ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.24 by root, Wed Oct 31 20:46:44 2007 UTC vs.
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33#endif
29 34
30#include <math.h> 35#include <math.h>
31#include <stdlib.h> 36#include <stdlib.h>
32#include <unistd.h> 37#include <unistd.h>
33#include <fcntl.h> 38#include <fcntl.h>
37#include <stdio.h> 42#include <stdio.h>
38 43
39#include <assert.h> 44#include <assert.h>
40#include <errno.h> 45#include <errno.h>
41#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
42#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
43#include <sys/time.h> 50#include <sys/time.h>
44#include <time.h> 51#include <time.h>
45 52
53/**/
54
46#ifndef HAVE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1
57#endif
58
59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1
61#endif
62
63#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
47# ifdef CLOCK_MONOTONIC 81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
48# define HAVE_MONOTONIC 1 83# define EV_USE_MONOTONIC 0
49# endif 84#endif
50#endif
51 85
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 86#ifndef CLOCK_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
62#endif 89#endif
90
91/**/
63 92
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 97
68#include "ev.h" 98#include "ev.h"
99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 113
70typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
73 117
74static ev_tstamp now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 119
84/*****************************************************************************/ 120/*****************************************************************************/
85 121
86ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
87ev_time (void) 156ev_time (void)
88{ 157{
89#if HAVE_REALTIME 158#if EV_USE_REALTIME
90 struct timespec ts; 159 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 161 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 162#else
94 struct timeval tv; 163 struct timeval tv;
95 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 166#endif
98} 167}
99 168
100static ev_tstamp 169inline ev_tstamp
101get_clock (void) 170get_clock (void)
102{ 171{
103#if HAVE_MONOTONIC 172#if EV_USE_MONOTONIC
104 if (have_monotonic) 173 if (expect_true (have_monotonic))
105 { 174 {
106 struct timespec ts; 175 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 178 }
110#endif 179#endif
111 180
112 return ev_time (); 181 return ev_time ();
113} 182}
114 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
190#define array_roundsize(base,n) ((n) | 4 & ~3)
191
115#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
117 { \ 194 { \
118 int newcnt = cur; \ 195 int newcnt = cur; \
119 do \ 196 do \
120 { \ 197 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 198 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 199 } \
123 while ((cnt) > newcnt); \ 200 while ((cnt) > newcnt); \
124 \ 201 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 202 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 203 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 204 cur = newcnt; \
128 } 205 }
129 206
130/*****************************************************************************/ 207/*****************************************************************************/
131 208
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 209static void
145anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
146{ 211{
147 while (count--) 212 while (count--)
148 { 213 {
149 base->head = 0; 214 base->head = 0;
150 base->wev = base->rev = EV_NONE; 215 base->events = EV_NONE;
216 base->reify = 0;
217
151 ++base; 218 ++base;
152 } 219 }
153} 220}
154 221
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void 222static void
165event (W w, int events) 223event (EV_P_ W w, int events)
166{ 224{
167 if (w->active) 225 if (w->pending)
168 { 226 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
173 } 229 }
174}
175 230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
176static void 237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
177fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
178{ 248{
179 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 250 struct ev_io *w;
181 251
182 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 253 {
184 int ev = w->events & events; 254 int ev = w->events & events;
185 255
186 if (ev) 256 if (ev)
187 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
188 } 258 }
189} 259}
190 260
261/*****************************************************************************/
262
191static void 263static void
192queue_events (W *events, int eventcnt, int type) 264fd_reify (EV_P)
193{ 265{
194 int i; 266 int i;
195 267
196 for (i = 0; i < eventcnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 269 {
270 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd;
272 struct ev_io *w;
273
274 int events = 0;
275
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events;
278
279 anfd->reify = 0;
280
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events;
285 }
286 }
287
288 fdchangecnt = 0;
289}
290
291static void
292fd_change (EV_P_ int fd)
293{
294 if (anfds [fd].reify || fdchangecnt < 0)
295 return;
296
297 anfds [fd].reify = 1;
298
299 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301 fdchanges [fdchangecnt - 1] = fd;
302}
303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
198} 314}
199 315
200/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
201static void 317static void
202fd_recheck (void) 318fd_ebadf (EV_P)
203{ 319{
204 int fd; 320 int fd;
205 321
206 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 323 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head) 325 fd_kill (EV_A_ fd);
326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
210 { 336 {
211 event ((W)anfds [fd].head, EV_ERROR); 337 close (fd);
212 evio_stop (anfds [fd].head); 338 fd_kill (EV_A_ fd);
339 return;
213 } 340 }
341}
342
343/* susually called after fork if method needs to re-arm all fds from scratch */
344static void
345fd_rearm_all (EV_P)
346{
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
214} 356}
215 357
216/*****************************************************************************/ 358/*****************************************************************************/
217 359
218static struct ev_timer **timers;
219static int timermax, timercnt;
220
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void 360static void
225upheap (WT *timers, int k) 361upheap (WT *heap, int k)
226{ 362{
227 WT w = timers [k]; 363 WT w = heap [k];
228 364
229 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
230 { 366 {
231 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
232 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
233 k >>= 1; 369 k >>= 1;
234 } 370 }
235 371
236 timers [k] = w; 372 heap [k] = w;
237 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
238 374
239} 375}
240 376
241static void 377static void
242downheap (WT *timers, int N, int k) 378downheap (WT *heap, int N, int k)
243{ 379{
244 WT w = timers [k]; 380 WT w = heap [k];
245 381
246 while (k < (N >> 1)) 382 while (k < (N >> 1))
247 { 383 {
248 int j = k << 1; 384 int j = k << 1;
249 385
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
251 ++j; 387 ++j;
252 388
253 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
254 break; 390 break;
255 391
256 timers [k] = timers [j]; 392 heap [k] = heap [j];
257 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
258 k = j; 394 k = j;
259 } 395 }
260 396
261 timers [k] = w; 397 heap [k] = w;
262 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
263} 399}
264 400
265/*****************************************************************************/ 401/*****************************************************************************/
266 402
267typedef struct 403typedef struct
268{ 404{
269 struct ev_signal *head; 405 struct ev_watcher_list *head;
270 sig_atomic_t gotsig; 406 sig_atomic_t volatile gotsig;
271} ANSIG; 407} ANSIG;
272 408
273static ANSIG *signals; 409static ANSIG *signals;
274static int signalmax; 410static int signalmax;
275 411
276static int sigpipe [2]; 412static int sigpipe [2];
277static sig_atomic_t gotsig; 413static sig_atomic_t volatile gotsig;
278static struct ev_io sigev; 414static struct ev_io sigev;
279 415
280static void 416static void
281signals_init (ANSIG *base, int count) 417signals_init (ANSIG *base, int count)
282{ 418{
283 while (count--) 419 while (count--)
284 { 420 {
285 base->head = 0; 421 base->head = 0;
286 base->gotsig = 0; 422 base->gotsig = 0;
423
287 ++base; 424 ++base;
288 } 425 }
289} 426}
290 427
291static void 428static void
293{ 430{
294 signals [signum - 1].gotsig = 1; 431 signals [signum - 1].gotsig = 1;
295 432
296 if (!gotsig) 433 if (!gotsig)
297 { 434 {
435 int old_errno = errno;
298 gotsig = 1; 436 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1); 437 write (sigpipe [1], &signum, 1);
438 errno = old_errno;
300 } 439 }
301} 440}
302 441
303static void 442static void
304sigcb (struct ev_io *iow, int revents) 443sigcb (EV_P_ struct ev_io *iow, int revents)
305{ 444{
306 struct ev_signal *w; 445 struct ev_watcher_list *w;
307 int sig; 446 int signum;
308 447
448 read (sigpipe [0], &revents, 1);
309 gotsig = 0; 449 gotsig = 0;
310 read (sigpipe [0], &revents, 1);
311 450
312 for (sig = signalmax; sig--; ) 451 for (signum = signalmax; signum--; )
313 if (signals [sig].gotsig) 452 if (signals [signum].gotsig)
314 { 453 {
315 signals [sig].gotsig = 0; 454 signals [signum].gotsig = 0;
316 455
317 for (w = signals [sig].head; w; w = w->next) 456 for (w = signals [signum].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL); 457 event (EV_A_ (W)w, EV_SIGNAL);
319 } 458 }
320} 459}
321 460
322static void 461static void
323siginit (void) 462siginit (EV_P)
324{ 463{
464#ifndef WIN32
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327 467
328 /* rather than sort out wether we really need nb, set it */ 468 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
471#endif
331 472
332 evio_set (&sigev, sigpipe [0], EV_READ); 473 ev_io_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev); 474 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */
334} 476}
335 477
336/*****************************************************************************/ 478/*****************************************************************************/
337 479
338static struct ev_idle **idles; 480#ifndef WIN32
339static int idlemax, idlecnt;
340
341static struct ev_prepare **prepares;
342static int preparemax, preparecnt;
343
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348 481
349static struct ev_child *childs [PID_HASHSIZE]; 482static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 483static struct ev_signal childev;
351 484
352#ifndef WCONTINUED 485#ifndef WCONTINUED
353# define WCONTINUED 0 486# define WCONTINUED 0
354#endif 487#endif
355 488
356static void 489static void
357childcb (struct ev_signal *sw, int revents) 490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
358{ 491{
359 struct ev_child *w; 492 struct ev_child *w;
493
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid)
496 {
497 w->priority = sw->priority; /* need to do it *now* */
498 w->rpid = pid;
499 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD);
501 }
502}
503
504static void
505childcb (EV_P_ struct ev_signal *sw, int revents)
506{
360 int pid, status; 507 int pid, status;
361 508
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 510 {
364 if (w->pid == pid || w->pid == -1) 511 /* make sure we are called again until all childs have been reaped */
365 { 512 event (EV_A_ (W)sw, EV_SIGNAL);
366 w->status = status; 513
367 event ((W)w, EV_CHILD); 514 child_reap (EV_A_ sw, pid, pid, status);
368 } 515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
516 }
369} 517}
518
519#endif
370 520
371/*****************************************************************************/ 521/*****************************************************************************/
372 522
523#if EV_USE_KQUEUE
524# include "ev_kqueue.c"
525#endif
373#if HAVE_EPOLL 526#if EV_USE_EPOLL
374# include "ev_epoll.c" 527# include "ev_epoll.c"
375#endif 528#endif
529#if EV_USE_POLL
530# include "ev_poll.c"
531#endif
376#if HAVE_SELECT 532#if EV_USE_SELECT
377# include "ev_select.c" 533# include "ev_select.c"
378#endif 534#endif
379 535
380int 536int
381ev_version_major (void) 537ev_version_major (void)
387ev_version_minor (void) 543ev_version_minor (void)
388{ 544{
389 return EV_VERSION_MINOR; 545 return EV_VERSION_MINOR;
390} 546}
391 547
392int ev_init (int flags) 548/* return true if we are running with elevated privileges and should ignore env variables */
549static int
550enable_secure (void)
393{ 551{
552#ifdef WIN32
553 return 0;
554#else
555 return getuid () != geteuid ()
556 || getgid () != getegid ();
557#endif
558}
559
560int
561ev_method (EV_P)
562{
563 return method;
564}
565
566static void
567loop_init (EV_P_ int methods)
568{
394 if (!ev_method) 569 if (!method)
395 { 570 {
396#if HAVE_MONOTONIC 571#if EV_USE_MONOTONIC
397 { 572 {
398 struct timespec ts; 573 struct timespec ts;
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
400 have_monotonic = 1; 575 have_monotonic = 1;
401 } 576 }
402#endif 577#endif
403 578
404 ev_now = ev_time (); 579 rt_now = ev_time ();
405 now = get_clock (); 580 mn_now = get_clock ();
581 now_floor = mn_now;
406 diff = ev_now - now; 582 rtmn_diff = rt_now - mn_now;
407 583
584 if (methods == EVMETHOD_AUTO)
585 if (!enable_secure () && getenv ("LIBEV_METHODS"))
586 methods = atoi (getenv ("LIBEV_METHODS"));
587 else
588 methods = EVMETHOD_ANY;
589
590 method = 0;
591#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif
594#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
596#endif
597#if EV_USE_POLL
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599#endif
600#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602#endif
603 }
604}
605
606void
607loop_destroy (EV_P)
608{
609#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif
612#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
614#endif
615#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
617#endif
618#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif
621
622 method = 0;
623 /*TODO*/
624}
625
626void
627loop_fork (EV_P)
628{
629 /*TODO*/
630#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif
633#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif
636}
637
638#if EV_MULTIPLICITY
639struct ev_loop *
640ev_loop_new (int methods)
641{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
643
644 loop_init (EV_A_ methods);
645
646 if (ev_methods (EV_A))
647 return loop;
648
649 return 0;
650}
651
652void
653ev_loop_destroy (EV_P)
654{
655 loop_destroy (EV_A);
656 free (loop);
657}
658
659void
660ev_loop_fork (EV_P)
661{
662 loop_fork (EV_A);
663}
664
665#endif
666
667#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop *
672#else
673static int default_loop;
674
675int
676#endif
677ev_default_loop (int methods)
678{
679 if (sigpipe [0] == sigpipe [1])
408 if (pipe (sigpipe)) 680 if (pipe (sigpipe))
409 return 0; 681 return 0;
410 682
411 ev_method = EVMETHOD_NONE; 683 if (!default_loop)
412#if HAVE_EPOLL 684 {
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 685#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct;
687#else
688 default_loop = 1;
414#endif 689#endif
415#if HAVE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif
418 690
691 loop_init (EV_A_ methods);
692
419 if (ev_method) 693 if (ev_method (EV_A))
420 { 694 {
421 evw_init (&sigev, sigcb); 695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
422 siginit (); 697 siginit (EV_A);
423 698
699#ifndef WIN32
424 evsignal_init (&childev, childcb, SIGCHLD); 700 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI);
425 evsignal_start (&childev); 702 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */
704#endif
426 } 705 }
706 else
707 default_loop = 0;
427 } 708 }
428 709
429 return ev_method; 710 return default_loop;
430} 711}
431 712
432/*****************************************************************************/
433
434void 713void
435ev_prefork (void) 714ev_default_destroy (void)
436{ 715{
437 /* nop */ 716#if EV_MULTIPLICITY
438} 717 struct ev_loop *loop = default_loop;
439
440void
441ev_postfork_parent (void)
442{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif 718#endif
453 719
720 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev);
722
723 ev_ref (EV_A); /* signal watcher */
454 evio_stop (&sigev); 724 ev_io_stop (EV_A_ &sigev);
725
726 close (sigpipe [0]); sigpipe [0] = 0;
727 close (sigpipe [1]); sigpipe [1] = 0;
728
729 loop_destroy (EV_A);
730}
731
732void
733ev_default_fork (EV_P)
734{
735 loop_fork (EV_A);
736
737 ev_io_stop (EV_A_ &sigev);
455 close (sigpipe [0]); 738 close (sigpipe [0]);
456 close (sigpipe [1]); 739 close (sigpipe [1]);
457 pipe (sigpipe); 740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
458 siginit (); 743 siginit (EV_A);
459} 744}
460 745
461/*****************************************************************************/ 746/*****************************************************************************/
462 747
463static void 748static void
464fd_reify (void) 749call_pending (EV_P)
465{ 750{
466 int i; 751 int pri;
467 752
468 for (i = 0; i < fdchangecnt; ++i) 753 for (pri = NUMPRI; pri--; )
469 { 754 while (pendingcnt [pri])
470 int fd = fdchanges [i];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473
474 int wev = 0;
475
476 for (w = anfd->head; w; w = w->next)
477 wev |= w->events;
478
479 if (anfd->wev != wev)
480 { 755 {
481 method_modify (fd, anfd->wev, wev);
482 anfd->wev = wev;
483 }
484 }
485
486 fdchangecnt = 0;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 {
494 ANPENDING *p = pendings + --pendingcnt; 756 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
495 757
496 if (p->w) 758 if (p->w)
497 { 759 {
498 p->w->pending = 0; 760 p->w->pending = 0;
499 p->w->cb (p->w, p->events); 761 p->w->cb (EV_A_ p->w, p->events);
500 } 762 }
501 } 763 }
502} 764}
503 765
504static void 766static void
505timers_reify (void) 767timers_reify (EV_P)
506{ 768{
507 while (timercnt && timers [0]->at <= now) 769 while (timercnt && timers [0]->at <= mn_now)
508 { 770 {
509 struct ev_timer *w = timers [0]; 771 struct ev_timer *w = timers [0];
510
511 event ((W)w, EV_TIMEOUT);
512 772
513 /* first reschedule or stop timer */ 773 /* first reschedule or stop timer */
514 if (w->repeat) 774 if (w->repeat)
515 { 775 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
516 w->at = now + w->repeat; 777 w->at = mn_now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now));
518 downheap ((WT *)timers, timercnt, 0); 778 downheap ((WT *)timers, timercnt, 0);
519 } 779 }
520 else 780 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
522 }
523}
524 782
783 event (EV_A_ (W)w, EV_TIMEOUT);
784 }
785}
786
525static void 787static void
526periodics_reify (void) 788periodics_reify (EV_P)
527{ 789{
528 while (periodiccnt && periodics [0]->at <= ev_now) 790 while (periodiccnt && periodics [0]->at <= rt_now)
529 { 791 {
530 struct ev_periodic *w = periodics [0]; 792 struct ev_periodic *w = periodics [0];
531 793
532 /* first reschedule or stop timer */ 794 /* first reschedule or stop timer */
533 if (w->interval) 795 if (w->interval)
534 { 796 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
537 downheap ((WT *)periodics, periodiccnt, 0); 799 downheap ((WT *)periodics, periodiccnt, 0);
538 } 800 }
539 else 801 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
541 803
542 event ((W)w, EV_TIMEOUT); 804 event (EV_A_ (W)w, EV_PERIODIC);
543 } 805 }
544} 806}
545 807
546static void 808static void
547periodics_reschedule (ev_tstamp diff) 809periodics_reschedule (EV_P)
548{ 810{
549 int i; 811 int i;
550 812
551 /* adjust periodics after time jump */ 813 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i) 814 for (i = 0; i < periodiccnt; ++i)
553 { 815 {
554 struct ev_periodic *w = periodics [i]; 816 struct ev_periodic *w = periodics [i];
555 817
556 if (w->interval) 818 if (w->interval)
557 { 819 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
559 821
560 if (fabs (diff) >= 1e-4) 822 if (fabs (diff) >= 1e-4)
561 { 823 {
562 evperiodic_stop (w); 824 ev_periodic_stop (EV_A_ w);
563 evperiodic_start (w); 825 ev_periodic_start (EV_A_ w);
564 826
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
566 } 828 }
567 } 829 }
568 } 830 }
569} 831}
570 832
833inline int
834time_update_monotonic (EV_P)
835{
836 mn_now = get_clock ();
837
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 {
840 rt_now = rtmn_diff + mn_now;
841 return 0;
842 }
843 else
844 {
845 now_floor = mn_now;
846 rt_now = ev_time ();
847 return 1;
848 }
849}
850
571static void 851static void
572time_update (void) 852time_update (EV_P)
573{ 853{
574 int i; 854 int i;
575 855
576 ev_now = ev_time (); 856#if EV_USE_MONOTONIC
577
578 if (have_monotonic) 857 if (expect_true (have_monotonic))
579 { 858 {
580 ev_tstamp odiff = diff; 859 if (time_update_monotonic (EV_A))
581
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */
583 { 860 {
584 now = get_clock (); 861 ev_tstamp odiff = rtmn_diff;
862
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */
864 {
585 diff = ev_now - now; 865 rtmn_diff = rt_now - mn_now;
586 866
587 if (fabs (odiff - diff) < MIN_TIMEJUMP) 867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
588 return; /* all is well */ 868 return; /* all is well */
589 869
590 ev_now = ev_time (); 870 rt_now = ev_time ();
871 mn_now = get_clock ();
872 now_floor = mn_now;
873 }
874
875 periodics_reschedule (EV_A);
876 /* no timer adjustment, as the monotonic clock doesn't jump */
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
591 } 878 }
592
593 periodics_reschedule (diff - odiff);
594 /* no timer adjustment, as the monotonic clock doesn't jump */
595 } 879 }
596 else 880 else
881#endif
597 { 882 {
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 883 rt_now = ev_time ();
884
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
599 { 886 {
600 periodics_reschedule (ev_now - now); 887 periodics_reschedule (EV_A);
601 888
602 /* adjust timers. this is easy, as the offset is the same for all */ 889 /* adjust timers. this is easy, as the offset is the same for all */
603 for (i = 0; i < timercnt; ++i) 890 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff; 891 timers [i]->at += rt_now - mn_now;
605 } 892 }
606 893
607 now = ev_now; 894 mn_now = rt_now;
608 } 895 }
609} 896}
610 897
611int ev_loop_done; 898void
899ev_ref (EV_P)
900{
901 ++activecnt;
902}
612 903
904void
905ev_unref (EV_P)
906{
907 --activecnt;
908}
909
910static int loop_done;
911
912void
613void ev_loop (int flags) 913ev_loop (EV_P_ int flags)
614{ 914{
615 double block; 915 double block;
616 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
617 917
618 do 918 do
619 { 919 {
620 /* queue check watchers (and execute them) */ 920 /* queue check watchers (and execute them) */
621 if (preparecnt) 921 if (expect_false (preparecnt))
622 { 922 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
624 call_pending (); 924 call_pending (EV_A);
625 } 925 }
626 926
627 /* update fd-related kernel structures */ 927 /* update fd-related kernel structures */
628 fd_reify (); 928 fd_reify (EV_A);
629 929
630 /* calculate blocking time */ 930 /* calculate blocking time */
631 931
632 /* we only need this for !monotonic clockor timers, but as we basically 932 /* we only need this for !monotonic clockor timers, but as we basically
633 always have timers, we just calculate it always */ 933 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A);
937 else
938#endif
939 {
634 ev_now = ev_time (); 940 rt_now = ev_time ();
941 mn_now = rt_now;
942 }
635 943
636 if (flags & EVLOOP_NONBLOCK || idlecnt) 944 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.; 945 block = 0.;
638 else 946 else
639 { 947 {
640 block = MAX_BLOCKTIME; 948 block = MAX_BLOCKTIME;
641 949
642 if (timercnt) 950 if (timercnt)
643 { 951 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 952 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
645 if (block > to) block = to; 953 if (block > to) block = to;
646 } 954 }
647 955
648 if (periodiccnt) 956 if (periodiccnt)
649 { 957 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
651 if (block > to) block = to; 959 if (block > to) block = to;
652 } 960 }
653 961
654 if (block < 0.) block = 0.; 962 if (block < 0.) block = 0.;
655 } 963 }
656 964
657 method_poll (block); 965 method_poll (EV_A_ block);
658 966
659 /* update ev_now, do magic */ 967 /* update rt_now, do magic */
660 time_update (); 968 time_update (EV_A);
661 969
662 /* queue pending timers and reschedule them */ 970 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */ 971 timers_reify (EV_A); /* relative timers called last */
664 periodics_reify (); /* absolute timers called first */ 972 periodics_reify (EV_A); /* absolute timers called first */
665 973
666 /* queue idle watchers unless io or timers are pending */ 974 /* queue idle watchers unless io or timers are pending */
667 if (!pendingcnt) 975 if (!pendingcnt)
668 queue_events ((W *)idles, idlecnt, EV_IDLE); 976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
669 977
670 /* queue check watchers, to be executed first */ 978 /* queue check watchers, to be executed first */
671 if (checkcnt) 979 if (checkcnt)
672 queue_events ((W *)checks, checkcnt, EV_CHECK); 980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
673 981
674 call_pending (); 982 call_pending (EV_A);
675 } 983 }
676 while (!ev_loop_done); 984 while (activecnt && !loop_done);
677 985
678 if (ev_loop_done != 2) 986 if (loop_done != 2)
679 ev_loop_done = 0; 987 loop_done = 0;
988}
989
990void
991ev_unloop (EV_P_ int how)
992{
993 loop_done = how;
680} 994}
681 995
682/*****************************************************************************/ 996/*****************************************************************************/
683 997
684static void 998inline void
685wlist_add (WL *head, WL elem) 999wlist_add (WL *head, WL elem)
686{ 1000{
687 elem->next = *head; 1001 elem->next = *head;
688 *head = elem; 1002 *head = elem;
689} 1003}
690 1004
691static void 1005inline void
692wlist_del (WL *head, WL elem) 1006wlist_del (WL *head, WL elem)
693{ 1007{
694 while (*head) 1008 while (*head)
695 { 1009 {
696 if (*head == elem) 1010 if (*head == elem)
701 1015
702 head = &(*head)->next; 1016 head = &(*head)->next;
703 } 1017 }
704} 1018}
705 1019
706static void 1020inline void
707ev_clear (W w) 1021ev_clear_pending (EV_P_ W w)
708{ 1022{
709 if (w->pending) 1023 if (w->pending)
710 { 1024 {
711 pendings [w->pending - 1].w = 0; 1025 pendings [ABSPRI (w)][w->pending - 1].w = 0;
712 w->pending = 0; 1026 w->pending = 0;
713 } 1027 }
714} 1028}
715 1029
716static void 1030inline void
717ev_start (W w, int active) 1031ev_start (EV_P_ W w, int active)
718{ 1032{
1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1035
719 w->active = active; 1036 w->active = active;
1037 ev_ref (EV_A);
720} 1038}
721 1039
722static void 1040inline void
723ev_stop (W w) 1041ev_stop (EV_P_ W w)
724{ 1042{
1043 ev_unref (EV_A);
725 w->active = 0; 1044 w->active = 0;
726} 1045}
727 1046
728/*****************************************************************************/ 1047/*****************************************************************************/
729 1048
730void 1049void
731evio_start (struct ev_io *w) 1050ev_io_start (EV_P_ struct ev_io *w)
732{ 1051{
1052 int fd = w->fd;
1053
733 if (ev_is_active (w)) 1054 if (ev_is_active (w))
734 return; 1055 return;
735 1056
736 int fd = w->fd; 1057 assert (("ev_io_start called with negative fd", fd >= 0));
737 1058
738 ev_start ((W)w, 1); 1059 ev_start (EV_A_ (W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1061 wlist_add ((WL *)&anfds[fd].head, (WL)w);
741 1062
742 ++fdchangecnt; 1063 fd_change (EV_A_ fd);
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
744 fdchanges [fdchangecnt - 1] = fd;
745} 1064}
746 1065
747void 1066void
748evio_stop (struct ev_io *w) 1067ev_io_stop (EV_P_ struct ev_io *w)
749{ 1068{
750 ev_clear ((W)w); 1069 ev_clear_pending (EV_A_ (W)w);
751 if (!ev_is_active (w)) 1070 if (!ev_is_active (w))
752 return; 1071 return;
753 1072
754 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
755 ev_stop ((W)w); 1074 ev_stop (EV_A_ (W)w);
756 1075
757 ++fdchangecnt; 1076 fd_change (EV_A_ w->fd);
758 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
759 fdchanges [fdchangecnt - 1] = w->fd;
760} 1077}
761 1078
762void 1079void
763evtimer_start (struct ev_timer *w) 1080ev_timer_start (EV_P_ struct ev_timer *w)
764{ 1081{
765 if (ev_is_active (w)) 1082 if (ev_is_active (w))
766 return; 1083 return;
767 1084
768 w->at += now; 1085 w->at += mn_now;
769 1086
770 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
771 1088
772 ev_start ((W)w, ++timercnt); 1089 ev_start (EV_A_ (W)w, ++timercnt);
773 array_needsize (timers, timermax, timercnt, ); 1090 array_needsize (timers, timermax, timercnt, );
774 timers [timercnt - 1] = w; 1091 timers [timercnt - 1] = w;
775 upheap ((WT *)timers, timercnt - 1); 1092 upheap ((WT *)timers, timercnt - 1);
776} 1093}
777 1094
778void 1095void
779evtimer_stop (struct ev_timer *w) 1096ev_timer_stop (EV_P_ struct ev_timer *w)
780{ 1097{
781 ev_clear ((W)w); 1098 ev_clear_pending (EV_A_ (W)w);
782 if (!ev_is_active (w)) 1099 if (!ev_is_active (w))
783 return; 1100 return;
784 1101
785 if (w->active < timercnt--) 1102 if (w->active < timercnt--)
786 { 1103 {
788 downheap ((WT *)timers, timercnt, w->active - 1); 1105 downheap ((WT *)timers, timercnt, w->active - 1);
789 } 1106 }
790 1107
791 w->at = w->repeat; 1108 w->at = w->repeat;
792 1109
793 ev_stop ((W)w); 1110 ev_stop (EV_A_ (W)w);
794} 1111}
795 1112
796void 1113void
797evtimer_again (struct ev_timer *w) 1114ev_timer_again (EV_P_ struct ev_timer *w)
798{ 1115{
799 if (ev_is_active (w)) 1116 if (ev_is_active (w))
800 { 1117 {
801 if (w->repeat) 1118 if (w->repeat)
802 { 1119 {
803 w->at = now + w->repeat; 1120 w->at = mn_now + w->repeat;
804 downheap ((WT *)timers, timercnt, w->active - 1); 1121 downheap ((WT *)timers, timercnt, w->active - 1);
805 } 1122 }
806 else 1123 else
807 evtimer_stop (w); 1124 ev_timer_stop (EV_A_ w);
808 } 1125 }
809 else if (w->repeat) 1126 else if (w->repeat)
810 evtimer_start (w); 1127 ev_timer_start (EV_A_ w);
811} 1128}
812 1129
813void 1130void
814evperiodic_start (struct ev_periodic *w) 1131ev_periodic_start (EV_P_ struct ev_periodic *w)
815{ 1132{
816 if (ev_is_active (w)) 1133 if (ev_is_active (w))
817 return; 1134 return;
818 1135
819 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
820 1137
821 /* this formula differs from the one in periodic_reify because we do not always round up */ 1138 /* this formula differs from the one in periodic_reify because we do not always round up */
822 if (w->interval) 1139 if (w->interval)
823 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
824 1141
825 ev_start ((W)w, ++periodiccnt); 1142 ev_start (EV_A_ (W)w, ++periodiccnt);
826 array_needsize (periodics, periodicmax, periodiccnt, ); 1143 array_needsize (periodics, periodicmax, periodiccnt, );
827 periodics [periodiccnt - 1] = w; 1144 periodics [periodiccnt - 1] = w;
828 upheap ((WT *)periodics, periodiccnt - 1); 1145 upheap ((WT *)periodics, periodiccnt - 1);
829} 1146}
830 1147
831void 1148void
832evperiodic_stop (struct ev_periodic *w) 1149ev_periodic_stop (EV_P_ struct ev_periodic *w)
833{ 1150{
834 ev_clear ((W)w); 1151 ev_clear_pending (EV_A_ (W)w);
835 if (!ev_is_active (w)) 1152 if (!ev_is_active (w))
836 return; 1153 return;
837 1154
838 if (w->active < periodiccnt--) 1155 if (w->active < periodiccnt--)
839 { 1156 {
840 periodics [w->active - 1] = periodics [periodiccnt]; 1157 periodics [w->active - 1] = periodics [periodiccnt];
841 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1158 downheap ((WT *)periodics, periodiccnt, w->active - 1);
842 } 1159 }
843 1160
844 ev_stop ((W)w); 1161 ev_stop (EV_A_ (W)w);
845} 1162}
846 1163
847void 1164void
848evsignal_start (struct ev_signal *w) 1165ev_idle_start (EV_P_ struct ev_idle *w)
849{ 1166{
850 if (ev_is_active (w)) 1167 if (ev_is_active (w))
851 return; 1168 return;
852 1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173}
1174
1175void
1176ev_idle_stop (EV_P_ struct ev_idle *w)
1177{
1178 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w);
1184}
1185
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1228}
1229
1230#ifndef SA_RESTART
1231# define SA_RESTART 0
1232#endif
1233
1234void
1235ev_signal_start (EV_P_ struct ev_signal *w)
1236{
1237#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1239#endif
1240 if (ev_is_active (w))
1241 return;
1242
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244
853 ev_start ((W)w, 1); 1245 ev_start (EV_A_ (W)w, 1);
854 array_needsize (signals, signalmax, w->signum, signals_init); 1246 array_needsize (signals, signalmax, w->signum, signals_init);
855 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
856 1248
857 if (!w->next) 1249 if (!w->next)
858 { 1250 {
859 struct sigaction sa; 1251 struct sigaction sa;
860 sa.sa_handler = sighandler; 1252 sa.sa_handler = sighandler;
861 sigfillset (&sa.sa_mask); 1253 sigfillset (&sa.sa_mask);
862 sa.sa_flags = 0; 1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
863 sigaction (w->signum, &sa, 0); 1255 sigaction (w->signum, &sa, 0);
864 } 1256 }
865} 1257}
866 1258
867void 1259void
868evsignal_stop (struct ev_signal *w) 1260ev_signal_stop (EV_P_ struct ev_signal *w)
869{ 1261{
870 ev_clear ((W)w); 1262 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1263 if (!ev_is_active (w))
872 return; 1264 return;
873 1265
874 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
875 ev_stop ((W)w); 1267 ev_stop (EV_A_ (W)w);
876 1268
877 if (!signals [w->signum - 1].head) 1269 if (!signals [w->signum - 1].head)
878 signal (w->signum, SIG_DFL); 1270 signal (w->signum, SIG_DFL);
879} 1271}
880 1272
881void evidle_start (struct ev_idle *w) 1273void
1274ev_child_start (EV_P_ struct ev_child *w)
882{ 1275{
1276#if EV_MULTIPLICITY
1277 assert (("child watchers are only supported in the default loop", loop == default_loop));
1278#endif
883 if (ev_is_active (w)) 1279 if (ev_is_active (w))
884 return; 1280 return;
885 1281
886 ev_start ((W)w, ++idlecnt); 1282 ev_start (EV_A_ (W)w, 1);
887 array_needsize (idles, idlemax, idlecnt, ); 1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
888 idles [idlecnt - 1] = w;
889} 1284}
890 1285
891void evidle_stop (struct ev_idle *w) 1286void
1287ev_child_stop (EV_P_ struct ev_child *w)
892{ 1288{
893 ev_clear ((W)w); 1289 ev_clear_pending (EV_A_ (W)w);
894 if (ev_is_active (w)) 1290 if (ev_is_active (w))
895 return; 1291 return;
896 1292
897 idles [w->active - 1] = idles [--idlecnt];
898 ev_stop ((W)w);
899}
900
901void evprepare_start (struct ev_prepare *w)
902{
903 if (ev_is_active (w))
904 return;
905
906 ev_start ((W)w, ++preparecnt);
907 array_needsize (prepares, preparemax, preparecnt, );
908 prepares [preparecnt - 1] = w;
909}
910
911void evprepare_stop (struct ev_prepare *w)
912{
913 ev_clear ((W)w);
914 if (ev_is_active (w))
915 return;
916
917 prepares [w->active - 1] = prepares [--preparecnt];
918 ev_stop ((W)w);
919}
920
921void evcheck_start (struct ev_check *w)
922{
923 if (ev_is_active (w))
924 return;
925
926 ev_start ((W)w, ++checkcnt);
927 array_needsize (checks, checkmax, checkcnt, );
928 checks [checkcnt - 1] = w;
929}
930
931void evcheck_stop (struct ev_check *w)
932{
933 ev_clear ((W)w);
934 if (ev_is_active (w))
935 return;
936
937 checks [w->active - 1] = checks [--checkcnt];
938 ev_stop ((W)w);
939}
940
941void evchild_start (struct ev_child *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, 1);
947 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
948}
949
950void evchild_stop (struct ev_child *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
957 ev_stop ((W)w); 1294 ev_stop (EV_A_ (W)w);
958} 1295}
959 1296
960/*****************************************************************************/ 1297/*****************************************************************************/
961 1298
962struct ev_once 1299struct ev_once
966 void (*cb)(int revents, void *arg); 1303 void (*cb)(int revents, void *arg);
967 void *arg; 1304 void *arg;
968}; 1305};
969 1306
970static void 1307static void
971once_cb (struct ev_once *once, int revents) 1308once_cb (EV_P_ struct ev_once *once, int revents)
972{ 1309{
973 void (*cb)(int revents, void *arg) = once->cb; 1310 void (*cb)(int revents, void *arg) = once->cb;
974 void *arg = once->arg; 1311 void *arg = once->arg;
975 1312
976 evio_stop (&once->io); 1313 ev_io_stop (EV_A_ &once->io);
977 evtimer_stop (&once->to); 1314 ev_timer_stop (EV_A_ &once->to);
978 free (once); 1315 free (once);
979 1316
980 cb (revents, arg); 1317 cb (revents, arg);
981} 1318}
982 1319
983static void 1320static void
984once_cb_io (struct ev_io *w, int revents) 1321once_cb_io (EV_P_ struct ev_io *w, int revents)
985{ 1322{
986 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
987} 1324}
988 1325
989static void 1326static void
990once_cb_to (struct ev_timer *w, int revents) 1327once_cb_to (EV_P_ struct ev_timer *w, int revents)
991{ 1328{
992 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
993} 1330}
994 1331
995void 1332void
996ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
997{ 1334{
998 struct ev_once *once = malloc (sizeof (struct ev_once)); 1335 struct ev_once *once = malloc (sizeof (struct ev_once));
999 1336
1000 if (!once) 1337 if (!once)
1001 cb (EV_ERROR, arg); 1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1002 else 1339 else
1003 { 1340 {
1004 once->cb = cb; 1341 once->cb = cb;
1005 once->arg = arg; 1342 once->arg = arg;
1006 1343
1007 evw_init (&once->io, once_cb_io); 1344 ev_watcher_init (&once->io, once_cb_io);
1008
1009 if (fd >= 0) 1345 if (fd >= 0)
1010 { 1346 {
1011 evio_set (&once->io, fd, events); 1347 ev_io_set (&once->io, fd, events);
1012 evio_start (&once->io); 1348 ev_io_start (EV_A_ &once->io);
1013 } 1349 }
1014 1350
1015 evw_init (&once->to, once_cb_to); 1351 ev_watcher_init (&once->to, once_cb_to);
1016
1017 if (timeout >= 0.) 1352 if (timeout >= 0.)
1018 { 1353 {
1019 evtimer_set (&once->to, timeout, 0.); 1354 ev_timer_set (&once->to, timeout, 0.);
1020 evtimer_start (&once->to); 1355 ev_timer_start (EV_A_ &once->to);
1021 } 1356 }
1022 } 1357 }
1023} 1358}
1024 1359
1025/*****************************************************************************/
1026
1027#if 0
1028
1029struct ev_io wio;
1030
1031static void
1032sin_cb (struct ev_io *w, int revents)
1033{
1034 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1035}
1036
1037static void
1038ocb (struct ev_timer *w, int revents)
1039{
1040 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1041 evtimer_stop (w);
1042 evtimer_start (w);
1043}
1044
1045static void
1046scb (struct ev_signal *w, int revents)
1047{
1048 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1049 evio_stop (&wio);
1050 evio_start (&wio);
1051}
1052
1053static void
1054gcb (struct ev_signal *w, int revents)
1055{
1056 fprintf (stderr, "generic %x\n", revents);
1057
1058}
1059
1060int main (void)
1061{
1062 ev_init (0);
1063
1064 evio_init (&wio, sin_cb, 0, EV_READ);
1065 evio_start (&wio);
1066
1067 struct ev_timer t[10000];
1068
1069#if 0
1070 int i;
1071 for (i = 0; i < 10000; ++i)
1072 {
1073 struct ev_timer *w = t + i;
1074 evw_init (w, ocb, i);
1075 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1076 evtimer_start (w);
1077 if (drand48 () < 0.5)
1078 evtimer_stop (w);
1079 }
1080#endif
1081
1082 struct ev_timer t1;
1083 evtimer_init (&t1, ocb, 5, 10);
1084 evtimer_start (&t1);
1085
1086 struct ev_signal sig;
1087 evsignal_init (&sig, scb, SIGQUIT);
1088 evsignal_start (&sig);
1089
1090 struct ev_check cw;
1091 evcheck_init (&cw, gcb);
1092 evcheck_start (&cw);
1093
1094 struct ev_idle iw;
1095 evidle_init (&iw, gcb);
1096 evidle_start (&iw);
1097
1098 ev_loop (0);
1099
1100 return 0;
1101}
1102
1103#endif
1104
1105
1106
1107

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines