905ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
906ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
907{
908 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
909 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
910 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
911 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
912 x = ( x >> 16 ) | ( x << 16);
913
914 return x;
915}
916
917/* popcount64 is only available on 64 bit cpus as gcc builtin */
918/* so for this version we are lazy */
919ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
920ecb_function_ int
921ecb_popcount64 (uint64_t x)
922{
923 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
924}
925
926ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
927ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
928ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
929ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
930ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
931ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
932ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
933ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
934
935ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
936ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
937ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
938ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
939ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
940ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
941ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
942ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
943
944#if ECB_GCC_VERSION(4,3)
945 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
946 #define ecb_bswap32(x) __builtin_bswap32 (x)
947 #define ecb_bswap64(x) __builtin_bswap64 (x)
948#else
949 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
950 ecb_function_ uint16_t
951 ecb_bswap16 (uint16_t x)
952 {
953 return ecb_rotl16 (x, 8);
954 }
955
956 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
957 ecb_function_ uint32_t
958 ecb_bswap32 (uint32_t x)
959 {
960 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
961 }
962
963 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
964 ecb_function_ uint64_t
965 ecb_bswap64 (uint64_t x)
966 {
967 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
968 }
969#endif
970
971#if ECB_GCC_VERSION(4,5)
972 #define ecb_unreachable() __builtin_unreachable ()
973#else
974 /* this seems to work fine, but gcc always emits a warning for it :/ */
975 ecb_inline void ecb_unreachable (void) ecb_noreturn;
976 ecb_inline void ecb_unreachable (void) { }
977#endif
978
979/* try to tell the compiler that some condition is definitely true */
980#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
981
982ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
983ecb_inline unsigned char
984ecb_byteorder_helper (void)
985{
986 /* the union code still generates code under pressure in gcc, */
987 /* but less than using pointers, and always seems to */
988 /* successfully return a constant. */
989 /* the reason why we have this horrible preprocessor mess */
990 /* is to avoid it in all cases, at least on common architectures */
991 /* or when using a recent enough gcc version (>= 4.6) */
992#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
993 return 0x44;
994#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
995 return 0x44;
996#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
997 return 0x11;
998#else
999 union
1000 {
1001 uint32_t i;
1002 uint8_t c;
1003 } u = { 0x11223344 };
1004 return u.c;
1005#endif
1006}
1007
1008ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1009ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1010ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1011ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1012
1013#if ECB_GCC_VERSION(3,0) || ECB_C99
1014 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1015#else
1016 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1017#endif
1018
1019#if __cplusplus
1020 template<typename T>
1021 static inline T ecb_div_rd (T val, T div)
1022 {
1023 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1024 }
1025 template<typename T>
1026 static inline T ecb_div_ru (T val, T div)
1027 {
1028 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1029 }
1030#else
1031 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1032 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1033#endif
1034
1035#if ecb_cplusplus_does_not_suck
1036 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1037 template<typename T, int N>
1038 static inline int ecb_array_length (const T (&arr)[N])
1039 {
1040 return N;
1041 }
1042#else
1043 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1044#endif
1045
1046/*******************************************************************************/
1047/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1048
1049/* basically, everything uses "ieee pure-endian" floating point numbers */
1050/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1051#if 0 \
1052 || __i386 || __i386__ \
1053 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1054 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1055 || defined __arm__ && defined __ARM_EABI__ \
1056 || defined __s390__ || defined __s390x__ \
1057 || defined __mips__ \
1058 || defined __alpha__ \
1059 || defined __hppa__ \
1060 || defined __ia64__ \
1061 || defined __m68k__ \
1062 || defined __m88k__ \
1063 || defined __sh__ \
1064 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1065 #define ECB_STDFP 1
1066 #include <string.h> /* for memcpy */
1067#else
1068 #define ECB_STDFP 0
1069#endif
1070
1071#ifndef ECB_NO_LIBM
1072
1073 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1074
1075 #ifdef NEN
1076 #define ECB_NAN NAN
1077 #else
1078 #define ECB_NAN INFINITY
1079 #endif
1080
1081 /* converts an ieee half/binary16 to a float */
1082 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1083 ecb_function_ float
1084 ecb_binary16_to_float (uint16_t x)
1085 {
1086 int e = (x >> 10) & 0x1f;
1087 int m = x & 0x3ff;
1088 float r;
1089
1090 if (!e ) r = ldexpf (m , -24);
1091 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1092 else if (m ) r = ECB_NAN;
1093 else r = INFINITY;
1094
1095 return x & 0x8000 ? -r : r;
1096 }
1097
1098 /* convert a float to ieee single/binary32 */
1099 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1100 ecb_function_ uint32_t
1101 ecb_float_to_binary32 (float x)
1102 {
1103 uint32_t r;
1104
1105 #if ECB_STDFP
1106 memcpy (&r, &x, 4);
1107 #else
1108 /* slow emulation, works for anything but -0 */
1109 uint32_t m;
1110 int e;
1111
1112 if (x == 0e0f ) return 0x00000000U;
1113 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1114 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1115 if (x != x ) return 0x7fbfffffU;
1116
1117 m = frexpf (x, &e) * 0x1000000U;
1118
1119 r = m & 0x80000000U;
1120
1121 if (r)
1122 m = -m;
1123
1124 if (e <= -126)
1125 {
1126 m &= 0xffffffU;
1127 m >>= (-125 - e);
1128 e = -126;
1129 }
1130
1131 r |= (e + 126) << 23;
1132 r |= m & 0x7fffffU;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* converts an ieee single/binary32 to a float */
1139 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1140 ecb_function_ float
1141 ecb_binary32_to_float (uint32_t x)
1142 {
1143 float r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 4);
1147 #else
1148 /* emulation, only works for normals and subnormals and +0 */
1149 int neg = x >> 31;
1150 int e = (x >> 23) & 0xffU;
1151
1152 x &= 0x7fffffU;
1153
1154 if (e)
1155 x |= 0x800000U;
1156 else
1157 e = 1;
1158
1159 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1160 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1161
1162 r = neg ? -r : r;
1163 #endif
1164
1165 return r;
1166 }
1167
1168 /* convert a double to ieee double/binary64 */
1169 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1170 ecb_function_ uint64_t
1171 ecb_double_to_binary64 (double x)
1172 {
1173 uint64_t r;
1174
1175 #if ECB_STDFP
1176 memcpy (&r, &x, 8);
1177 #else
1178 /* slow emulation, works for anything but -0 */
1179 uint64_t m;
1180 int e;
1181
1182 if (x == 0e0 ) return 0x0000000000000000U;
1183 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1184 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1185 if (x != x ) return 0X7ff7ffffffffffffU;
1186
1187 m = frexp (x, &e) * 0x20000000000000U;
1188
1189 r = m & 0x8000000000000000;;
1190
1191 if (r)
1192 m = -m;
1193
1194 if (e <= -1022)
1195 {
1196 m &= 0x1fffffffffffffU;
1197 m >>= (-1021 - e);
1198 e = -1022;
1199 }
1200
1201 r |= ((uint64_t)(e + 1022)) << 52;
1202 r |= m & 0xfffffffffffffU;
1203 #endif
1204
1205 return r;
1206 }
1207
1208 /* converts an ieee double/binary64 to a double */
1209 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1210 ecb_function_ double
1211 ecb_binary64_to_double (uint64_t x)
1212 {
1213 double r;
1214
1215 #if ECB_STDFP
1216 memcpy (&r, &x, 8);
1217 #else
1218 /* emulation, only works for normals and subnormals and +0 */
1219 int neg = x >> 63;
1220 int e = (x >> 52) & 0x7ffU;
1221
1222 x &= 0xfffffffffffffU;
1223
1224 if (e)
1225 x |= 0x10000000000000U;
1226 else
1227 e = 1;
1228
1229 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1230 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1231
1232 r = neg ? -r : r;
1233 #endif
1234
1235 return r;
1236 }
1237
1238#endif
1239
1240#endif
1241
1242/* ECB.H END */
1243
1244#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1245/* if your architecture doesn't need memory fences, e.g. because it is
1246 * single-cpu/core, or if you use libev in a project that doesn't use libev
1247 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1248 * libev, in which cases the memory fences become nops.
1249 * alternatively, you can remove this #error and link against libpthread,
1250 * which will then provide the memory fences.
1251 */
1252# error "memory fences not defined for your architecture, please report"
1253#endif
1254
1255#ifndef ECB_MEMORY_FENCE
1256# define ECB_MEMORY_FENCE do { } while (0)
1257# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1258# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1259#endif
1260
1261#define expect_false(cond) ecb_expect_false (cond)
1262#define expect_true(cond) ecb_expect_true (cond)
1263#define noinline ecb_noinline
1264
312#define inline_size static inline 1265#define inline_size ecb_inline
313 1266
314#if EV_MINIMAL 1267#if EV_FEATURE_CODE
1268# define inline_speed ecb_inline
1269#else
315# define inline_speed static noinline 1270# define inline_speed static noinline
1271#endif
1272
1273#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1274
1275#if EV_MINPRI == EV_MAXPRI
1276# define ABSPRI(w) (((W)w), 0)
316#else 1277#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1278# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1279#endif
322 1280
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1281#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1282#define EMPTY2(a,b) /* used to suppress some warnings */
325 1283
326typedef ev_watcher *W; 1284typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 1286typedef ev_watcher_time *WT;
329 1287
330#define ev_active(w) ((W)(w))->active 1288#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 1289#define ev_at(w) ((WT)(w))->at
332 1290
1291#if EV_USE_REALTIME
1292/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1293/* giving it a reasonably high chance of working on typical architectures */
1294static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1295#endif
1296
333#if EV_USE_MONOTONIC 1297#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1298static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1299#endif
1300
1301#ifndef EV_FD_TO_WIN32_HANDLE
1302# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1303#endif
1304#ifndef EV_WIN32_HANDLE_TO_FD
1305# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1306#endif
1307#ifndef EV_WIN32_CLOSE_FD
1308# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1309#endif
338 1310
339#ifdef _WIN32 1311#ifdef _WIN32
340# include "ev_win32.c" 1312# include "ev_win32.c"
341#endif 1313#endif
342 1314
343/*****************************************************************************/ 1315/*****************************************************************************/
344 1316
1317/* define a suitable floor function (only used by periodics atm) */
1318
1319#if EV_USE_FLOOR
1320# include <math.h>
1321# define ev_floor(v) floor (v)
1322#else
1323
1324#include <float.h>
1325
1326/* a floor() replacement function, should be independent of ev_tstamp type */
1327static ev_tstamp noinline
1328ev_floor (ev_tstamp v)
1329{
1330 /* the choice of shift factor is not terribly important */
1331#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1332 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1333#else
1334 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1335#endif
1336
1337 /* argument too large for an unsigned long? */
1338 if (expect_false (v >= shift))
1339 {
1340 ev_tstamp f;
1341
1342 if (v == v - 1.)
1343 return v; /* very large number */
1344
1345 f = shift * ev_floor (v * (1. / shift));
1346 return f + ev_floor (v - f);
1347 }
1348
1349 /* special treatment for negative args? */
1350 if (expect_false (v < 0.))
1351 {
1352 ev_tstamp f = -ev_floor (-v);
1353
1354 return f - (f == v ? 0 : 1);
1355 }
1356
1357 /* fits into an unsigned long */
1358 return (unsigned long)v;
1359}
1360
1361#endif
1362
1363/*****************************************************************************/
1364
1365#ifdef __linux
1366# include <sys/utsname.h>
1367#endif
1368
1369static unsigned int noinline ecb_cold
1370ev_linux_version (void)
1371{
1372#ifdef __linux
1373 unsigned int v = 0;
1374 struct utsname buf;
1375 int i;
1376 char *p = buf.release;
1377
1378 if (uname (&buf))
1379 return 0;
1380
1381 for (i = 3+1; --i; )
1382 {
1383 unsigned int c = 0;
1384
1385 for (;;)
1386 {
1387 if (*p >= '0' && *p <= '9')
1388 c = c * 10 + *p++ - '0';
1389 else
1390 {
1391 p += *p == '.';
1392 break;
1393 }
1394 }
1395
1396 v = (v << 8) | c;
1397 }
1398
1399 return v;
1400#else
1401 return 0;
1402#endif
1403}
1404
1405/*****************************************************************************/
1406
1407#if EV_AVOID_STDIO
1408static void noinline ecb_cold
1409ev_printerr (const char *msg)
1410{
1411 write (STDERR_FILENO, msg, strlen (msg));
1412}
1413#endif
1414
345static void (*syserr_cb)(const char *msg); 1415static void (*syserr_cb)(const char *msg) EV_THROW;
346 1416
347void 1417void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1418ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
349{ 1419{
350 syserr_cb = cb; 1420 syserr_cb = cb;
351} 1421}
352 1422
353static void noinline 1423static void noinline ecb_cold
354syserr (const char *msg) 1424ev_syserr (const char *msg)
355{ 1425{
356 if (!msg) 1426 if (!msg)
357 msg = "(libev) system error"; 1427 msg = "(libev) system error";
358 1428
359 if (syserr_cb) 1429 if (syserr_cb)
360 syserr_cb (msg); 1430 syserr_cb (msg);
361 else 1431 else
362 { 1432 {
1433#if EV_AVOID_STDIO
1434 ev_printerr (msg);
1435 ev_printerr (": ");
1436 ev_printerr (strerror (errno));
1437 ev_printerr ("\n");
1438#else
363 perror (msg); 1439 perror (msg);
1440#endif
364 abort (); 1441 abort ();
365 } 1442 }
366} 1443}
367 1444
368static void * 1445static void *
369ev_realloc_emul (void *ptr, long size) 1446ev_realloc_emul (void *ptr, long size) EV_THROW
370{ 1447{
371 /* some systems, notably openbsd and darwin, fail to properly 1448 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1449 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1450 * the single unix specification, so work around them here.
1451 * recently, also (at least) fedora and debian started breaking it,
1452 * despite documenting it otherwise.
374 */ 1453 */
375 1454
376 if (size) 1455 if (size)
377 return realloc (ptr, size); 1456 return realloc (ptr, size);
378 1457
379 free (ptr); 1458 free (ptr);
380 return 0; 1459 return 0;
381} 1460}
382 1461
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1462static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
384 1463
385void 1464void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1465ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
387{ 1466{
388 alloc = cb; 1467 alloc = cb;
389} 1468}
390 1469
391inline_speed void * 1470inline_speed void *
393{ 1472{
394 ptr = alloc (ptr, size); 1473 ptr = alloc (ptr, size);
395 1474
396 if (!ptr && size) 1475 if (!ptr && size)
397 { 1476 {
1477#if EV_AVOID_STDIO
1478 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1479#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1480 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1481#endif
399 abort (); 1482 abort ();
400 } 1483 }
401 1484
402 return ptr; 1485 return ptr;
403} 1486}
405#define ev_malloc(size) ev_realloc (0, (size)) 1488#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1489#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1490
408/*****************************************************************************/ 1491/*****************************************************************************/
409 1492
1493/* set in reify when reification needed */
1494#define EV_ANFD_REIFY 1
1495
1496/* file descriptor info structure */
410typedef struct 1497typedef struct
411{ 1498{
412 WL head; 1499 WL head;
413 unsigned char events; 1500 unsigned char events; /* the events watched for */
1501 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1502 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1503 unsigned char unused;
1504#if EV_USE_EPOLL
1505 unsigned int egen; /* generation counter to counter epoll bugs */
1506#endif
415#if EV_SELECT_IS_WINSOCKET 1507#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1508 SOCKET handle;
417#endif 1509#endif
1510#if EV_USE_IOCP
1511 OVERLAPPED or, ow;
1512#endif
418} ANFD; 1513} ANFD;
419 1514
1515/* stores the pending event set for a given watcher */
420typedef struct 1516typedef struct
421{ 1517{
422 W w; 1518 W w;
423 int events; 1519 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1520} ANPENDING;
425 1521
426#if EV_USE_INOTIFY 1522#if EV_USE_INOTIFY
1523/* hash table entry per inotify-id */
427typedef struct 1524typedef struct
428{ 1525{
429 WL head; 1526 WL head;
430} ANFS; 1527} ANFS;
1528#endif
1529
1530/* Heap Entry */
1531#if EV_HEAP_CACHE_AT
1532 /* a heap element */
1533 typedef struct {
1534 ev_tstamp at;
1535 WT w;
1536 } ANHE;
1537
1538 #define ANHE_w(he) (he).w /* access watcher, read-write */
1539 #define ANHE_at(he) (he).at /* access cached at, read-only */
1540 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1541#else
1542 /* a heap element */
1543 typedef WT ANHE;
1544
1545 #define ANHE_w(he) (he)
1546 #define ANHE_at(he) (he)->at
1547 #define ANHE_at_cache(he)
431#endif 1548#endif
432 1549
433#if EV_MULTIPLICITY 1550#if EV_MULTIPLICITY
434 1551
435 struct ev_loop 1552 struct ev_loop
441 #undef VAR 1558 #undef VAR
442 }; 1559 };
443 #include "ev_wrap.h" 1560 #include "ev_wrap.h"
444 1561
445 static struct ev_loop default_loop_struct; 1562 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr; 1563 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
447 1564
448#else 1565#else
449 1566
450 ev_tstamp ev_rt_now; 1567 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
451 #define VAR(name,decl) static decl; 1568 #define VAR(name,decl) static decl;
452 #include "ev_vars.h" 1569 #include "ev_vars.h"
453 #undef VAR 1570 #undef VAR
454 1571
455 static int ev_default_loop_ptr; 1572 static int ev_default_loop_ptr;
456 1573
457#endif 1574#endif
458 1575
1576#if EV_FEATURE_API
1577# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1578# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1579# define EV_INVOKE_PENDING invoke_cb (EV_A)
1580#else
1581# define EV_RELEASE_CB (void)0
1582# define EV_ACQUIRE_CB (void)0
1583# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1584#endif
1585
1586#define EVBREAK_RECURSE 0x80
1587
459/*****************************************************************************/ 1588/*****************************************************************************/
460 1589
1590#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1591ev_tstamp
462ev_time (void) 1592ev_time (void) EV_THROW
463{ 1593{
464#if EV_USE_REALTIME 1594#if EV_USE_REALTIME
1595 if (expect_true (have_realtime))
1596 {
465 struct timespec ts; 1597 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1598 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1599 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1600 }
1601#endif
1602
469 struct timeval tv; 1603 struct timeval tv;
470 gettimeofday (&tv, 0); 1604 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1605 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1606}
1607#endif
474 1608
475ev_tstamp inline_size 1609inline_size ev_tstamp
476get_clock (void) 1610get_clock (void)
477{ 1611{
478#if EV_USE_MONOTONIC 1612#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1613 if (expect_true (have_monotonic))
480 { 1614 {
487 return ev_time (); 1621 return ev_time ();
488} 1622}
489 1623
490#if EV_MULTIPLICITY 1624#if EV_MULTIPLICITY
491ev_tstamp 1625ev_tstamp
492ev_now (EV_P) 1626ev_now (EV_P) EV_THROW
493{ 1627{
494 return ev_rt_now; 1628 return ev_rt_now;
495} 1629}
496#endif 1630#endif
497 1631
498void 1632void
499ev_sleep (ev_tstamp delay) 1633ev_sleep (ev_tstamp delay) EV_THROW
500{ 1634{
501 if (delay > 0.) 1635 if (delay > 0.)
502 { 1636 {
503#if EV_USE_NANOSLEEP 1637#if EV_USE_NANOSLEEP
504 struct timespec ts; 1638 struct timespec ts;
505 1639
506 ts.tv_sec = (time_t)delay; 1640 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1641 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1642#elif defined _WIN32
511 Sleep ((unsigned long)(delay * 1e3)); 1643 Sleep ((unsigned long)(delay * 1e3));
512#else 1644#else
513 struct timeval tv; 1645 struct timeval tv;
514 1646
515 tv.tv_sec = (time_t)delay; 1647 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1648 /* something not guaranteed by newer posix versions, but guaranteed */
517 1649 /* by older ones */
1650 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1651 select (0, 0, 0, 0, &tv);
519#endif 1652#endif
520 } 1653 }
521} 1654}
522 1655
523/*****************************************************************************/ 1656/*****************************************************************************/
524 1657
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1658#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 1659
527int inline_size 1660/* find a suitable new size for the given array, */
1661/* hopefully by rounding to a nice-to-malloc size */
1662inline_size int
528array_nextsize (int elem, int cur, int cnt) 1663array_nextsize (int elem, int cur, int cnt)
529{ 1664{
530 int ncur = cur + 1; 1665 int ncur = cur + 1;
531 1666
532 do 1667 do
533 ncur <<= 1; 1668 ncur <<= 1;
534 while (cnt > ncur); 1669 while (cnt > ncur);
535 1670
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1671 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1672 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 { 1673 {
539 ncur *= elem; 1674 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1675 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4; 1676 ncur = ncur - sizeof (void *) * 4;
543 } 1678 }
544 1679
545 return ncur; 1680 return ncur;
546} 1681}
547 1682
548static noinline void * 1683static void * noinline ecb_cold
549array_realloc (int elem, void *base, int *cur, int cnt) 1684array_realloc (int elem, void *base, int *cur, int cnt)
550{ 1685{
551 *cur = array_nextsize (elem, *cur, cnt); 1686 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 1687 return ev_realloc (base, elem * *cur);
553} 1688}
1689
1690#define array_init_zero(base,count) \
1691 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 1692
555#define array_needsize(type,base,cur,cnt,init) \ 1693#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 1694 if (expect_false ((cnt) > (cur))) \
557 { \ 1695 { \
558 int ocur_ = (cur); \ 1696 int ecb_unused ocur_ = (cur); \
559 (base) = (type *)array_realloc \ 1697 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \ 1698 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \ 1699 init ((base) + (ocur_), (cur) - ocur_); \
562 } 1700 }
563 1701
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1708 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 1709 }
572#endif 1710#endif
573 1711
574#define array_free(stem, idx) \ 1712#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1713 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 1714
577/*****************************************************************************/ 1715/*****************************************************************************/
578 1716
1717/* dummy callback for pending events */
1718static void noinline
1719pendingcb (EV_P_ ev_prepare *w, int revents)
1720{
1721}
1722
579void noinline 1723void noinline
580ev_feed_event (EV_P_ void *w, int revents) 1724ev_feed_event (EV_P_ void *w, int revents) EV_THROW
581{ 1725{
582 W w_ = (W)w; 1726 W w_ = (W)w;
583 int pri = ABSPRI (w_); 1727 int pri = ABSPRI (w_);
584 1728
585 if (expect_false (w_->pending)) 1729 if (expect_false (w_->pending))
589 w_->pending = ++pendingcnt [pri]; 1733 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1734 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_; 1735 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 1736 pendings [pri][w_->pending - 1].events = revents;
593 } 1737 }
594}
595 1738
596void inline_speed 1739 pendingpri = NUMPRI - 1;
1740}
1741
1742inline_speed void
1743feed_reverse (EV_P_ W w)
1744{
1745 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1746 rfeeds [rfeedcnt++] = w;
1747}
1748
1749inline_size void
1750feed_reverse_done (EV_P_ int revents)
1751{
1752 do
1753 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1754 while (rfeedcnt);
1755}
1756
1757inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 1758queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 1759{
599 int i; 1760 int i;
600 1761
601 for (i = 0; i < eventcnt; ++i) 1762 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 1763 ev_feed_event (EV_A_ events [i], type);
603} 1764}
604 1765
605/*****************************************************************************/ 1766/*****************************************************************************/
606 1767
607void inline_size 1768inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 1769fd_event_nocheck (EV_P_ int fd, int revents)
622{ 1770{
623 ANFD *anfd = anfds + fd; 1771 ANFD *anfd = anfds + fd;
624 ev_io *w; 1772 ev_io *w;
625 1773
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1774 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 1778 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 1779 ev_feed_event (EV_A_ (W)w, ev);
632 } 1780 }
633} 1781}
634 1782
1783/* do not submit kernel events for fds that have reify set */
1784/* because that means they changed while we were polling for new events */
1785inline_speed void
1786fd_event (EV_P_ int fd, int revents)
1787{
1788 ANFD *anfd = anfds + fd;
1789
1790 if (expect_true (!anfd->reify))
1791 fd_event_nocheck (EV_A_ fd, revents);
1792}
1793
635void 1794void
636ev_feed_fd_event (EV_P_ int fd, int revents) 1795ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
637{ 1796{
638 if (fd >= 0 && fd < anfdmax) 1797 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 1798 fd_event_nocheck (EV_A_ fd, revents);
640} 1799}
641 1800
642void inline_size 1801/* make sure the external fd watch events are in-sync */
1802/* with the kernel/libev internal state */
1803inline_size void
643fd_reify (EV_P) 1804fd_reify (EV_P)
644{ 1805{
645 int i; 1806 int i;
1807
1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 for (i = 0; i < fdchangecnt; ++i)
1810 {
1811 int fd = fdchanges [i];
1812 ANFD *anfd = anfds + fd;
1813
1814 if (anfd->reify & EV__IOFDSET && anfd->head)
1815 {
1816 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1817
1818 if (handle != anfd->handle)
1819 {
1820 unsigned long arg;
1821
1822 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1823
1824 /* handle changed, but fd didn't - we need to do it in two steps */
1825 backend_modify (EV_A_ fd, anfd->events, 0);
1826 anfd->events = 0;
1827 anfd->handle = handle;
1828 }
1829 }
1830 }
1831#endif
646 1832
647 for (i = 0; i < fdchangecnt; ++i) 1833 for (i = 0; i < fdchangecnt; ++i)
648 { 1834 {
649 int fd = fdchanges [i]; 1835 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd; 1836 ANFD *anfd = anfds + fd;
651 ev_io *w; 1837 ev_io *w;
652 1838
653 unsigned char events = 0; 1839 unsigned char o_events = anfd->events;
1840 unsigned char o_reify = anfd->reify;
654 1841
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1842 anfd->reify = 0;
656 events |= (unsigned char)w->events;
657 1843
658#if EV_SELECT_IS_WINSOCKET 1844 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
659 if (events)
660 { 1845 {
661 unsigned long argp; 1846 anfd->events = 0;
662 #ifdef EV_FD_TO_WIN32_HANDLE 1847
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1848 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
664 #else 1849 anfd->events |= (unsigned char)w->events;
665 anfd->handle = _get_osfhandle (fd); 1850
666 #endif 1851 if (o_events != anfd->events)
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1852 o_reify = EV__IOFDSET; /* actually |= */
668 } 1853 }
669#endif
670 1854
671 { 1855 if (o_reify & EV__IOFDSET)
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 1856 backend_modify (EV_A_ fd, o_events, anfd->events);
680 }
681 } 1857 }
682 1858
683 fdchangecnt = 0; 1859 fdchangecnt = 0;
684} 1860}
685 1861
686void inline_size 1862/* something about the given fd changed */
1863inline_size void
687fd_change (EV_P_ int fd, int flags) 1864fd_change (EV_P_ int fd, int flags)
688{ 1865{
689 unsigned char reify = anfds [fd].reify; 1866 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 1867 anfds [fd].reify |= flags;
691 1868
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1872 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 1873 fdchanges [fdchangecnt - 1] = fd;
697 } 1874 }
698} 1875}
699 1876
700void inline_speed 1877/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1878inline_speed void ecb_cold
701fd_kill (EV_P_ int fd) 1879fd_kill (EV_P_ int fd)
702{ 1880{
703 ev_io *w; 1881 ev_io *w;
704 1882
705 while ((w = (ev_io *)anfds [fd].head)) 1883 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 1885 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1886 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 1887 }
710} 1888}
711 1889
712int inline_size 1890/* check whether the given fd is actually valid, for error recovery */
1891inline_size int ecb_cold
713fd_valid (int fd) 1892fd_valid (int fd)
714{ 1893{
715#ifdef _WIN32 1894#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1895 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1896#else
718 return fcntl (fd, F_GETFD) != -1; 1897 return fcntl (fd, F_GETFD) != -1;
719#endif 1898#endif
720} 1899}
721 1900
722/* called on EBADF to verify fds */ 1901/* called on EBADF to verify fds */
723static void noinline 1902static void noinline ecb_cold
724fd_ebadf (EV_P) 1903fd_ebadf (EV_P)
725{ 1904{
726 int fd; 1905 int fd;
727 1906
728 for (fd = 0; fd < anfdmax; ++fd) 1907 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1908 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1909 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1910 fd_kill (EV_A_ fd);
732} 1911}
733 1912
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1913/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1914static void noinline ecb_cold
736fd_enomem (EV_P) 1915fd_enomem (EV_P)
737{ 1916{
738 int fd; 1917 int fd;
739 1918
740 for (fd = anfdmax; fd--; ) 1919 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1920 if (anfds [fd].events)
742 { 1921 {
743 fd_kill (EV_A_ fd); 1922 fd_kill (EV_A_ fd);
744 return; 1923 break;
745 } 1924 }
746} 1925}
747 1926
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1927/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1928static void noinline
753 1932
754 for (fd = 0; fd < anfdmax; ++fd) 1933 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1934 if (anfds [fd].events)
756 { 1935 {
757 anfds [fd].events = 0; 1936 anfds [fd].events = 0;
1937 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1938 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1939 }
760} 1940}
761 1941
1942/* used to prepare libev internal fd's */
1943/* this is not fork-safe */
1944inline_speed void
1945fd_intern (int fd)
1946{
1947#ifdef _WIN32
1948 unsigned long arg = 1;
1949 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1950#else
1951 fcntl (fd, F_SETFD, FD_CLOEXEC);
1952 fcntl (fd, F_SETFL, O_NONBLOCK);
1953#endif
1954}
1955
762/*****************************************************************************/ 1956/*****************************************************************************/
1957
1958/*
1959 * the heap functions want a real array index. array index 0 is guaranteed to not
1960 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1961 * the branching factor of the d-tree.
1962 */
763 1963
764/* 1964/*
765 * at the moment we allow libev the luxury of two heaps, 1965 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1966 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1967 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1968 * the difference is about 5% with 50000+ watchers.
769 */ 1969 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1970#if EV_USE_4HEAP
772 1971
773#define DHEAP 4 1972#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1973#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1974#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1975#define UPHEAP_DONE(p,k) ((p) == (k))
775 1976
776/* towards the root */ 1977/* away from the root */
777void inline_speed 1978inline_speed void
778upheap (WT *heap, int k) 1979downheap (ANHE *heap, int N, int k)
779{ 1980{
780 WT w = heap [k]; 1981 ANHE he = heap [k];
1982 ANHE *E = heap + N + HEAP0;
781 1983
782 for (;;) 1984 for (;;)
783 { 1985 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
785
786 if (p == k || heap [p]->at <= w->at)
787 break;
788
789 heap [k] = heap [p];
790 ev_active (heap [k]) = k;
791 k = p;
792 }
793
794 heap [k] = w;
795 ev_active (heap [k]) = k;
796}
797
798/* away from the root */
799void inline_speed
800downheap (WT *heap, int N, int k)
801{
802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
804
805 for (;;)
806 {
807 ev_tstamp minat; 1986 ev_tstamp minat;
808 WT *minpos; 1987 ANHE *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1988 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
810 1989
811 // find minimum child 1990 /* find minimum child */
812 if (expect_true (pos + DHEAP - 1 < E)) 1991 if (expect_true (pos + DHEAP - 1 < E))
813 { 1992 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at); 1993 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1994 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1995 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1996 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1997 }
1998 else if (pos < E)
1999 {
2000 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2001 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2002 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2003 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 2004 }
820 else 2005 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break; 2006 break;
833 2007
834 ev_active (*minpos) = k; 2008 if (ANHE_at (he) <= minat)
2009 break;
2010
835 heap [k] = *minpos; 2011 heap [k] = *minpos;
2012 ev_active (ANHE_w (*minpos)) = k;
836 2013
837 k = minpos - heap; 2014 k = minpos - heap;
838 } 2015 }
839 2016
840 heap [k] = w; 2017 heap [k] = he;
841 ev_active (heap [k]) = k; 2018 ev_active (ANHE_w (he)) = k;
842} 2019}
843 2020
844#else // 4HEAP 2021#else /* 4HEAP */
845 2022
846#define HEAP0 1 2023#define HEAP0 1
2024#define HPARENT(k) ((k) >> 1)
2025#define UPHEAP_DONE(p,k) (!(p))
847 2026
848/* towards the root */ 2027/* away from the root */
849void inline_speed 2028inline_speed void
850upheap (WT *heap, int k) 2029downheap (ANHE *heap, int N, int k)
851{ 2030{
852 WT w = heap [k]; 2031 ANHE he = heap [k];
853 2032
854 for (;;) 2033 for (;;)
855 { 2034 {
856 int p = k >> 1; 2035 int c = k << 1;
857 2036
858 /* maybe we could use a dummy element at heap [0]? */ 2037 if (c >= N + HEAP0)
859 if (!p || heap [p]->at <= w->at)
860 break; 2038 break;
861 2039
862 heap [k] = heap [p]; 2040 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
863 ev_active (heap [k]) = k; 2041 ? 1 : 0;
864 k = p;
865 }
866 2042
867 heap [k] = w; 2043 if (ANHE_at (he) <= ANHE_at (heap [c]))
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break; 2044 break;
883 2045
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c]; 2046 heap [k] = heap [c];
891 ((W)heap [k])->active = k; 2047 ev_active (ANHE_w (heap [k])) = k;
892 2048
893 k = c; 2049 k = c;
894 } 2050 }
895 2051
896 heap [k] = w; 2052 heap [k] = he;
2053 ev_active (ANHE_w (he)) = k;
2054}
2055#endif
2056
2057/* towards the root */
2058inline_speed void
2059upheap (ANHE *heap, int k)
2060{
2061 ANHE he = heap [k];
2062
2063 for (;;)
2064 {
2065 int p = HPARENT (k);
2066
2067 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2068 break;
2069
2070 heap [k] = heap [p];
897 ev_active (heap [k]) = k; 2071 ev_active (ANHE_w (heap [k])) = k;
898} 2072 k = p;
899#endif 2073 }
900 2074
901void inline_size 2075 heap [k] = he;
2076 ev_active (ANHE_w (he)) = k;
2077}
2078
2079/* move an element suitably so it is in a correct place */
2080inline_size void
902adjustheap (WT *heap, int N, int k) 2081adjustheap (ANHE *heap, int N, int k)
903{ 2082{
2083 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
904 upheap (heap, k); 2084 upheap (heap, k);
2085 else
905 downheap (heap, N, k); 2086 downheap (heap, N, k);
2087}
2088
2089/* rebuild the heap: this function is used only once and executed rarely */
2090inline_size void
2091reheap (ANHE *heap, int N)
2092{
2093 int i;
2094
2095 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2096 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2097 for (i = 0; i < N; ++i)
2098 upheap (heap, i + HEAP0);
906} 2099}
907 2100
908/*****************************************************************************/ 2101/*****************************************************************************/
909 2102
2103/* associate signal watchers to a signal signal */
910typedef struct 2104typedef struct
911{ 2105{
2106 EV_ATOMIC_T pending;
2107#if EV_MULTIPLICITY
2108 EV_P;
2109#endif
912 WL head; 2110 WL head;
913 EV_ATOMIC_T gotsig;
914} ANSIG; 2111} ANSIG;
915 2112
916static ANSIG *signals; 2113static ANSIG signals [EV_NSIG - 1];
917static int signalmax;
918
919static EV_ATOMIC_T gotsig;
920
921void inline_size
922signals_init (ANSIG *base, int count)
923{
924 while (count--)
925 {
926 base->head = 0;
927 base->gotsig = 0;
928
929 ++base;
930 }
931}
932 2114
933/*****************************************************************************/ 2115/*****************************************************************************/
934 2116
935void inline_speed 2117#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
936fd_intern (int fd)
937{
938#ifdef _WIN32
939 int arg = 1;
940 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
941#else
942 fcntl (fd, F_SETFD, FD_CLOEXEC);
943 fcntl (fd, F_SETFL, O_NONBLOCK);
944#endif
945}
946 2118
947static void noinline 2119static void noinline ecb_cold
948evpipe_init (EV_P) 2120evpipe_init (EV_P)
949{ 2121{
950 if (!ev_is_active (&pipeev)) 2122 if (!ev_is_active (&pipe_w))
2123 {
2124 int fds [2];
2125
2126# if EV_USE_EVENTFD
2127 fds [0] = -1;
2128 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2129 if (fds [1] < 0 && errno == EINVAL)
2130 fds [1] = eventfd (0, 0);
2131
2132 if (fds [1] < 0)
2133# endif
2134 {
2135 while (pipe (fds))
2136 ev_syserr ("(libev) error creating signal/async pipe");
2137
2138 fd_intern (fds [0]);
2139 }
2140
2141 evpipe [0] = fds [0];
2142
2143 if (evpipe [1] < 0)
2144 evpipe [1] = fds [1]; /* first call, set write fd */
2145 else
2146 {
2147 /* on subsequent calls, do not change evpipe [1] */
2148 /* so that evpipe_write can always rely on its value. */
2149 /* this branch does not do anything sensible on windows, */
2150 /* so must not be executed on windows */
2151
2152 dup2 (fds [1], evpipe [1]);
2153 close (fds [1]);
2154 }
2155
2156 fd_intern (evpipe [1]);
2157
2158 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2159 ev_io_start (EV_A_ &pipe_w);
2160 ev_unref (EV_A); /* watcher should not keep loop alive */
951 { 2161 }
2162}
2163
2164inline_speed void
2165evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2166{
2167 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2168
2169 if (expect_true (*flag))
2170 return;
2171
2172 *flag = 1;
2173 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2174
2175 pipe_write_skipped = 1;
2176
2177 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2178
2179 if (pipe_write_wanted)
2180 {
2181 int old_errno;
2182
2183 pipe_write_skipped = 0;
2184 ECB_MEMORY_FENCE_RELEASE;
2185
2186 old_errno = errno; /* save errno because write will clobber it */
2187
952#if EV_USE_EVENTFD 2188#if EV_USE_EVENTFD
953 if ((evfd = eventfd (0, 0)) >= 0) 2189 if (evpipe [0] < 0)
954 { 2190 {
955 evpipe [0] = -1; 2191 uint64_t counter = 1;
956 fd_intern (evfd); 2192 write (evpipe [1], &counter, sizeof (uint64_t));
957 ev_io_set (&pipeev, evfd, EV_READ);
958 } 2193 }
959 else 2194 else
960#endif 2195#endif
961 { 2196 {
962 while (pipe (evpipe)) 2197#ifdef _WIN32
963 syserr ("(libev) error creating signal/async pipe"); 2198 WSABUF buf;
964 2199 DWORD sent;
965 fd_intern (evpipe [0]); 2200 buf.buf = &buf;
966 fd_intern (evpipe [1]); 2201 buf.len = 1;
967 ev_io_set (&pipeev, evpipe [0], EV_READ); 2202 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2203#else
2204 write (evpipe [1], &(evpipe [1]), 1);
2205#endif
968 } 2206 }
969 2207
970 ev_io_start (EV_A_ &pipeev); 2208 errno = old_errno;
971 ev_unref (EV_A); /* watcher should not keep loop alive */
972 }
973}
974
975void inline_size
976evpipe_write (EV_P_ EV_ATOMIC_T *flag)
977{
978 if (!*flag)
979 { 2209 }
980 int old_errno = errno; /* save errno because write might clobber it */ 2210}
981 2211
982 *flag = 1; 2212/* called whenever the libev signal pipe */
2213/* got some events (signal, async) */
2214static void
2215pipecb (EV_P_ ev_io *iow, int revents)
2216{
2217 int i;
983 2218
2219 if (revents & EV_READ)
2220 {
984#if EV_USE_EVENTFD 2221#if EV_USE_EVENTFD
985 if (evfd >= 0) 2222 if (evpipe [0] < 0)
986 { 2223 {
987 uint64_t counter = 1; 2224 uint64_t counter;
988 write (evfd, &counter, sizeof (uint64_t)); 2225 read (evpipe [1], &counter, sizeof (uint64_t));
989 } 2226 }
990 else 2227 else
991#endif 2228#endif
992 write (evpipe [1], &old_errno, 1); 2229 {
993
994 errno = old_errno;
995 }
996}
997
998static void
999pipecb (EV_P_ ev_io *iow, int revents)
1000{
1001#if EV_USE_EVENTFD
1002 if (evfd >= 0)
1003 {
1004 uint64_t counter;
1005 read (evfd, &counter, sizeof (uint64_t));
1006 }
1007 else
1008#endif
1009 {
1010 char dummy; 2230 char dummy[4];
2231#ifdef _WIN32
2232 WSABUF buf;
2233 DWORD recvd;
2234 DWORD flags = 0;
2235 buf.buf = dummy;
2236 buf.len = sizeof (dummy);
2237 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2238#else
1011 read (evpipe [0], &dummy, 1); 2239 read (evpipe [0], &dummy, sizeof (dummy));
2240#endif
2241 }
2242 }
2243
2244 pipe_write_skipped = 0;
2245
2246 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2247
2248#if EV_SIGNAL_ENABLE
2249 if (sig_pending)
1012 } 2250 {
2251 sig_pending = 0;
1013 2252
1014 if (gotsig && ev_is_default_loop (EV_A)) 2253 ECB_MEMORY_FENCE;
1015 {
1016 int signum;
1017 gotsig = 0;
1018 2254
1019 for (signum = signalmax; signum--; ) 2255 for (i = EV_NSIG - 1; i--; )
1020 if (signals [signum].gotsig) 2256 if (expect_false (signals [i].pending))
1021 ev_feed_signal_event (EV_A_ signum + 1); 2257 ev_feed_signal_event (EV_A_ i + 1);
1022 } 2258 }
2259#endif
1023 2260
1024#if EV_ASYNC_ENABLE 2261#if EV_ASYNC_ENABLE
1025 if (gotasync) 2262 if (async_pending)
1026 { 2263 {
1027 int i; 2264 async_pending = 0;
1028 gotasync = 0; 2265
2266 ECB_MEMORY_FENCE;
1029 2267
1030 for (i = asynccnt; i--; ) 2268 for (i = asynccnt; i--; )
1031 if (asyncs [i]->sent) 2269 if (asyncs [i]->sent)
1032 { 2270 {
1033 asyncs [i]->sent = 0; 2271 asyncs [i]->sent = 0;
2272 ECB_MEMORY_FENCE_RELEASE;
1034 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2273 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1035 } 2274 }
1036 } 2275 }
1037#endif 2276#endif
1038} 2277}
1039 2278
1040/*****************************************************************************/ 2279/*****************************************************************************/
1041 2280
2281void
2282ev_feed_signal (int signum) EV_THROW
2283{
2284#if EV_MULTIPLICITY
2285 EV_P;
2286 ECB_MEMORY_FENCE_ACQUIRE;
2287 EV_A = signals [signum - 1].loop;
2288
2289 if (!EV_A)
2290 return;
2291#endif
2292
2293 signals [signum - 1].pending = 1;
2294 evpipe_write (EV_A_ &sig_pending);
2295}
2296
1042static void 2297static void
1043ev_sighandler (int signum) 2298ev_sighandler (int signum)
1044{ 2299{
2300#ifdef _WIN32
2301 signal (signum, ev_sighandler);
2302#endif
2303
2304 ev_feed_signal (signum);
2305}
2306
2307void noinline
2308ev_feed_signal_event (EV_P_ int signum) EV_THROW
2309{
2310 WL w;
2311
2312 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2313 return;
2314
2315 --signum;
2316
1045#if EV_MULTIPLICITY 2317#if EV_MULTIPLICITY
1046 struct ev_loop *loop = &default_loop_struct; 2318 /* it is permissible to try to feed a signal to the wrong loop */
1047#endif 2319 /* or, likely more useful, feeding a signal nobody is waiting for */
1048 2320
1049#if _WIN32 2321 if (expect_false (signals [signum].loop != EV_A))
1050 signal (signum, ev_sighandler);
1051#endif
1052
1053 signals [signum - 1].gotsig = 1;
1054 evpipe_write (EV_A_ &gotsig);
1055}
1056
1057void noinline
1058ev_feed_signal_event (EV_P_ int signum)
1059{
1060 WL w;
1061
1062#if EV_MULTIPLICITY
1063 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1064#endif
1065
1066 --signum;
1067
1068 if (signum < 0 || signum >= signalmax)
1069 return; 2322 return;
2323#endif
1070 2324
1071 signals [signum].gotsig = 0; 2325 signals [signum].pending = 0;
2326 ECB_MEMORY_FENCE_RELEASE;
1072 2327
1073 for (w = signals [signum].head; w; w = w->next) 2328 for (w = signals [signum].head; w; w = w->next)
1074 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2329 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1075} 2330}
1076 2331
2332#if EV_USE_SIGNALFD
2333static void
2334sigfdcb (EV_P_ ev_io *iow, int revents)
2335{
2336 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2337
2338 for (;;)
2339 {
2340 ssize_t res = read (sigfd, si, sizeof (si));
2341
2342 /* not ISO-C, as res might be -1, but works with SuS */
2343 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2344 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2345
2346 if (res < (ssize_t)sizeof (si))
2347 break;
2348 }
2349}
2350#endif
2351
2352#endif
2353
1077/*****************************************************************************/ 2354/*****************************************************************************/
1078 2355
2356#if EV_CHILD_ENABLE
1079static WL childs [EV_PID_HASHSIZE]; 2357static WL childs [EV_PID_HASHSIZE];
1080
1081#ifndef _WIN32
1082 2358
1083static ev_signal childev; 2359static ev_signal childev;
1084 2360
1085#ifndef WIFCONTINUED 2361#ifndef WIFCONTINUED
1086# define WIFCONTINUED(status) 0 2362# define WIFCONTINUED(status) 0
1087#endif 2363#endif
1088 2364
1089void inline_speed 2365/* handle a single child status event */
2366inline_speed void
1090child_reap (EV_P_ int chain, int pid, int status) 2367child_reap (EV_P_ int chain, int pid, int status)
1091{ 2368{
1092 ev_child *w; 2369 ev_child *w;
1093 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2370 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1094 2371
1095 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2372 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1096 { 2373 {
1097 if ((w->pid == pid || !w->pid) 2374 if ((w->pid == pid || !w->pid)
1098 && (!traced || (w->flags & 1))) 2375 && (!traced || (w->flags & 1)))
1099 { 2376 {
1100 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2377 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1107 2384
1108#ifndef WCONTINUED 2385#ifndef WCONTINUED
1109# define WCONTINUED 0 2386# define WCONTINUED 0
1110#endif 2387#endif
1111 2388
2389/* called on sigchld etc., calls waitpid */
1112static void 2390static void
1113childcb (EV_P_ ev_signal *sw, int revents) 2391childcb (EV_P_ ev_signal *sw, int revents)
1114{ 2392{
1115 int pid, status; 2393 int pid, status;
1116 2394
1124 /* make sure we are called again until all children have been reaped */ 2402 /* make sure we are called again until all children have been reaped */
1125 /* we need to do it this way so that the callback gets called before we continue */ 2403 /* we need to do it this way so that the callback gets called before we continue */
1126 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2404 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1127 2405
1128 child_reap (EV_A_ pid, pid, status); 2406 child_reap (EV_A_ pid, pid, status);
1129 if (EV_PID_HASHSIZE > 1) 2407 if ((EV_PID_HASHSIZE) > 1)
1130 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2408 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1131} 2409}
1132 2410
1133#endif 2411#endif
1134 2412
1135/*****************************************************************************/ 2413/*****************************************************************************/
1136 2414
2415#if EV_USE_IOCP
2416# include "ev_iocp.c"
2417#endif
1137#if EV_USE_PORT 2418#if EV_USE_PORT
1138# include "ev_port.c" 2419# include "ev_port.c"
1139#endif 2420#endif
1140#if EV_USE_KQUEUE 2421#if EV_USE_KQUEUE
1141# include "ev_kqueue.c" 2422# include "ev_kqueue.c"
1148#endif 2429#endif
1149#if EV_USE_SELECT 2430#if EV_USE_SELECT
1150# include "ev_select.c" 2431# include "ev_select.c"
1151#endif 2432#endif
1152 2433
1153int 2434int ecb_cold
1154ev_version_major (void) 2435ev_version_major (void) EV_THROW
1155{ 2436{
1156 return EV_VERSION_MAJOR; 2437 return EV_VERSION_MAJOR;
1157} 2438}
1158 2439
1159int 2440int ecb_cold
1160ev_version_minor (void) 2441ev_version_minor (void) EV_THROW
1161{ 2442{
1162 return EV_VERSION_MINOR; 2443 return EV_VERSION_MINOR;
1163} 2444}
1164 2445
1165/* return true if we are running with elevated privileges and should ignore env variables */ 2446/* return true if we are running with elevated privileges and should ignore env variables */
1166int inline_size 2447int inline_size ecb_cold
1167enable_secure (void) 2448enable_secure (void)
1168{ 2449{
1169#ifdef _WIN32 2450#ifdef _WIN32
1170 return 0; 2451 return 0;
1171#else 2452#else
1172 return getuid () != geteuid () 2453 return getuid () != geteuid ()
1173 || getgid () != getegid (); 2454 || getgid () != getegid ();
1174#endif 2455#endif
1175} 2456}
1176 2457
1177unsigned int 2458unsigned int ecb_cold
1178ev_supported_backends (void) 2459ev_supported_backends (void) EV_THROW
1179{ 2460{
1180 unsigned int flags = 0; 2461 unsigned int flags = 0;
1181 2462
1182 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2463 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1183 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2464 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1186 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2467 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1187 2468
1188 return flags; 2469 return flags;
1189} 2470}
1190 2471
1191unsigned int 2472unsigned int ecb_cold
1192ev_recommended_backends (void) 2473ev_recommended_backends (void) EV_THROW
1193{ 2474{
1194 unsigned int flags = ev_supported_backends (); 2475 unsigned int flags = ev_supported_backends ();
1195 2476
1196#ifndef __NetBSD__ 2477#ifndef __NetBSD__
1197 /* kqueue is borked on everything but netbsd apparently */ 2478 /* kqueue is borked on everything but netbsd apparently */
1198 /* it usually doesn't work correctly on anything but sockets and pipes */ 2479 /* it usually doesn't work correctly on anything but sockets and pipes */
1199 flags &= ~EVBACKEND_KQUEUE; 2480 flags &= ~EVBACKEND_KQUEUE;
1200#endif 2481#endif
1201#ifdef __APPLE__ 2482#ifdef __APPLE__
1202 // flags &= ~EVBACKEND_KQUEUE; for documentation 2483 /* only select works correctly on that "unix-certified" platform */
1203 flags &= ~EVBACKEND_POLL; 2484 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2485 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2486#endif
2487#ifdef __FreeBSD__
2488 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1204#endif 2489#endif
1205 2490
1206 return flags; 2491 return flags;
1207} 2492}
1208 2493
2494unsigned int ecb_cold
2495ev_embeddable_backends (void) EV_THROW
2496{
2497 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2498
2499 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2500 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2501 flags &= ~EVBACKEND_EPOLL;
2502
2503 return flags;
2504}
2505
1209unsigned int 2506unsigned int
1210ev_embeddable_backends (void) 2507ev_backend (EV_P) EV_THROW
1211{ 2508{
1212 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2509 return backend;
1213
1214 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1215 /* please fix it and tell me how to detect the fix */
1216 flags &= ~EVBACKEND_EPOLL;
1217
1218 return flags;
1219} 2510}
1220 2511
2512#if EV_FEATURE_API
1221unsigned int 2513unsigned int
1222ev_backend (EV_P) 2514ev_iteration (EV_P) EV_THROW
1223{ 2515{
1224 return backend; 2516 return loop_count;
1225} 2517}
1226 2518
1227unsigned int 2519unsigned int
1228ev_loop_count (EV_P) 2520ev_depth (EV_P) EV_THROW
1229{ 2521{
1230 return loop_count; 2522 return loop_depth;
1231} 2523}
1232 2524
1233void 2525void
1234ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2526ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1235{ 2527{
1236 io_blocktime = interval; 2528 io_blocktime = interval;
1237} 2529}
1238 2530
1239void 2531void
1240ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2532ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1241{ 2533{
1242 timeout_blocktime = interval; 2534 timeout_blocktime = interval;
1243} 2535}
1244 2536
2537void
2538ev_set_userdata (EV_P_ void *data) EV_THROW
2539{
2540 userdata = data;
2541}
2542
2543void *
2544ev_userdata (EV_P) EV_THROW
2545{
2546 return userdata;
2547}
2548
2549void
2550ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2551{
2552 invoke_cb = invoke_pending_cb;
2553}
2554
2555void
2556ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2557{
2558 release_cb = release;
2559 acquire_cb = acquire;
2560}
2561#endif
2562
2563/* initialise a loop structure, must be zero-initialised */
1245static void noinline 2564static void noinline ecb_cold
1246loop_init (EV_P_ unsigned int flags) 2565loop_init (EV_P_ unsigned int flags) EV_THROW
1247{ 2566{
1248 if (!backend) 2567 if (!backend)
1249 { 2568 {
2569 origflags = flags;
2570
2571#if EV_USE_REALTIME
2572 if (!have_realtime)
2573 {
2574 struct timespec ts;
2575
2576 if (!clock_gettime (CLOCK_REALTIME, &ts))
2577 have_realtime = 1;
2578 }
2579#endif
2580
1250#if EV_USE_MONOTONIC 2581#if EV_USE_MONOTONIC
2582 if (!have_monotonic)
1251 { 2583 {
1252 struct timespec ts; 2584 struct timespec ts;
2585
1253 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2586 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1254 have_monotonic = 1; 2587 have_monotonic = 1;
1255 } 2588 }
1256#endif
1257
1258 ev_rt_now = ev_time ();
1259 mn_now = get_clock ();
1260 now_floor = mn_now;
1261 rtmn_diff = ev_rt_now - mn_now;
1262
1263 io_blocktime = 0.;
1264 timeout_blocktime = 0.;
1265 backend = 0;
1266 backend_fd = -1;
1267 gotasync = 0;
1268#if EV_USE_INOTIFY
1269 fs_fd = -2;
1270#endif 2589#endif
1271 2590
1272 /* pid check not overridable via env */ 2591 /* pid check not overridable via env */
1273#ifndef _WIN32 2592#ifndef _WIN32
1274 if (flags & EVFLAG_FORKCHECK) 2593 if (flags & EVFLAG_FORKCHECK)
1278 if (!(flags & EVFLAG_NOENV) 2597 if (!(flags & EVFLAG_NOENV)
1279 && !enable_secure () 2598 && !enable_secure ()
1280 && getenv ("LIBEV_FLAGS")) 2599 && getenv ("LIBEV_FLAGS"))
1281 flags = atoi (getenv ("LIBEV_FLAGS")); 2600 flags = atoi (getenv ("LIBEV_FLAGS"));
1282 2601
1283 if (!(flags & 0x0000ffffU)) 2602 ev_rt_now = ev_time ();
2603 mn_now = get_clock ();
2604 now_floor = mn_now;
2605 rtmn_diff = ev_rt_now - mn_now;
2606#if EV_FEATURE_API
2607 invoke_cb = ev_invoke_pending;
2608#endif
2609
2610 io_blocktime = 0.;
2611 timeout_blocktime = 0.;
2612 backend = 0;
2613 backend_fd = -1;
2614 sig_pending = 0;
2615#if EV_ASYNC_ENABLE
2616 async_pending = 0;
2617#endif
2618 pipe_write_skipped = 0;
2619 pipe_write_wanted = 0;
2620 evpipe [0] = -1;
2621 evpipe [1] = -1;
2622#if EV_USE_INOTIFY
2623 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2624#endif
2625#if EV_USE_SIGNALFD
2626 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2627#endif
2628
2629 if (!(flags & EVBACKEND_MASK))
1284 flags |= ev_recommended_backends (); 2630 flags |= ev_recommended_backends ();
1285 2631
2632#if EV_USE_IOCP
2633 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2634#endif
1286#if EV_USE_PORT 2635#if EV_USE_PORT
1287 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2636 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1288#endif 2637#endif
1289#if EV_USE_KQUEUE 2638#if EV_USE_KQUEUE
1290 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2639 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1297#endif 2646#endif
1298#if EV_USE_SELECT 2647#if EV_USE_SELECT
1299 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2648 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1300#endif 2649#endif
1301 2650
2651 ev_prepare_init (&pending_w, pendingcb);
2652
2653#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1302 ev_init (&pipeev, pipecb); 2654 ev_init (&pipe_w, pipecb);
1303 ev_set_priority (&pipeev, EV_MAXPRI); 2655 ev_set_priority (&pipe_w, EV_MAXPRI);
2656#endif
1304 } 2657 }
1305} 2658}
1306 2659
1307static void noinline 2660/* free up a loop structure */
2661void ecb_cold
1308loop_destroy (EV_P) 2662ev_loop_destroy (EV_P)
1309{ 2663{
1310 int i; 2664 int i;
1311 2665
2666#if EV_MULTIPLICITY
2667 /* mimic free (0) */
2668 if (!EV_A)
2669 return;
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 /* queue cleanup watchers (and execute them) */
2674 if (expect_false (cleanupcnt))
2675 {
2676 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2677 EV_INVOKE_PENDING;
2678 }
2679#endif
2680
2681#if EV_CHILD_ENABLE
2682 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2683 {
2684 ev_ref (EV_A); /* child watcher */
2685 ev_signal_stop (EV_A_ &childev);
2686 }
2687#endif
2688
1312 if (ev_is_active (&pipeev)) 2689 if (ev_is_active (&pipe_w))
1313 { 2690 {
1314 ev_ref (EV_A); /* signal watcher */ 2691 /*ev_ref (EV_A);*/
1315 ev_io_stop (EV_A_ &pipeev); 2692 /*ev_io_stop (EV_A_ &pipe_w);*/
1316 2693
2694 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2695 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2696 }
2697
1317#if EV_USE_EVENTFD 2698#if EV_USE_SIGNALFD
1318 if (evfd >= 0) 2699 if (ev_is_active (&sigfd_w))
1319 close (evfd); 2700 close (sigfd);
1320#endif 2701#endif
1321
1322 if (evpipe [0] >= 0)
1323 {
1324 close (evpipe [0]);
1325 close (evpipe [1]);
1326 }
1327 }
1328 2702
1329#if EV_USE_INOTIFY 2703#if EV_USE_INOTIFY
1330 if (fs_fd >= 0) 2704 if (fs_fd >= 0)
1331 close (fs_fd); 2705 close (fs_fd);
1332#endif 2706#endif
1333 2707
1334 if (backend_fd >= 0) 2708 if (backend_fd >= 0)
1335 close (backend_fd); 2709 close (backend_fd);
1336 2710
2711#if EV_USE_IOCP
2712 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2713#endif
1337#if EV_USE_PORT 2714#if EV_USE_PORT
1338 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2715 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1339#endif 2716#endif
1340#if EV_USE_KQUEUE 2717#if EV_USE_KQUEUE
1341 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2718 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1356#if EV_IDLE_ENABLE 2733#if EV_IDLE_ENABLE
1357 array_free (idle, [i]); 2734 array_free (idle, [i]);
1358#endif 2735#endif
1359 } 2736 }
1360 2737
1361 ev_free (anfds); anfdmax = 0; 2738 ev_free (anfds); anfds = 0; anfdmax = 0;
1362 2739
1363 /* have to use the microsoft-never-gets-it-right macro */ 2740 /* have to use the microsoft-never-gets-it-right macro */
2741 array_free (rfeed, EMPTY);
1364 array_free (fdchange, EMPTY); 2742 array_free (fdchange, EMPTY);
1365 array_free (timer, EMPTY); 2743 array_free (timer, EMPTY);
1366#if EV_PERIODIC_ENABLE 2744#if EV_PERIODIC_ENABLE
1367 array_free (periodic, EMPTY); 2745 array_free (periodic, EMPTY);
1368#endif 2746#endif
1369#if EV_FORK_ENABLE 2747#if EV_FORK_ENABLE
1370 array_free (fork, EMPTY); 2748 array_free (fork, EMPTY);
1371#endif 2749#endif
2750#if EV_CLEANUP_ENABLE
2751 array_free (cleanup, EMPTY);
2752#endif
1372 array_free (prepare, EMPTY); 2753 array_free (prepare, EMPTY);
1373 array_free (check, EMPTY); 2754 array_free (check, EMPTY);
1374#if EV_ASYNC_ENABLE 2755#if EV_ASYNC_ENABLE
1375 array_free (async, EMPTY); 2756 array_free (async, EMPTY);
1376#endif 2757#endif
1377 2758
1378 backend = 0; 2759 backend = 0;
2760
2761#if EV_MULTIPLICITY
2762 if (ev_is_default_loop (EV_A))
2763#endif
2764 ev_default_loop_ptr = 0;
2765#if EV_MULTIPLICITY
2766 else
2767 ev_free (EV_A);
2768#endif
1379} 2769}
1380 2770
1381#if EV_USE_INOTIFY 2771#if EV_USE_INOTIFY
1382void inline_size infy_fork (EV_P); 2772inline_size void infy_fork (EV_P);
1383#endif 2773#endif
1384 2774
1385void inline_size 2775inline_size void
1386loop_fork (EV_P) 2776loop_fork (EV_P)
1387{ 2777{
1388#if EV_USE_PORT 2778#if EV_USE_PORT
1389 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2779 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1390#endif 2780#endif
1396#endif 2786#endif
1397#if EV_USE_INOTIFY 2787#if EV_USE_INOTIFY
1398 infy_fork (EV_A); 2788 infy_fork (EV_A);
1399#endif 2789#endif
1400 2790
2791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1401 if (ev_is_active (&pipeev)) 2792 if (ev_is_active (&pipe_w))
2793 {
2794 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2795
2796 ev_ref (EV_A);
2797 ev_io_stop (EV_A_ &pipe_w);
2798
2799 if (evpipe [0] >= 0)
2800 EV_WIN32_CLOSE_FD (evpipe [0]);
2801
2802 evpipe_init (EV_A);
2803 /* iterate over everything, in case we missed something before */
2804 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1402 { 2805 }
1403 /* this "locks" the handlers against writing to the pipe */ 2806#endif
1404 /* while we modify the fd vars */ 2807
1405 gotsig = 1; 2808 postfork = 0;
2809}
2810
2811#if EV_MULTIPLICITY
2812
2813struct ev_loop * ecb_cold
2814ev_loop_new (unsigned int flags) EV_THROW
2815{
2816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2817
2818 memset (EV_A, 0, sizeof (struct ev_loop));
2819 loop_init (EV_A_ flags);
2820
2821 if (ev_backend (EV_A))
2822 return EV_A;
2823
2824 ev_free (EV_A);
2825 return 0;
2826}
2827
2828#endif /* multiplicity */
2829
2830#if EV_VERIFY
2831static void noinline ecb_cold
2832verify_watcher (EV_P_ W w)
2833{
2834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2835
2836 if (w->pending)
2837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2838}
2839
2840static void noinline ecb_cold
2841verify_heap (EV_P_ ANHE *heap, int N)
2842{
2843 int i;
2844
2845 for (i = HEAP0; i < N + HEAP0; ++i)
2846 {
2847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2850
2851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2852 }
2853}
2854
2855static void noinline ecb_cold
2856array_verify (EV_P_ W *ws, int cnt)
2857{
2858 while (cnt--)
2859 {
2860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2861 verify_watcher (EV_A_ ws [cnt]);
2862 }
2863}
2864#endif
2865
2866#if EV_FEATURE_API
2867void ecb_cold
2868ev_verify (EV_P) EV_THROW
2869{
2870#if EV_VERIFY
2871 int i;
2872 WL w, w2;
2873
2874 assert (activecnt >= -1);
2875
2876 assert (fdchangemax >= fdchangecnt);
2877 for (i = 0; i < fdchangecnt; ++i)
2878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2879
2880 assert (anfdmax >= 0);
2881 for (i = 0; i < anfdmax; ++i)
2882 {
2883 int j = 0;
2884
2885 for (w = w2 = anfds [i].head; w; w = w->next)
2886 {
2887 verify_watcher (EV_A_ (W)w);
2888
2889 if (j++ & 1)
2890 {
2891 assert (("libev: io watcher list contains a loop", w != w2));
2892 w2 = w2->next;
2893 }
2894
2895 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2896 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2897 }
2898 }
2899
2900 assert (timermax >= timercnt);
2901 verify_heap (EV_A_ timers, timercnt);
2902
2903#if EV_PERIODIC_ENABLE
2904 assert (periodicmax >= periodiccnt);
2905 verify_heap (EV_A_ periodics, periodiccnt);
2906#endif
2907
2908 for (i = NUMPRI; i--; )
2909 {
2910 assert (pendingmax [i] >= pendingcnt [i]);
2911#if EV_IDLE_ENABLE
2912 assert (idleall >= 0);
2913 assert (idlemax [i] >= idlecnt [i]);
2914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2915#endif
2916 }
2917
2918#if EV_FORK_ENABLE
2919 assert (forkmax >= forkcnt);
2920 array_verify (EV_A_ (W *)forks, forkcnt);
2921#endif
2922
2923#if EV_CLEANUP_ENABLE
2924 assert (cleanupmax >= cleanupcnt);
2925 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2926#endif
2927
1406#if EV_ASYNC_ENABLE 2928#if EV_ASYNC_ENABLE
1407 gotasync = 1; 2929 assert (asyncmax >= asynccnt);
2930 array_verify (EV_A_ (W *)asyncs, asynccnt);
2931#endif
2932
2933#if EV_PREPARE_ENABLE
2934 assert (preparemax >= preparecnt);
2935 array_verify (EV_A_ (W *)prepares, preparecnt);
2936#endif
2937
2938#if EV_CHECK_ENABLE
2939 assert (checkmax >= checkcnt);
2940 array_verify (EV_A_ (W *)checks, checkcnt);
2941#endif
2942
2943# if 0
2944#if EV_CHILD_ENABLE
2945 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2946 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2947#endif
1408#endif 2948# endif
1409
1410 ev_ref (EV_A);
1411 ev_io_stop (EV_A_ &pipeev);
1412
1413#if EV_USE_EVENTFD
1414 if (evfd >= 0)
1415 close (evfd);
1416#endif 2949#endif
1417
1418 if (evpipe [0] >= 0)
1419 {
1420 close (evpipe [0]);
1421 close (evpipe [1]);
1422 }
1423
1424 evpipe_init (EV_A);
1425 /* now iterate over everything, in case we missed something */
1426 pipecb (EV_A_ &pipeev, EV_READ);
1427 }
1428
1429 postfork = 0;
1430} 2950}
2951#endif
1431 2952
1432#if EV_MULTIPLICITY 2953#if EV_MULTIPLICITY
1433struct ev_loop * 2954struct ev_loop * ecb_cold
1434ev_loop_new (unsigned int flags)
1435{
1436 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1437
1438 memset (loop, 0, sizeof (struct ev_loop));
1439
1440 loop_init (EV_A_ flags);
1441
1442 if (ev_backend (EV_A))
1443 return loop;
1444
1445 return 0;
1446}
1447
1448void
1449ev_loop_destroy (EV_P)
1450{
1451 loop_destroy (EV_A);
1452 ev_free (loop);
1453}
1454
1455void
1456ev_loop_fork (EV_P)
1457{
1458 postfork = 1; /* must be in line with ev_default_fork */
1459}
1460#endif
1461
1462#if EV_MULTIPLICITY
1463struct ev_loop *
1464ev_default_loop_init (unsigned int flags)
1465#else 2955#else
1466int 2956int
2957#endif
1467ev_default_loop (unsigned int flags) 2958ev_default_loop (unsigned int flags) EV_THROW
1468#endif
1469{ 2959{
1470 if (!ev_default_loop_ptr) 2960 if (!ev_default_loop_ptr)
1471 { 2961 {
1472#if EV_MULTIPLICITY 2962#if EV_MULTIPLICITY
1473 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2963 EV_P = ev_default_loop_ptr = &default_loop_struct;
1474#else 2964#else
1475 ev_default_loop_ptr = 1; 2965 ev_default_loop_ptr = 1;
1476#endif 2966#endif
1477 2967
1478 loop_init (EV_A_ flags); 2968 loop_init (EV_A_ flags);
1479 2969
1480 if (ev_backend (EV_A)) 2970 if (ev_backend (EV_A))
1481 { 2971 {
1482#ifndef _WIN32 2972#if EV_CHILD_ENABLE
1483 ev_signal_init (&childev, childcb, SIGCHLD); 2973 ev_signal_init (&childev, childcb, SIGCHLD);
1484 ev_set_priority (&childev, EV_MAXPRI); 2974 ev_set_priority (&childev, EV_MAXPRI);
1485 ev_signal_start (EV_A_ &childev); 2975 ev_signal_start (EV_A_ &childev);
1486 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2976 ev_unref (EV_A); /* child watcher should not keep loop alive */
1487#endif 2977#endif
1492 2982
1493 return ev_default_loop_ptr; 2983 return ev_default_loop_ptr;
1494} 2984}
1495 2985
1496void 2986void
1497ev_default_destroy (void) 2987ev_loop_fork (EV_P) EV_THROW
1498{ 2988{
1499#if EV_MULTIPLICITY 2989 postfork = 1;
1500 struct ev_loop *loop = ev_default_loop_ptr;
1501#endif
1502
1503#ifndef _WIN32
1504 ev_ref (EV_A); /* child watcher */
1505 ev_signal_stop (EV_A_ &childev);
1506#endif
1507
1508 loop_destroy (EV_A);
1509}
1510
1511void
1512ev_default_fork (void)
1513{
1514#if EV_MULTIPLICITY
1515 struct ev_loop *loop = ev_default_loop_ptr;
1516#endif
1517
1518 if (backend)
1519 postfork = 1; /* must be in line with ev_loop_fork */
1520} 2990}
1521 2991
1522/*****************************************************************************/ 2992/*****************************************************************************/
1523 2993
1524void 2994void
1525ev_invoke (EV_P_ void *w, int revents) 2995ev_invoke (EV_P_ void *w, int revents)
1526{ 2996{
1527 EV_CB_INVOKE ((W)w, revents); 2997 EV_CB_INVOKE ((W)w, revents);
1528} 2998}
1529 2999
1530void inline_speed 3000unsigned int
1531call_pending (EV_P) 3001ev_pending_count (EV_P) EV_THROW
1532{ 3002{
1533 int pri; 3003 int pri;
3004 unsigned int count = 0;
1534 3005
1535 for (pri = NUMPRI; pri--; ) 3006 for (pri = NUMPRI; pri--; )
3007 count += pendingcnt [pri];
3008
3009 return count;
3010}
3011
3012void noinline
3013ev_invoke_pending (EV_P)
3014{
3015 pendingpri = NUMPRI;
3016
3017 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3018 {
3019 --pendingpri;
3020
1536 while (pendingcnt [pri]) 3021 while (pendingcnt [pendingpri])
1537 {
1538 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1539
1540 if (expect_true (p->w))
1541 { 3022 {
1542 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3023 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1543 3024
1544 p->w->pending = 0; 3025 p->w->pending = 0;
1545 EV_CB_INVOKE (p->w, p->events); 3026 EV_CB_INVOKE (p->w, p->events);
3027 EV_FREQUENT_CHECK;
1546 } 3028 }
1547 } 3029 }
1548} 3030}
1549 3031
1550#if EV_IDLE_ENABLE 3032#if EV_IDLE_ENABLE
1551void inline_size 3033/* make idle watchers pending. this handles the "call-idle */
3034/* only when higher priorities are idle" logic */
3035inline_size void
1552idle_reify (EV_P) 3036idle_reify (EV_P)
1553{ 3037{
1554 if (expect_false (idleall)) 3038 if (expect_false (idleall))
1555 { 3039 {
1556 int pri; 3040 int pri;
1568 } 3052 }
1569 } 3053 }
1570} 3054}
1571#endif 3055#endif
1572 3056
1573void inline_size 3057/* make timers pending */
3058inline_size void
1574timers_reify (EV_P) 3059timers_reify (EV_P)
1575{ 3060{
3061 EV_FREQUENT_CHECK;
3062
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 3063 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 3064 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 3065 do
1579
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581
1582 /* first reschedule or stop timer */
1583 if (w->repeat)
1584 { 3066 {
3067 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3068
3069 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3070
3071 /* first reschedule or stop timer */
3072 if (w->repeat)
3073 {
3074 ev_at (w) += w->repeat;
3075 if (ev_at (w) < mn_now)
3076 ev_at (w) = mn_now;
3077
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3078 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586 3079
1587 ev_at (w) += w->repeat; 3080 ANHE_at_cache (timers [HEAP0]);
1588 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now;
1590
1591 downheap (timers, timercnt, HEAP0); 3081 downheap (timers, timercnt, HEAP0);
3082 }
3083 else
3084 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3085
3086 EV_FREQUENT_CHECK;
3087 feed_reverse (EV_A_ (W)w);
1592 } 3088 }
1593 else 3089 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 3090
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3091 feed_reverse_done (EV_A_ EV_TIMER);
1597 } 3092 }
1598} 3093}
1599 3094
1600#if EV_PERIODIC_ENABLE 3095#if EV_PERIODIC_ENABLE
1601void inline_size 3096
3097static void noinline
3098periodic_recalc (EV_P_ ev_periodic *w)
3099{
3100 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3101 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3102
3103 /* the above almost always errs on the low side */
3104 while (at <= ev_rt_now)
3105 {
3106 ev_tstamp nat = at + w->interval;
3107
3108 /* when resolution fails us, we use ev_rt_now */
3109 if (expect_false (nat == at))
3110 {
3111 at = ev_rt_now;
3112 break;
3113 }
3114
3115 at = nat;
3116 }
3117
3118 ev_at (w) = at;
3119}
3120
3121/* make periodics pending */
3122inline_size void
1602periodics_reify (EV_P) 3123periodics_reify (EV_P)
1603{ 3124{
3125 EV_FREQUENT_CHECK;
3126
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 3128 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 3129 do
1607
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609
1610 /* first reschedule or stop timer */
1611 if (w->reschedule_cb)
1612 { 3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3132
3133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3134
3135 /* first reschedule or stop timer */
3136 if (w->reschedule_cb)
3137 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 3138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3139
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 3140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3141
3142 ANHE_at_cache (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 3143 downheap (periodics, periodiccnt, HEAP0);
3144 }
3145 else if (w->interval)
3146 {
3147 periodic_recalc (EV_A_ w);
3148 ANHE_at_cache (periodics [HEAP0]);
3149 downheap (periodics, periodiccnt, HEAP0);
3150 }
3151 else
3152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3153
3154 EV_FREQUENT_CHECK;
3155 feed_reverse (EV_A_ (W)w);
1616 } 3156 }
1617 else if (w->interval) 3157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1618 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1622 downheap (periodics, periodiccnt, HEAP0);
1623 }
1624 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 3158
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3159 feed_reverse_done (EV_A_ EV_PERIODIC);
1628 } 3160 }
1629} 3161}
1630 3162
3163/* simply recalculate all periodics */
3164/* TODO: maybe ensure that at least one event happens when jumping forward? */
1631static void noinline 3165static void noinline ecb_cold
1632periodics_reschedule (EV_P) 3166periodics_reschedule (EV_P)
1633{ 3167{
1634 int i; 3168 int i;
1635 3169
1636 /* adjust periodics after time jump */ 3170 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 3171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 3172 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 3173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 3174
1641 if (w->reschedule_cb) 3175 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 3177 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3178 periodic_recalc (EV_A_ w);
3179
3180 ANHE_at_cache (periodics [i]);
3181 }
3182
3183 reheap (periodics, periodiccnt);
3184}
3185#endif
3186
3187/* adjust all timers by a given offset */
3188static void noinline ecb_cold
3189timers_reschedule (EV_P_ ev_tstamp adjust)
3190{
3191 int i;
3192
3193 for (i = 0; i < timercnt; ++i)
1645 } 3194 {
1646 3195 ANHE *he = timers + i + HEAP0;
1647 /* now rebuild the heap */ 3196 ANHE_w (*he)->at += adjust;
1648 for (i = periodiccnt >> 1; --i; ) 3197 ANHE_at_cache (*he);
1649 downheap (periodics, periodiccnt, i + HEAP0); 3198 }
1650} 3199}
1651#endif
1652 3200
1653void inline_speed 3201/* fetch new monotonic and realtime times from the kernel */
3202/* also detect if there was a timejump, and act accordingly */
3203inline_speed void
1654time_update (EV_P_ ev_tstamp max_block) 3204time_update (EV_P_ ev_tstamp max_block)
1655{ 3205{
1656 int i;
1657
1658#if EV_USE_MONOTONIC 3206#if EV_USE_MONOTONIC
1659 if (expect_true (have_monotonic)) 3207 if (expect_true (have_monotonic))
1660 { 3208 {
3209 int i;
1661 ev_tstamp odiff = rtmn_diff; 3210 ev_tstamp odiff = rtmn_diff;
1662 3211
1663 mn_now = get_clock (); 3212 mn_now = get_clock ();
1664 3213
1665 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1681 * doesn't hurt either as we only do this on time-jumps or 3230 * doesn't hurt either as we only do this on time-jumps or
1682 * in the unlikely event of having been preempted here. 3231 * in the unlikely event of having been preempted here.
1683 */ 3232 */
1684 for (i = 4; --i; ) 3233 for (i = 4; --i; )
1685 { 3234 {
3235 ev_tstamp diff;
1686 rtmn_diff = ev_rt_now - mn_now; 3236 rtmn_diff = ev_rt_now - mn_now;
1687 3237
3238 diff = odiff - rtmn_diff;
3239
1688 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3240 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1689 return; /* all is well */ 3241 return; /* all is well */
1690 3242
1691 ev_rt_now = ev_time (); 3243 ev_rt_now = ev_time ();
1692 mn_now = get_clock (); 3244 mn_now = get_clock ();
1693 now_floor = mn_now; 3245 now_floor = mn_now;
1694 } 3246 }
1695 3247
3248 /* no timer adjustment, as the monotonic clock doesn't jump */
3249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1696# if EV_PERIODIC_ENABLE 3250# if EV_PERIODIC_ENABLE
1697 periodics_reschedule (EV_A); 3251 periodics_reschedule (EV_A);
1698# endif 3252# endif
1699 /* no timer adjustment, as the monotonic clock doesn't jump */
1700 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1701 } 3253 }
1702 else 3254 else
1703#endif 3255#endif
1704 { 3256 {
1705 ev_rt_now = ev_time (); 3257 ev_rt_now = ev_time ();
1706 3258
1707 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1708 { 3260 {
3261 /* adjust timers. this is easy, as the offset is the same for all of them */
3262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1709#if EV_PERIODIC_ENABLE 3263#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 3264 periodics_reschedule (EV_A);
1711#endif 3265#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now;
1715 } 3266 }
1716 3267
1717 mn_now = ev_rt_now; 3268 mn_now = ev_rt_now;
1718 } 3269 }
1719} 3270}
1720 3271
1721void 3272int
1722ev_ref (EV_P)
1723{
1724 ++activecnt;
1725}
1726
1727void
1728ev_unref (EV_P)
1729{
1730 --activecnt;
1731}
1732
1733static int loop_done;
1734
1735void
1736ev_loop (EV_P_ int flags) 3273ev_run (EV_P_ int flags)
1737{ 3274{
3275#if EV_FEATURE_API
3276 ++loop_depth;
3277#endif
3278
3279 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3280
1738 loop_done = EVUNLOOP_CANCEL; 3281 loop_done = EVBREAK_CANCEL;
1739 3282
1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1741 3284
1742 do 3285 do
1743 { 3286 {
3287#if EV_VERIFY >= 2
3288 ev_verify (EV_A);
3289#endif
3290
1744#ifndef _WIN32 3291#ifndef _WIN32
1745 if (expect_false (curpid)) /* penalise the forking check even more */ 3292 if (expect_false (curpid)) /* penalise the forking check even more */
1746 if (expect_false (getpid () != curpid)) 3293 if (expect_false (getpid () != curpid))
1747 { 3294 {
1748 curpid = getpid (); 3295 curpid = getpid ();
1754 /* we might have forked, so queue fork handlers */ 3301 /* we might have forked, so queue fork handlers */
1755 if (expect_false (postfork)) 3302 if (expect_false (postfork))
1756 if (forkcnt) 3303 if (forkcnt)
1757 { 3304 {
1758 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1759 call_pending (EV_A); 3306 EV_INVOKE_PENDING;
1760 } 3307 }
1761#endif 3308#endif
1762 3309
3310#if EV_PREPARE_ENABLE
1763 /* queue prepare watchers (and execute them) */ 3311 /* queue prepare watchers (and execute them) */
1764 if (expect_false (preparecnt)) 3312 if (expect_false (preparecnt))
1765 { 3313 {
1766 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1767 call_pending (EV_A); 3315 EV_INVOKE_PENDING;
1768 } 3316 }
3317#endif
1769 3318
1770 if (expect_false (!activecnt)) 3319 if (expect_false (loop_done))
1771 break; 3320 break;
1772 3321
1773 /* we might have forked, so reify kernel state if necessary */ 3322 /* we might have forked, so reify kernel state if necessary */
1774 if (expect_false (postfork)) 3323 if (expect_false (postfork))
1775 loop_fork (EV_A); 3324 loop_fork (EV_A);
1780 /* calculate blocking time */ 3329 /* calculate blocking time */
1781 { 3330 {
1782 ev_tstamp waittime = 0.; 3331 ev_tstamp waittime = 0.;
1783 ev_tstamp sleeptime = 0.; 3332 ev_tstamp sleeptime = 0.;
1784 3333
3334 /* remember old timestamp for io_blocktime calculation */
3335 ev_tstamp prev_mn_now = mn_now;
3336
3337 /* update time to cancel out callback processing overhead */
3338 time_update (EV_A_ 1e100);
3339
3340 /* from now on, we want a pipe-wake-up */
3341 pipe_write_wanted = 1;
3342
3343 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3344
1785 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3345 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1786 { 3346 {
1787 /* update time to cancel out callback processing overhead */
1788 time_update (EV_A_ 1e100);
1789
1790 waittime = MAX_BLOCKTIME; 3347 waittime = MAX_BLOCKTIME;
1791 3348
1792 if (timercnt) 3349 if (timercnt)
1793 { 3350 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 3351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1795 if (waittime > to) waittime = to; 3352 if (waittime > to) waittime = to;
1796 } 3353 }
1797 3354
1798#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 3356 if (periodiccnt)
1800 { 3357 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1802 if (waittime > to) waittime = to; 3359 if (waittime > to) waittime = to;
1803 } 3360 }
1804#endif 3361#endif
1805 3362
3363 /* don't let timeouts decrease the waittime below timeout_blocktime */
1806 if (expect_false (waittime < timeout_blocktime)) 3364 if (expect_false (waittime < timeout_blocktime))
1807 waittime = timeout_blocktime; 3365 waittime = timeout_blocktime;
1808 3366
1809 sleeptime = waittime - backend_fudge; 3367 /* at this point, we NEED to wait, so we have to ensure */
3368 /* to pass a minimum nonzero value to the backend */
3369 if (expect_false (waittime < backend_mintime))
3370 waittime = backend_mintime;
1810 3371
3372 /* extra check because io_blocktime is commonly 0 */
1811 if (expect_true (sleeptime > io_blocktime)) 3373 if (expect_false (io_blocktime))
1812 sleeptime = io_blocktime;
1813
1814 if (sleeptime)
1815 { 3374 {
3375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3376
3377 if (sleeptime > waittime - backend_mintime)
3378 sleeptime = waittime - backend_mintime;
3379
3380 if (expect_true (sleeptime > 0.))
3381 {
1816 ev_sleep (sleeptime); 3382 ev_sleep (sleeptime);
1817 waittime -= sleeptime; 3383 waittime -= sleeptime;
3384 }
1818 } 3385 }
1819 } 3386 }
1820 3387
3388#if EV_FEATURE_API
1821 ++loop_count; 3389 ++loop_count;
3390#endif
3391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1822 backend_poll (EV_A_ waittime); 3392 backend_poll (EV_A_ waittime);
3393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3394
3395 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3396
3397 ECB_MEMORY_FENCE_ACQUIRE;
3398 if (pipe_write_skipped)
3399 {
3400 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3401 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3402 }
3403
1823 3404
1824 /* update ev_rt_now, do magic */ 3405 /* update ev_rt_now, do magic */
1825 time_update (EV_A_ waittime + sleeptime); 3406 time_update (EV_A_ waittime + sleeptime);
1826 } 3407 }
1827 3408
1834#if EV_IDLE_ENABLE 3415#if EV_IDLE_ENABLE
1835 /* queue idle watchers unless other events are pending */ 3416 /* queue idle watchers unless other events are pending */
1836 idle_reify (EV_A); 3417 idle_reify (EV_A);
1837#endif 3418#endif
1838 3419
3420#if EV_CHECK_ENABLE
1839 /* queue check watchers, to be executed first */ 3421 /* queue check watchers, to be executed first */
1840 if (expect_false (checkcnt)) 3422 if (expect_false (checkcnt))
1841 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3423 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3424#endif
1842 3425
1843 call_pending (EV_A); 3426 EV_INVOKE_PENDING;
1844 } 3427 }
1845 while (expect_true ( 3428 while (expect_true (
1846 activecnt 3429 activecnt
1847 && !loop_done 3430 && !loop_done
1848 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3431 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1849 )); 3432 ));
1850 3433
1851 if (loop_done == EVUNLOOP_ONE) 3434 if (loop_done == EVBREAK_ONE)
1852 loop_done = EVUNLOOP_CANCEL; 3435 loop_done = EVBREAK_CANCEL;
3436
3437#if EV_FEATURE_API
3438 --loop_depth;
3439#endif
3440
3441 return activecnt;
1853} 3442}
1854 3443
1855void 3444void
1856ev_unloop (EV_P_ int how) 3445ev_break (EV_P_ int how) EV_THROW
1857{ 3446{
1858 loop_done = how; 3447 loop_done = how;
1859} 3448}
1860 3449
3450void
3451ev_ref (EV_P) EV_THROW
3452{
3453 ++activecnt;
3454}
3455
3456void
3457ev_unref (EV_P) EV_THROW
3458{
3459 --activecnt;
3460}
3461
3462void
3463ev_now_update (EV_P) EV_THROW
3464{
3465 time_update (EV_A_ 1e100);
3466}
3467
3468void
3469ev_suspend (EV_P) EV_THROW
3470{
3471 ev_now_update (EV_A);
3472}
3473
3474void
3475ev_resume (EV_P) EV_THROW
3476{
3477 ev_tstamp mn_prev = mn_now;
3478
3479 ev_now_update (EV_A);
3480 timers_reschedule (EV_A_ mn_now - mn_prev);
3481#if EV_PERIODIC_ENABLE
3482 /* TODO: really do this? */
3483 periodics_reschedule (EV_A);
3484#endif
3485}
3486
1861/*****************************************************************************/ 3487/*****************************************************************************/
3488/* singly-linked list management, used when the expected list length is short */
1862 3489
1863void inline_size 3490inline_size void
1864wlist_add (WL *head, WL elem) 3491wlist_add (WL *head, WL elem)
1865{ 3492{
1866 elem->next = *head; 3493 elem->next = *head;
1867 *head = elem; 3494 *head = elem;
1868} 3495}
1869 3496
1870void inline_size 3497inline_size void
1871wlist_del (WL *head, WL elem) 3498wlist_del (WL *head, WL elem)
1872{ 3499{
1873 while (*head) 3500 while (*head)
1874 { 3501 {
1875 if (*head == elem) 3502 if (expect_true (*head == elem))
1876 { 3503 {
1877 *head = elem->next; 3504 *head = elem->next;
1878 return; 3505 break;
1879 } 3506 }
1880 3507
1881 head = &(*head)->next; 3508 head = &(*head)->next;
1882 } 3509 }
1883} 3510}
1884 3511
1885void inline_speed 3512/* internal, faster, version of ev_clear_pending */
3513inline_speed void
1886clear_pending (EV_P_ W w) 3514clear_pending (EV_P_ W w)
1887{ 3515{
1888 if (w->pending) 3516 if (w->pending)
1889 { 3517 {
1890 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3518 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1891 w->pending = 0; 3519 w->pending = 0;
1892 } 3520 }
1893} 3521}
1894 3522
1895int 3523int
1896ev_clear_pending (EV_P_ void *w) 3524ev_clear_pending (EV_P_ void *w) EV_THROW
1897{ 3525{
1898 W w_ = (W)w; 3526 W w_ = (W)w;
1899 int pending = w_->pending; 3527 int pending = w_->pending;
1900 3528
1901 if (expect_true (pending)) 3529 if (expect_true (pending))
1902 { 3530 {
1903 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3531 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3532 p->w = (W)&pending_w;
1904 w_->pending = 0; 3533 w_->pending = 0;
1905 p->w = 0;
1906 return p->events; 3534 return p->events;
1907 } 3535 }
1908 else 3536 else
1909 return 0; 3537 return 0;
1910} 3538}
1911 3539
1912void inline_size 3540inline_size void
1913pri_adjust (EV_P_ W w) 3541pri_adjust (EV_P_ W w)
1914{ 3542{
1915 int pri = w->priority; 3543 int pri = ev_priority (w);
1916 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3544 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1917 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3545 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1918 w->priority = pri; 3546 ev_set_priority (w, pri);
1919} 3547}
1920 3548
1921void inline_speed 3549inline_speed void
1922ev_start (EV_P_ W w, int active) 3550ev_start (EV_P_ W w, int active)
1923{ 3551{
1924 pri_adjust (EV_A_ w); 3552 pri_adjust (EV_A_ w);
1925 w->active = active; 3553 w->active = active;
1926 ev_ref (EV_A); 3554 ev_ref (EV_A);
1927} 3555}
1928 3556
1929void inline_size 3557inline_size void
1930ev_stop (EV_P_ W w) 3558ev_stop (EV_P_ W w)
1931{ 3559{
1932 ev_unref (EV_A); 3560 ev_unref (EV_A);
1933 w->active = 0; 3561 w->active = 0;
1934} 3562}
1935 3563
1936/*****************************************************************************/ 3564/*****************************************************************************/
1937 3565
1938void noinline 3566void noinline
1939ev_io_start (EV_P_ ev_io *w) 3567ev_io_start (EV_P_ ev_io *w) EV_THROW
1940{ 3568{
1941 int fd = w->fd; 3569 int fd = w->fd;
1942 3570
1943 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
1944 return; 3572 return;
1945 3573
1946 assert (("ev_io_start called with negative fd", fd >= 0)); 3574 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3575 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3576
3577 EV_FREQUENT_CHECK;
1947 3578
1948 ev_start (EV_A_ (W)w, 1); 3579 ev_start (EV_A_ (W)w, 1);
1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3580 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1950 wlist_add (&anfds[fd].head, (WL)w); 3581 wlist_add (&anfds[fd].head, (WL)w);
1951 3582
3583 /* common bug, apparently */
3584 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3585
1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3586 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1953 w->events &= ~EV_IOFDSET; 3587 w->events &= ~EV__IOFDSET;
3588
3589 EV_FREQUENT_CHECK;
1954} 3590}
1955 3591
1956void noinline 3592void noinline
1957ev_io_stop (EV_P_ ev_io *w) 3593ev_io_stop (EV_P_ ev_io *w) EV_THROW
1958{ 3594{
1959 clear_pending (EV_A_ (W)w); 3595 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 3596 if (expect_false (!ev_is_active (w)))
1961 return; 3597 return;
1962 3598
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3599 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3600
3601 EV_FREQUENT_CHECK;
1964 3602
1965 wlist_del (&anfds[w->fd].head, (WL)w); 3603 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 3604 ev_stop (EV_A_ (W)w);
1967 3605
1968 fd_change (EV_A_ w->fd, 1); 3606 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3607
3608 EV_FREQUENT_CHECK;
1969} 3609}
1970 3610
1971void noinline 3611void noinline
1972ev_timer_start (EV_P_ ev_timer *w) 3612ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1973{ 3613{
1974 if (expect_false (ev_is_active (w))) 3614 if (expect_false (ev_is_active (w)))
1975 return; 3615 return;
1976 3616
1977 ev_at (w) += mn_now; 3617 ev_at (w) += mn_now;
1978 3618
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3619 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 3620
3621 EV_FREQUENT_CHECK;
3622
3623 ++timercnt;
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3624 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 3625 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 3626 ANHE_w (timers [ev_active (w)]) = (WT)w;
3627 ANHE_at_cache (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 3628 upheap (timers, ev_active (w));
1985 3629
3630 EV_FREQUENT_CHECK;
3631
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 3632 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 3633}
1988 3634
1989void noinline 3635void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 3636ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1991{ 3637{
1992 clear_pending (EV_A_ (W)w); 3638 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 3639 if (expect_false (!ev_is_active (w)))
1994 return; 3640 return;
1995 3641
3642 EV_FREQUENT_CHECK;
3643
1996 { 3644 {
1997 int active = ev_active (w); 3645 int active = ev_active (w);
1998 3646
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 3647 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 3648
3649 --timercnt;
3650
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 3651 if (expect_true (active < timercnt + HEAP0))
2002 { 3652 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 3653 timers [active] = timers [timercnt + HEAP0];
2004 adjustheap (timers, timercnt, active); 3654 adjustheap (timers, timercnt, active);
2005 } 3655 }
2006
2007 --timercnt;
2008 } 3656 }
2009 3657
2010 ev_at (w) -= mn_now; 3658 ev_at (w) -= mn_now;
2011 3659
2012 ev_stop (EV_A_ (W)w); 3660 ev_stop (EV_A_ (W)w);
3661
3662 EV_FREQUENT_CHECK;
2013} 3663}
2014 3664
2015void noinline 3665void noinline
2016ev_timer_again (EV_P_ ev_timer *w) 3666ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2017{ 3667{
3668 EV_FREQUENT_CHECK;
3669
3670 clear_pending (EV_A_ (W)w);
3671
2018 if (ev_is_active (w)) 3672 if (ev_is_active (w))
2019 { 3673 {
2020 if (w->repeat) 3674 if (w->repeat)
2021 { 3675 {
2022 ev_at (w) = mn_now + w->repeat; 3676 ev_at (w) = mn_now + w->repeat;
3677 ANHE_at_cache (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 3678 adjustheap (timers, timercnt, ev_active (w));
2024 } 3679 }
2025 else 3680 else
2026 ev_timer_stop (EV_A_ w); 3681 ev_timer_stop (EV_A_ w);
2027 } 3682 }
2028 else if (w->repeat) 3683 else if (w->repeat)
2029 { 3684 {
2030 ev_at (w) = w->repeat; 3685 ev_at (w) = w->repeat;
2031 ev_timer_start (EV_A_ w); 3686 ev_timer_start (EV_A_ w);
2032 } 3687 }
3688
3689 EV_FREQUENT_CHECK;
3690}
3691
3692ev_tstamp
3693ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3694{
3695 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2033} 3696}
2034 3697
2035#if EV_PERIODIC_ENABLE 3698#if EV_PERIODIC_ENABLE
2036void noinline 3699void noinline
2037ev_periodic_start (EV_P_ ev_periodic *w) 3700ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2038{ 3701{
2039 if (expect_false (ev_is_active (w))) 3702 if (expect_false (ev_is_active (w)))
2040 return; 3703 return;
2041 3704
2042 if (w->reschedule_cb) 3705 if (w->reschedule_cb)
2043 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2044 else if (w->interval) 3707 else if (w->interval)
2045 { 3708 {
2046 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3709 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2047 /* this formula differs from the one in periodic_reify because we do not always round up */ 3710 periodic_recalc (EV_A_ w);
2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2049 } 3711 }
2050 else 3712 else
2051 ev_at (w) = w->offset; 3713 ev_at (w) = w->offset;
2052 3714
3715 EV_FREQUENT_CHECK;
3716
3717 ++periodiccnt;
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3718 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 3719 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 3720 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3721 ANHE_at_cache (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 3722 upheap (periodics, ev_active (w));
2057 3723
3724 EV_FREQUENT_CHECK;
3725
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 3726 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 3727}
2060 3728
2061void noinline 3729void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 3730ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2063{ 3731{
2064 clear_pending (EV_A_ (W)w); 3732 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 3733 if (expect_false (!ev_is_active (w)))
2066 return; 3734 return;
2067 3735
3736 EV_FREQUENT_CHECK;
3737
2068 { 3738 {
2069 int active = ev_active (w); 3739 int active = ev_active (w);
2070 3740
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 3741 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 3742
3743 --periodiccnt;
3744
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3745 if (expect_true (active < periodiccnt + HEAP0))
2074 { 3746 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3747 periodics [active] = periodics [periodiccnt + HEAP0];
2076 adjustheap (periodics, periodiccnt, active); 3748 adjustheap (periodics, periodiccnt, active);
2077 } 3749 }
2078
2079 --periodiccnt;
2080 } 3750 }
2081 3751
2082 ev_stop (EV_A_ (W)w); 3752 ev_stop (EV_A_ (W)w);
3753
3754 EV_FREQUENT_CHECK;
2083} 3755}
2084 3756
2085void noinline 3757void noinline
2086ev_periodic_again (EV_P_ ev_periodic *w) 3758ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2087{ 3759{
2088 /* TODO: use adjustheap and recalculation */ 3760 /* TODO: use adjustheap and recalculation */
2089 ev_periodic_stop (EV_A_ w); 3761 ev_periodic_stop (EV_A_ w);
2090 ev_periodic_start (EV_A_ w); 3762 ev_periodic_start (EV_A_ w);
2091} 3763}
2093 3765
2094#ifndef SA_RESTART 3766#ifndef SA_RESTART
2095# define SA_RESTART 0 3767# define SA_RESTART 0
2096#endif 3768#endif
2097 3769
3770#if EV_SIGNAL_ENABLE
3771
2098void noinline 3772void noinline
2099ev_signal_start (EV_P_ ev_signal *w) 3773ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2100{ 3774{
2101#if EV_MULTIPLICITY
2102 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2103#endif
2104 if (expect_false (ev_is_active (w))) 3775 if (expect_false (ev_is_active (w)))
2105 return; 3776 return;
2106 3777
2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3778 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2108 3779
2109 evpipe_init (EV_A); 3780#if EV_MULTIPLICITY
3781 assert (("libev: a signal must not be attached to two different loops",
3782 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2110 3783
3784 signals [w->signum - 1].loop = EV_A;
3785 ECB_MEMORY_FENCE_RELEASE;
3786#endif
3787
3788 EV_FREQUENT_CHECK;
3789
3790#if EV_USE_SIGNALFD
3791 if (sigfd == -2)
2111 { 3792 {
2112#ifndef _WIN32 3793 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2113 sigset_t full, prev; 3794 if (sigfd < 0 && errno == EINVAL)
2114 sigfillset (&full); 3795 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2115 sigprocmask (SIG_SETMASK, &full, &prev);
2116#endif
2117 3796
2118 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3797 if (sigfd >= 0)
3798 {
3799 fd_intern (sigfd); /* doing it twice will not hurt */
2119 3800
2120#ifndef _WIN32 3801 sigemptyset (&sigfd_set);
2121 sigprocmask (SIG_SETMASK, &prev, 0); 3802
2122#endif 3803 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3804 ev_set_priority (&sigfd_w, EV_MAXPRI);
3805 ev_io_start (EV_A_ &sigfd_w);
3806 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3807 }
2123 } 3808 }
3809
3810 if (sigfd >= 0)
3811 {
3812 /* TODO: check .head */
3813 sigaddset (&sigfd_set, w->signum);
3814 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3815
3816 signalfd (sigfd, &sigfd_set, 0);
3817 }
3818#endif
2124 3819
2125 ev_start (EV_A_ (W)w, 1); 3820 ev_start (EV_A_ (W)w, 1);
2126 wlist_add (&signals [w->signum - 1].head, (WL)w); 3821 wlist_add (&signals [w->signum - 1].head, (WL)w);
2127 3822
2128 if (!((WL)w)->next) 3823 if (!((WL)w)->next)
3824# if EV_USE_SIGNALFD
3825 if (sigfd < 0) /*TODO*/
3826# endif
2129 { 3827 {
2130#if _WIN32 3828# ifdef _WIN32
3829 evpipe_init (EV_A);
3830
2131 signal (w->signum, ev_sighandler); 3831 signal (w->signum, ev_sighandler);
2132#else 3832# else
2133 struct sigaction sa; 3833 struct sigaction sa;
3834
3835 evpipe_init (EV_A);
3836
2134 sa.sa_handler = ev_sighandler; 3837 sa.sa_handler = ev_sighandler;
2135 sigfillset (&sa.sa_mask); 3838 sigfillset (&sa.sa_mask);
2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3839 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2137 sigaction (w->signum, &sa, 0); 3840 sigaction (w->signum, &sa, 0);
3841
3842 if (origflags & EVFLAG_NOSIGMASK)
3843 {
3844 sigemptyset (&sa.sa_mask);
3845 sigaddset (&sa.sa_mask, w->signum);
3846 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3847 }
2138#endif 3848#endif
2139 } 3849 }
3850
3851 EV_FREQUENT_CHECK;
2140} 3852}
2141 3853
2142void noinline 3854void noinline
2143ev_signal_stop (EV_P_ ev_signal *w) 3855ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2144{ 3856{
2145 clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
2147 return; 3859 return;
2148 3860
3861 EV_FREQUENT_CHECK;
3862
2149 wlist_del (&signals [w->signum - 1].head, (WL)w); 3863 wlist_del (&signals [w->signum - 1].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 3864 ev_stop (EV_A_ (W)w);
2151 3865
2152 if (!signals [w->signum - 1].head) 3866 if (!signals [w->signum - 1].head)
3867 {
3868#if EV_MULTIPLICITY
3869 signals [w->signum - 1].loop = 0; /* unattach from signal */
3870#endif
3871#if EV_USE_SIGNALFD
3872 if (sigfd >= 0)
3873 {
3874 sigset_t ss;
3875
3876 sigemptyset (&ss);
3877 sigaddset (&ss, w->signum);
3878 sigdelset (&sigfd_set, w->signum);
3879
3880 signalfd (sigfd, &sigfd_set, 0);
3881 sigprocmask (SIG_UNBLOCK, &ss, 0);
3882 }
3883 else
3884#endif
2153 signal (w->signum, SIG_DFL); 3885 signal (w->signum, SIG_DFL);
3886 }
3887
3888 EV_FREQUENT_CHECK;
2154} 3889}
3890
3891#endif
3892
3893#if EV_CHILD_ENABLE
2155 3894
2156void 3895void
2157ev_child_start (EV_P_ ev_child *w) 3896ev_child_start (EV_P_ ev_child *w) EV_THROW
2158{ 3897{
2159#if EV_MULTIPLICITY 3898#if EV_MULTIPLICITY
2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3899 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2161#endif 3900#endif
2162 if (expect_false (ev_is_active (w))) 3901 if (expect_false (ev_is_active (w)))
2163 return; 3902 return;
2164 3903
3904 EV_FREQUENT_CHECK;
3905
2165 ev_start (EV_A_ (W)w, 1); 3906 ev_start (EV_A_ (W)w, 1);
2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3907 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3908
3909 EV_FREQUENT_CHECK;
2167} 3910}
2168 3911
2169void 3912void
2170ev_child_stop (EV_P_ ev_child *w) 3913ev_child_stop (EV_P_ ev_child *w) EV_THROW
2171{ 3914{
2172 clear_pending (EV_A_ (W)w); 3915 clear_pending (EV_A_ (W)w);
2173 if (expect_false (!ev_is_active (w))) 3916 if (expect_false (!ev_is_active (w)))
2174 return; 3917 return;
2175 3918
3919 EV_FREQUENT_CHECK;
3920
2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3921 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2177 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
3923
3924 EV_FREQUENT_CHECK;
2178} 3925}
3926
3927#endif
2179 3928
2180#if EV_STAT_ENABLE 3929#if EV_STAT_ENABLE
2181 3930
2182# ifdef _WIN32 3931# ifdef _WIN32
2183# undef lstat 3932# undef lstat
2184# define lstat(a,b) _stati64 (a,b) 3933# define lstat(a,b) _stati64 (a,b)
2185# endif 3934# endif
2186 3935
2187#define DEF_STAT_INTERVAL 5.0074891 3936#define DEF_STAT_INTERVAL 5.0074891
3937#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2188#define MIN_STAT_INTERVAL 0.1074891 3938#define MIN_STAT_INTERVAL 0.1074891
2189 3939
2190static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2191 3941
2192#if EV_USE_INOTIFY 3942#if EV_USE_INOTIFY
2193# define EV_INOTIFY_BUFSIZE 8192 3943
3944/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3945# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2194 3946
2195static void noinline 3947static void noinline
2196infy_add (EV_P_ ev_stat *w) 3948infy_add (EV_P_ ev_stat *w)
2197{ 3949{
2198 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3950 w->wd = inotify_add_watch (fs_fd, w->path,
3951 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3952 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3953 | IN_DONT_FOLLOW | IN_MASK_ADD);
2199 3954
2200 if (w->wd < 0) 3955 if (w->wd >= 0)
3956 {
3957 struct statfs sfs;
3958
3959 /* now local changes will be tracked by inotify, but remote changes won't */
3960 /* unless the filesystem is known to be local, we therefore still poll */
3961 /* also do poll on <2.6.25, but with normal frequency */
3962
3963 if (!fs_2625)
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965 else if (!statfs (w->path, &sfs)
3966 && (sfs.f_type == 0x1373 /* devfs */
3967 || sfs.f_type == 0x4006 /* fat */
3968 || sfs.f_type == 0x4d44 /* msdos */
3969 || sfs.f_type == 0xEF53 /* ext2/3 */
3970 || sfs.f_type == 0x72b6 /* jffs2 */
3971 || sfs.f_type == 0x858458f6 /* ramfs */
3972 || sfs.f_type == 0x5346544e /* ntfs */
3973 || sfs.f_type == 0x3153464a /* jfs */
3974 || sfs.f_type == 0x9123683e /* btrfs */
3975 || sfs.f_type == 0x52654973 /* reiser3 */
3976 || sfs.f_type == 0x01021994 /* tmpfs */
3977 || sfs.f_type == 0x58465342 /* xfs */))
3978 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3979 else
3980 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2201 { 3981 }
2202 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3982 else
3983 {
3984 /* can't use inotify, continue to stat */
3985 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2203 3986
2204 /* monitor some parent directory for speedup hints */ 3987 /* if path is not there, monitor some parent directory for speedup hints */
2205 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3988 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2206 /* but an efficiency issue only */ 3989 /* but an efficiency issue only */
2207 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3990 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2208 { 3991 {
2209 char path [4096]; 3992 char path [4096];
2210 strcpy (path, w->path); 3993 strcpy (path, w->path);
2214 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3997 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2215 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3998 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2216 3999
2217 char *pend = strrchr (path, '/'); 4000 char *pend = strrchr (path, '/');
2218 4001
2219 if (!pend) 4002 if (!pend || pend == path)
2220 break; /* whoops, no '/', complain to your admin */ 4003 break;
2221 4004
2222 *pend = 0; 4005 *pend = 0;
2223 w->wd = inotify_add_watch (fs_fd, path, mask); 4006 w->wd = inotify_add_watch (fs_fd, path, mask);
2224 } 4007 }
2225 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4008 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2226 } 4009 }
2227 } 4010 }
2228 else
2229 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2230 4011
2231 if (w->wd >= 0) 4012 if (w->wd >= 0)
2232 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4013 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4014
4015 /* now re-arm timer, if required */
4016 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4017 ev_timer_again (EV_A_ &w->timer);
4018 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2233} 4019}
2234 4020
2235static void noinline 4021static void noinline
2236infy_del (EV_P_ ev_stat *w) 4022infy_del (EV_P_ ev_stat *w)
2237{ 4023{
2240 4026
2241 if (wd < 0) 4027 if (wd < 0)
2242 return; 4028 return;
2243 4029
2244 w->wd = -2; 4030 w->wd = -2;
2245 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4031 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2246 wlist_del (&fs_hash [slot].head, (WL)w); 4032 wlist_del (&fs_hash [slot].head, (WL)w);
2247 4033
2248 /* remove this watcher, if others are watching it, they will rearm */ 4034 /* remove this watcher, if others are watching it, they will rearm */
2249 inotify_rm_watch (fs_fd, wd); 4035 inotify_rm_watch (fs_fd, wd);
2250} 4036}
2251 4037
2252static void noinline 4038static void noinline
2253infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4039infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2254{ 4040{
2255 if (slot < 0) 4041 if (slot < 0)
2256 /* overflow, need to check for all hahs slots */ 4042 /* overflow, need to check for all hash slots */
2257 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4043 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2258 infy_wd (EV_A_ slot, wd, ev); 4044 infy_wd (EV_A_ slot, wd, ev);
2259 else 4045 else
2260 { 4046 {
2261 WL w_; 4047 WL w_;
2262 4048
2263 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4049 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2264 { 4050 {
2265 ev_stat *w = (ev_stat *)w_; 4051 ev_stat *w = (ev_stat *)w_;
2266 w_ = w_->next; /* lets us remove this watcher and all before it */ 4052 w_ = w_->next; /* lets us remove this watcher and all before it */
2267 4053
2268 if (w->wd == wd || wd == -1) 4054 if (w->wd == wd || wd == -1)
2269 { 4055 {
2270 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4056 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2271 { 4057 {
4058 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2272 w->wd = -1; 4059 w->wd = -1;
2273 infy_add (EV_A_ w); /* re-add, no matter what */ 4060 infy_add (EV_A_ w); /* re-add, no matter what */
2274 } 4061 }
2275 4062
2276 stat_timer_cb (EV_A_ &w->timer, 0); 4063 stat_timer_cb (EV_A_ &w->timer, 0);
2281 4068
2282static void 4069static void
2283infy_cb (EV_P_ ev_io *w, int revents) 4070infy_cb (EV_P_ ev_io *w, int revents)
2284{ 4071{
2285 char buf [EV_INOTIFY_BUFSIZE]; 4072 char buf [EV_INOTIFY_BUFSIZE];
2286 struct inotify_event *ev = (struct inotify_event *)buf;
2287 int ofs; 4073 int ofs;
2288 int len = read (fs_fd, buf, sizeof (buf)); 4074 int len = read (fs_fd, buf, sizeof (buf));
2289 4075
2290 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4076 for (ofs = 0; ofs < len; )
4077 {
4078 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2291 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4079 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4080 ofs += sizeof (struct inotify_event) + ev->len;
4081 }
2292} 4082}
2293 4083
2294void inline_size 4084inline_size void ecb_cold
4085ev_check_2625 (EV_P)
4086{
4087 /* kernels < 2.6.25 are borked
4088 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4089 */
4090 if (ev_linux_version () < 0x020619)
4091 return;
4092
4093 fs_2625 = 1;
4094}
4095
4096inline_size int
4097infy_newfd (void)
4098{
4099#if defined IN_CLOEXEC && defined IN_NONBLOCK
4100 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4101 if (fd >= 0)
4102 return fd;
4103#endif
4104 return inotify_init ();
4105}
4106
4107inline_size void
2295infy_init (EV_P) 4108infy_init (EV_P)
2296{ 4109{
2297 if (fs_fd != -2) 4110 if (fs_fd != -2)
2298 return; 4111 return;
2299 4112
4113 fs_fd = -1;
4114
4115 ev_check_2625 (EV_A);
4116
2300 fs_fd = inotify_init (); 4117 fs_fd = infy_newfd ();
2301 4118
2302 if (fs_fd >= 0) 4119 if (fs_fd >= 0)
2303 { 4120 {
4121 fd_intern (fs_fd);
2304 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4122 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2305 ev_set_priority (&fs_w, EV_MAXPRI); 4123 ev_set_priority (&fs_w, EV_MAXPRI);
2306 ev_io_start (EV_A_ &fs_w); 4124 ev_io_start (EV_A_ &fs_w);
4125 ev_unref (EV_A);
2307 } 4126 }
2308} 4127}
2309 4128
2310void inline_size 4129inline_size void
2311infy_fork (EV_P) 4130infy_fork (EV_P)
2312{ 4131{
2313 int slot; 4132 int slot;
2314 4133
2315 if (fs_fd < 0) 4134 if (fs_fd < 0)
2316 return; 4135 return;
2317 4136
4137 ev_ref (EV_A);
4138 ev_io_stop (EV_A_ &fs_w);
2318 close (fs_fd); 4139 close (fs_fd);
2319 fs_fd = inotify_init (); 4140 fs_fd = infy_newfd ();
2320 4141
4142 if (fs_fd >= 0)
4143 {
4144 fd_intern (fs_fd);
4145 ev_io_set (&fs_w, fs_fd, EV_READ);
4146 ev_io_start (EV_A_ &fs_w);
4147 ev_unref (EV_A);
4148 }
4149
2321 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4150 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2322 { 4151 {
2323 WL w_ = fs_hash [slot].head; 4152 WL w_ = fs_hash [slot].head;
2324 fs_hash [slot].head = 0; 4153 fs_hash [slot].head = 0;
2325 4154
2326 while (w_) 4155 while (w_)
2331 w->wd = -1; 4160 w->wd = -1;
2332 4161
2333 if (fs_fd >= 0) 4162 if (fs_fd >= 0)
2334 infy_add (EV_A_ w); /* re-add, no matter what */ 4163 infy_add (EV_A_ w); /* re-add, no matter what */
2335 else 4164 else
4165 {
4166 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4167 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2336 ev_timer_start (EV_A_ &w->timer); 4168 ev_timer_again (EV_A_ &w->timer);
4169 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4170 }
2337 } 4171 }
2338
2339 } 4172 }
2340} 4173}
2341 4174
4175#endif
4176
4177#ifdef _WIN32
4178# define EV_LSTAT(p,b) _stati64 (p, b)
4179#else
4180# define EV_LSTAT(p,b) lstat (p, b)
2342#endif 4181#endif
2343 4182
2344void 4183void
2345ev_stat_stat (EV_P_ ev_stat *w) 4184ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2346{ 4185{
2347 if (lstat (w->path, &w->attr) < 0) 4186 if (lstat (w->path, &w->attr) < 0)
2348 w->attr.st_nlink = 0; 4187 w->attr.st_nlink = 0;
2349 else if (!w->attr.st_nlink) 4188 else if (!w->attr.st_nlink)
2350 w->attr.st_nlink = 1; 4189 w->attr.st_nlink = 1;
2353static void noinline 4192static void noinline
2354stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4193stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2355{ 4194{
2356 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4195 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2357 4196
2358 /* we copy this here each the time so that */ 4197 ev_statdata prev = w->attr;
2359 /* prev has the old value when the callback gets invoked */
2360 w->prev = w->attr;
2361 ev_stat_stat (EV_A_ w); 4198 ev_stat_stat (EV_A_ w);
2362 4199
2363 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4200 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2364 if ( 4201 if (
2365 w->prev.st_dev != w->attr.st_dev 4202 prev.st_dev != w->attr.st_dev
2366 || w->prev.st_ino != w->attr.st_ino 4203 || prev.st_ino != w->attr.st_ino
2367 || w->prev.st_mode != w->attr.st_mode 4204 || prev.st_mode != w->attr.st_mode
2368 || w->prev.st_nlink != w->attr.st_nlink 4205 || prev.st_nlink != w->attr.st_nlink
2369 || w->prev.st_uid != w->attr.st_uid 4206 || prev.st_uid != w->attr.st_uid
2370 || w->prev.st_gid != w->attr.st_gid 4207 || prev.st_gid != w->attr.st_gid
2371 || w->prev.st_rdev != w->attr.st_rdev 4208 || prev.st_rdev != w->attr.st_rdev
2372 || w->prev.st_size != w->attr.st_size 4209 || prev.st_size != w->attr.st_size
2373 || w->prev.st_atime != w->attr.st_atime 4210 || prev.st_atime != w->attr.st_atime
2374 || w->prev.st_mtime != w->attr.st_mtime 4211 || prev.st_mtime != w->attr.st_mtime
2375 || w->prev.st_ctime != w->attr.st_ctime 4212 || prev.st_ctime != w->attr.st_ctime
2376 ) { 4213 ) {
4214 /* we only update w->prev on actual differences */
4215 /* in case we test more often than invoke the callback, */
4216 /* to ensure that prev is always different to attr */
4217 w->prev = prev;
4218
2377 #if EV_USE_INOTIFY 4219 #if EV_USE_INOTIFY
4220 if (fs_fd >= 0)
4221 {
2378 infy_del (EV_A_ w); 4222 infy_del (EV_A_ w);
2379 infy_add (EV_A_ w); 4223 infy_add (EV_A_ w);
2380 ev_stat_stat (EV_A_ w); /* avoid race... */ 4224 ev_stat_stat (EV_A_ w); /* avoid race... */
4225 }
2381 #endif 4226 #endif
2382 4227
2383 ev_feed_event (EV_A_ w, EV_STAT); 4228 ev_feed_event (EV_A_ w, EV_STAT);
2384 } 4229 }
2385} 4230}
2386 4231
2387void 4232void
2388ev_stat_start (EV_P_ ev_stat *w) 4233ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2389{ 4234{
2390 if (expect_false (ev_is_active (w))) 4235 if (expect_false (ev_is_active (w)))
2391 return; 4236 return;
2392 4237
2393 /* since we use memcmp, we need to clear any padding data etc. */
2394 memset (&w->prev, 0, sizeof (ev_statdata));
2395 memset (&w->attr, 0, sizeof (ev_statdata));
2396
2397 ev_stat_stat (EV_A_ w); 4238 ev_stat_stat (EV_A_ w);
2398 4239
4240 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2399 if (w->interval < MIN_STAT_INTERVAL) 4241 w->interval = MIN_STAT_INTERVAL;
2400 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2401 4242
2402 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4243 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2403 ev_set_priority (&w->timer, ev_priority (w)); 4244 ev_set_priority (&w->timer, ev_priority (w));
2404 4245
2405#if EV_USE_INOTIFY 4246#if EV_USE_INOTIFY
2406 infy_init (EV_A); 4247 infy_init (EV_A);
2407 4248
2408 if (fs_fd >= 0) 4249 if (fs_fd >= 0)
2409 infy_add (EV_A_ w); 4250 infy_add (EV_A_ w);
2410 else 4251 else
2411#endif 4252#endif
4253 {
2412 ev_timer_start (EV_A_ &w->timer); 4254 ev_timer_again (EV_A_ &w->timer);
4255 ev_unref (EV_A);
4256 }
2413 4257
2414 ev_start (EV_A_ (W)w, 1); 4258 ev_start (EV_A_ (W)w, 1);
4259
4260 EV_FREQUENT_CHECK;
2415} 4261}
2416 4262
2417void 4263void
2418ev_stat_stop (EV_P_ ev_stat *w) 4264ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2419{ 4265{
2420 clear_pending (EV_A_ (W)w); 4266 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 4267 if (expect_false (!ev_is_active (w)))
2422 return; 4268 return;
2423 4269
4270 EV_FREQUENT_CHECK;
4271
2424#if EV_USE_INOTIFY 4272#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w); 4273 infy_del (EV_A_ w);
2426#endif 4274#endif
4275
4276 if (ev_is_active (&w->timer))
4277 {
4278 ev_ref (EV_A);
2427 ev_timer_stop (EV_A_ &w->timer); 4279 ev_timer_stop (EV_A_ &w->timer);
4280 }
2428 4281
2429 ev_stop (EV_A_ (W)w); 4282 ev_stop (EV_A_ (W)w);
4283
4284 EV_FREQUENT_CHECK;
2430} 4285}
2431#endif 4286#endif
2432 4287
2433#if EV_IDLE_ENABLE 4288#if EV_IDLE_ENABLE
2434void 4289void
2435ev_idle_start (EV_P_ ev_idle *w) 4290ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2436{ 4291{
2437 if (expect_false (ev_is_active (w))) 4292 if (expect_false (ev_is_active (w)))
2438 return; 4293 return;
2439 4294
2440 pri_adjust (EV_A_ (W)w); 4295 pri_adjust (EV_A_ (W)w);
4296
4297 EV_FREQUENT_CHECK;
2441 4298
2442 { 4299 {
2443 int active = ++idlecnt [ABSPRI (w)]; 4300 int active = ++idlecnt [ABSPRI (w)];
2444 4301
2445 ++idleall; 4302 ++idleall;
2446 ev_start (EV_A_ (W)w, active); 4303 ev_start (EV_A_ (W)w, active);
2447 4304
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4305 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2449 idles [ABSPRI (w)][active - 1] = w; 4306 idles [ABSPRI (w)][active - 1] = w;
2450 } 4307 }
4308
4309 EV_FREQUENT_CHECK;
2451} 4310}
2452 4311
2453void 4312void
2454ev_idle_stop (EV_P_ ev_idle *w) 4313ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2455{ 4314{
2456 clear_pending (EV_A_ (W)w); 4315 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 4316 if (expect_false (!ev_is_active (w)))
2458 return; 4317 return;
2459 4318
4319 EV_FREQUENT_CHECK;
4320
2460 { 4321 {
2461 int active = ev_active (w); 4322 int active = ev_active (w);
2462 4323
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4324 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4325 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465 4326
2466 ev_stop (EV_A_ (W)w); 4327 ev_stop (EV_A_ (W)w);
2467 --idleall; 4328 --idleall;
2468 } 4329 }
2469}
2470#endif
2471 4330
4331 EV_FREQUENT_CHECK;
4332}
4333#endif
4334
4335#if EV_PREPARE_ENABLE
2472void 4336void
2473ev_prepare_start (EV_P_ ev_prepare *w) 4337ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2474{ 4338{
2475 if (expect_false (ev_is_active (w))) 4339 if (expect_false (ev_is_active (w)))
2476 return; 4340 return;
4341
4342 EV_FREQUENT_CHECK;
2477 4343
2478 ev_start (EV_A_ (W)w, ++preparecnt); 4344 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4345 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2480 prepares [preparecnt - 1] = w; 4346 prepares [preparecnt - 1] = w;
4347
4348 EV_FREQUENT_CHECK;
2481} 4349}
2482 4350
2483void 4351void
2484ev_prepare_stop (EV_P_ ev_prepare *w) 4352ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2485{ 4353{
2486 clear_pending (EV_A_ (W)w); 4354 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w))) 4355 if (expect_false (!ev_is_active (w)))
2488 return; 4356 return;
2489 4357
4358 EV_FREQUENT_CHECK;
4359
2490 { 4360 {
2491 int active = ev_active (w); 4361 int active = ev_active (w);
2492 4362
2493 prepares [active - 1] = prepares [--preparecnt]; 4363 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active; 4364 ev_active (prepares [active - 1]) = active;
2495 } 4365 }
2496 4366
2497 ev_stop (EV_A_ (W)w); 4367 ev_stop (EV_A_ (W)w);
2498}
2499 4368
4369 EV_FREQUENT_CHECK;
4370}
4371#endif
4372
4373#if EV_CHECK_ENABLE
2500void 4374void
2501ev_check_start (EV_P_ ev_check *w) 4375ev_check_start (EV_P_ ev_check *w) EV_THROW
2502{ 4376{
2503 if (expect_false (ev_is_active (w))) 4377 if (expect_false (ev_is_active (w)))
2504 return; 4378 return;
4379
4380 EV_FREQUENT_CHECK;
2505 4381
2506 ev_start (EV_A_ (W)w, ++checkcnt); 4382 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4383 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2508 checks [checkcnt - 1] = w; 4384 checks [checkcnt - 1] = w;
4385
4386 EV_FREQUENT_CHECK;
2509} 4387}
2510 4388
2511void 4389void
2512ev_check_stop (EV_P_ ev_check *w) 4390ev_check_stop (EV_P_ ev_check *w) EV_THROW
2513{ 4391{
2514 clear_pending (EV_A_ (W)w); 4392 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w))) 4393 if (expect_false (!ev_is_active (w)))
2516 return; 4394 return;
2517 4395
4396 EV_FREQUENT_CHECK;
4397
2518 { 4398 {
2519 int active = ev_active (w); 4399 int active = ev_active (w);
2520 4400
2521 checks [active - 1] = checks [--checkcnt]; 4401 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active; 4402 ev_active (checks [active - 1]) = active;
2523 } 4403 }
2524 4404
2525 ev_stop (EV_A_ (W)w); 4405 ev_stop (EV_A_ (W)w);
4406
4407 EV_FREQUENT_CHECK;
2526} 4408}
4409#endif
2527 4410
2528#if EV_EMBED_ENABLE 4411#if EV_EMBED_ENABLE
2529void noinline 4412void noinline
2530ev_embed_sweep (EV_P_ ev_embed *w) 4413ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2531{ 4414{
2532 ev_loop (w->other, EVLOOP_NONBLOCK); 4415 ev_run (w->other, EVRUN_NOWAIT);
2533} 4416}
2534 4417
2535static void 4418static void
2536embed_io_cb (EV_P_ ev_io *io, int revents) 4419embed_io_cb (EV_P_ ev_io *io, int revents)
2537{ 4420{
2538 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2539 4422
2540 if (ev_cb (w)) 4423 if (ev_cb (w))
2541 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2542 else 4425 else
2543 ev_loop (w->other, EVLOOP_NONBLOCK); 4426 ev_run (w->other, EVRUN_NOWAIT);
2544} 4427}
2545 4428
2546static void 4429static void
2547embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2548{ 4431{
2549 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2550 4433
2551 { 4434 {
2552 struct ev_loop *loop = w->other; 4435 EV_P = w->other;
2553 4436
2554 while (fdchangecnt) 4437 while (fdchangecnt)
2555 { 4438 {
2556 fd_reify (EV_A); 4439 fd_reify (EV_A);
2557 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4440 ev_run (EV_A_ EVRUN_NOWAIT);
2558 } 4441 }
2559 } 4442 }
4443}
4444
4445static void
4446embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4447{
4448 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4449
4450 ev_embed_stop (EV_A_ w);
4451
4452 {
4453 EV_P = w->other;
4454
4455 ev_loop_fork (EV_A);
4456 ev_run (EV_A_ EVRUN_NOWAIT);
4457 }
4458
4459 ev_embed_start (EV_A_ w);
2560} 4460}
2561 4461
2562#if 0 4462#if 0
2563static void 4463static void
2564embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2566 ev_idle_stop (EV_A_ idle); 4466 ev_idle_stop (EV_A_ idle);
2567} 4467}
2568#endif 4468#endif
2569 4469
2570void 4470void
2571ev_embed_start (EV_P_ ev_embed *w) 4471ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2572{ 4472{
2573 if (expect_false (ev_is_active (w))) 4473 if (expect_false (ev_is_active (w)))
2574 return; 4474 return;
2575 4475
2576 { 4476 {
2577 struct ev_loop *loop = w->other; 4477 EV_P = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4478 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 } 4480 }
4481
4482 EV_FREQUENT_CHECK;
2581 4483
2582 ev_set_priority (&w->io, ev_priority (w)); 4484 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io); 4485 ev_io_start (EV_A_ &w->io);
2584 4486
2585 ev_prepare_init (&w->prepare, embed_prepare_cb); 4487 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI); 4488 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare); 4489 ev_prepare_start (EV_A_ &w->prepare);
2588 4490
4491 ev_fork_init (&w->fork, embed_fork_cb);
4492 ev_fork_start (EV_A_ &w->fork);
4493
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4494 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590 4495
2591 ev_start (EV_A_ (W)w, 1); 4496 ev_start (EV_A_ (W)w, 1);
4497
4498 EV_FREQUENT_CHECK;
2592} 4499}
2593 4500
2594void 4501void
2595ev_embed_stop (EV_P_ ev_embed *w) 4502ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2596{ 4503{
2597 clear_pending (EV_A_ (W)w); 4504 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w))) 4505 if (expect_false (!ev_is_active (w)))
2599 return; 4506 return;
2600 4507
4508 EV_FREQUENT_CHECK;
4509
2601 ev_io_stop (EV_A_ &w->io); 4510 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare); 4511 ev_prepare_stop (EV_A_ &w->prepare);
4512 ev_fork_stop (EV_A_ &w->fork);
2603 4513
2604 ev_stop (EV_A_ (W)w); 4514 ev_stop (EV_A_ (W)w);
4515
4516 EV_FREQUENT_CHECK;
2605} 4517}
2606#endif 4518#endif
2607 4519
2608#if EV_FORK_ENABLE 4520#if EV_FORK_ENABLE
2609void 4521void
2610ev_fork_start (EV_P_ ev_fork *w) 4522ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2611{ 4523{
2612 if (expect_false (ev_is_active (w))) 4524 if (expect_false (ev_is_active (w)))
2613 return; 4525 return;
4526
4527 EV_FREQUENT_CHECK;
2614 4528
2615 ev_start (EV_A_ (W)w, ++forkcnt); 4529 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4530 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2617 forks [forkcnt - 1] = w; 4531 forks [forkcnt - 1] = w;
4532
4533 EV_FREQUENT_CHECK;
2618} 4534}
2619 4535
2620void 4536void
2621ev_fork_stop (EV_P_ ev_fork *w) 4537ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2622{ 4538{
2623 clear_pending (EV_A_ (W)w); 4539 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w))) 4540 if (expect_false (!ev_is_active (w)))
2625 return; 4541 return;
2626 4542
4543 EV_FREQUENT_CHECK;
4544
2627 { 4545 {
2628 int active = ev_active (w); 4546 int active = ev_active (w);
2629 4547
2630 forks [active - 1] = forks [--forkcnt]; 4548 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active; 4549 ev_active (forks [active - 1]) = active;
2632 } 4550 }
2633 4551
2634 ev_stop (EV_A_ (W)w); 4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555}
4556#endif
4557
4558#if EV_CLEANUP_ENABLE
4559void
4560ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4561{
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 EV_FREQUENT_CHECK;
4566
4567 ev_start (EV_A_ (W)w, ++cleanupcnt);
4568 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4569 cleanups [cleanupcnt - 1] = w;
4570
4571 /* cleanup watchers should never keep a refcount on the loop */
4572 ev_unref (EV_A);
4573 EV_FREQUENT_CHECK;
4574}
4575
4576void
4577ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4578{
4579 clear_pending (EV_A_ (W)w);
4580 if (expect_false (!ev_is_active (w)))
4581 return;
4582
4583 EV_FREQUENT_CHECK;
4584 ev_ref (EV_A);
4585
4586 {
4587 int active = ev_active (w);
4588
4589 cleanups [active - 1] = cleanups [--cleanupcnt];
4590 ev_active (cleanups [active - 1]) = active;
4591 }
4592
4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
2635} 4596}
2636#endif 4597#endif
2637 4598
2638#if EV_ASYNC_ENABLE 4599#if EV_ASYNC_ENABLE
2639void 4600void
2640ev_async_start (EV_P_ ev_async *w) 4601ev_async_start (EV_P_ ev_async *w) EV_THROW
2641{ 4602{
2642 if (expect_false (ev_is_active (w))) 4603 if (expect_false (ev_is_active (w)))
2643 return; 4604 return;
2644 4605
4606 w->sent = 0;
4607
2645 evpipe_init (EV_A); 4608 evpipe_init (EV_A);
4609
4610 EV_FREQUENT_CHECK;
2646 4611
2647 ev_start (EV_A_ (W)w, ++asynccnt); 4612 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4613 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2649 asyncs [asynccnt - 1] = w; 4614 asyncs [asynccnt - 1] = w;
4615
4616 EV_FREQUENT_CHECK;
2650} 4617}
2651 4618
2652void 4619void
2653ev_async_stop (EV_P_ ev_async *w) 4620ev_async_stop (EV_P_ ev_async *w) EV_THROW
2654{ 4621{
2655 clear_pending (EV_A_ (W)w); 4622 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w))) 4623 if (expect_false (!ev_is_active (w)))
2657 return; 4624 return;
2658 4625
4626 EV_FREQUENT_CHECK;
4627
2659 { 4628 {
2660 int active = ev_active (w); 4629 int active = ev_active (w);
2661 4630
2662 asyncs [active - 1] = asyncs [--asynccnt]; 4631 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active; 4632 ev_active (asyncs [active - 1]) = active;
2664 } 4633 }
2665 4634
2666 ev_stop (EV_A_ (W)w); 4635 ev_stop (EV_A_ (W)w);
4636
4637 EV_FREQUENT_CHECK;
2667} 4638}
2668 4639
2669void 4640void
2670ev_async_send (EV_P_ ev_async *w) 4641ev_async_send (EV_P_ ev_async *w) EV_THROW
2671{ 4642{
2672 w->sent = 1; 4643 w->sent = 1;
2673 evpipe_write (EV_A_ &gotasync); 4644 evpipe_write (EV_A_ &async_pending);
2674} 4645}
2675#endif 4646#endif
2676 4647
2677/*****************************************************************************/ 4648/*****************************************************************************/
2678 4649
2688once_cb (EV_P_ struct ev_once *once, int revents) 4659once_cb (EV_P_ struct ev_once *once, int revents)
2689{ 4660{
2690 void (*cb)(int revents, void *arg) = once->cb; 4661 void (*cb)(int revents, void *arg) = once->cb;
2691 void *arg = once->arg; 4662 void *arg = once->arg;
2692 4663
2693 ev_io_stop (EV_A_ &once->io); 4664 ev_io_stop (EV_A_ &once->io);
2694 ev_timer_stop (EV_A_ &once->to); 4665 ev_timer_stop (EV_A_ &once->to);
2695 ev_free (once); 4666 ev_free (once);
2696 4667
2697 cb (revents, arg); 4668 cb (revents, arg);
2698} 4669}
2699 4670
2700static void 4671static void
2701once_cb_io (EV_P_ ev_io *w, int revents) 4672once_cb_io (EV_P_ ev_io *w, int revents)
2702{ 4673{
2703 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4674 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4675
4676 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2704} 4677}
2705 4678
2706static void 4679static void
2707once_cb_to (EV_P_ ev_timer *w, int revents) 4680once_cb_to (EV_P_ ev_timer *w, int revents)
2708{ 4681{
2709 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4682 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4683
4684 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2710} 4685}
2711 4686
2712void 4687void
2713ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4688ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2714{ 4689{
2715 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4690 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2716 4691
2717 if (expect_false (!once)) 4692 if (expect_false (!once))
2718 { 4693 {
2719 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4694 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2720 return; 4695 return;
2721 } 4696 }
2722 4697
2723 once->cb = cb; 4698 once->cb = cb;
2724 once->arg = arg; 4699 once->arg = arg;
2736 ev_timer_set (&once->to, timeout, 0.); 4711 ev_timer_set (&once->to, timeout, 0.);
2737 ev_timer_start (EV_A_ &once->to); 4712 ev_timer_start (EV_A_ &once->to);
2738 } 4713 }
2739} 4714}
2740 4715
4716/*****************************************************************************/
4717
4718#if EV_WALK_ENABLE
4719void ecb_cold
4720ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4721{
4722 int i, j;
4723 ev_watcher_list *wl, *wn;
4724
4725 if (types & (EV_IO | EV_EMBED))
4726 for (i = 0; i < anfdmax; ++i)
4727 for (wl = anfds [i].head; wl; )
4728 {
4729 wn = wl->next;
4730
4731#if EV_EMBED_ENABLE
4732 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4733 {
4734 if (types & EV_EMBED)
4735 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4736 }
4737 else
4738#endif
4739#if EV_USE_INOTIFY
4740 if (ev_cb ((ev_io *)wl) == infy_cb)
4741 ;
4742 else
4743#endif
4744 if ((ev_io *)wl != &pipe_w)
4745 if (types & EV_IO)
4746 cb (EV_A_ EV_IO, wl);
4747
4748 wl = wn;
4749 }
4750
4751 if (types & (EV_TIMER | EV_STAT))
4752 for (i = timercnt + HEAP0; i-- > HEAP0; )
4753#if EV_STAT_ENABLE
4754 /*TODO: timer is not always active*/
4755 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4756 {
4757 if (types & EV_STAT)
4758 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4759 }
4760 else
4761#endif
4762 if (types & EV_TIMER)
4763 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4764
4765#if EV_PERIODIC_ENABLE
4766 if (types & EV_PERIODIC)
4767 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4768 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4769#endif
4770
4771#if EV_IDLE_ENABLE
4772 if (types & EV_IDLE)
4773 for (j = NUMPRI; j--; )
4774 for (i = idlecnt [j]; i--; )
4775 cb (EV_A_ EV_IDLE, idles [j][i]);
4776#endif
4777
4778#if EV_FORK_ENABLE
4779 if (types & EV_FORK)
4780 for (i = forkcnt; i--; )
4781 if (ev_cb (forks [i]) != embed_fork_cb)
4782 cb (EV_A_ EV_FORK, forks [i]);
4783#endif
4784
4785#if EV_ASYNC_ENABLE
4786 if (types & EV_ASYNC)
4787 for (i = asynccnt; i--; )
4788 cb (EV_A_ EV_ASYNC, asyncs [i]);
4789#endif
4790
4791#if EV_PREPARE_ENABLE
4792 if (types & EV_PREPARE)
4793 for (i = preparecnt; i--; )
4794# if EV_EMBED_ENABLE
4795 if (ev_cb (prepares [i]) != embed_prepare_cb)
4796# endif
4797 cb (EV_A_ EV_PREPARE, prepares [i]);
4798#endif
4799
4800#if EV_CHECK_ENABLE
4801 if (types & EV_CHECK)
4802 for (i = checkcnt; i--; )
4803 cb (EV_A_ EV_CHECK, checks [i]);
4804#endif
4805
4806#if EV_SIGNAL_ENABLE
4807 if (types & EV_SIGNAL)
4808 for (i = 0; i < EV_NSIG - 1; ++i)
4809 for (wl = signals [i].head; wl; )
4810 {
4811 wn = wl->next;
4812 cb (EV_A_ EV_SIGNAL, wl);
4813 wl = wn;
4814 }
4815#endif
4816
4817#if EV_CHILD_ENABLE
4818 if (types & EV_CHILD)
4819 for (i = (EV_PID_HASHSIZE); i--; )
4820 for (wl = childs [i]; wl; )
4821 {
4822 wn = wl->next;
4823 cb (EV_A_ EV_CHILD, wl);
4824 wl = wn;
4825 }
4826#endif
4827/* EV_STAT 0x00001000 /* stat data changed */
4828/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4829}
4830#endif
4831
2741#if EV_MULTIPLICITY 4832#if EV_MULTIPLICITY
2742 #include "ev_wrap.h" 4833 #include "ev_wrap.h"
2743#endif 4834#endif
2744 4835
2745#ifdef __cplusplus
2746}
2747#endif
2748

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines