ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.24 by root, Wed Oct 31 20:46:44 2007 UTC vs.
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_EMBED
32# include "config.h"
33#endif
29 34
30#include <math.h> 35#include <math.h>
31#include <stdlib.h> 36#include <stdlib.h>
32#include <unistd.h> 37#include <unistd.h>
33#include <fcntl.h> 38#include <fcntl.h>
37#include <stdio.h> 42#include <stdio.h>
38 43
39#include <assert.h> 44#include <assert.h>
40#include <errno.h> 45#include <errno.h>
41#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
42#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
43#include <sys/time.h> 50#include <sys/time.h>
44#include <time.h> 51#include <time.h>
45 52
53/**/
54
46#ifndef HAVE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1
57#endif
58
59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1
61#endif
62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
47# ifdef CLOCK_MONOTONIC 81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
48# define HAVE_MONOTONIC 1 83# define EV_USE_MONOTONIC 0
49# endif 84#endif
50#endif
51 85
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 86#ifndef CLOCK_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
62#endif 89#endif
90
91/**/
63 92
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 97
98#ifndef EV_EMBED
68#include "ev.h" 99# include "ev.h"
100#endif
101
102#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline
105#else
106# define expect(expr,value) (expr)
107# define inline static
108#endif
109
110#define expect_false(expr) expect ((expr) != 0, 0)
111#define expect_true(expr) expect ((expr) != 0, 1)
112
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
114#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 115
70typedef struct ev_watcher *W; 116typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 117typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 118typedef struct ev_watcher_time *WT;
73 119
74static ev_tstamp now, diff; /* monotonic clock */ 120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 121
84/*****************************************************************************/ 122/*****************************************************************************/
85 123
86ev_tstamp 124typedef struct
125{
126 struct ev_watcher_list *head;
127 unsigned char events;
128 unsigned char reify;
129} ANFD;
130
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137#if EV_MULTIPLICITY
138
139struct ev_loop
140{
141# define VAR(name,decl) decl;
142# include "ev_vars.h"
143};
144# undef VAR
145# include "ev_wrap.h"
146
147#else
148
149# define VAR(name,decl) static decl;
150# include "ev_vars.h"
151# undef VAR
152
153#endif
154
155/*****************************************************************************/
156
157inline ev_tstamp
87ev_time (void) 158ev_time (void)
88{ 159{
89#if HAVE_REALTIME 160#if EV_USE_REALTIME
90 struct timespec ts; 161 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 162 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 163 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 164#else
94 struct timeval tv; 165 struct timeval tv;
95 gettimeofday (&tv, 0); 166 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 167 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 168#endif
98} 169}
99 170
100static ev_tstamp 171inline ev_tstamp
101get_clock (void) 172get_clock (void)
102{ 173{
103#if HAVE_MONOTONIC 174#if EV_USE_MONOTONIC
104 if (have_monotonic) 175 if (expect_true (have_monotonic))
105 { 176 {
106 struct timespec ts; 177 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 178 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 179 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 180 }
110#endif 181#endif
111 182
112 return ev_time (); 183 return ev_time ();
113} 184}
114 185
186ev_tstamp
187ev_now (EV_P)
188{
189 return rt_now;
190}
191
192#define array_roundsize(base,n) ((n) | 4 & ~3)
193
115#define array_needsize(base,cur,cnt,init) \ 194#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 195 if (expect_false ((cnt) > cur)) \
117 { \ 196 { \
118 int newcnt = cur; \ 197 int newcnt = cur; \
119 do \ 198 do \
120 { \ 199 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 200 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 201 } \
123 while ((cnt) > newcnt); \ 202 while ((cnt) > newcnt); \
124 \ 203 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 204 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 205 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 206 cur = newcnt; \
128 } 207 }
129 208
130/*****************************************************************************/ 209/*****************************************************************************/
131 210
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 211static void
145anfds_init (ANFD *base, int count) 212anfds_init (ANFD *base, int count)
146{ 213{
147 while (count--) 214 while (count--)
148 { 215 {
149 base->head = 0; 216 base->head = 0;
150 base->wev = base->rev = EV_NONE; 217 base->events = EV_NONE;
218 base->reify = 0;
219
151 ++base; 220 ++base;
152 } 221 }
153} 222}
154 223
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void 224static void
165event (W w, int events) 225event (EV_P_ W w, int events)
166{ 226{
167 if (w->active) 227 if (w->pending)
168 { 228 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 229 pendings [ABSPRI (w)][w->pending - 1].events |= events;
230 return;
173 } 231 }
174}
175 232
233 w->pending = ++pendingcnt [ABSPRI (w)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
235 pendings [ABSPRI (w)][w->pending - 1].w = w;
236 pendings [ABSPRI (w)][w->pending - 1].events = events;
237}
238
176static void 239static void
240queue_events (EV_P_ W *events, int eventcnt, int type)
241{
242 int i;
243
244 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type);
246}
247
248static void
177fd_event (int fd, int events) 249fd_event (EV_P_ int fd, int events)
178{ 250{
179 ANFD *anfd = anfds + fd; 251 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 252 struct ev_io *w;
181 253
182 for (w = anfd->head; w; w = w->next) 254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 255 {
184 int ev = w->events & events; 256 int ev = w->events & events;
185 257
186 if (ev) 258 if (ev)
187 event ((W)w, ev); 259 event (EV_A_ (W)w, ev);
188 } 260 }
189} 261}
190 262
263/*****************************************************************************/
264
191static void 265static void
192queue_events (W *events, int eventcnt, int type) 266fd_reify (EV_P)
193{ 267{
194 int i; 268 int i;
195 269
196 for (i = 0; i < eventcnt; ++i) 270 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 271 {
272 int fd = fdchanges [i];
273 ANFD *anfd = anfds + fd;
274 struct ev_io *w;
275
276 int events = 0;
277
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events;
280
281 anfd->reify = 0;
282
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events;
287 }
288 }
289
290 fdchangecnt = 0;
291}
292
293static void
294fd_change (EV_P_ int fd)
295{
296 if (anfds [fd].reify || fdchangecnt < 0)
297 return;
298
299 anfds [fd].reify = 1;
300
301 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
303 fdchanges [fdchangecnt - 1] = fd;
304}
305
306static void
307fd_kill (EV_P_ int fd)
308{
309 struct ev_io *w;
310
311 while ((w = (struct ev_io *)anfds [fd].head))
312 {
313 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 }
198} 316}
199 317
200/* called on EBADF to verify fds */ 318/* called on EBADF to verify fds */
201static void 319static void
202fd_recheck (void) 320fd_ebadf (EV_P)
203{ 321{
204 int fd; 322 int fd;
205 323
206 for (fd = 0; fd < anfdmax; ++fd) 324 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 325 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head) 327 fd_kill (EV_A_ fd);
328}
329
330/* called on ENOMEM in select/poll to kill some fds and retry */
331static void
332fd_enomem (EV_P)
333{
334 int fd = anfdmax;
335
336 while (fd--)
337 if (anfds [fd].events)
210 { 338 {
211 event ((W)anfds [fd].head, EV_ERROR); 339 close (fd);
212 evio_stop (anfds [fd].head); 340 fd_kill (EV_A_ fd);
341 return;
213 } 342 }
343}
344
345/* susually called after fork if method needs to re-arm all fds from scratch */
346static void
347fd_rearm_all (EV_P)
348{
349 int fd;
350
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 {
355 anfds [fd].events = 0;
356 fd_change (fd);
357 }
214} 358}
215 359
216/*****************************************************************************/ 360/*****************************************************************************/
217 361
218static struct ev_timer **timers;
219static int timermax, timercnt;
220
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void 362static void
225upheap (WT *timers, int k) 363upheap (WT *heap, int k)
226{ 364{
227 WT w = timers [k]; 365 WT w = heap [k];
228 366
229 while (k && timers [k >> 1]->at > w->at) 367 while (k && heap [k >> 1]->at > w->at)
230 { 368 {
231 timers [k] = timers [k >> 1]; 369 heap [k] = heap [k >> 1];
232 timers [k]->active = k + 1; 370 heap [k]->active = k + 1;
233 k >>= 1; 371 k >>= 1;
234 } 372 }
235 373
236 timers [k] = w; 374 heap [k] = w;
237 timers [k]->active = k + 1; 375 heap [k]->active = k + 1;
238 376
239} 377}
240 378
241static void 379static void
242downheap (WT *timers, int N, int k) 380downheap (WT *heap, int N, int k)
243{ 381{
244 WT w = timers [k]; 382 WT w = heap [k];
245 383
246 while (k < (N >> 1)) 384 while (k < (N >> 1))
247 { 385 {
248 int j = k << 1; 386 int j = k << 1;
249 387
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
251 ++j; 389 ++j;
252 390
253 if (w->at <= timers [j]->at) 391 if (w->at <= heap [j]->at)
254 break; 392 break;
255 393
256 timers [k] = timers [j]; 394 heap [k] = heap [j];
257 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
258 k = j; 396 k = j;
259 } 397 }
260 398
261 timers [k] = w; 399 heap [k] = w;
262 timers [k]->active = k + 1; 400 heap [k]->active = k + 1;
263} 401}
264 402
265/*****************************************************************************/ 403/*****************************************************************************/
266 404
267typedef struct 405typedef struct
268{ 406{
269 struct ev_signal *head; 407 struct ev_watcher_list *head;
270 sig_atomic_t gotsig; 408 sig_atomic_t volatile gotsig;
271} ANSIG; 409} ANSIG;
272 410
273static ANSIG *signals; 411static ANSIG *signals;
274static int signalmax; 412static int signalmax;
275 413
276static int sigpipe [2]; 414static int sigpipe [2];
277static sig_atomic_t gotsig; 415static sig_atomic_t volatile gotsig;
278static struct ev_io sigev;
279 416
280static void 417static void
281signals_init (ANSIG *base, int count) 418signals_init (ANSIG *base, int count)
282{ 419{
283 while (count--) 420 while (count--)
284 { 421 {
285 base->head = 0; 422 base->head = 0;
286 base->gotsig = 0; 423 base->gotsig = 0;
424
287 ++base; 425 ++base;
288 } 426 }
289} 427}
290 428
291static void 429static void
293{ 431{
294 signals [signum - 1].gotsig = 1; 432 signals [signum - 1].gotsig = 1;
295 433
296 if (!gotsig) 434 if (!gotsig)
297 { 435 {
436 int old_errno = errno;
298 gotsig = 1; 437 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1); 438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
300 } 440 }
301} 441}
302 442
303static void 443static void
304sigcb (struct ev_io *iow, int revents) 444sigcb (EV_P_ struct ev_io *iow, int revents)
305{ 445{
306 struct ev_signal *w; 446 struct ev_watcher_list *w;
307 int sig; 447 int signum;
308 448
449 read (sigpipe [0], &revents, 1);
309 gotsig = 0; 450 gotsig = 0;
310 read (sigpipe [0], &revents, 1);
311 451
312 for (sig = signalmax; sig--; ) 452 for (signum = signalmax; signum--; )
313 if (signals [sig].gotsig) 453 if (signals [signum].gotsig)
314 { 454 {
315 signals [sig].gotsig = 0; 455 signals [signum].gotsig = 0;
316 456
317 for (w = signals [sig].head; w; w = w->next) 457 for (w = signals [signum].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL); 458 event (EV_A_ (W)w, EV_SIGNAL);
319 } 459 }
320} 460}
321 461
322static void 462static void
323siginit (void) 463siginit (EV_P)
324{ 464{
465#ifndef WIN32
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327 468
328 /* rather than sort out wether we really need nb, set it */ 469 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
331 473
332 evio_set (&sigev, sigpipe [0], EV_READ); 474 ev_io_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev); 475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
334} 477}
335 478
336/*****************************************************************************/ 479/*****************************************************************************/
337 480
338static struct ev_idle **idles; 481#ifndef WIN32
339static int idlemax, idlecnt;
340
341static struct ev_prepare **prepares;
342static int preparemax, preparecnt;
343
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348
349static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev;
351 482
352#ifndef WCONTINUED 483#ifndef WCONTINUED
353# define WCONTINUED 0 484# define WCONTINUED 0
354#endif 485#endif
355 486
356static void 487static void
357childcb (struct ev_signal *sw, int revents) 488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
358{ 489{
359 struct ev_child *w; 490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents)
504{
360 int pid, status; 505 int pid, status;
361 506
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 508 {
364 if (w->pid == pid || w->pid == -1) 509 /* make sure we are called again until all childs have been reaped */
365 { 510 event (EV_A_ (W)sw, EV_SIGNAL);
366 w->status = status; 511
367 event ((W)w, EV_CHILD); 512 child_reap (EV_A_ sw, pid, pid, status);
368 } 513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 }
369} 515}
516
517#endif
370 518
371/*****************************************************************************/ 519/*****************************************************************************/
372 520
521#if EV_USE_KQUEUE
522# include "ev_kqueue.c"
523#endif
373#if HAVE_EPOLL 524#if EV_USE_EPOLL
374# include "ev_epoll.c" 525# include "ev_epoll.c"
375#endif 526#endif
527#if EV_USEV_POLL
528# include "ev_poll.c"
529#endif
376#if HAVE_SELECT 530#if EV_USE_SELECT
377# include "ev_select.c" 531# include "ev_select.c"
378#endif 532#endif
379 533
380int 534int
381ev_version_major (void) 535ev_version_major (void)
387ev_version_minor (void) 541ev_version_minor (void)
388{ 542{
389 return EV_VERSION_MINOR; 543 return EV_VERSION_MINOR;
390} 544}
391 545
392int ev_init (int flags) 546/* return true if we are running with elevated privileges and should ignore env variables */
547static int
548enable_secure (void)
393{ 549{
550#ifdef WIN32
551 return 0;
552#else
553 return getuid () != geteuid ()
554 || getgid () != getegid ();
555#endif
556}
557
558int
559ev_method (EV_P)
560{
561 return method;
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
394 if (!ev_method) 567 if (!method)
395 { 568 {
396#if HAVE_MONOTONIC 569#if EV_USE_MONOTONIC
397 { 570 {
398 struct timespec ts; 571 struct timespec ts;
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
400 have_monotonic = 1; 573 have_monotonic = 1;
401 } 574 }
402#endif 575#endif
403 576
404 ev_now = ev_time (); 577 rt_now = ev_time ();
405 now = get_clock (); 578 mn_now = get_clock ();
579 now_floor = mn_now;
406 diff = ev_now - now; 580 rtmn_diff = rt_now - mn_now;
407 581
582 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS"));
585 else
586 methods = EVMETHOD_ANY;
587
588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif
592#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif
595#if EV_USEV_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif
598#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif
601 }
602}
603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY
637struct ev_loop *
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
408 if (pipe (sigpipe)) 678 if (pipe (sigpipe))
409 return 0; 679 return 0;
410 680
411 ev_method = EVMETHOD_NONE; 681 if (!default_loop)
412#if HAVE_EPOLL 682 {
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1;
414#endif 687#endif
415#if HAVE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif
418 688
689 loop_init (EV_A_ methods);
690
419 if (ev_method) 691 if (ev_method (EV_A))
420 { 692 {
421 evw_init (&sigev, sigcb); 693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
422 siginit (); 695 siginit (EV_A);
423 696
697#ifndef WIN32
424 evsignal_init (&childev, childcb, SIGCHLD); 698 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI);
425 evsignal_start (&childev); 700 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif
426 } 703 }
704 else
705 default_loop = 0;
427 } 706 }
428 707
429 return ev_method; 708 return default_loop;
430} 709}
431 710
432/*****************************************************************************/
433
434void 711void
435ev_prefork (void) 712ev_default_destroy (void)
436{ 713{
437 /* nop */ 714#if EV_MULTIPLICITY
438} 715 struct ev_loop *loop = default_loop;
439
440void
441ev_postfork_parent (void)
442{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif 716#endif
453 717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
454 evio_stop (&sigev); 722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728}
729
730void
731ev_default_fork (EV_P)
732{
733 loop_fork (EV_A);
734
735 ev_io_stop (EV_A_ &sigev);
455 close (sigpipe [0]); 736 close (sigpipe [0]);
456 close (sigpipe [1]); 737 close (sigpipe [1]);
457 pipe (sigpipe); 738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
458 siginit (); 741 siginit (EV_A);
459} 742}
460 743
461/*****************************************************************************/ 744/*****************************************************************************/
462 745
463static void 746static void
464fd_reify (void) 747call_pending (EV_P)
465{ 748{
466 int i; 749 int pri;
467 750
468 for (i = 0; i < fdchangecnt; ++i) 751 for (pri = NUMPRI; pri--; )
469 { 752 while (pendingcnt [pri])
470 int fd = fdchanges [i];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473
474 int wev = 0;
475
476 for (w = anfd->head; w; w = w->next)
477 wev |= w->events;
478
479 if (anfd->wev != wev)
480 { 753 {
481 method_modify (fd, anfd->wev, wev);
482 anfd->wev = wev;
483 }
484 }
485
486 fdchangecnt = 0;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 {
494 ANPENDING *p = pendings + --pendingcnt; 754 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
495 755
496 if (p->w) 756 if (p->w)
497 { 757 {
498 p->w->pending = 0; 758 p->w->pending = 0;
499 p->w->cb (p->w, p->events); 759 p->w->cb (EV_A_ p->w, p->events);
500 } 760 }
501 } 761 }
502} 762}
503 763
504static void 764static void
505timers_reify (void) 765timers_reify (EV_P)
506{ 766{
507 while (timercnt && timers [0]->at <= now) 767 while (timercnt && timers [0]->at <= mn_now)
508 { 768 {
509 struct ev_timer *w = timers [0]; 769 struct ev_timer *w = timers [0];
510
511 event ((W)w, EV_TIMEOUT);
512 770
513 /* first reschedule or stop timer */ 771 /* first reschedule or stop timer */
514 if (w->repeat) 772 if (w->repeat)
515 { 773 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
516 w->at = now + w->repeat; 775 w->at = mn_now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now));
518 downheap ((WT *)timers, timercnt, 0); 776 downheap ((WT *)timers, timercnt, 0);
519 } 777 }
520 else 778 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
522 }
523}
524 780
781 event (EV_A_ (W)w, EV_TIMEOUT);
782 }
783}
784
525static void 785static void
526periodics_reify (void) 786periodics_reify (EV_P)
527{ 787{
528 while (periodiccnt && periodics [0]->at <= ev_now) 788 while (periodiccnt && periodics [0]->at <= rt_now)
529 { 789 {
530 struct ev_periodic *w = periodics [0]; 790 struct ev_periodic *w = periodics [0];
531 791
532 /* first reschedule or stop timer */ 792 /* first reschedule or stop timer */
533 if (w->interval) 793 if (w->interval)
534 { 794 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
537 downheap ((WT *)periodics, periodiccnt, 0); 797 downheap ((WT *)periodics, periodiccnt, 0);
538 } 798 }
539 else 799 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
541 801
542 event ((W)w, EV_TIMEOUT); 802 event (EV_A_ (W)w, EV_PERIODIC);
543 } 803 }
544} 804}
545 805
546static void 806static void
547periodics_reschedule (ev_tstamp diff) 807periodics_reschedule (EV_P)
548{ 808{
549 int i; 809 int i;
550 810
551 /* adjust periodics after time jump */ 811 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i) 812 for (i = 0; i < periodiccnt; ++i)
553 { 813 {
554 struct ev_periodic *w = periodics [i]; 814 struct ev_periodic *w = periodics [i];
555 815
556 if (w->interval) 816 if (w->interval)
557 { 817 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
559 819
560 if (fabs (diff) >= 1e-4) 820 if (fabs (diff) >= 1e-4)
561 { 821 {
562 evperiodic_stop (w); 822 ev_periodic_stop (EV_A_ w);
563 evperiodic_start (w); 823 ev_periodic_start (EV_A_ w);
564 824
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
566 } 826 }
567 } 827 }
568 } 828 }
569} 829}
570 830
831inline int
832time_update_monotonic (EV_P)
833{
834 mn_now = get_clock ();
835
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 {
838 rt_now = rtmn_diff + mn_now;
839 return 0;
840 }
841 else
842 {
843 now_floor = mn_now;
844 rt_now = ev_time ();
845 return 1;
846 }
847}
848
571static void 849static void
572time_update (void) 850time_update (EV_P)
573{ 851{
574 int i; 852 int i;
575 853
576 ev_now = ev_time (); 854#if EV_USE_MONOTONIC
577
578 if (have_monotonic) 855 if (expect_true (have_monotonic))
579 { 856 {
580 ev_tstamp odiff = diff; 857 if (time_update_monotonic (EV_A))
581
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */
583 { 858 {
584 now = get_clock (); 859 ev_tstamp odiff = rtmn_diff;
860
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 {
585 diff = ev_now - now; 863 rtmn_diff = rt_now - mn_now;
586 864
587 if (fabs (odiff - diff) < MIN_TIMEJUMP) 865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
588 return; /* all is well */ 866 return; /* all is well */
589 867
590 ev_now = ev_time (); 868 rt_now = ev_time ();
869 mn_now = get_clock ();
870 now_floor = mn_now;
871 }
872
873 periodics_reschedule (EV_A);
874 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
591 } 876 }
592
593 periodics_reschedule (diff - odiff);
594 /* no timer adjustment, as the monotonic clock doesn't jump */
595 } 877 }
596 else 878 else
879#endif
597 { 880 {
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 881 rt_now = ev_time ();
882
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
599 { 884 {
600 periodics_reschedule (ev_now - now); 885 periodics_reschedule (EV_A);
601 886
602 /* adjust timers. this is easy, as the offset is the same for all */ 887 /* adjust timers. this is easy, as the offset is the same for all */
603 for (i = 0; i < timercnt; ++i) 888 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff; 889 timers [i]->at += rt_now - mn_now;
605 } 890 }
606 891
607 now = ev_now; 892 mn_now = rt_now;
608 } 893 }
609} 894}
610 895
611int ev_loop_done; 896void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
612 901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
613void ev_loop (int flags) 911ev_loop (EV_P_ int flags)
614{ 912{
615 double block; 913 double block;
616 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
617 915
618 do 916 do
619 { 917 {
620 /* queue check watchers (and execute them) */ 918 /* queue check watchers (and execute them) */
621 if (preparecnt) 919 if (expect_false (preparecnt))
622 { 920 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
624 call_pending (); 922 call_pending (EV_A);
625 } 923 }
626 924
627 /* update fd-related kernel structures */ 925 /* update fd-related kernel structures */
628 fd_reify (); 926 fd_reify (EV_A);
629 927
630 /* calculate blocking time */ 928 /* calculate blocking time */
631 929
632 /* we only need this for !monotonic clockor timers, but as we basically 930 /* we only need this for !monotonic clockor timers, but as we basically
633 always have timers, we just calculate it always */ 931 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A);
935 else
936#endif
937 {
634 ev_now = ev_time (); 938 rt_now = ev_time ();
939 mn_now = rt_now;
940 }
635 941
636 if (flags & EVLOOP_NONBLOCK || idlecnt) 942 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.; 943 block = 0.;
638 else 944 else
639 { 945 {
640 block = MAX_BLOCKTIME; 946 block = MAX_BLOCKTIME;
641 947
642 if (timercnt) 948 if (timercnt)
643 { 949 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 950 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
645 if (block > to) block = to; 951 if (block > to) block = to;
646 } 952 }
647 953
648 if (periodiccnt) 954 if (periodiccnt)
649 { 955 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
651 if (block > to) block = to; 957 if (block > to) block = to;
652 } 958 }
653 959
654 if (block < 0.) block = 0.; 960 if (block < 0.) block = 0.;
655 } 961 }
656 962
657 method_poll (block); 963 method_poll (EV_A_ block);
658 964
659 /* update ev_now, do magic */ 965 /* update rt_now, do magic */
660 time_update (); 966 time_update (EV_A);
661 967
662 /* queue pending timers and reschedule them */ 968 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */ 969 timers_reify (EV_A); /* relative timers called last */
664 periodics_reify (); /* absolute timers called first */ 970 periodics_reify (EV_A); /* absolute timers called first */
665 971
666 /* queue idle watchers unless io or timers are pending */ 972 /* queue idle watchers unless io or timers are pending */
667 if (!pendingcnt) 973 if (!pendingcnt)
668 queue_events ((W *)idles, idlecnt, EV_IDLE); 974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
669 975
670 /* queue check watchers, to be executed first */ 976 /* queue check watchers, to be executed first */
671 if (checkcnt) 977 if (checkcnt)
672 queue_events ((W *)checks, checkcnt, EV_CHECK); 978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
673 979
674 call_pending (); 980 call_pending (EV_A);
675 } 981 }
676 while (!ev_loop_done); 982 while (activecnt && !loop_done);
677 983
678 if (ev_loop_done != 2) 984 if (loop_done != 2)
679 ev_loop_done = 0; 985 loop_done = 0;
986}
987
988void
989ev_unloop (EV_P_ int how)
990{
991 loop_done = how;
680} 992}
681 993
682/*****************************************************************************/ 994/*****************************************************************************/
683 995
684static void 996inline void
685wlist_add (WL *head, WL elem) 997wlist_add (WL *head, WL elem)
686{ 998{
687 elem->next = *head; 999 elem->next = *head;
688 *head = elem; 1000 *head = elem;
689} 1001}
690 1002
691static void 1003inline void
692wlist_del (WL *head, WL elem) 1004wlist_del (WL *head, WL elem)
693{ 1005{
694 while (*head) 1006 while (*head)
695 { 1007 {
696 if (*head == elem) 1008 if (*head == elem)
701 1013
702 head = &(*head)->next; 1014 head = &(*head)->next;
703 } 1015 }
704} 1016}
705 1017
706static void 1018inline void
707ev_clear (W w) 1019ev_clear_pending (EV_P_ W w)
708{ 1020{
709 if (w->pending) 1021 if (w->pending)
710 { 1022 {
711 pendings [w->pending - 1].w = 0; 1023 pendings [ABSPRI (w)][w->pending - 1].w = 0;
712 w->pending = 0; 1024 w->pending = 0;
713 } 1025 }
714} 1026}
715 1027
716static void 1028inline void
717ev_start (W w, int active) 1029ev_start (EV_P_ W w, int active)
718{ 1030{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
719 w->active = active; 1034 w->active = active;
1035 ev_ref (EV_A);
720} 1036}
721 1037
722static void 1038inline void
723ev_stop (W w) 1039ev_stop (EV_P_ W w)
724{ 1040{
1041 ev_unref (EV_A);
725 w->active = 0; 1042 w->active = 0;
726} 1043}
727 1044
728/*****************************************************************************/ 1045/*****************************************************************************/
729 1046
730void 1047void
731evio_start (struct ev_io *w) 1048ev_io_start (EV_P_ struct ev_io *w)
732{ 1049{
1050 int fd = w->fd;
1051
733 if (ev_is_active (w)) 1052 if (ev_is_active (w))
734 return; 1053 return;
735 1054
736 int fd = w->fd; 1055 assert (("ev_io_start called with negative fd", fd >= 0));
737 1056
738 ev_start ((W)w, 1); 1057 ev_start (EV_A_ (W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1059 wlist_add ((WL *)&anfds[fd].head, (WL)w);
741 1060
742 ++fdchangecnt; 1061 fd_change (EV_A_ fd);
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
744 fdchanges [fdchangecnt - 1] = fd;
745} 1062}
746 1063
747void 1064void
748evio_stop (struct ev_io *w) 1065ev_io_stop (EV_P_ struct ev_io *w)
749{ 1066{
750 ev_clear ((W)w); 1067 ev_clear_pending (EV_A_ (W)w);
751 if (!ev_is_active (w)) 1068 if (!ev_is_active (w))
752 return; 1069 return;
753 1070
754 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
755 ev_stop ((W)w); 1072 ev_stop (EV_A_ (W)w);
756 1073
757 ++fdchangecnt; 1074 fd_change (EV_A_ w->fd);
758 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
759 fdchanges [fdchangecnt - 1] = w->fd;
760} 1075}
761 1076
762void 1077void
763evtimer_start (struct ev_timer *w) 1078ev_timer_start (EV_P_ struct ev_timer *w)
764{ 1079{
765 if (ev_is_active (w)) 1080 if (ev_is_active (w))
766 return; 1081 return;
767 1082
768 w->at += now; 1083 w->at += mn_now;
769 1084
770 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
771 1086
772 ev_start ((W)w, ++timercnt); 1087 ev_start (EV_A_ (W)w, ++timercnt);
773 array_needsize (timers, timermax, timercnt, ); 1088 array_needsize (timers, timermax, timercnt, );
774 timers [timercnt - 1] = w; 1089 timers [timercnt - 1] = w;
775 upheap ((WT *)timers, timercnt - 1); 1090 upheap ((WT *)timers, timercnt - 1);
776} 1091}
777 1092
778void 1093void
779evtimer_stop (struct ev_timer *w) 1094ev_timer_stop (EV_P_ struct ev_timer *w)
780{ 1095{
781 ev_clear ((W)w); 1096 ev_clear_pending (EV_A_ (W)w);
782 if (!ev_is_active (w)) 1097 if (!ev_is_active (w))
783 return; 1098 return;
784 1099
785 if (w->active < timercnt--) 1100 if (w->active < timercnt--)
786 { 1101 {
788 downheap ((WT *)timers, timercnt, w->active - 1); 1103 downheap ((WT *)timers, timercnt, w->active - 1);
789 } 1104 }
790 1105
791 w->at = w->repeat; 1106 w->at = w->repeat;
792 1107
793 ev_stop ((W)w); 1108 ev_stop (EV_A_ (W)w);
794} 1109}
795 1110
796void 1111void
797evtimer_again (struct ev_timer *w) 1112ev_timer_again (EV_P_ struct ev_timer *w)
798{ 1113{
799 if (ev_is_active (w)) 1114 if (ev_is_active (w))
800 { 1115 {
801 if (w->repeat) 1116 if (w->repeat)
802 { 1117 {
803 w->at = now + w->repeat; 1118 w->at = mn_now + w->repeat;
804 downheap ((WT *)timers, timercnt, w->active - 1); 1119 downheap ((WT *)timers, timercnt, w->active - 1);
805 } 1120 }
806 else 1121 else
807 evtimer_stop (w); 1122 ev_timer_stop (EV_A_ w);
808 } 1123 }
809 else if (w->repeat) 1124 else if (w->repeat)
810 evtimer_start (w); 1125 ev_timer_start (EV_A_ w);
811} 1126}
812 1127
813void 1128void
814evperiodic_start (struct ev_periodic *w) 1129ev_periodic_start (EV_P_ struct ev_periodic *w)
815{ 1130{
816 if (ev_is_active (w)) 1131 if (ev_is_active (w))
817 return; 1132 return;
818 1133
819 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
820 1135
821 /* this formula differs from the one in periodic_reify because we do not always round up */ 1136 /* this formula differs from the one in periodic_reify because we do not always round up */
822 if (w->interval) 1137 if (w->interval)
823 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
824 1139
825 ev_start ((W)w, ++periodiccnt); 1140 ev_start (EV_A_ (W)w, ++periodiccnt);
826 array_needsize (periodics, periodicmax, periodiccnt, ); 1141 array_needsize (periodics, periodicmax, periodiccnt, );
827 periodics [periodiccnt - 1] = w; 1142 periodics [periodiccnt - 1] = w;
828 upheap ((WT *)periodics, periodiccnt - 1); 1143 upheap ((WT *)periodics, periodiccnt - 1);
829} 1144}
830 1145
831void 1146void
832evperiodic_stop (struct ev_periodic *w) 1147ev_periodic_stop (EV_P_ struct ev_periodic *w)
833{ 1148{
834 ev_clear ((W)w); 1149 ev_clear_pending (EV_A_ (W)w);
835 if (!ev_is_active (w)) 1150 if (!ev_is_active (w))
836 return; 1151 return;
837 1152
838 if (w->active < periodiccnt--) 1153 if (w->active < periodiccnt--)
839 { 1154 {
840 periodics [w->active - 1] = periodics [periodiccnt]; 1155 periodics [w->active - 1] = periodics [periodiccnt];
841 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1156 downheap ((WT *)periodics, periodiccnt, w->active - 1);
842 } 1157 }
843 1158
844 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
845} 1160}
846 1161
847void 1162void
848evsignal_start (struct ev_signal *w) 1163ev_idle_start (EV_P_ struct ev_idle *w)
849{ 1164{
850 if (ev_is_active (w)) 1165 if (ev_is_active (w))
851 return; 1166 return;
852 1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171}
1172
1173void
1174ev_idle_stop (EV_P_ struct ev_idle *w)
1175{
1176 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w);
1182}
1183
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227
1228#ifndef SA_RESTART
1229# define SA_RESTART 0
1230#endif
1231
1232void
1233ev_signal_start (EV_P_ struct ev_signal *w)
1234{
1235#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1237#endif
1238 if (ev_is_active (w))
1239 return;
1240
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242
853 ev_start ((W)w, 1); 1243 ev_start (EV_A_ (W)w, 1);
854 array_needsize (signals, signalmax, w->signum, signals_init); 1244 array_needsize (signals, signalmax, w->signum, signals_init);
855 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
856 1246
857 if (!w->next) 1247 if (!w->next)
858 { 1248 {
859 struct sigaction sa; 1249 struct sigaction sa;
860 sa.sa_handler = sighandler; 1250 sa.sa_handler = sighandler;
861 sigfillset (&sa.sa_mask); 1251 sigfillset (&sa.sa_mask);
862 sa.sa_flags = 0; 1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
863 sigaction (w->signum, &sa, 0); 1253 sigaction (w->signum, &sa, 0);
864 } 1254 }
865} 1255}
866 1256
867void 1257void
868evsignal_stop (struct ev_signal *w) 1258ev_signal_stop (EV_P_ struct ev_signal *w)
869{ 1259{
870 ev_clear ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
872 return; 1262 return;
873 1263
874 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
875 ev_stop ((W)w); 1265 ev_stop (EV_A_ (W)w);
876 1266
877 if (!signals [w->signum - 1].head) 1267 if (!signals [w->signum - 1].head)
878 signal (w->signum, SIG_DFL); 1268 signal (w->signum, SIG_DFL);
879} 1269}
880 1270
881void evidle_start (struct ev_idle *w) 1271void
1272ev_child_start (EV_P_ struct ev_child *w)
882{ 1273{
1274#if EV_MULTIPLICITY
1275 assert (("child watchers are only supported in the default loop", loop == default_loop));
1276#endif
883 if (ev_is_active (w)) 1277 if (ev_is_active (w))
884 return; 1278 return;
885 1279
886 ev_start ((W)w, ++idlecnt); 1280 ev_start (EV_A_ (W)w, 1);
887 array_needsize (idles, idlemax, idlecnt, ); 1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
888 idles [idlecnt - 1] = w;
889} 1282}
890 1283
891void evidle_stop (struct ev_idle *w) 1284void
1285ev_child_stop (EV_P_ struct ev_child *w)
892{ 1286{
893 ev_clear ((W)w); 1287 ev_clear_pending (EV_A_ (W)w);
894 if (ev_is_active (w)) 1288 if (ev_is_active (w))
895 return; 1289 return;
896 1290
897 idles [w->active - 1] = idles [--idlecnt];
898 ev_stop ((W)w);
899}
900
901void evprepare_start (struct ev_prepare *w)
902{
903 if (ev_is_active (w))
904 return;
905
906 ev_start ((W)w, ++preparecnt);
907 array_needsize (prepares, preparemax, preparecnt, );
908 prepares [preparecnt - 1] = w;
909}
910
911void evprepare_stop (struct ev_prepare *w)
912{
913 ev_clear ((W)w);
914 if (ev_is_active (w))
915 return;
916
917 prepares [w->active - 1] = prepares [--preparecnt];
918 ev_stop ((W)w);
919}
920
921void evcheck_start (struct ev_check *w)
922{
923 if (ev_is_active (w))
924 return;
925
926 ev_start ((W)w, ++checkcnt);
927 array_needsize (checks, checkmax, checkcnt, );
928 checks [checkcnt - 1] = w;
929}
930
931void evcheck_stop (struct ev_check *w)
932{
933 ev_clear ((W)w);
934 if (ev_is_active (w))
935 return;
936
937 checks [w->active - 1] = checks [--checkcnt];
938 ev_stop ((W)w);
939}
940
941void evchild_start (struct ev_child *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, 1);
947 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
948}
949
950void evchild_stop (struct ev_child *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
957 ev_stop ((W)w); 1292 ev_stop (EV_A_ (W)w);
958} 1293}
959 1294
960/*****************************************************************************/ 1295/*****************************************************************************/
961 1296
962struct ev_once 1297struct ev_once
966 void (*cb)(int revents, void *arg); 1301 void (*cb)(int revents, void *arg);
967 void *arg; 1302 void *arg;
968}; 1303};
969 1304
970static void 1305static void
971once_cb (struct ev_once *once, int revents) 1306once_cb (EV_P_ struct ev_once *once, int revents)
972{ 1307{
973 void (*cb)(int revents, void *arg) = once->cb; 1308 void (*cb)(int revents, void *arg) = once->cb;
974 void *arg = once->arg; 1309 void *arg = once->arg;
975 1310
976 evio_stop (&once->io); 1311 ev_io_stop (EV_A_ &once->io);
977 evtimer_stop (&once->to); 1312 ev_timer_stop (EV_A_ &once->to);
978 free (once); 1313 free (once);
979 1314
980 cb (revents, arg); 1315 cb (revents, arg);
981} 1316}
982 1317
983static void 1318static void
984once_cb_io (struct ev_io *w, int revents) 1319once_cb_io (EV_P_ struct ev_io *w, int revents)
985{ 1320{
986 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
987} 1322}
988 1323
989static void 1324static void
990once_cb_to (struct ev_timer *w, int revents) 1325once_cb_to (EV_P_ struct ev_timer *w, int revents)
991{ 1326{
992 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
993} 1328}
994 1329
995void 1330void
996ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
997{ 1332{
998 struct ev_once *once = malloc (sizeof (struct ev_once)); 1333 struct ev_once *once = malloc (sizeof (struct ev_once));
999 1334
1000 if (!once) 1335 if (!once)
1001 cb (EV_ERROR, arg); 1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1002 else 1337 else
1003 { 1338 {
1004 once->cb = cb; 1339 once->cb = cb;
1005 once->arg = arg; 1340 once->arg = arg;
1006 1341
1007 evw_init (&once->io, once_cb_io); 1342 ev_watcher_init (&once->io, once_cb_io);
1008
1009 if (fd >= 0) 1343 if (fd >= 0)
1010 { 1344 {
1011 evio_set (&once->io, fd, events); 1345 ev_io_set (&once->io, fd, events);
1012 evio_start (&once->io); 1346 ev_io_start (EV_A_ &once->io);
1013 } 1347 }
1014 1348
1015 evw_init (&once->to, once_cb_to); 1349 ev_watcher_init (&once->to, once_cb_to);
1016
1017 if (timeout >= 0.) 1350 if (timeout >= 0.)
1018 { 1351 {
1019 evtimer_set (&once->to, timeout, 0.); 1352 ev_timer_set (&once->to, timeout, 0.);
1020 evtimer_start (&once->to); 1353 ev_timer_start (EV_A_ &once->to);
1021 } 1354 }
1022 } 1355 }
1023} 1356}
1024 1357
1025/*****************************************************************************/
1026
1027#if 0
1028
1029struct ev_io wio;
1030
1031static void
1032sin_cb (struct ev_io *w, int revents)
1033{
1034 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1035}
1036
1037static void
1038ocb (struct ev_timer *w, int revents)
1039{
1040 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1041 evtimer_stop (w);
1042 evtimer_start (w);
1043}
1044
1045static void
1046scb (struct ev_signal *w, int revents)
1047{
1048 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1049 evio_stop (&wio);
1050 evio_start (&wio);
1051}
1052
1053static void
1054gcb (struct ev_signal *w, int revents)
1055{
1056 fprintf (stderr, "generic %x\n", revents);
1057
1058}
1059
1060int main (void)
1061{
1062 ev_init (0);
1063
1064 evio_init (&wio, sin_cb, 0, EV_READ);
1065 evio_start (&wio);
1066
1067 struct ev_timer t[10000];
1068
1069#if 0
1070 int i;
1071 for (i = 0; i < 10000; ++i)
1072 {
1073 struct ev_timer *w = t + i;
1074 evw_init (w, ocb, i);
1075 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1076 evtimer_start (w);
1077 if (drand48 () < 0.5)
1078 evtimer_stop (w);
1079 }
1080#endif
1081
1082 struct ev_timer t1;
1083 evtimer_init (&t1, ocb, 5, 10);
1084 evtimer_start (&t1);
1085
1086 struct ev_signal sig;
1087 evsignal_init (&sig, scb, SIGQUIT);
1088 evsignal_start (&sig);
1089
1090 struct ev_check cw;
1091 evcheck_init (&cw, gcb);
1092 evcheck_start (&cw);
1093
1094 struct ev_idle iw;
1095 evidle_init (&iw, gcb);
1096 evidle_start (&iw);
1097
1098 ev_loop (0);
1099
1100 return 0;
1101}
1102
1103#endif
1104
1105
1106
1107

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines