ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.24 by root, Wed Oct 31 20:46:44 2007 UTC vs.
Revision 1.445 by root, Sat Jun 2 11:15:29 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met:
8 * 9 *
9 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
10 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
11 * 12 *
12 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
13 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
14 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
15 * with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
28 */ 38 */
29 39
30#include <math.h> 40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
31#include <stdlib.h> 167#include <stdlib.h>
32#include <unistd.h> 168#include <string.h>
33#include <fcntl.h> 169#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 170#include <stddef.h>
36 171
37#include <stdio.h> 172#include <stdio.h>
38 173
39#include <assert.h> 174#include <assert.h>
40#include <errno.h> 175#include <errno.h>
41#include <sys/types.h> 176#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 177#include <time.h>
178#include <limits.h>
45 179
46#ifndef HAVE_MONOTONIC 180#include <signal.h>
47# ifdef CLOCK_MONOTONIC 181
48# define HAVE_MONOTONIC 1 182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
199#ifndef _WIN32
200# include <sys/time.h>
201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
49# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
50#endif 261# endif
262#endif
51 263
52#ifndef HAVE_SELECT 264#ifndef EV_USE_MONOTONIC
53# define HAVE_SELECT 1 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
268# define EV_USE_MONOTONIC 0
54#endif 269# endif
270#endif
55 271
56#ifndef HAVE_EPOLL 272#ifndef EV_USE_REALTIME
57# define HAVE_EPOLL 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
58#endif 281# endif
282#endif
59 283
60#ifndef HAVE_REALTIME 284#ifndef EV_USE_SELECT
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
286#endif
287
288#ifndef EV_USE_POLL
289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
62#endif 293# endif
294#endif
295
296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
300# define EV_USE_EPOLL 0
301# endif
302#endif
303
304#ifndef EV_USE_KQUEUE
305# define EV_USE_KQUEUE 0
306#endif
307
308#ifndef EV_USE_PORT
309# define EV_USE_PORT 0
310#endif
311
312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384#ifndef CLOCK_MONOTONIC
385# undef EV_USE_MONOTONIC
386# define EV_USE_MONOTONIC 0
387#endif
388
389#ifndef CLOCK_REALTIME
390# undef EV_USE_REALTIME
391# define EV_USE_REALTIME 0
392#endif
393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
452#endif
453
454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
63 468
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */
67 471
68#include "ev.h" 472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
69 474
70typedef struct ev_watcher *W; 475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
71typedef struct ev_watcher_list *WL; 476/* ECB.H BEGIN */
72typedef struct ev_watcher_time *WT; 477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
73 505
74static ev_tstamp now, diff; /* monotonic clock */ 506#ifndef ECB_H
75ev_tstamp ev_now; 507#define ECB_H
76int ev_method;
77 508
78static int have_monotonic; /* runtime */ 509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
79 511
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 512#ifdef _WIN32
81static void (*method_modify)(int fd, int oev, int nev); 513 typedef signed char int8_t;
82static void (*method_poll)(ev_tstamp timeout); 514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
536#else
537 #include <inttypes.h>
538 #if UINTMAX_MAX > 0xffffffffU
539 #define ECB_PTRSIZE 8
540 #else
541 #define ECB_PTRSIZE 4
542 #endif
543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557 #endif
558#endif
559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
83 565
84/*****************************************************************************/ 566/*****************************************************************************/
85 567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
1013#define inline_size ecb_inline
1014
1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
1025#else
1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
1028
1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
1030#define EMPTY2(a,b) /* used to suppress some warnings */
1031
1032typedef ev_watcher *W;
1033typedef ev_watcher_list *WL;
1034typedef ev_watcher_time *WT;
1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
1045#if EV_USE_MONOTONIC
1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
1058
1059#ifdef _WIN32
1060# include "ev_win32.c"
1061#endif
1062
1063/*****************************************************************************/
1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
1163static void (*syserr_cb)(const char *msg) EV_THROW;
1164
1165void ecb_cold
1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1167{
1168 syserr_cb = cb;
1169}
1170
1171static void noinline ecb_cold
1172ev_syserr (const char *msg)
1173{
1174 if (!msg)
1175 msg = "(libev) system error";
1176
1177 if (syserr_cb)
1178 syserr_cb (msg);
1179 else
1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
1187 perror (msg);
1188#endif
1189 abort ();
1190 }
1191}
1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196#if __GLIBC__
1197 return realloc (ptr, size);
1198#else
1199 /* some systems, notably openbsd and darwin, fail to properly
1200 * implement realloc (x, 0) (as required by both ansi c-89 and
1201 * the single unix specification, so work around them here.
1202 */
1203
1204 if (size)
1205 return realloc (ptr, size);
1206
1207 free (ptr);
1208 return 0;
1209#endif
1210}
1211
1212static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1213
1214void ecb_cold
1215ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1216{
1217 alloc = cb;
1218}
1219
1220inline_speed void *
1221ev_realloc (void *ptr, long size)
1222{
1223 ptr = alloc (ptr, size);
1224
1225 if (!ptr && size)
1226 {
1227#if EV_AVOID_STDIO
1228 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1229#else
1230 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1231#endif
1232 abort ();
1233 }
1234
1235 return ptr;
1236}
1237
1238#define ev_malloc(size) ev_realloc (0, (size))
1239#define ev_free(ptr) ev_realloc ((ptr), 0)
1240
1241/*****************************************************************************/
1242
1243/* set in reify when reification needed */
1244#define EV_ANFD_REIFY 1
1245
1246/* file descriptor info structure */
1247typedef struct
1248{
1249 WL head;
1250 unsigned char events; /* the events watched for */
1251 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1252 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1253 unsigned char unused;
1254#if EV_USE_EPOLL
1255 unsigned int egen; /* generation counter to counter epoll bugs */
1256#endif
1257#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1258 SOCKET handle;
1259#endif
1260#if EV_USE_IOCP
1261 OVERLAPPED or, ow;
1262#endif
1263} ANFD;
1264
1265/* stores the pending event set for a given watcher */
1266typedef struct
1267{
1268 W w;
1269 int events; /* the pending event set for the given watcher */
1270} ANPENDING;
1271
1272#if EV_USE_INOTIFY
1273/* hash table entry per inotify-id */
1274typedef struct
1275{
1276 WL head;
1277} ANFS;
1278#endif
1279
1280/* Heap Entry */
1281#if EV_HEAP_CACHE_AT
1282 /* a heap element */
1283 typedef struct {
1284 ev_tstamp at;
1285 WT w;
1286 } ANHE;
1287
1288 #define ANHE_w(he) (he).w /* access watcher, read-write */
1289 #define ANHE_at(he) (he).at /* access cached at, read-only */
1290 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1291#else
1292 /* a heap element */
1293 typedef WT ANHE;
1294
1295 #define ANHE_w(he) (he)
1296 #define ANHE_at(he) (he)->at
1297 #define ANHE_at_cache(he)
1298#endif
1299
1300#if EV_MULTIPLICITY
1301
1302 struct ev_loop
1303 {
1304 ev_tstamp ev_rt_now;
1305 #define ev_rt_now ((loop)->ev_rt_now)
1306 #define VAR(name,decl) decl;
1307 #include "ev_vars.h"
1308 #undef VAR
1309 };
1310 #include "ev_wrap.h"
1311
1312 static struct ev_loop default_loop_struct;
1313 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1314
1315#else
1316
1317 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1318 #define VAR(name,decl) static decl;
1319 #include "ev_vars.h"
1320 #undef VAR
1321
1322 static int ev_default_loop_ptr;
1323
1324#endif
1325
1326#if EV_FEATURE_API
1327# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1328# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1329# define EV_INVOKE_PENDING invoke_cb (EV_A)
1330#else
1331# define EV_RELEASE_CB (void)0
1332# define EV_ACQUIRE_CB (void)0
1333# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1334#endif
1335
1336#define EVBREAK_RECURSE 0x80
1337
1338/*****************************************************************************/
1339
1340#ifndef EV_HAVE_EV_TIME
86ev_tstamp 1341ev_tstamp
87ev_time (void) 1342ev_time (void) EV_THROW
88{ 1343{
89#if HAVE_REALTIME 1344#if EV_USE_REALTIME
1345 if (expect_true (have_realtime))
1346 {
90 struct timespec ts; 1347 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 1348 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 1349 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 1350 }
1351#endif
1352
94 struct timeval tv; 1353 struct timeval tv;
95 gettimeofday (&tv, 0); 1354 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 1355 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif
98} 1356}
1357#endif
99 1358
100static ev_tstamp 1359inline_size ev_tstamp
101get_clock (void) 1360get_clock (void)
102{ 1361{
103#if HAVE_MONOTONIC 1362#if EV_USE_MONOTONIC
104 if (have_monotonic) 1363 if (expect_true (have_monotonic))
105 { 1364 {
106 struct timespec ts; 1365 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 1366 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 1367 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 1368 }
110#endif 1369#endif
111 1370
112 return ev_time (); 1371 return ev_time ();
113} 1372}
114 1373
115#define array_needsize(base,cur,cnt,init) \ 1374#if EV_MULTIPLICITY
116 if ((cnt) > cur) \ 1375ev_tstamp
117 { \ 1376ev_now (EV_P) EV_THROW
118 int newcnt = cur; \ 1377{
119 do \ 1378 return ev_rt_now;
120 { \ 1379}
121 newcnt = (newcnt << 1) | 4 & ~3; \ 1380#endif
122 } \ 1381
123 while ((cnt) > newcnt); \ 1382void
124 \ 1383ev_sleep (ev_tstamp delay) EV_THROW
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 1384{
126 init (base + cur, newcnt - cur); \ 1385 if (delay > 0.)
127 cur = newcnt; \
128 } 1386 {
1387#if EV_USE_NANOSLEEP
1388 struct timespec ts;
1389
1390 EV_TS_SET (ts, delay);
1391 nanosleep (&ts, 0);
1392#elif defined _WIN32
1393 Sleep ((unsigned long)(delay * 1e3));
1394#else
1395 struct timeval tv;
1396
1397 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1398 /* something not guaranteed by newer posix versions, but guaranteed */
1399 /* by older ones */
1400 EV_TV_SET (tv, delay);
1401 select (0, 0, 0, 0, &tv);
1402#endif
1403 }
1404}
129 1405
130/*****************************************************************************/ 1406/*****************************************************************************/
131 1407
1408#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1409
1410/* find a suitable new size for the given array, */
1411/* hopefully by rounding to a nice-to-malloc size */
1412inline_size int
1413array_nextsize (int elem, int cur, int cnt)
1414{
1415 int ncur = cur + 1;
1416
1417 do
1418 ncur <<= 1;
1419 while (cnt > ncur);
1420
1421 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1422 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1423 {
1424 ncur *= elem;
1425 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1426 ncur = ncur - sizeof (void *) * 4;
1427 ncur /= elem;
1428 }
1429
1430 return ncur;
1431}
1432
1433static void * noinline ecb_cold
1434array_realloc (int elem, void *base, int *cur, int cnt)
1435{
1436 *cur = array_nextsize (elem, *cur, cnt);
1437 return ev_realloc (base, elem * *cur);
1438}
1439
1440#define array_init_zero(base,count) \
1441 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1442
1443#define array_needsize(type,base,cur,cnt,init) \
1444 if (expect_false ((cnt) > (cur))) \
1445 { \
1446 int ecb_unused ocur_ = (cur); \
1447 (base) = (type *)array_realloc \
1448 (sizeof (type), (base), &(cur), (cnt)); \
1449 init ((base) + (ocur_), (cur) - ocur_); \
1450 }
1451
1452#if 0
1453#define array_slim(type,stem) \
1454 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1455 { \
1456 stem ## max = array_roundsize (stem ## cnt >> 1); \
1457 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1458 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1459 }
1460#endif
1461
1462#define array_free(stem, idx) \
1463 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1464
1465/*****************************************************************************/
1466
1467/* dummy callback for pending events */
1468static void noinline
1469pendingcb (EV_P_ ev_prepare *w, int revents)
1470{
1471}
1472
1473void noinline
1474ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1475{
1476 W w_ = (W)w;
1477 int pri = ABSPRI (w_);
1478
1479 if (expect_false (w_->pending))
1480 pendings [pri][w_->pending - 1].events |= revents;
1481 else
1482 {
1483 w_->pending = ++pendingcnt [pri];
1484 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1485 pendings [pri][w_->pending - 1].w = w_;
1486 pendings [pri][w_->pending - 1].events = revents;
1487 }
1488
1489 pendingpri = NUMPRI - 1;
1490}
1491
1492inline_speed void
1493feed_reverse (EV_P_ W w)
1494{
1495 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1496 rfeeds [rfeedcnt++] = w;
1497}
1498
1499inline_size void
1500feed_reverse_done (EV_P_ int revents)
1501{
1502 do
1503 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1504 while (rfeedcnt);
1505}
1506
1507inline_speed void
1508queue_events (EV_P_ W *events, int eventcnt, int type)
1509{
1510 int i;
1511
1512 for (i = 0; i < eventcnt; ++i)
1513 ev_feed_event (EV_A_ events [i], type);
1514}
1515
1516/*****************************************************************************/
1517
1518inline_speed void
1519fd_event_nocheck (EV_P_ int fd, int revents)
1520{
1521 ANFD *anfd = anfds + fd;
1522 ev_io *w;
1523
1524 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1525 {
1526 int ev = w->events & revents;
1527
1528 if (ev)
1529 ev_feed_event (EV_A_ (W)w, ev);
1530 }
1531}
1532
1533/* do not submit kernel events for fds that have reify set */
1534/* because that means they changed while we were polling for new events */
1535inline_speed void
1536fd_event (EV_P_ int fd, int revents)
1537{
1538 ANFD *anfd = anfds + fd;
1539
1540 if (expect_true (!anfd->reify))
1541 fd_event_nocheck (EV_A_ fd, revents);
1542}
1543
1544void
1545ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1546{
1547 if (fd >= 0 && fd < anfdmax)
1548 fd_event_nocheck (EV_A_ fd, revents);
1549}
1550
1551/* make sure the external fd watch events are in-sync */
1552/* with the kernel/libev internal state */
1553inline_size void
1554fd_reify (EV_P)
1555{
1556 int i;
1557
1558#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1559 for (i = 0; i < fdchangecnt; ++i)
1560 {
1561 int fd = fdchanges [i];
1562 ANFD *anfd = anfds + fd;
1563
1564 if (anfd->reify & EV__IOFDSET && anfd->head)
1565 {
1566 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1567
1568 if (handle != anfd->handle)
1569 {
1570 unsigned long arg;
1571
1572 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1573
1574 /* handle changed, but fd didn't - we need to do it in two steps */
1575 backend_modify (EV_A_ fd, anfd->events, 0);
1576 anfd->events = 0;
1577 anfd->handle = handle;
1578 }
1579 }
1580 }
1581#endif
1582
1583 for (i = 0; i < fdchangecnt; ++i)
1584 {
1585 int fd = fdchanges [i];
1586 ANFD *anfd = anfds + fd;
1587 ev_io *w;
1588
1589 unsigned char o_events = anfd->events;
1590 unsigned char o_reify = anfd->reify;
1591
1592 anfd->reify = 0;
1593
1594 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1595 {
1596 anfd->events = 0;
1597
1598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1599 anfd->events |= (unsigned char)w->events;
1600
1601 if (o_events != anfd->events)
1602 o_reify = EV__IOFDSET; /* actually |= */
1603 }
1604
1605 if (o_reify & EV__IOFDSET)
1606 backend_modify (EV_A_ fd, o_events, anfd->events);
1607 }
1608
1609 fdchangecnt = 0;
1610}
1611
1612/* something about the given fd changed */
1613inline_size void
1614fd_change (EV_P_ int fd, int flags)
1615{
1616 unsigned char reify = anfds [fd].reify;
1617 anfds [fd].reify |= flags;
1618
1619 if (expect_true (!reify))
1620 {
1621 ++fdchangecnt;
1622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1623 fdchanges [fdchangecnt - 1] = fd;
1624 }
1625}
1626
1627/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1628inline_speed void ecb_cold
1629fd_kill (EV_P_ int fd)
1630{
1631 ev_io *w;
1632
1633 while ((w = (ev_io *)anfds [fd].head))
1634 {
1635 ev_io_stop (EV_A_ w);
1636 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1637 }
1638}
1639
1640/* check whether the given fd is actually valid, for error recovery */
1641inline_size int ecb_cold
1642fd_valid (int fd)
1643{
1644#ifdef _WIN32
1645 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1646#else
1647 return fcntl (fd, F_GETFD) != -1;
1648#endif
1649}
1650
1651/* called on EBADF to verify fds */
1652static void noinline ecb_cold
1653fd_ebadf (EV_P)
1654{
1655 int fd;
1656
1657 for (fd = 0; fd < anfdmax; ++fd)
1658 if (anfds [fd].events)
1659 if (!fd_valid (fd) && errno == EBADF)
1660 fd_kill (EV_A_ fd);
1661}
1662
1663/* called on ENOMEM in select/poll to kill some fds and retry */
1664static void noinline ecb_cold
1665fd_enomem (EV_P)
1666{
1667 int fd;
1668
1669 for (fd = anfdmax; fd--; )
1670 if (anfds [fd].events)
1671 {
1672 fd_kill (EV_A_ fd);
1673 break;
1674 }
1675}
1676
1677/* usually called after fork if backend needs to re-arm all fds from scratch */
1678static void noinline
1679fd_rearm_all (EV_P)
1680{
1681 int fd;
1682
1683 for (fd = 0; fd < anfdmax; ++fd)
1684 if (anfds [fd].events)
1685 {
1686 anfds [fd].events = 0;
1687 anfds [fd].emask = 0;
1688 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1689 }
1690}
1691
1692/* used to prepare libev internal fd's */
1693/* this is not fork-safe */
1694inline_speed void
1695fd_intern (int fd)
1696{
1697#ifdef _WIN32
1698 unsigned long arg = 1;
1699 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1700#else
1701 fcntl (fd, F_SETFD, FD_CLOEXEC);
1702 fcntl (fd, F_SETFL, O_NONBLOCK);
1703#endif
1704}
1705
1706/*****************************************************************************/
1707
1708/*
1709 * the heap functions want a real array index. array index 0 is guaranteed to not
1710 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1711 * the branching factor of the d-tree.
1712 */
1713
1714/*
1715 * at the moment we allow libev the luxury of two heaps,
1716 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1717 * which is more cache-efficient.
1718 * the difference is about 5% with 50000+ watchers.
1719 */
1720#if EV_USE_4HEAP
1721
1722#define DHEAP 4
1723#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1724#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1725#define UPHEAP_DONE(p,k) ((p) == (k))
1726
1727/* away from the root */
1728inline_speed void
1729downheap (ANHE *heap, int N, int k)
1730{
1731 ANHE he = heap [k];
1732 ANHE *E = heap + N + HEAP0;
1733
1734 for (;;)
1735 {
1736 ev_tstamp minat;
1737 ANHE *minpos;
1738 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1739
1740 /* find minimum child */
1741 if (expect_true (pos + DHEAP - 1 < E))
1742 {
1743 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1745 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1746 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1747 }
1748 else if (pos < E)
1749 {
1750 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1751 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1752 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1753 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1754 }
1755 else
1756 break;
1757
1758 if (ANHE_at (he) <= minat)
1759 break;
1760
1761 heap [k] = *minpos;
1762 ev_active (ANHE_w (*minpos)) = k;
1763
1764 k = minpos - heap;
1765 }
1766
1767 heap [k] = he;
1768 ev_active (ANHE_w (he)) = k;
1769}
1770
1771#else /* 4HEAP */
1772
1773#define HEAP0 1
1774#define HPARENT(k) ((k) >> 1)
1775#define UPHEAP_DONE(p,k) (!(p))
1776
1777/* away from the root */
1778inline_speed void
1779downheap (ANHE *heap, int N, int k)
1780{
1781 ANHE he = heap [k];
1782
1783 for (;;)
1784 {
1785 int c = k << 1;
1786
1787 if (c >= N + HEAP0)
1788 break;
1789
1790 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1791 ? 1 : 0;
1792
1793 if (ANHE_at (he) <= ANHE_at (heap [c]))
1794 break;
1795
1796 heap [k] = heap [c];
1797 ev_active (ANHE_w (heap [k])) = k;
1798
1799 k = c;
1800 }
1801
1802 heap [k] = he;
1803 ev_active (ANHE_w (he)) = k;
1804}
1805#endif
1806
1807/* towards the root */
1808inline_speed void
1809upheap (ANHE *heap, int k)
1810{
1811 ANHE he = heap [k];
1812
1813 for (;;)
1814 {
1815 int p = HPARENT (k);
1816
1817 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1818 break;
1819
1820 heap [k] = heap [p];
1821 ev_active (ANHE_w (heap [k])) = k;
1822 k = p;
1823 }
1824
1825 heap [k] = he;
1826 ev_active (ANHE_w (he)) = k;
1827}
1828
1829/* move an element suitably so it is in a correct place */
1830inline_size void
1831adjustheap (ANHE *heap, int N, int k)
1832{
1833 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1834 upheap (heap, k);
1835 else
1836 downheap (heap, N, k);
1837}
1838
1839/* rebuild the heap: this function is used only once and executed rarely */
1840inline_size void
1841reheap (ANHE *heap, int N)
1842{
1843 int i;
1844
1845 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1846 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1847 for (i = 0; i < N; ++i)
1848 upheap (heap, i + HEAP0);
1849}
1850
1851/*****************************************************************************/
1852
1853/* associate signal watchers to a signal signal */
132typedef struct 1854typedef struct
133{ 1855{
134 struct ev_io *head; 1856 EV_ATOMIC_T pending;
135 unsigned char wev, rev; /* want, received event set */ 1857#if EV_MULTIPLICITY
136} ANFD; 1858 EV_P;
1859#endif
1860 WL head;
1861} ANSIG;
137 1862
138static ANFD *anfds; 1863static ANSIG signals [EV_NSIG - 1];
139static int anfdmax;
140 1864
141static int *fdchanges; 1865/*****************************************************************************/
142static int fdchangemax, fdchangecnt;
143 1866
1867#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1868
1869static void noinline ecb_cold
1870evpipe_init (EV_P)
1871{
1872 if (!ev_is_active (&pipe_w))
1873 {
1874# if EV_USE_EVENTFD
1875 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1876 if (evfd < 0 && errno == EINVAL)
1877 evfd = eventfd (0, 0);
1878
1879 if (evfd >= 0)
1880 {
1881 evpipe [0] = -1;
1882 fd_intern (evfd); /* doing it twice doesn't hurt */
1883 ev_io_set (&pipe_w, evfd, EV_READ);
1884 }
1885 else
1886# endif
1887 {
1888 while (pipe (evpipe))
1889 ev_syserr ("(libev) error creating signal/async pipe");
1890
1891 fd_intern (evpipe [0]);
1892 fd_intern (evpipe [1]);
1893 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1894 }
1895
1896 ev_io_start (EV_A_ &pipe_w);
1897 ev_unref (EV_A); /* watcher should not keep loop alive */
1898 }
1899}
1900
1901inline_speed void
1902evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1903{
1904 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1905
1906 if (expect_true (*flag))
1907 return;
1908
1909 *flag = 1;
1910 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1911
1912 pipe_write_skipped = 1;
1913
1914 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1915
1916 if (pipe_write_wanted)
1917 {
1918 int old_errno;
1919
1920 pipe_write_skipped = 0;
1921 ECB_MEMORY_FENCE_RELEASE;
1922
1923 old_errno = errno; /* save errno because write will clobber it */
1924
1925#if EV_USE_EVENTFD
1926 if (evfd >= 0)
1927 {
1928 uint64_t counter = 1;
1929 write (evfd, &counter, sizeof (uint64_t));
1930 }
1931 else
1932#endif
1933 {
1934#ifdef _WIN32
1935 WSABUF buf;
1936 DWORD sent;
1937 buf.buf = &buf;
1938 buf.len = 1;
1939 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1940#else
1941 write (evpipe [1], &(evpipe [1]), 1);
1942#endif
1943 }
1944
1945 errno = old_errno;
1946 }
1947}
1948
1949/* called whenever the libev signal pipe */
1950/* got some events (signal, async) */
144static void 1951static void
145anfds_init (ANFD *base, int count) 1952pipecb (EV_P_ ev_io *iow, int revents)
146{ 1953{
147 while (count--) 1954 int i;
148 { 1955
149 base->head = 0; 1956 if (revents & EV_READ)
150 base->wev = base->rev = EV_NONE;
151 ++base;
152 } 1957 {
153} 1958#if EV_USE_EVENTFD
1959 if (evfd >= 0)
1960 {
1961 uint64_t counter;
1962 read (evfd, &counter, sizeof (uint64_t));
1963 }
1964 else
1965#endif
1966 {
1967 char dummy[4];
1968#ifdef _WIN32
1969 WSABUF buf;
1970 DWORD recvd;
1971 DWORD flags = 0;
1972 buf.buf = dummy;
1973 buf.len = sizeof (dummy);
1974 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1975#else
1976 read (evpipe [0], &dummy, sizeof (dummy));
1977#endif
1978 }
1979 }
154 1980
155typedef struct 1981 pipe_write_skipped = 0;
156{
157 W w;
158 int events;
159} ANPENDING;
160 1982
161static ANPENDING *pendings; 1983 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
162static int pendingmax, pendingcnt; 1984
1985#if EV_SIGNAL_ENABLE
1986 if (sig_pending)
1987 {
1988 sig_pending = 0;
1989
1990 ECB_MEMORY_FENCE;
1991
1992 for (i = EV_NSIG - 1; i--; )
1993 if (expect_false (signals [i].pending))
1994 ev_feed_signal_event (EV_A_ i + 1);
1995 }
1996#endif
1997
1998#if EV_ASYNC_ENABLE
1999 if (async_pending)
2000 {
2001 async_pending = 0;
2002
2003 ECB_MEMORY_FENCE;
2004
2005 for (i = asynccnt; i--; )
2006 if (asyncs [i]->sent)
2007 {
2008 asyncs [i]->sent = 0;
2009 ECB_MEMORY_FENCE_RELEASE;
2010 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2011 }
2012 }
2013#endif
2014}
2015
2016/*****************************************************************************/
2017
2018void
2019ev_feed_signal (int signum) EV_THROW
2020{
2021#if EV_MULTIPLICITY
2022 EV_P = signals [signum - 1].loop;
2023
2024 if (!EV_A)
2025 return;
2026#endif
2027
2028 if (!ev_active (&pipe_w))
2029 return;
2030
2031 signals [signum - 1].pending = 1;
2032 evpipe_write (EV_A_ &sig_pending);
2033}
163 2034
164static void 2035static void
165event (W w, int events) 2036ev_sighandler (int signum)
166{ 2037{
167 if (w->active) 2038#ifdef _WIN32
168 { 2039 signal (signum, ev_sighandler);
169 w->pending = ++pendingcnt; 2040#endif
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events;
173 }
174}
175 2041
2042 ev_feed_signal (signum);
2043}
2044
2045void noinline
2046ev_feed_signal_event (EV_P_ int signum) EV_THROW
2047{
2048 WL w;
2049
2050 if (expect_false (signum <= 0 || signum > EV_NSIG))
2051 return;
2052
2053 --signum;
2054
2055#if EV_MULTIPLICITY
2056 /* it is permissible to try to feed a signal to the wrong loop */
2057 /* or, likely more useful, feeding a signal nobody is waiting for */
2058
2059 if (expect_false (signals [signum].loop != EV_A))
2060 return;
2061#endif
2062
2063 signals [signum].pending = 0;
2064 ECB_MEMORY_FENCE_RELEASE;
2065
2066 for (w = signals [signum].head; w; w = w->next)
2067 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2068}
2069
2070#if EV_USE_SIGNALFD
176static void 2071static void
177fd_event (int fd, int events) 2072sigfdcb (EV_P_ ev_io *iow, int revents)
178{ 2073{
179 ANFD *anfd = anfds + fd; 2074 struct signalfd_siginfo si[2], *sip; /* these structs are big */
180 struct ev_io *w;
181 2075
182 for (w = anfd->head; w; w = w->next) 2076 for (;;)
183 {
184 int ev = w->events & events;
185
186 if (ev)
187 event ((W)w, ev);
188 } 2077 {
189} 2078 ssize_t res = read (sigfd, si, sizeof (si));
190 2079
191static void 2080 /* not ISO-C, as res might be -1, but works with SuS */
192queue_events (W *events, int eventcnt, int type) 2081 for (sip = si; (char *)sip < (char *)si + res; ++sip)
193{ 2082 ev_feed_signal_event (EV_A_ sip->ssi_signo);
194 int i;
195 2083
196 for (i = 0; i < eventcnt; ++i) 2084 if (res < (ssize_t)sizeof (si))
197 event (events [i], type); 2085 break;
2086 }
198} 2087}
2088#endif
199 2089
200/* called on EBADF to verify fds */ 2090#endif
201static void
202fd_recheck (void)
203{
204 int fd;
205
206 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head)
210 {
211 event ((W)anfds [fd].head, EV_ERROR);
212 evio_stop (anfds [fd].head);
213 }
214}
215 2091
216/*****************************************************************************/ 2092/*****************************************************************************/
217 2093
218static struct ev_timer **timers; 2094#if EV_CHILD_ENABLE
219static int timermax, timercnt; 2095static WL childs [EV_PID_HASHSIZE];
220 2096
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void
225upheap (WT *timers, int k)
226{
227 WT w = timers [k];
228
229 while (k && timers [k >> 1]->at > w->at)
230 {
231 timers [k] = timers [k >> 1];
232 timers [k]->active = k + 1;
233 k >>= 1;
234 }
235
236 timers [k] = w;
237 timers [k]->active = k + 1;
238
239}
240
241static void
242downheap (WT *timers, int N, int k)
243{
244 WT w = timers [k];
245
246 while (k < (N >> 1))
247 {
248 int j = k << 1;
249
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
251 ++j;
252
253 if (w->at <= timers [j]->at)
254 break;
255
256 timers [k] = timers [j];
257 timers [k]->active = k + 1;
258 k = j;
259 }
260
261 timers [k] = w;
262 timers [k]->active = k + 1;
263}
264
265/*****************************************************************************/
266
267typedef struct
268{
269 struct ev_signal *head;
270 sig_atomic_t gotsig;
271} ANSIG;
272
273static ANSIG *signals;
274static int signalmax;
275
276static int sigpipe [2];
277static sig_atomic_t gotsig;
278static struct ev_io sigev;
279
280static void
281signals_init (ANSIG *base, int count)
282{
283 while (count--)
284 {
285 base->head = 0;
286 base->gotsig = 0;
287 ++base;
288 }
289}
290
291static void
292sighandler (int signum)
293{
294 signals [signum - 1].gotsig = 1;
295
296 if (!gotsig)
297 {
298 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1);
300 }
301}
302
303static void
304sigcb (struct ev_io *iow, int revents)
305{
306 struct ev_signal *w;
307 int sig;
308
309 gotsig = 0;
310 read (sigpipe [0], &revents, 1);
311
312 for (sig = signalmax; sig--; )
313 if (signals [sig].gotsig)
314 {
315 signals [sig].gotsig = 0;
316
317 for (w = signals [sig].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL);
319 }
320}
321
322static void
323siginit (void)
324{
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327
328 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
331
332 evio_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev);
334}
335
336/*****************************************************************************/
337
338static struct ev_idle **idles;
339static int idlemax, idlecnt;
340
341static struct ev_prepare **prepares;
342static int preparemax, preparecnt;
343
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348
349static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 2097static ev_signal childev;
2098
2099#ifndef WIFCONTINUED
2100# define WIFCONTINUED(status) 0
2101#endif
2102
2103/* handle a single child status event */
2104inline_speed void
2105child_reap (EV_P_ int chain, int pid, int status)
2106{
2107 ev_child *w;
2108 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2109
2110 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2111 {
2112 if ((w->pid == pid || !w->pid)
2113 && (!traced || (w->flags & 1)))
2114 {
2115 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2116 w->rpid = pid;
2117 w->rstatus = status;
2118 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2119 }
2120 }
2121}
351 2122
352#ifndef WCONTINUED 2123#ifndef WCONTINUED
353# define WCONTINUED 0 2124# define WCONTINUED 0
354#endif 2125#endif
355 2126
2127/* called on sigchld etc., calls waitpid */
356static void 2128static void
357childcb (struct ev_signal *sw, int revents) 2129childcb (EV_P_ ev_signal *sw, int revents)
358{ 2130{
359 struct ev_child *w;
360 int pid, status; 2131 int pid, status;
361 2132
2133 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 2134 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 2135 if (!WCONTINUED
364 if (w->pid == pid || w->pid == -1) 2136 || errno != EINVAL
2137 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2138 return;
2139
2140 /* make sure we are called again until all children have been reaped */
2141 /* we need to do it this way so that the callback gets called before we continue */
2142 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2143
2144 child_reap (EV_A_ pid, pid, status);
2145 if ((EV_PID_HASHSIZE) > 1)
2146 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2147}
2148
2149#endif
2150
2151/*****************************************************************************/
2152
2153#if EV_USE_IOCP
2154# include "ev_iocp.c"
2155#endif
2156#if EV_USE_PORT
2157# include "ev_port.c"
2158#endif
2159#if EV_USE_KQUEUE
2160# include "ev_kqueue.c"
2161#endif
2162#if EV_USE_EPOLL
2163# include "ev_epoll.c"
2164#endif
2165#if EV_USE_POLL
2166# include "ev_poll.c"
2167#endif
2168#if EV_USE_SELECT
2169# include "ev_select.c"
2170#endif
2171
2172int ecb_cold
2173ev_version_major (void) EV_THROW
2174{
2175 return EV_VERSION_MAJOR;
2176}
2177
2178int ecb_cold
2179ev_version_minor (void) EV_THROW
2180{
2181 return EV_VERSION_MINOR;
2182}
2183
2184/* return true if we are running with elevated privileges and should ignore env variables */
2185int inline_size ecb_cold
2186enable_secure (void)
2187{
2188#ifdef _WIN32
2189 return 0;
2190#else
2191 return getuid () != geteuid ()
2192 || getgid () != getegid ();
2193#endif
2194}
2195
2196unsigned int ecb_cold
2197ev_supported_backends (void) EV_THROW
2198{
2199 unsigned int flags = 0;
2200
2201 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2202 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2203 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2204 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2205 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2206
2207 return flags;
2208}
2209
2210unsigned int ecb_cold
2211ev_recommended_backends (void) EV_THROW
2212{
2213 unsigned int flags = ev_supported_backends ();
2214
2215#ifndef __NetBSD__
2216 /* kqueue is borked on everything but netbsd apparently */
2217 /* it usually doesn't work correctly on anything but sockets and pipes */
2218 flags &= ~EVBACKEND_KQUEUE;
2219#endif
2220#ifdef __APPLE__
2221 /* only select works correctly on that "unix-certified" platform */
2222 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2223 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2224#endif
2225#ifdef __FreeBSD__
2226 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2227#endif
2228
2229 return flags;
2230}
2231
2232unsigned int ecb_cold
2233ev_embeddable_backends (void) EV_THROW
2234{
2235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2236
2237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2238 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2239 flags &= ~EVBACKEND_EPOLL;
2240
2241 return flags;
2242}
2243
2244unsigned int
2245ev_backend (EV_P) EV_THROW
2246{
2247 return backend;
2248}
2249
2250#if EV_FEATURE_API
2251unsigned int
2252ev_iteration (EV_P) EV_THROW
2253{
2254 return loop_count;
2255}
2256
2257unsigned int
2258ev_depth (EV_P) EV_THROW
2259{
2260 return loop_depth;
2261}
2262
2263void
2264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2265{
2266 io_blocktime = interval;
2267}
2268
2269void
2270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2271{
2272 timeout_blocktime = interval;
2273}
2274
2275void
2276ev_set_userdata (EV_P_ void *data) EV_THROW
2277{
2278 userdata = data;
2279}
2280
2281void *
2282ev_userdata (EV_P) EV_THROW
2283{
2284 return userdata;
2285}
2286
2287void
2288ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2289{
2290 invoke_cb = invoke_pending_cb;
2291}
2292
2293void
2294ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2295{
2296 release_cb = release;
2297 acquire_cb = acquire;
2298}
2299#endif
2300
2301/* initialise a loop structure, must be zero-initialised */
2302static void noinline ecb_cold
2303loop_init (EV_P_ unsigned int flags) EV_THROW
2304{
2305 if (!backend)
2306 {
2307 origflags = flags;
2308
2309#if EV_USE_REALTIME
2310 if (!have_realtime)
365 { 2311 {
366 w->status = status; 2312 struct timespec ts;
367 event ((W)w, EV_CHILD); 2313
2314 if (!clock_gettime (CLOCK_REALTIME, &ts))
2315 have_realtime = 1;
368 } 2316 }
2317#endif
2318
2319#if EV_USE_MONOTONIC
2320 if (!have_monotonic)
2321 {
2322 struct timespec ts;
2323
2324 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2325 have_monotonic = 1;
2326 }
2327#endif
2328
2329 /* pid check not overridable via env */
2330#ifndef _WIN32
2331 if (flags & EVFLAG_FORKCHECK)
2332 curpid = getpid ();
2333#endif
2334
2335 if (!(flags & EVFLAG_NOENV)
2336 && !enable_secure ()
2337 && getenv ("LIBEV_FLAGS"))
2338 flags = atoi (getenv ("LIBEV_FLAGS"));
2339
2340 ev_rt_now = ev_time ();
2341 mn_now = get_clock ();
2342 now_floor = mn_now;
2343 rtmn_diff = ev_rt_now - mn_now;
2344#if EV_FEATURE_API
2345 invoke_cb = ev_invoke_pending;
2346#endif
2347
2348 io_blocktime = 0.;
2349 timeout_blocktime = 0.;
2350 backend = 0;
2351 backend_fd = -1;
2352 sig_pending = 0;
2353#if EV_ASYNC_ENABLE
2354 async_pending = 0;
2355#endif
2356 pipe_write_skipped = 0;
2357 pipe_write_wanted = 0;
2358#if EV_USE_INOTIFY
2359 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2360#endif
2361#if EV_USE_SIGNALFD
2362 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2363#endif
2364
2365 if (!(flags & EVBACKEND_MASK))
2366 flags |= ev_recommended_backends ();
2367
2368#if EV_USE_IOCP
2369 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2370#endif
2371#if EV_USE_PORT
2372 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2373#endif
2374#if EV_USE_KQUEUE
2375 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2376#endif
2377#if EV_USE_EPOLL
2378 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2379#endif
2380#if EV_USE_POLL
2381 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2382#endif
2383#if EV_USE_SELECT
2384 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2385#endif
2386
2387 ev_prepare_init (&pending_w, pendingcb);
2388
2389#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2390 ev_init (&pipe_w, pipecb);
2391 ev_set_priority (&pipe_w, EV_MAXPRI);
2392#endif
2393 }
2394}
2395
2396/* free up a loop structure */
2397void ecb_cold
2398ev_loop_destroy (EV_P)
2399{
2400 int i;
2401
2402#if EV_MULTIPLICITY
2403 /* mimic free (0) */
2404 if (!EV_A)
2405 return;
2406#endif
2407
2408#if EV_CLEANUP_ENABLE
2409 /* queue cleanup watchers (and execute them) */
2410 if (expect_false (cleanupcnt))
2411 {
2412 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2413 EV_INVOKE_PENDING;
2414 }
2415#endif
2416
2417#if EV_CHILD_ENABLE
2418 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2419 {
2420 ev_ref (EV_A); /* child watcher */
2421 ev_signal_stop (EV_A_ &childev);
2422 }
2423#endif
2424
2425 if (ev_is_active (&pipe_w))
2426 {
2427 /*ev_ref (EV_A);*/
2428 /*ev_io_stop (EV_A_ &pipe_w);*/
2429
2430#if EV_USE_EVENTFD
2431 if (evfd >= 0)
2432 close (evfd);
2433#endif
2434
2435 if (evpipe [0] >= 0)
2436 {
2437 EV_WIN32_CLOSE_FD (evpipe [0]);
2438 EV_WIN32_CLOSE_FD (evpipe [1]);
2439 }
2440 }
2441
2442#if EV_USE_SIGNALFD
2443 if (ev_is_active (&sigfd_w))
2444 close (sigfd);
2445#endif
2446
2447#if EV_USE_INOTIFY
2448 if (fs_fd >= 0)
2449 close (fs_fd);
2450#endif
2451
2452 if (backend_fd >= 0)
2453 close (backend_fd);
2454
2455#if EV_USE_IOCP
2456 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2457#endif
2458#if EV_USE_PORT
2459 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2460#endif
2461#if EV_USE_KQUEUE
2462 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2463#endif
2464#if EV_USE_EPOLL
2465 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2466#endif
2467#if EV_USE_POLL
2468 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2469#endif
2470#if EV_USE_SELECT
2471 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2472#endif
2473
2474 for (i = NUMPRI; i--; )
2475 {
2476 array_free (pending, [i]);
2477#if EV_IDLE_ENABLE
2478 array_free (idle, [i]);
2479#endif
2480 }
2481
2482 ev_free (anfds); anfds = 0; anfdmax = 0;
2483
2484 /* have to use the microsoft-never-gets-it-right macro */
2485 array_free (rfeed, EMPTY);
2486 array_free (fdchange, EMPTY);
2487 array_free (timer, EMPTY);
2488#if EV_PERIODIC_ENABLE
2489 array_free (periodic, EMPTY);
2490#endif
2491#if EV_FORK_ENABLE
2492 array_free (fork, EMPTY);
2493#endif
2494#if EV_CLEANUP_ENABLE
2495 array_free (cleanup, EMPTY);
2496#endif
2497 array_free (prepare, EMPTY);
2498 array_free (check, EMPTY);
2499#if EV_ASYNC_ENABLE
2500 array_free (async, EMPTY);
2501#endif
2502
2503 backend = 0;
2504
2505#if EV_MULTIPLICITY
2506 if (ev_is_default_loop (EV_A))
2507#endif
2508 ev_default_loop_ptr = 0;
2509#if EV_MULTIPLICITY
2510 else
2511 ev_free (EV_A);
2512#endif
2513}
2514
2515#if EV_USE_INOTIFY
2516inline_size void infy_fork (EV_P);
2517#endif
2518
2519inline_size void
2520loop_fork (EV_P)
2521{
2522#if EV_USE_PORT
2523 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2524#endif
2525#if EV_USE_KQUEUE
2526 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2527#endif
2528#if EV_USE_EPOLL
2529 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2530#endif
2531#if EV_USE_INOTIFY
2532 infy_fork (EV_A);
2533#endif
2534
2535 if (ev_is_active (&pipe_w))
2536 {
2537 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2538
2539 ev_ref (EV_A);
2540 ev_io_stop (EV_A_ &pipe_w);
2541
2542#if EV_USE_EVENTFD
2543 if (evfd >= 0)
2544 close (evfd);
2545#endif
2546
2547 if (evpipe [0] >= 0)
2548 {
2549 EV_WIN32_CLOSE_FD (evpipe [0]);
2550 EV_WIN32_CLOSE_FD (evpipe [1]);
2551 }
2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2554 evpipe_init (EV_A);
2555 /* iterate over everything, in case we missed something before */
2556 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2557#endif
2558 }
2559
2560 postfork = 0;
2561}
2562
2563#if EV_MULTIPLICITY
2564
2565struct ev_loop * ecb_cold
2566ev_loop_new (unsigned int flags) EV_THROW
2567{
2568 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2569
2570 memset (EV_A, 0, sizeof (struct ev_loop));
2571 loop_init (EV_A_ flags);
2572
2573 if (ev_backend (EV_A))
2574 return EV_A;
2575
2576 ev_free (EV_A);
2577 return 0;
2578}
2579
2580#endif /* multiplicity */
2581
2582#if EV_VERIFY
2583static void noinline ecb_cold
2584verify_watcher (EV_P_ W w)
2585{
2586 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2587
2588 if (w->pending)
2589 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2590}
2591
2592static void noinline ecb_cold
2593verify_heap (EV_P_ ANHE *heap, int N)
2594{
2595 int i;
2596
2597 for (i = HEAP0; i < N + HEAP0; ++i)
2598 {
2599 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2600 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2601 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2602
2603 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2604 }
2605}
2606
2607static void noinline ecb_cold
2608array_verify (EV_P_ W *ws, int cnt)
2609{
2610 while (cnt--)
2611 {
2612 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2613 verify_watcher (EV_A_ ws [cnt]);
2614 }
2615}
2616#endif
2617
2618#if EV_FEATURE_API
2619void ecb_cold
2620ev_verify (EV_P) EV_THROW
2621{
2622#if EV_VERIFY
2623 int i;
2624 WL w, w2;
2625
2626 assert (activecnt >= -1);
2627
2628 assert (fdchangemax >= fdchangecnt);
2629 for (i = 0; i < fdchangecnt; ++i)
2630 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2631
2632 assert (anfdmax >= 0);
2633 for (i = 0; i < anfdmax; ++i)
2634 {
2635 int j = 0;
2636
2637 for (w = w2 = anfds [i].head; w; w = w->next)
2638 {
2639 verify_watcher (EV_A_ (W)w);
2640
2641 if (j++ & 1)
2642 {
2643 assert (("libev: io watcher list contains a loop", w != w2));
2644 w2 = w2->next;
2645 }
2646
2647 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2648 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2649 }
2650 }
2651
2652 assert (timermax >= timercnt);
2653 verify_heap (EV_A_ timers, timercnt);
2654
2655#if EV_PERIODIC_ENABLE
2656 assert (periodicmax >= periodiccnt);
2657 verify_heap (EV_A_ periodics, periodiccnt);
2658#endif
2659
2660 for (i = NUMPRI; i--; )
2661 {
2662 assert (pendingmax [i] >= pendingcnt [i]);
2663#if EV_IDLE_ENABLE
2664 assert (idleall >= 0);
2665 assert (idlemax [i] >= idlecnt [i]);
2666 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2667#endif
2668 }
2669
2670#if EV_FORK_ENABLE
2671 assert (forkmax >= forkcnt);
2672 array_verify (EV_A_ (W *)forks, forkcnt);
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 assert (cleanupmax >= cleanupcnt);
2677 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2678#endif
2679
2680#if EV_ASYNC_ENABLE
2681 assert (asyncmax >= asynccnt);
2682 array_verify (EV_A_ (W *)asyncs, asynccnt);
2683#endif
2684
2685#if EV_PREPARE_ENABLE
2686 assert (preparemax >= preparecnt);
2687 array_verify (EV_A_ (W *)prepares, preparecnt);
2688#endif
2689
2690#if EV_CHECK_ENABLE
2691 assert (checkmax >= checkcnt);
2692 array_verify (EV_A_ (W *)checks, checkcnt);
2693#endif
2694
2695# if 0
2696#if EV_CHILD_ENABLE
2697 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2698 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2699#endif
2700# endif
2701#endif
2702}
2703#endif
2704
2705#if EV_MULTIPLICITY
2706struct ev_loop * ecb_cold
2707#else
2708int
2709#endif
2710ev_default_loop (unsigned int flags) EV_THROW
2711{
2712 if (!ev_default_loop_ptr)
2713 {
2714#if EV_MULTIPLICITY
2715 EV_P = ev_default_loop_ptr = &default_loop_struct;
2716#else
2717 ev_default_loop_ptr = 1;
2718#endif
2719
2720 loop_init (EV_A_ flags);
2721
2722 if (ev_backend (EV_A))
2723 {
2724#if EV_CHILD_ENABLE
2725 ev_signal_init (&childev, childcb, SIGCHLD);
2726 ev_set_priority (&childev, EV_MAXPRI);
2727 ev_signal_start (EV_A_ &childev);
2728 ev_unref (EV_A); /* child watcher should not keep loop alive */
2729#endif
2730 }
2731 else
2732 ev_default_loop_ptr = 0;
2733 }
2734
2735 return ev_default_loop_ptr;
2736}
2737
2738void
2739ev_loop_fork (EV_P) EV_THROW
2740{
2741 postfork = 1;
369} 2742}
370 2743
371/*****************************************************************************/ 2744/*****************************************************************************/
372 2745
373#if HAVE_EPOLL 2746void
374# include "ev_epoll.c" 2747ev_invoke (EV_P_ void *w, int revents)
2748{
2749 EV_CB_INVOKE ((W)w, revents);
2750}
2751
2752unsigned int
2753ev_pending_count (EV_P) EV_THROW
2754{
2755 int pri;
2756 unsigned int count = 0;
2757
2758 for (pri = NUMPRI; pri--; )
2759 count += pendingcnt [pri];
2760
2761 return count;
2762}
2763
2764void noinline
2765ev_invoke_pending (EV_P)
2766{
2767 pendingpri = NUMPRI;
2768
2769 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2770 {
2771 --pendingpri;
2772
2773 while (pendingcnt [pendingpri])
2774 {
2775 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2776
2777 p->w->pending = 0;
2778 EV_CB_INVOKE (p->w, p->events);
2779 EV_FREQUENT_CHECK;
2780 }
2781 }
2782}
2783
2784#if EV_IDLE_ENABLE
2785/* make idle watchers pending. this handles the "call-idle */
2786/* only when higher priorities are idle" logic */
2787inline_size void
2788idle_reify (EV_P)
2789{
2790 if (expect_false (idleall))
2791 {
2792 int pri;
2793
2794 for (pri = NUMPRI; pri--; )
2795 {
2796 if (pendingcnt [pri])
2797 break;
2798
2799 if (idlecnt [pri])
2800 {
2801 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2802 break;
2803 }
2804 }
2805 }
2806}
2807#endif
2808
2809/* make timers pending */
2810inline_size void
2811timers_reify (EV_P)
2812{
2813 EV_FREQUENT_CHECK;
2814
2815 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2816 {
2817 do
2818 {
2819 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2820
2821 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2822
2823 /* first reschedule or stop timer */
2824 if (w->repeat)
2825 {
2826 ev_at (w) += w->repeat;
2827 if (ev_at (w) < mn_now)
2828 ev_at (w) = mn_now;
2829
2830 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2831
2832 ANHE_at_cache (timers [HEAP0]);
2833 downheap (timers, timercnt, HEAP0);
2834 }
2835 else
2836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2837
2838 EV_FREQUENT_CHECK;
2839 feed_reverse (EV_A_ (W)w);
2840 }
2841 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2842
2843 feed_reverse_done (EV_A_ EV_TIMER);
2844 }
2845}
2846
2847#if EV_PERIODIC_ENABLE
2848
2849static void noinline
2850periodic_recalc (EV_P_ ev_periodic *w)
2851{
2852 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2853 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2854
2855 /* the above almost always errs on the low side */
2856 while (at <= ev_rt_now)
2857 {
2858 ev_tstamp nat = at + w->interval;
2859
2860 /* when resolution fails us, we use ev_rt_now */
2861 if (expect_false (nat == at))
2862 {
2863 at = ev_rt_now;
2864 break;
2865 }
2866
2867 at = nat;
2868 }
2869
2870 ev_at (w) = at;
2871}
2872
2873/* make periodics pending */
2874inline_size void
2875periodics_reify (EV_P)
2876{
2877 EV_FREQUENT_CHECK;
2878
2879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2880 {
2881 do
2882 {
2883 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2884
2885 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2886
2887 /* first reschedule or stop timer */
2888 if (w->reschedule_cb)
2889 {
2890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2891
2892 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2893
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else if (w->interval)
2898 {
2899 periodic_recalc (EV_A_ w);
2900 ANHE_at_cache (periodics [HEAP0]);
2901 downheap (periodics, periodiccnt, HEAP0);
2902 }
2903 else
2904 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2905
2906 EV_FREQUENT_CHECK;
2907 feed_reverse (EV_A_ (W)w);
2908 }
2909 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2910
2911 feed_reverse_done (EV_A_ EV_PERIODIC);
2912 }
2913}
2914
2915/* simply recalculate all periodics */
2916/* TODO: maybe ensure that at least one event happens when jumping forward? */
2917static void noinline ecb_cold
2918periodics_reschedule (EV_P)
2919{
2920 int i;
2921
2922 /* adjust periodics after time jump */
2923 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2924 {
2925 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2926
2927 if (w->reschedule_cb)
2928 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2929 else if (w->interval)
2930 periodic_recalc (EV_A_ w);
2931
2932 ANHE_at_cache (periodics [i]);
2933 }
2934
2935 reheap (periodics, periodiccnt);
2936}
2937#endif
2938
2939/* adjust all timers by a given offset */
2940static void noinline ecb_cold
2941timers_reschedule (EV_P_ ev_tstamp adjust)
2942{
2943 int i;
2944
2945 for (i = 0; i < timercnt; ++i)
2946 {
2947 ANHE *he = timers + i + HEAP0;
2948 ANHE_w (*he)->at += adjust;
2949 ANHE_at_cache (*he);
2950 }
2951}
2952
2953/* fetch new monotonic and realtime times from the kernel */
2954/* also detect if there was a timejump, and act accordingly */
2955inline_speed void
2956time_update (EV_P_ ev_tstamp max_block)
2957{
2958#if EV_USE_MONOTONIC
2959 if (expect_true (have_monotonic))
2960 {
2961 int i;
2962 ev_tstamp odiff = rtmn_diff;
2963
2964 mn_now = get_clock ();
2965
2966 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2967 /* interpolate in the meantime */
2968 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2969 {
2970 ev_rt_now = rtmn_diff + mn_now;
2971 return;
2972 }
2973
2974 now_floor = mn_now;
2975 ev_rt_now = ev_time ();
2976
2977 /* loop a few times, before making important decisions.
2978 * on the choice of "4": one iteration isn't enough,
2979 * in case we get preempted during the calls to
2980 * ev_time and get_clock. a second call is almost guaranteed
2981 * to succeed in that case, though. and looping a few more times
2982 * doesn't hurt either as we only do this on time-jumps or
2983 * in the unlikely event of having been preempted here.
2984 */
2985 for (i = 4; --i; )
2986 {
2987 ev_tstamp diff;
2988 rtmn_diff = ev_rt_now - mn_now;
2989
2990 diff = odiff - rtmn_diff;
2991
2992 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2993 return; /* all is well */
2994
2995 ev_rt_now = ev_time ();
2996 mn_now = get_clock ();
2997 now_floor = mn_now;
2998 }
2999
3000 /* no timer adjustment, as the monotonic clock doesn't jump */
3001 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3002# if EV_PERIODIC_ENABLE
3003 periodics_reschedule (EV_A);
375#endif 3004# endif
376#if HAVE_SELECT 3005 }
377# include "ev_select.c" 3006 else
378#endif 3007#endif
3008 {
3009 ev_rt_now = ev_time ();
3010
3011 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3012 {
3013 /* adjust timers. this is easy, as the offset is the same for all of them */
3014 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3015#if EV_PERIODIC_ENABLE
3016 periodics_reschedule (EV_A);
3017#endif
3018 }
3019
3020 mn_now = ev_rt_now;
3021 }
3022}
379 3023
380int 3024int
381ev_version_major (void) 3025ev_run (EV_P_ int flags)
382{ 3026{
383 return EV_VERSION_MAJOR; 3027#if EV_FEATURE_API
3028 ++loop_depth;
3029#endif
3030
3031 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3032
3033 loop_done = EVBREAK_CANCEL;
3034
3035 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3036
3037 do
3038 {
3039#if EV_VERIFY >= 2
3040 ev_verify (EV_A);
3041#endif
3042
3043#ifndef _WIN32
3044 if (expect_false (curpid)) /* penalise the forking check even more */
3045 if (expect_false (getpid () != curpid))
3046 {
3047 curpid = getpid ();
3048 postfork = 1;
3049 }
3050#endif
3051
3052#if EV_FORK_ENABLE
3053 /* we might have forked, so queue fork handlers */
3054 if (expect_false (postfork))
3055 if (forkcnt)
3056 {
3057 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3058 EV_INVOKE_PENDING;
3059 }
3060#endif
3061
3062#if EV_PREPARE_ENABLE
3063 /* queue prepare watchers (and execute them) */
3064 if (expect_false (preparecnt))
3065 {
3066 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3067 EV_INVOKE_PENDING;
3068 }
3069#endif
3070
3071 if (expect_false (loop_done))
3072 break;
3073
3074 /* we might have forked, so reify kernel state if necessary */
3075 if (expect_false (postfork))
3076 loop_fork (EV_A);
3077
3078 /* update fd-related kernel structures */
3079 fd_reify (EV_A);
3080
3081 /* calculate blocking time */
3082 {
3083 ev_tstamp waittime = 0.;
3084 ev_tstamp sleeptime = 0.;
3085
3086 /* remember old timestamp for io_blocktime calculation */
3087 ev_tstamp prev_mn_now = mn_now;
3088
3089 /* update time to cancel out callback processing overhead */
3090 time_update (EV_A_ 1e100);
3091
3092 /* from now on, we want a pipe-wake-up */
3093 pipe_write_wanted = 1;
3094
3095 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3096
3097 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3098 {
3099 waittime = MAX_BLOCKTIME;
3100
3101 if (timercnt)
3102 {
3103 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3104 if (waittime > to) waittime = to;
3105 }
3106
3107#if EV_PERIODIC_ENABLE
3108 if (periodiccnt)
3109 {
3110 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3111 if (waittime > to) waittime = to;
3112 }
3113#endif
3114
3115 /* don't let timeouts decrease the waittime below timeout_blocktime */
3116 if (expect_false (waittime < timeout_blocktime))
3117 waittime = timeout_blocktime;
3118
3119 /* at this point, we NEED to wait, so we have to ensure */
3120 /* to pass a minimum nonzero value to the backend */
3121 if (expect_false (waittime < backend_mintime))
3122 waittime = backend_mintime;
3123
3124 /* extra check because io_blocktime is commonly 0 */
3125 if (expect_false (io_blocktime))
3126 {
3127 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3128
3129 if (sleeptime > waittime - backend_mintime)
3130 sleeptime = waittime - backend_mintime;
3131
3132 if (expect_true (sleeptime > 0.))
3133 {
3134 ev_sleep (sleeptime);
3135 waittime -= sleeptime;
3136 }
3137 }
3138 }
3139
3140#if EV_FEATURE_API
3141 ++loop_count;
3142#endif
3143 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3144 backend_poll (EV_A_ waittime);
3145 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3146
3147 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3148
3149 ECB_MEMORY_FENCE_ACQUIRE;
3150 if (pipe_write_skipped)
3151 {
3152 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3153 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3154 }
3155
3156
3157 /* update ev_rt_now, do magic */
3158 time_update (EV_A_ waittime + sleeptime);
3159 }
3160
3161 /* queue pending timers and reschedule them */
3162 timers_reify (EV_A); /* relative timers called last */
3163#if EV_PERIODIC_ENABLE
3164 periodics_reify (EV_A); /* absolute timers called first */
3165#endif
3166
3167#if EV_IDLE_ENABLE
3168 /* queue idle watchers unless other events are pending */
3169 idle_reify (EV_A);
3170#endif
3171
3172#if EV_CHECK_ENABLE
3173 /* queue check watchers, to be executed first */
3174 if (expect_false (checkcnt))
3175 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3176#endif
3177
3178 EV_INVOKE_PENDING;
3179 }
3180 while (expect_true (
3181 activecnt
3182 && !loop_done
3183 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3184 ));
3185
3186 if (loop_done == EVBREAK_ONE)
3187 loop_done = EVBREAK_CANCEL;
3188
3189#if EV_FEATURE_API
3190 --loop_depth;
3191#endif
3192
3193 return activecnt;
3194}
3195
3196void
3197ev_break (EV_P_ int how) EV_THROW
3198{
3199 loop_done = how;
3200}
3201
3202void
3203ev_ref (EV_P) EV_THROW
3204{
3205 ++activecnt;
3206}
3207
3208void
3209ev_unref (EV_P) EV_THROW
3210{
3211 --activecnt;
3212}
3213
3214void
3215ev_now_update (EV_P) EV_THROW
3216{
3217 time_update (EV_A_ 1e100);
3218}
3219
3220void
3221ev_suspend (EV_P) EV_THROW
3222{
3223 ev_now_update (EV_A);
3224}
3225
3226void
3227ev_resume (EV_P) EV_THROW
3228{
3229 ev_tstamp mn_prev = mn_now;
3230
3231 ev_now_update (EV_A);
3232 timers_reschedule (EV_A_ mn_now - mn_prev);
3233#if EV_PERIODIC_ENABLE
3234 /* TODO: really do this? */
3235 periodics_reschedule (EV_A);
3236#endif
3237}
3238
3239/*****************************************************************************/
3240/* singly-linked list management, used when the expected list length is short */
3241
3242inline_size void
3243wlist_add (WL *head, WL elem)
3244{
3245 elem->next = *head;
3246 *head = elem;
3247}
3248
3249inline_size void
3250wlist_del (WL *head, WL elem)
3251{
3252 while (*head)
3253 {
3254 if (expect_true (*head == elem))
3255 {
3256 *head = elem->next;
3257 break;
3258 }
3259
3260 head = &(*head)->next;
3261 }
3262}
3263
3264/* internal, faster, version of ev_clear_pending */
3265inline_speed void
3266clear_pending (EV_P_ W w)
3267{
3268 if (w->pending)
3269 {
3270 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3271 w->pending = 0;
3272 }
384} 3273}
385 3274
386int 3275int
387ev_version_minor (void) 3276ev_clear_pending (EV_P_ void *w) EV_THROW
388{ 3277{
389 return EV_VERSION_MINOR; 3278 W w_ = (W)w;
390} 3279 int pending = w_->pending;
391 3280
392int ev_init (int flags) 3281 if (expect_true (pending))
393{ 3282 {
394 if (!ev_method) 3283 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3284 p->w = (W)&pending_w;
3285 w_->pending = 0;
3286 return p->events;
395 { 3287 }
396#if HAVE_MONOTONIC 3288 else
3289 return 0;
3290}
3291
3292inline_size void
3293pri_adjust (EV_P_ W w)
3294{
3295 int pri = ev_priority (w);
3296 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3297 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3298 ev_set_priority (w, pri);
3299}
3300
3301inline_speed void
3302ev_start (EV_P_ W w, int active)
3303{
3304 pri_adjust (EV_A_ w);
3305 w->active = active;
3306 ev_ref (EV_A);
3307}
3308
3309inline_size void
3310ev_stop (EV_P_ W w)
3311{
3312 ev_unref (EV_A);
3313 w->active = 0;
3314}
3315
3316/*****************************************************************************/
3317
3318void noinline
3319ev_io_start (EV_P_ ev_io *w) EV_THROW
3320{
3321 int fd = w->fd;
3322
3323 if (expect_false (ev_is_active (w)))
3324 return;
3325
3326 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3328
3329 EV_FREQUENT_CHECK;
3330
3331 ev_start (EV_A_ (W)w, 1);
3332 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3333 wlist_add (&anfds[fd].head, (WL)w);
3334
3335 /* common bug, apparently */
3336 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3337
3338 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3339 w->events &= ~EV__IOFDSET;
3340
3341 EV_FREQUENT_CHECK;
3342}
3343
3344void noinline
3345ev_io_stop (EV_P_ ev_io *w) EV_THROW
3346{
3347 clear_pending (EV_A_ (W)w);
3348 if (expect_false (!ev_is_active (w)))
3349 return;
3350
3351 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3352
3353 EV_FREQUENT_CHECK;
3354
3355 wlist_del (&anfds[w->fd].head, (WL)w);
3356 ev_stop (EV_A_ (W)w);
3357
3358 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3359
3360 EV_FREQUENT_CHECK;
3361}
3362
3363void noinline
3364ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3365{
3366 if (expect_false (ev_is_active (w)))
3367 return;
3368
3369 ev_at (w) += mn_now;
3370
3371 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3372
3373 EV_FREQUENT_CHECK;
3374
3375 ++timercnt;
3376 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3377 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3378 ANHE_w (timers [ev_active (w)]) = (WT)w;
3379 ANHE_at_cache (timers [ev_active (w)]);
3380 upheap (timers, ev_active (w));
3381
3382 EV_FREQUENT_CHECK;
3383
3384 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3385}
3386
3387void noinline
3388ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3389{
3390 clear_pending (EV_A_ (W)w);
3391 if (expect_false (!ev_is_active (w)))
3392 return;
3393
3394 EV_FREQUENT_CHECK;
3395
3396 {
3397 int active = ev_active (w);
3398
3399 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3400
3401 --timercnt;
3402
3403 if (expect_true (active < timercnt + HEAP0))
397 { 3404 {
398 struct timespec ts; 3405 timers [active] = timers [timercnt + HEAP0];
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3406 adjustheap (timers, timercnt, active);
400 have_monotonic = 1;
401 } 3407 }
402#endif 3408 }
403 3409
404 ev_now = ev_time (); 3410 ev_at (w) -= mn_now;
405 now = get_clock ();
406 diff = ev_now - now;
407 3411
408 if (pipe (sigpipe)) 3412 ev_stop (EV_A_ (W)w);
409 return 0;
410 3413
411 ev_method = EVMETHOD_NONE; 3414 EV_FREQUENT_CHECK;
412#if HAVE_EPOLL 3415}
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
414#endif
415#if HAVE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif
418 3416
419 if (ev_method) 3417void noinline
420 { 3418ev_timer_again (EV_P_ ev_timer *w) EV_THROW
421 evw_init (&sigev, sigcb); 3419{
422 siginit (); 3420 EV_FREQUENT_CHECK;
423 3421
424 evsignal_init (&childev, childcb, SIGCHLD); 3422 clear_pending (EV_A_ (W)w);
425 evsignal_start (&childev); 3423
426 } 3424 if (ev_is_active (w))
427 } 3425 {
428
429 return ev_method;
430}
431
432/*****************************************************************************/
433
434void
435ev_prefork (void)
436{
437 /* nop */
438}
439
440void
441ev_postfork_parent (void)
442{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif
453
454 evio_stop (&sigev);
455 close (sigpipe [0]);
456 close (sigpipe [1]);
457 pipe (sigpipe);
458 siginit ();
459}
460
461/*****************************************************************************/
462
463static void
464fd_reify (void)
465{
466 int i;
467
468 for (i = 0; i < fdchangecnt; ++i)
469 {
470 int fd = fdchanges [i];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473
474 int wev = 0;
475
476 for (w = anfd->head; w; w = w->next)
477 wev |= w->events;
478
479 if (anfd->wev != wev)
480 {
481 method_modify (fd, anfd->wev, wev);
482 anfd->wev = wev;
483 }
484 }
485
486 fdchangecnt = 0;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 {
494 ANPENDING *p = pendings + --pendingcnt;
495
496 if (p->w)
497 {
498 p->w->pending = 0;
499 p->w->cb (p->w, p->events);
500 }
501 }
502}
503
504static void
505timers_reify (void)
506{
507 while (timercnt && timers [0]->at <= now)
508 {
509 struct ev_timer *w = timers [0];
510
511 event ((W)w, EV_TIMEOUT);
512
513 /* first reschedule or stop timer */
514 if (w->repeat) 3426 if (w->repeat)
515 { 3427 {
516 w->at = now + w->repeat; 3428 ev_at (w) = mn_now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now)); 3429 ANHE_at_cache (timers [ev_active (w)]);
518 downheap ((WT *)timers, timercnt, 0); 3430 adjustheap (timers, timercnt, ev_active (w));
519 } 3431 }
520 else 3432 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 3433 ev_timer_stop (EV_A_ w);
522 }
523}
524
525static void
526periodics_reify (void)
527{
528 while (periodiccnt && periodics [0]->at <= ev_now)
529 { 3434 }
530 struct ev_periodic *w = periodics [0]; 3435 else if (w->repeat)
3436 {
3437 ev_at (w) = w->repeat;
3438 ev_timer_start (EV_A_ w);
3439 }
531 3440
532 /* first reschedule or stop timer */ 3441 EV_FREQUENT_CHECK;
3442}
3443
3444ev_tstamp
3445ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3446{
3447 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3448}
3449
3450#if EV_PERIODIC_ENABLE
3451void noinline
3452ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3453{
3454 if (expect_false (ev_is_active (w)))
3455 return;
3456
3457 if (w->reschedule_cb)
3458 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
533 if (w->interval) 3459 else if (w->interval)
3460 {
3461 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3462 periodic_recalc (EV_A_ w);
3463 }
3464 else
3465 ev_at (w) = w->offset;
3466
3467 EV_FREQUENT_CHECK;
3468
3469 ++periodiccnt;
3470 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3471 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3472 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3473 ANHE_at_cache (periodics [ev_active (w)]);
3474 upheap (periodics, ev_active (w));
3475
3476 EV_FREQUENT_CHECK;
3477
3478 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3479}
3480
3481void noinline
3482ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3483{
3484 clear_pending (EV_A_ (W)w);
3485 if (expect_false (!ev_is_active (w)))
3486 return;
3487
3488 EV_FREQUENT_CHECK;
3489
3490 {
3491 int active = ev_active (w);
3492
3493 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3494
3495 --periodiccnt;
3496
3497 if (expect_true (active < periodiccnt + HEAP0))
3498 {
3499 periodics [active] = periodics [periodiccnt + HEAP0];
3500 adjustheap (periodics, periodiccnt, active);
3501 }
3502 }
3503
3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
3507}
3508
3509void noinline
3510ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3511{
3512 /* TODO: use adjustheap and recalculation */
3513 ev_periodic_stop (EV_A_ w);
3514 ev_periodic_start (EV_A_ w);
3515}
3516#endif
3517
3518#ifndef SA_RESTART
3519# define SA_RESTART 0
3520#endif
3521
3522#if EV_SIGNAL_ENABLE
3523
3524void noinline
3525ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3526{
3527 if (expect_false (ev_is_active (w)))
3528 return;
3529
3530 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3531
3532#if EV_MULTIPLICITY
3533 assert (("libev: a signal must not be attached to two different loops",
3534 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3535
3536 signals [w->signum - 1].loop = EV_A;
3537#endif
3538
3539 EV_FREQUENT_CHECK;
3540
3541#if EV_USE_SIGNALFD
3542 if (sigfd == -2)
3543 {
3544 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3545 if (sigfd < 0 && errno == EINVAL)
3546 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3547
3548 if (sigfd >= 0)
534 { 3549 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 3550 fd_intern (sigfd); /* doing it twice will not hurt */
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 3551
537 downheap ((WT *)periodics, periodiccnt, 0); 3552 sigemptyset (&sigfd_set);
3553
3554 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3555 ev_set_priority (&sigfd_w, EV_MAXPRI);
3556 ev_io_start (EV_A_ &sigfd_w);
3557 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3558 }
3559 }
3560
3561 if (sigfd >= 0)
3562 {
3563 /* TODO: check .head */
3564 sigaddset (&sigfd_set, w->signum);
3565 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 }
3569#endif
3570
3571 ev_start (EV_A_ (W)w, 1);
3572 wlist_add (&signals [w->signum - 1].head, (WL)w);
3573
3574 if (!((WL)w)->next)
3575# if EV_USE_SIGNALFD
3576 if (sigfd < 0) /*TODO*/
3577# endif
3578 {
3579# ifdef _WIN32
3580 evpipe_init (EV_A);
3581
3582 signal (w->signum, ev_sighandler);
3583# else
3584 struct sigaction sa;
3585
3586 evpipe_init (EV_A);
3587
3588 sa.sa_handler = ev_sighandler;
3589 sigfillset (&sa.sa_mask);
3590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3591 sigaction (w->signum, &sa, 0);
3592
3593 if (origflags & EVFLAG_NOSIGMASK)
3594 {
3595 sigemptyset (&sa.sa_mask);
3596 sigaddset (&sa.sa_mask, w->signum);
3597 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3598 }
3599#endif
3600 }
3601
3602 EV_FREQUENT_CHECK;
3603}
3604
3605void noinline
3606ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3607{
3608 clear_pending (EV_A_ (W)w);
3609 if (expect_false (!ev_is_active (w)))
3610 return;
3611
3612 EV_FREQUENT_CHECK;
3613
3614 wlist_del (&signals [w->signum - 1].head, (WL)w);
3615 ev_stop (EV_A_ (W)w);
3616
3617 if (!signals [w->signum - 1].head)
3618 {
3619#if EV_MULTIPLICITY
3620 signals [w->signum - 1].loop = 0; /* unattach from signal */
3621#endif
3622#if EV_USE_SIGNALFD
3623 if (sigfd >= 0)
3624 {
3625 sigset_t ss;
3626
3627 sigemptyset (&ss);
3628 sigaddset (&ss, w->signum);
3629 sigdelset (&sigfd_set, w->signum);
3630
3631 signalfd (sigfd, &sigfd_set, 0);
3632 sigprocmask (SIG_UNBLOCK, &ss, 0);
538 } 3633 }
539 else 3634 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 3635#endif
541 3636 signal (w->signum, SIG_DFL);
542 event ((W)w, EV_TIMEOUT);
543 }
544}
545
546static void
547periodics_reschedule (ev_tstamp diff)
548{
549 int i;
550
551 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i)
553 { 3637 }
554 struct ev_periodic *w = periodics [i];
555 3638
556 if (w->interval) 3639 EV_FREQUENT_CHECK;
3640}
3641
3642#endif
3643
3644#if EV_CHILD_ENABLE
3645
3646void
3647ev_child_start (EV_P_ ev_child *w) EV_THROW
3648{
3649#if EV_MULTIPLICITY
3650 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3651#endif
3652 if (expect_false (ev_is_active (w)))
3653 return;
3654
3655 EV_FREQUENT_CHECK;
3656
3657 ev_start (EV_A_ (W)w, 1);
3658 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_child_stop (EV_P_ ev_child *w) EV_THROW
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3673 ev_stop (EV_A_ (W)w);
3674
3675 EV_FREQUENT_CHECK;
3676}
3677
3678#endif
3679
3680#if EV_STAT_ENABLE
3681
3682# ifdef _WIN32
3683# undef lstat
3684# define lstat(a,b) _stati64 (a,b)
3685# endif
3686
3687#define DEF_STAT_INTERVAL 5.0074891
3688#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3689#define MIN_STAT_INTERVAL 0.1074891
3690
3691static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3692
3693#if EV_USE_INOTIFY
3694
3695/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3696# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3697
3698static void noinline
3699infy_add (EV_P_ ev_stat *w)
3700{
3701 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3702
3703 if (w->wd >= 0)
3704 {
3705 struct statfs sfs;
3706
3707 /* now local changes will be tracked by inotify, but remote changes won't */
3708 /* unless the filesystem is known to be local, we therefore still poll */
3709 /* also do poll on <2.6.25, but with normal frequency */
3710
3711 if (!fs_2625)
3712 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3713 else if (!statfs (w->path, &sfs)
3714 && (sfs.f_type == 0x1373 /* devfs */
3715 || sfs.f_type == 0xEF53 /* ext2/3 */
3716 || sfs.f_type == 0x3153464a /* jfs */
3717 || sfs.f_type == 0x52654973 /* reiser3 */
3718 || sfs.f_type == 0x01021994 /* tempfs */
3719 || sfs.f_type == 0x58465342 /* xfs */))
3720 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3721 else
3722 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3723 }
3724 else
3725 {
3726 /* can't use inotify, continue to stat */
3727 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3728
3729 /* if path is not there, monitor some parent directory for speedup hints */
3730 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3731 /* but an efficiency issue only */
3732 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
557 { 3733 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 3734 char path [4096];
3735 strcpy (path, w->path);
559 3736
560 if (fabs (diff) >= 1e-4) 3737 do
561 { 3738 {
562 evperiodic_stop (w); 3739 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
563 evperiodic_start (w); 3740 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
564 3741
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 3742 char *pend = strrchr (path, '/');
3743
3744 if (!pend || pend == path)
3745 break;
3746
3747 *pend = 0;
3748 w->wd = inotify_add_watch (fs_fd, path, mask);
3749 }
3750 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3751 }
3752 }
3753
3754 if (w->wd >= 0)
3755 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3756
3757 /* now re-arm timer, if required */
3758 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3759 ev_timer_again (EV_A_ &w->timer);
3760 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3761}
3762
3763static void noinline
3764infy_del (EV_P_ ev_stat *w)
3765{
3766 int slot;
3767 int wd = w->wd;
3768
3769 if (wd < 0)
3770 return;
3771
3772 w->wd = -2;
3773 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3774 wlist_del (&fs_hash [slot].head, (WL)w);
3775
3776 /* remove this watcher, if others are watching it, they will rearm */
3777 inotify_rm_watch (fs_fd, wd);
3778}
3779
3780static void noinline
3781infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3782{
3783 if (slot < 0)
3784 /* overflow, need to check for all hash slots */
3785 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3786 infy_wd (EV_A_ slot, wd, ev);
3787 else
3788 {
3789 WL w_;
3790
3791 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3792 {
3793 ev_stat *w = (ev_stat *)w_;
3794 w_ = w_->next; /* lets us remove this watcher and all before it */
3795
3796 if (w->wd == wd || wd == -1)
3797 {
3798 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3799 {
3800 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3801 w->wd = -1;
3802 infy_add (EV_A_ w); /* re-add, no matter what */
3803 }
3804
3805 stat_timer_cb (EV_A_ &w->timer, 0);
566 } 3806 }
567 } 3807 }
568 } 3808 }
569} 3809}
570 3810
571static void 3811static void
572time_update (void) 3812infy_cb (EV_P_ ev_io *w, int revents)
573{ 3813{
3814 char buf [EV_INOTIFY_BUFSIZE];
574 int i; 3815 int ofs;
3816 int len = read (fs_fd, buf, sizeof (buf));
575 3817
576 ev_now = ev_time (); 3818 for (ofs = 0; ofs < len; )
577 3819 {
578 if (have_monotonic) 3820 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3821 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3822 ofs += sizeof (struct inotify_event) + ev->len;
579 { 3823 }
580 ev_tstamp odiff = diff; 3824}
581 3825
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3826inline_size void ecb_cold
3827ev_check_2625 (EV_P)
3828{
3829 /* kernels < 2.6.25 are borked
3830 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3831 */
3832 if (ev_linux_version () < 0x020619)
3833 return;
3834
3835 fs_2625 = 1;
3836}
3837
3838inline_size int
3839infy_newfd (void)
3840{
3841#if defined IN_CLOEXEC && defined IN_NONBLOCK
3842 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3843 if (fd >= 0)
3844 return fd;
3845#endif
3846 return inotify_init ();
3847}
3848
3849inline_size void
3850infy_init (EV_P)
3851{
3852 if (fs_fd != -2)
3853 return;
3854
3855 fs_fd = -1;
3856
3857 ev_check_2625 (EV_A);
3858
3859 fs_fd = infy_newfd ();
3860
3861 if (fs_fd >= 0)
3862 {
3863 fd_intern (fs_fd);
3864 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3865 ev_set_priority (&fs_w, EV_MAXPRI);
3866 ev_io_start (EV_A_ &fs_w);
3867 ev_unref (EV_A);
3868 }
3869}
3870
3871inline_size void
3872infy_fork (EV_P)
3873{
3874 int slot;
3875
3876 if (fs_fd < 0)
3877 return;
3878
3879 ev_ref (EV_A);
3880 ev_io_stop (EV_A_ &fs_w);
3881 close (fs_fd);
3882 fs_fd = infy_newfd ();
3883
3884 if (fs_fd >= 0)
3885 {
3886 fd_intern (fs_fd);
3887 ev_io_set (&fs_w, fs_fd, EV_READ);
3888 ev_io_start (EV_A_ &fs_w);
3889 ev_unref (EV_A);
3890 }
3891
3892 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3893 {
3894 WL w_ = fs_hash [slot].head;
3895 fs_hash [slot].head = 0;
3896
3897 while (w_)
583 { 3898 {
584 now = get_clock (); 3899 ev_stat *w = (ev_stat *)w_;
585 diff = ev_now - now; 3900 w_ = w_->next; /* lets us add this watcher */
586 3901
587 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3902 w->wd = -1;
588 return; /* all is well */
589 3903
590 ev_now = ev_time (); 3904 if (fs_fd >= 0)
3905 infy_add (EV_A_ w); /* re-add, no matter what */
3906 else
3907 {
3908 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3909 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3910 ev_timer_again (EV_A_ &w->timer);
3911 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3912 }
591 } 3913 }
592
593 periodics_reschedule (diff - odiff);
594 /* no timer adjustment, as the monotonic clock doesn't jump */
595 } 3914 }
3915}
3916
3917#endif
3918
3919#ifdef _WIN32
3920# define EV_LSTAT(p,b) _stati64 (p, b)
3921#else
3922# define EV_LSTAT(p,b) lstat (p, b)
3923#endif
3924
3925void
3926ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3927{
3928 if (lstat (w->path, &w->attr) < 0)
3929 w->attr.st_nlink = 0;
3930 else if (!w->attr.st_nlink)
3931 w->attr.st_nlink = 1;
3932}
3933
3934static void noinline
3935stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3936{
3937 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3938
3939 ev_statdata prev = w->attr;
3940 ev_stat_stat (EV_A_ w);
3941
3942 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3943 if (
3944 prev.st_dev != w->attr.st_dev
3945 || prev.st_ino != w->attr.st_ino
3946 || prev.st_mode != w->attr.st_mode
3947 || prev.st_nlink != w->attr.st_nlink
3948 || prev.st_uid != w->attr.st_uid
3949 || prev.st_gid != w->attr.st_gid
3950 || prev.st_rdev != w->attr.st_rdev
3951 || prev.st_size != w->attr.st_size
3952 || prev.st_atime != w->attr.st_atime
3953 || prev.st_mtime != w->attr.st_mtime
3954 || prev.st_ctime != w->attr.st_ctime
3955 ) {
3956 /* we only update w->prev on actual differences */
3957 /* in case we test more often than invoke the callback, */
3958 /* to ensure that prev is always different to attr */
3959 w->prev = prev;
3960
3961 #if EV_USE_INOTIFY
3962 if (fs_fd >= 0)
3963 {
3964 infy_del (EV_A_ w);
3965 infy_add (EV_A_ w);
3966 ev_stat_stat (EV_A_ w); /* avoid race... */
3967 }
3968 #endif
3969
3970 ev_feed_event (EV_A_ w, EV_STAT);
3971 }
3972}
3973
3974void
3975ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3976{
3977 if (expect_false (ev_is_active (w)))
3978 return;
3979
3980 ev_stat_stat (EV_A_ w);
3981
3982 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3983 w->interval = MIN_STAT_INTERVAL;
3984
3985 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3986 ev_set_priority (&w->timer, ev_priority (w));
3987
3988#if EV_USE_INOTIFY
3989 infy_init (EV_A);
3990
3991 if (fs_fd >= 0)
3992 infy_add (EV_A_ w);
596 else 3993 else
3994#endif
3995 {
3996 ev_timer_again (EV_A_ &w->timer);
3997 ev_unref (EV_A);
597 { 3998 }
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 3999
4000 ev_start (EV_A_ (W)w, 1);
4001
4002 EV_FREQUENT_CHECK;
4003}
4004
4005void
4006ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4007{
4008 clear_pending (EV_A_ (W)w);
4009 if (expect_false (!ev_is_active (w)))
4010 return;
4011
4012 EV_FREQUENT_CHECK;
4013
4014#if EV_USE_INOTIFY
4015 infy_del (EV_A_ w);
4016#endif
4017
4018 if (ev_is_active (&w->timer))
4019 {
4020 ev_ref (EV_A);
4021 ev_timer_stop (EV_A_ &w->timer);
4022 }
4023
4024 ev_stop (EV_A_ (W)w);
4025
4026 EV_FREQUENT_CHECK;
4027}
4028#endif
4029
4030#if EV_IDLE_ENABLE
4031void
4032ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4033{
4034 if (expect_false (ev_is_active (w)))
4035 return;
4036
4037 pri_adjust (EV_A_ (W)w);
4038
4039 EV_FREQUENT_CHECK;
4040
4041 {
4042 int active = ++idlecnt [ABSPRI (w)];
4043
4044 ++idleall;
4045 ev_start (EV_A_ (W)w, active);
4046
4047 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4048 idles [ABSPRI (w)][active - 1] = w;
4049 }
4050
4051 EV_FREQUENT_CHECK;
4052}
4053
4054void
4055ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4056{
4057 clear_pending (EV_A_ (W)w);
4058 if (expect_false (!ev_is_active (w)))
4059 return;
4060
4061 EV_FREQUENT_CHECK;
4062
4063 {
4064 int active = ev_active (w);
4065
4066 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4067 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4068
4069 ev_stop (EV_A_ (W)w);
4070 --idleall;
4071 }
4072
4073 EV_FREQUENT_CHECK;
4074}
4075#endif
4076
4077#if EV_PREPARE_ENABLE
4078void
4079ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4080{
4081 if (expect_false (ev_is_active (w)))
4082 return;
4083
4084 EV_FREQUENT_CHECK;
4085
4086 ev_start (EV_A_ (W)w, ++preparecnt);
4087 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4088 prepares [preparecnt - 1] = w;
4089
4090 EV_FREQUENT_CHECK;
4091}
4092
4093void
4094ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4095{
4096 clear_pending (EV_A_ (W)w);
4097 if (expect_false (!ev_is_active (w)))
4098 return;
4099
4100 EV_FREQUENT_CHECK;
4101
4102 {
4103 int active = ev_active (w);
4104
4105 prepares [active - 1] = prepares [--preparecnt];
4106 ev_active (prepares [active - 1]) = active;
4107 }
4108
4109 ev_stop (EV_A_ (W)w);
4110
4111 EV_FREQUENT_CHECK;
4112}
4113#endif
4114
4115#if EV_CHECK_ENABLE
4116void
4117ev_check_start (EV_P_ ev_check *w) EV_THROW
4118{
4119 if (expect_false (ev_is_active (w)))
4120 return;
4121
4122 EV_FREQUENT_CHECK;
4123
4124 ev_start (EV_A_ (W)w, ++checkcnt);
4125 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4126 checks [checkcnt - 1] = w;
4127
4128 EV_FREQUENT_CHECK;
4129}
4130
4131void
4132ev_check_stop (EV_P_ ev_check *w) EV_THROW
4133{
4134 clear_pending (EV_A_ (W)w);
4135 if (expect_false (!ev_is_active (w)))
4136 return;
4137
4138 EV_FREQUENT_CHECK;
4139
4140 {
4141 int active = ev_active (w);
4142
4143 checks [active - 1] = checks [--checkcnt];
4144 ev_active (checks [active - 1]) = active;
4145 }
4146
4147 ev_stop (EV_A_ (W)w);
4148
4149 EV_FREQUENT_CHECK;
4150}
4151#endif
4152
4153#if EV_EMBED_ENABLE
4154void noinline
4155ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4156{
4157 ev_run (w->other, EVRUN_NOWAIT);
4158}
4159
4160static void
4161embed_io_cb (EV_P_ ev_io *io, int revents)
4162{
4163 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4164
4165 if (ev_cb (w))
4166 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4167 else
4168 ev_run (w->other, EVRUN_NOWAIT);
4169}
4170
4171static void
4172embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4173{
4174 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4175
4176 {
4177 EV_P = w->other;
4178
4179 while (fdchangecnt)
599 { 4180 {
600 periodics_reschedule (ev_now - now); 4181 fd_reify (EV_A);
601 4182 ev_run (EV_A_ EVRUN_NOWAIT);
602 /* adjust timers. this is easy, as the offset is the same for all */
603 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff;
605 } 4183 }
606
607 now = ev_now;
608 } 4184 }
609} 4185}
610 4186
611int ev_loop_done; 4187static void
612 4188embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
613void ev_loop (int flags)
614{ 4189{
615 double block; 4190 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
616 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
617 4191
618 do 4192 ev_embed_stop (EV_A_ w);
4193
619 { 4194 {
620 /* queue check watchers (and execute them) */ 4195 EV_P = w->other;
621 if (preparecnt)
622 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
624 call_pending ();
625 }
626 4196
627 /* update fd-related kernel structures */ 4197 ev_loop_fork (EV_A);
628 fd_reify (); 4198 ev_run (EV_A_ EVRUN_NOWAIT);
629
630 /* calculate blocking time */
631
632 /* we only need this for !monotonic clockor timers, but as we basically
633 always have timers, we just calculate it always */
634 ev_now = ev_time ();
635
636 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.;
638 else
639 {
640 block = MAX_BLOCKTIME;
641
642 if (timercnt)
643 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
645 if (block > to) block = to;
646 }
647
648 if (periodiccnt)
649 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
651 if (block > to) block = to;
652 }
653
654 if (block < 0.) block = 0.;
655 }
656
657 method_poll (block);
658
659 /* update ev_now, do magic */
660 time_update ();
661
662 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */
664 periodics_reify (); /* absolute timers called first */
665
666 /* queue idle watchers unless io or timers are pending */
667 if (!pendingcnt)
668 queue_events ((W *)idles, idlecnt, EV_IDLE);
669
670 /* queue check watchers, to be executed first */
671 if (checkcnt)
672 queue_events ((W *)checks, checkcnt, EV_CHECK);
673
674 call_pending ();
675 } 4199 }
676 while (!ev_loop_done);
677 4200
678 if (ev_loop_done != 2) 4201 ev_embed_start (EV_A_ w);
679 ev_loop_done = 0;
680} 4202}
4203
4204#if 0
4205static void
4206embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4207{
4208 ev_idle_stop (EV_A_ idle);
4209}
4210#endif
4211
4212void
4213ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4214{
4215 if (expect_false (ev_is_active (w)))
4216 return;
4217
4218 {
4219 EV_P = w->other;
4220 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4221 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4222 }
4223
4224 EV_FREQUENT_CHECK;
4225
4226 ev_set_priority (&w->io, ev_priority (w));
4227 ev_io_start (EV_A_ &w->io);
4228
4229 ev_prepare_init (&w->prepare, embed_prepare_cb);
4230 ev_set_priority (&w->prepare, EV_MINPRI);
4231 ev_prepare_start (EV_A_ &w->prepare);
4232
4233 ev_fork_init (&w->fork, embed_fork_cb);
4234 ev_fork_start (EV_A_ &w->fork);
4235
4236 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4237
4238 ev_start (EV_A_ (W)w, 1);
4239
4240 EV_FREQUENT_CHECK;
4241}
4242
4243void
4244ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4245{
4246 clear_pending (EV_A_ (W)w);
4247 if (expect_false (!ev_is_active (w)))
4248 return;
4249
4250 EV_FREQUENT_CHECK;
4251
4252 ev_io_stop (EV_A_ &w->io);
4253 ev_prepare_stop (EV_A_ &w->prepare);
4254 ev_fork_stop (EV_A_ &w->fork);
4255
4256 ev_stop (EV_A_ (W)w);
4257
4258 EV_FREQUENT_CHECK;
4259}
4260#endif
4261
4262#if EV_FORK_ENABLE
4263void
4264ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4265{
4266 if (expect_false (ev_is_active (w)))
4267 return;
4268
4269 EV_FREQUENT_CHECK;
4270
4271 ev_start (EV_A_ (W)w, ++forkcnt);
4272 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4273 forks [forkcnt - 1] = w;
4274
4275 EV_FREQUENT_CHECK;
4276}
4277
4278void
4279ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4280{
4281 clear_pending (EV_A_ (W)w);
4282 if (expect_false (!ev_is_active (w)))
4283 return;
4284
4285 EV_FREQUENT_CHECK;
4286
4287 {
4288 int active = ev_active (w);
4289
4290 forks [active - 1] = forks [--forkcnt];
4291 ev_active (forks [active - 1]) = active;
4292 }
4293
4294 ev_stop (EV_A_ (W)w);
4295
4296 EV_FREQUENT_CHECK;
4297}
4298#endif
4299
4300#if EV_CLEANUP_ENABLE
4301void
4302ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4303{
4304 if (expect_false (ev_is_active (w)))
4305 return;
4306
4307 EV_FREQUENT_CHECK;
4308
4309 ev_start (EV_A_ (W)w, ++cleanupcnt);
4310 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4311 cleanups [cleanupcnt - 1] = w;
4312
4313 /* cleanup watchers should never keep a refcount on the loop */
4314 ev_unref (EV_A);
4315 EV_FREQUENT_CHECK;
4316}
4317
4318void
4319ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4320{
4321 clear_pending (EV_A_ (W)w);
4322 if (expect_false (!ev_is_active (w)))
4323 return;
4324
4325 EV_FREQUENT_CHECK;
4326 ev_ref (EV_A);
4327
4328 {
4329 int active = ev_active (w);
4330
4331 cleanups [active - 1] = cleanups [--cleanupcnt];
4332 ev_active (cleanups [active - 1]) = active;
4333 }
4334
4335 ev_stop (EV_A_ (W)w);
4336
4337 EV_FREQUENT_CHECK;
4338}
4339#endif
4340
4341#if EV_ASYNC_ENABLE
4342void
4343ev_async_start (EV_P_ ev_async *w) EV_THROW
4344{
4345 if (expect_false (ev_is_active (w)))
4346 return;
4347
4348 w->sent = 0;
4349
4350 evpipe_init (EV_A);
4351
4352 EV_FREQUENT_CHECK;
4353
4354 ev_start (EV_A_ (W)w, ++asynccnt);
4355 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4356 asyncs [asynccnt - 1] = w;
4357
4358 EV_FREQUENT_CHECK;
4359}
4360
4361void
4362ev_async_stop (EV_P_ ev_async *w) EV_THROW
4363{
4364 clear_pending (EV_A_ (W)w);
4365 if (expect_false (!ev_is_active (w)))
4366 return;
4367
4368 EV_FREQUENT_CHECK;
4369
4370 {
4371 int active = ev_active (w);
4372
4373 asyncs [active - 1] = asyncs [--asynccnt];
4374 ev_active (asyncs [active - 1]) = active;
4375 }
4376
4377 ev_stop (EV_A_ (W)w);
4378
4379 EV_FREQUENT_CHECK;
4380}
4381
4382void
4383ev_async_send (EV_P_ ev_async *w) EV_THROW
4384{
4385 w->sent = 1;
4386 evpipe_write (EV_A_ &async_pending);
4387}
4388#endif
681 4389
682/*****************************************************************************/ 4390/*****************************************************************************/
683 4391
684static void
685wlist_add (WL *head, WL elem)
686{
687 elem->next = *head;
688 *head = elem;
689}
690
691static void
692wlist_del (WL *head, WL elem)
693{
694 while (*head)
695 {
696 if (*head == elem)
697 {
698 *head = elem->next;
699 return;
700 }
701
702 head = &(*head)->next;
703 }
704}
705
706static void
707ev_clear (W w)
708{
709 if (w->pending)
710 {
711 pendings [w->pending - 1].w = 0;
712 w->pending = 0;
713 }
714}
715
716static void
717ev_start (W w, int active)
718{
719 w->active = active;
720}
721
722static void
723ev_stop (W w)
724{
725 w->active = 0;
726}
727
728/*****************************************************************************/
729
730void
731evio_start (struct ev_io *w)
732{
733 if (ev_is_active (w))
734 return;
735
736 int fd = w->fd;
737
738 ev_start ((W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w);
741
742 ++fdchangecnt;
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
744 fdchanges [fdchangecnt - 1] = fd;
745}
746
747void
748evio_stop (struct ev_io *w)
749{
750 ev_clear ((W)w);
751 if (!ev_is_active (w))
752 return;
753
754 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
755 ev_stop ((W)w);
756
757 ++fdchangecnt;
758 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
759 fdchanges [fdchangecnt - 1] = w->fd;
760}
761
762void
763evtimer_start (struct ev_timer *w)
764{
765 if (ev_is_active (w))
766 return;
767
768 w->at += now;
769
770 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.));
771
772 ev_start ((W)w, ++timercnt);
773 array_needsize (timers, timermax, timercnt, );
774 timers [timercnt - 1] = w;
775 upheap ((WT *)timers, timercnt - 1);
776}
777
778void
779evtimer_stop (struct ev_timer *w)
780{
781 ev_clear ((W)w);
782 if (!ev_is_active (w))
783 return;
784
785 if (w->active < timercnt--)
786 {
787 timers [w->active - 1] = timers [timercnt];
788 downheap ((WT *)timers, timercnt, w->active - 1);
789 }
790
791 w->at = w->repeat;
792
793 ev_stop ((W)w);
794}
795
796void
797evtimer_again (struct ev_timer *w)
798{
799 if (ev_is_active (w))
800 {
801 if (w->repeat)
802 {
803 w->at = now + w->repeat;
804 downheap ((WT *)timers, timercnt, w->active - 1);
805 }
806 else
807 evtimer_stop (w);
808 }
809 else if (w->repeat)
810 evtimer_start (w);
811}
812
813void
814evperiodic_start (struct ev_periodic *w)
815{
816 if (ev_is_active (w))
817 return;
818
819 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
820
821 /* this formula differs from the one in periodic_reify because we do not always round up */
822 if (w->interval)
823 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
824
825 ev_start ((W)w, ++periodiccnt);
826 array_needsize (periodics, periodicmax, periodiccnt, );
827 periodics [periodiccnt - 1] = w;
828 upheap ((WT *)periodics, periodiccnt - 1);
829}
830
831void
832evperiodic_stop (struct ev_periodic *w)
833{
834 ev_clear ((W)w);
835 if (!ev_is_active (w))
836 return;
837
838 if (w->active < periodiccnt--)
839 {
840 periodics [w->active - 1] = periodics [periodiccnt];
841 downheap ((WT *)periodics, periodiccnt, w->active - 1);
842 }
843
844 ev_stop ((W)w);
845}
846
847void
848evsignal_start (struct ev_signal *w)
849{
850 if (ev_is_active (w))
851 return;
852
853 ev_start ((W)w, 1);
854 array_needsize (signals, signalmax, w->signum, signals_init);
855 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
856
857 if (!w->next)
858 {
859 struct sigaction sa;
860 sa.sa_handler = sighandler;
861 sigfillset (&sa.sa_mask);
862 sa.sa_flags = 0;
863 sigaction (w->signum, &sa, 0);
864 }
865}
866
867void
868evsignal_stop (struct ev_signal *w)
869{
870 ev_clear ((W)w);
871 if (!ev_is_active (w))
872 return;
873
874 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
875 ev_stop ((W)w);
876
877 if (!signals [w->signum - 1].head)
878 signal (w->signum, SIG_DFL);
879}
880
881void evidle_start (struct ev_idle *w)
882{
883 if (ev_is_active (w))
884 return;
885
886 ev_start ((W)w, ++idlecnt);
887 array_needsize (idles, idlemax, idlecnt, );
888 idles [idlecnt - 1] = w;
889}
890
891void evidle_stop (struct ev_idle *w)
892{
893 ev_clear ((W)w);
894 if (ev_is_active (w))
895 return;
896
897 idles [w->active - 1] = idles [--idlecnt];
898 ev_stop ((W)w);
899}
900
901void evprepare_start (struct ev_prepare *w)
902{
903 if (ev_is_active (w))
904 return;
905
906 ev_start ((W)w, ++preparecnt);
907 array_needsize (prepares, preparemax, preparecnt, );
908 prepares [preparecnt - 1] = w;
909}
910
911void evprepare_stop (struct ev_prepare *w)
912{
913 ev_clear ((W)w);
914 if (ev_is_active (w))
915 return;
916
917 prepares [w->active - 1] = prepares [--preparecnt];
918 ev_stop ((W)w);
919}
920
921void evcheck_start (struct ev_check *w)
922{
923 if (ev_is_active (w))
924 return;
925
926 ev_start ((W)w, ++checkcnt);
927 array_needsize (checks, checkmax, checkcnt, );
928 checks [checkcnt - 1] = w;
929}
930
931void evcheck_stop (struct ev_check *w)
932{
933 ev_clear ((W)w);
934 if (ev_is_active (w))
935 return;
936
937 checks [w->active - 1] = checks [--checkcnt];
938 ev_stop ((W)w);
939}
940
941void evchild_start (struct ev_child *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, 1);
947 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
948}
949
950void evchild_stop (struct ev_child *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
957 ev_stop ((W)w);
958}
959
960/*****************************************************************************/
961
962struct ev_once 4392struct ev_once
963{ 4393{
964 struct ev_io io; 4394 ev_io io;
965 struct ev_timer to; 4395 ev_timer to;
966 void (*cb)(int revents, void *arg); 4396 void (*cb)(int revents, void *arg);
967 void *arg; 4397 void *arg;
968}; 4398};
969 4399
970static void 4400static void
971once_cb (struct ev_once *once, int revents) 4401once_cb (EV_P_ struct ev_once *once, int revents)
972{ 4402{
973 void (*cb)(int revents, void *arg) = once->cb; 4403 void (*cb)(int revents, void *arg) = once->cb;
974 void *arg = once->arg; 4404 void *arg = once->arg;
975 4405
976 evio_stop (&once->io); 4406 ev_io_stop (EV_A_ &once->io);
977 evtimer_stop (&once->to); 4407 ev_timer_stop (EV_A_ &once->to);
978 free (once); 4408 ev_free (once);
979 4409
980 cb (revents, arg); 4410 cb (revents, arg);
981} 4411}
982 4412
983static void 4413static void
984once_cb_io (struct ev_io *w, int revents) 4414once_cb_io (EV_P_ ev_io *w, int revents)
985{ 4415{
986 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4416 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4417
4418 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
987} 4419}
988 4420
989static void 4421static void
990once_cb_to (struct ev_timer *w, int revents) 4422once_cb_to (EV_P_ ev_timer *w, int revents)
991{ 4423{
992 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4424 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4425
4426 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
993} 4427}
994 4428
995void 4429void
996ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4430ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
997{ 4431{
998 struct ev_once *once = malloc (sizeof (struct ev_once)); 4432 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
999 4433
1000 if (!once) 4434 if (expect_false (!once))
1001 cb (EV_ERROR, arg); 4435 {
1002 else 4436 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4437 return;
1003 { 4438 }
4439
1004 once->cb = cb; 4440 once->cb = cb;
1005 once->arg = arg; 4441 once->arg = arg;
1006 4442
1007 evw_init (&once->io, once_cb_io); 4443 ev_init (&once->io, once_cb_io);
1008
1009 if (fd >= 0) 4444 if (fd >= 0)
4445 {
4446 ev_io_set (&once->io, fd, events);
4447 ev_io_start (EV_A_ &once->io);
4448 }
4449
4450 ev_init (&once->to, once_cb_to);
4451 if (timeout >= 0.)
4452 {
4453 ev_timer_set (&once->to, timeout, 0.);
4454 ev_timer_start (EV_A_ &once->to);
4455 }
4456}
4457
4458/*****************************************************************************/
4459
4460#if EV_WALK_ENABLE
4461void ecb_cold
4462ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4463{
4464 int i, j;
4465 ev_watcher_list *wl, *wn;
4466
4467 if (types & (EV_IO | EV_EMBED))
4468 for (i = 0; i < anfdmax; ++i)
4469 for (wl = anfds [i].head; wl; )
1010 { 4470 {
1011 evio_set (&once->io, fd, events); 4471 wn = wl->next;
1012 evio_start (&once->io); 4472
4473#if EV_EMBED_ENABLE
4474 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4475 {
4476 if (types & EV_EMBED)
4477 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4478 }
4479 else
4480#endif
4481#if EV_USE_INOTIFY
4482 if (ev_cb ((ev_io *)wl) == infy_cb)
4483 ;
4484 else
4485#endif
4486 if ((ev_io *)wl != &pipe_w)
4487 if (types & EV_IO)
4488 cb (EV_A_ EV_IO, wl);
4489
4490 wl = wn;
1013 } 4491 }
1014 4492
1015 evw_init (&once->to, once_cb_to); 4493 if (types & (EV_TIMER | EV_STAT))
1016 4494 for (i = timercnt + HEAP0; i-- > HEAP0; )
1017 if (timeout >= 0.) 4495#if EV_STAT_ENABLE
4496 /*TODO: timer is not always active*/
4497 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1018 { 4498 {
1019 evtimer_set (&once->to, timeout, 0.); 4499 if (types & EV_STAT)
1020 evtimer_start (&once->to); 4500 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1021 } 4501 }
1022 } 4502 else
1023} 4503#endif
4504 if (types & EV_TIMER)
4505 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1024 4506
1025/*****************************************************************************/ 4507#if EV_PERIODIC_ENABLE
4508 if (types & EV_PERIODIC)
4509 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4510 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4511#endif
1026 4512
1027#if 0 4513#if EV_IDLE_ENABLE
4514 if (types & EV_IDLE)
4515 for (j = NUMPRI; j--; )
4516 for (i = idlecnt [j]; i--; )
4517 cb (EV_A_ EV_IDLE, idles [j][i]);
4518#endif
1028 4519
1029struct ev_io wio; 4520#if EV_FORK_ENABLE
4521 if (types & EV_FORK)
4522 for (i = forkcnt; i--; )
4523 if (ev_cb (forks [i]) != embed_fork_cb)
4524 cb (EV_A_ EV_FORK, forks [i]);
4525#endif
1030 4526
1031static void 4527#if EV_ASYNC_ENABLE
1032sin_cb (struct ev_io *w, int revents) 4528 if (types & EV_ASYNC)
1033{ 4529 for (i = asynccnt; i--; )
1034 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 4530 cb (EV_A_ EV_ASYNC, asyncs [i]);
1035} 4531#endif
1036 4532
1037static void 4533#if EV_PREPARE_ENABLE
1038ocb (struct ev_timer *w, int revents) 4534 if (types & EV_PREPARE)
1039{ 4535 for (i = preparecnt; i--; )
1040 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 4536# if EV_EMBED_ENABLE
1041 evtimer_stop (w); 4537 if (ev_cb (prepares [i]) != embed_prepare_cb)
1042 evtimer_start (w);
1043}
1044
1045static void
1046scb (struct ev_signal *w, int revents)
1047{
1048 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1049 evio_stop (&wio);
1050 evio_start (&wio);
1051}
1052
1053static void
1054gcb (struct ev_signal *w, int revents)
1055{
1056 fprintf (stderr, "generic %x\n", revents);
1057
1058}
1059
1060int main (void)
1061{
1062 ev_init (0);
1063
1064 evio_init (&wio, sin_cb, 0, EV_READ);
1065 evio_start (&wio);
1066
1067 struct ev_timer t[10000];
1068
1069#if 0
1070 int i;
1071 for (i = 0; i < 10000; ++i)
1072 {
1073 struct ev_timer *w = t + i;
1074 evw_init (w, ocb, i);
1075 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1076 evtimer_start (w);
1077 if (drand48 () < 0.5)
1078 evtimer_stop (w);
1079 }
1080#endif 4538# endif
1081 4539 cb (EV_A_ EV_PREPARE, prepares [i]);
1082 struct ev_timer t1;
1083 evtimer_init (&t1, ocb, 5, 10);
1084 evtimer_start (&t1);
1085
1086 struct ev_signal sig;
1087 evsignal_init (&sig, scb, SIGQUIT);
1088 evsignal_start (&sig);
1089
1090 struct ev_check cw;
1091 evcheck_init (&cw, gcb);
1092 evcheck_start (&cw);
1093
1094 struct ev_idle iw;
1095 evidle_init (&iw, gcb);
1096 evidle_start (&iw);
1097
1098 ev_loop (0);
1099
1100 return 0;
1101}
1102
1103#endif 4540#endif
1104 4541
4542#if EV_CHECK_ENABLE
4543 if (types & EV_CHECK)
4544 for (i = checkcnt; i--; )
4545 cb (EV_A_ EV_CHECK, checks [i]);
4546#endif
1105 4547
4548#if EV_SIGNAL_ENABLE
4549 if (types & EV_SIGNAL)
4550 for (i = 0; i < EV_NSIG - 1; ++i)
4551 for (wl = signals [i].head; wl; )
4552 {
4553 wn = wl->next;
4554 cb (EV_A_ EV_SIGNAL, wl);
4555 wl = wn;
4556 }
4557#endif
1106 4558
4559#if EV_CHILD_ENABLE
4560 if (types & EV_CHILD)
4561 for (i = (EV_PID_HASHSIZE); i--; )
4562 for (wl = childs [i]; wl; )
4563 {
4564 wn = wl->next;
4565 cb (EV_A_ EV_CHILD, wl);
4566 wl = wn;
4567 }
4568#endif
4569/* EV_STAT 0x00001000 /* stat data changed */
4570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4571}
4572#endif
1107 4573
4574#if EV_MULTIPLICITY
4575 #include "ev_wrap.h"
4576#endif
4577

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines