ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.24 by root, Wed Oct 31 20:46:44 2007 UTC vs.
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 127
68#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 143
70typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
73 147
74static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77 149
78static int have_monotonic; /* runtime */ 150#if WIN32
79 151/* note: the comment below could not be substantiated, but what would I care */
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
81static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
82static void (*method_poll)(ev_tstamp timeout); 154#endif
83 155
84/*****************************************************************************/ 156/*****************************************************************************/
85 157
86ev_tstamp 158typedef struct
159{
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
87ev_time (void) 192ev_time (void)
88{ 193{
89#if HAVE_REALTIME 194#if EV_USE_REALTIME
90 struct timespec ts; 195 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 197 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 198#else
94 struct timeval tv; 199 struct timeval tv;
95 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 202#endif
98} 203}
99 204
100static ev_tstamp 205inline ev_tstamp
101get_clock (void) 206get_clock (void)
102{ 207{
103#if HAVE_MONOTONIC 208#if EV_USE_MONOTONIC
104 if (have_monotonic) 209 if (expect_true (have_monotonic))
105 { 210 {
106 struct timespec ts; 211 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 214 }
110#endif 215#endif
111 216
112 return ev_time (); 217 return ev_time ();
113} 218}
114 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
226#define array_roundsize(base,n) ((n) | 4 & ~3)
227
115#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
117 { \ 230 { \
118 int newcnt = cur; \ 231 int newcnt = cur; \
119 do \ 232 do \
120 { \ 233 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 234 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 235 } \
123 while ((cnt) > newcnt); \ 236 while ((cnt) > newcnt); \
124 \ 237 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 240 cur = newcnt; \
128 } 241 }
129 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
130/*****************************************************************************/ 254/*****************************************************************************/
131 255
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 256static void
145anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
146{ 258{
147 while (count--) 259 while (count--)
148 { 260 {
149 base->head = 0; 261 base->head = 0;
150 base->wev = base->rev = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
151 ++base; 265 ++base;
152 } 266 }
153} 267}
154 268
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void 269static void
165event (W w, int events) 270event (EV_P_ W w, int events)
166{ 271{
167 if (w->active) 272 if (w->pending)
168 { 273 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
173 } 276 }
174}
175 277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
176static void 284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
177fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
178{ 295{
179 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 297 struct ev_io *w;
181 298
182 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 300 {
184 int ev = w->events & events; 301 int ev = w->events & events;
185 302
186 if (ev) 303 if (ev)
187 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
188 } 305 }
189} 306}
190 307
308/*****************************************************************************/
309
191static void 310static void
192queue_events (W *events, int eventcnt, int type) 311fd_reify (EV_P)
193{ 312{
194 int i; 313 int i;
195 314
196 for (i = 0; i < eventcnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 316 {
317 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd;
319 struct ev_io *w;
320
321 int events = 0;
322
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events;
325
326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333}
334
335static void
336fd_change (EV_P_ int fd)
337{
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346}
347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
198} 358}
199 359
200/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
201static void 361static void
202fd_recheck (void) 362fd_ebadf (EV_P)
203{ 363{
204 int fd; 364 int fd;
205 365
206 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 367 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
210 { 380 {
211 event ((W)anfds [fd].head, EV_ERROR); 381 fd_kill (EV_A_ fd);
212 evio_stop (anfds [fd].head); 382 return;
213 } 383 }
384}
385
386/* susually called after fork if method needs to re-arm all fds from scratch */
387static void
388fd_rearm_all (EV_P)
389{
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
214} 399}
215 400
216/*****************************************************************************/ 401/*****************************************************************************/
217 402
218static struct ev_timer **timers;
219static int timermax, timercnt;
220
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void 403static void
225upheap (WT *timers, int k) 404upheap (WT *heap, int k)
226{ 405{
227 WT w = timers [k]; 406 WT w = heap [k];
228 407
229 while (k && timers [k >> 1]->at > w->at) 408 while (k && heap [k >> 1]->at > w->at)
230 { 409 {
231 timers [k] = timers [k >> 1]; 410 heap [k] = heap [k >> 1];
232 timers [k]->active = k + 1; 411 ((W)heap [k])->active = k + 1;
233 k >>= 1; 412 k >>= 1;
234 } 413 }
235 414
236 timers [k] = w; 415 heap [k] = w;
237 timers [k]->active = k + 1; 416 ((W)heap [k])->active = k + 1;
238 417
239} 418}
240 419
241static void 420static void
242downheap (WT *timers, int N, int k) 421downheap (WT *heap, int N, int k)
243{ 422{
244 WT w = timers [k]; 423 WT w = heap [k];
245 424
246 while (k < (N >> 1)) 425 while (k < (N >> 1))
247 { 426 {
248 int j = k << 1; 427 int j = k << 1;
249 428
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
251 ++j; 430 ++j;
252 431
253 if (w->at <= timers [j]->at) 432 if (w->at <= heap [j]->at)
254 break; 433 break;
255 434
256 timers [k] = timers [j]; 435 heap [k] = heap [j];
257 timers [k]->active = k + 1; 436 ((W)heap [k])->active = k + 1;
258 k = j; 437 k = j;
259 } 438 }
260 439
261 timers [k] = w; 440 heap [k] = w;
262 timers [k]->active = k + 1; 441 ((W)heap [k])->active = k + 1;
263} 442}
264 443
265/*****************************************************************************/ 444/*****************************************************************************/
266 445
267typedef struct 446typedef struct
268{ 447{
269 struct ev_signal *head; 448 WL head;
270 sig_atomic_t gotsig; 449 sig_atomic_t volatile gotsig;
271} ANSIG; 450} ANSIG;
272 451
273static ANSIG *signals; 452static ANSIG *signals;
274static int signalmax; 453static int signalmax;
275 454
276static int sigpipe [2]; 455static int sigpipe [2];
277static sig_atomic_t gotsig; 456static sig_atomic_t volatile gotsig;
278static struct ev_io sigev; 457static struct ev_io sigev;
279 458
280static void 459static void
281signals_init (ANSIG *base, int count) 460signals_init (ANSIG *base, int count)
282{ 461{
283 while (count--) 462 while (count--)
284 { 463 {
285 base->head = 0; 464 base->head = 0;
286 base->gotsig = 0; 465 base->gotsig = 0;
466
287 ++base; 467 ++base;
288 } 468 }
289} 469}
290 470
291static void 471static void
292sighandler (int signum) 472sighandler (int signum)
293{ 473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
294 signals [signum - 1].gotsig = 1; 478 signals [signum - 1].gotsig = 1;
295 479
296 if (!gotsig) 480 if (!gotsig)
297 { 481 {
482 int old_errno = errno;
298 gotsig = 1; 483 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1); 484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
300 } 486 }
301} 487}
302 488
303static void 489static void
304sigcb (struct ev_io *iow, int revents) 490sigcb (EV_P_ struct ev_io *iow, int revents)
305{ 491{
306 struct ev_signal *w; 492 WL w;
307 int sig; 493 int signum;
308 494
495 read (sigpipe [0], &revents, 1);
309 gotsig = 0; 496 gotsig = 0;
310 read (sigpipe [0], &revents, 1);
311 497
312 for (sig = signalmax; sig--; ) 498 for (signum = signalmax; signum--; )
313 if (signals [sig].gotsig) 499 if (signals [signum].gotsig)
314 { 500 {
315 signals [sig].gotsig = 0; 501 signals [signum].gotsig = 0;
316 502
317 for (w = signals [sig].head; w; w = w->next) 503 for (w = signals [signum].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL); 504 event (EV_A_ (W)w, EV_SIGNAL);
319 } 505 }
320} 506}
321 507
322static void 508static void
323siginit (void) 509siginit (EV_P)
324{ 510{
511#ifndef WIN32
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327 514
328 /* rather than sort out wether we really need nb, set it */ 515 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
331 519
332 evio_set (&sigev, sigpipe [0], EV_READ); 520 ev_io_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev); 521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
334} 523}
335 524
336/*****************************************************************************/ 525/*****************************************************************************/
337 526
338static struct ev_idle **idles; 527#ifndef WIN32
339static int idlemax, idlecnt;
340
341static struct ev_prepare **prepares;
342static int preparemax, preparecnt;
343
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348 528
349static struct ev_child *childs [PID_HASHSIZE]; 529static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 530static struct ev_signal childev;
351 531
352#ifndef WCONTINUED 532#ifndef WCONTINUED
353# define WCONTINUED 0 533# define WCONTINUED 0
354#endif 534#endif
355 535
356static void 536static void
357childcb (struct ev_signal *sw, int revents) 537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
358{ 538{
359 struct ev_child *w; 539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents)
553{
360 int pid, status; 554 int pid, status;
361 555
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 557 {
364 if (w->pid == pid || w->pid == -1) 558 /* make sure we are called again until all childs have been reaped */
365 { 559 event (EV_A_ (W)sw, EV_SIGNAL);
366 w->status = status; 560
367 event ((W)w, EV_CHILD); 561 child_reap (EV_A_ sw, pid, pid, status);
368 } 562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 }
369} 564}
565
566#endif
370 567
371/*****************************************************************************/ 568/*****************************************************************************/
372 569
570#if EV_USE_KQUEUE
571# include "ev_kqueue.c"
572#endif
373#if HAVE_EPOLL 573#if EV_USE_EPOLL
374# include "ev_epoll.c" 574# include "ev_epoll.c"
375#endif 575#endif
576#if EV_USE_POLL
577# include "ev_poll.c"
578#endif
376#if HAVE_SELECT 579#if EV_USE_SELECT
377# include "ev_select.c" 580# include "ev_select.c"
378#endif 581#endif
379 582
380int 583int
381ev_version_major (void) 584ev_version_major (void)
387ev_version_minor (void) 590ev_version_minor (void)
388{ 591{
389 return EV_VERSION_MINOR; 592 return EV_VERSION_MINOR;
390} 593}
391 594
392int ev_init (int flags) 595/* return true if we are running with elevated privileges and should ignore env variables */
596static int
597enable_secure (void)
393{ 598{
599#ifdef WIN32
600 return 0;
601#else
602 return getuid () != geteuid ()
603 || getgid () != getegid ();
604#endif
605}
606
607int
608ev_method (EV_P)
609{
610 return method;
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
394 if (!ev_method) 616 if (!method)
395 { 617 {
396#if HAVE_MONOTONIC 618#if EV_USE_MONOTONIC
397 { 619 {
398 struct timespec ts; 620 struct timespec ts;
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
400 have_monotonic = 1; 622 have_monotonic = 1;
401 } 623 }
402#endif 624#endif
403 625
404 ev_now = ev_time (); 626 rt_now = ev_time ();
405 now = get_clock (); 627 mn_now = get_clock ();
628 now_floor = mn_now;
406 diff = ev_now - now; 629 rtmn_diff = rt_now - mn_now;
407 630
631 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS"));
634 else
635 methods = EVMETHOD_ANY;
636
637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
644#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
646#endif
647#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif
650#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif
653 }
654}
655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY
704struct ev_loop *
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
408 if (pipe (sigpipe)) 745 if (pipe (sigpipe))
409 return 0; 746 return 0;
410 747
411 ev_method = EVMETHOD_NONE; 748 if (!default_loop)
412#if HAVE_EPOLL 749 {
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1;
414#endif 754#endif
415#if HAVE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif
418 755
756 loop_init (EV_A_ methods);
757
419 if (ev_method) 758 if (ev_method (EV_A))
420 { 759 {
421 evw_init (&sigev, sigcb); 760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
422 siginit (); 762 siginit (EV_A);
423 763
764#ifndef WIN32
424 evsignal_init (&childev, childcb, SIGCHLD); 765 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI);
425 evsignal_start (&childev); 767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif
426 } 770 }
771 else
772 default_loop = 0;
427 } 773 }
428 774
429 return ev_method; 775 return default_loop;
430} 776}
431 777
432/*****************************************************************************/
433
434void 778void
435ev_prefork (void) 779ev_default_destroy (void)
436{ 780{
437 /* nop */ 781#if EV_MULTIPLICITY
438} 782 struct ev_loop *loop = default_loop;
439
440void
441ev_postfork_parent (void)
442{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif 783#endif
453 784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
454 evio_stop (&sigev); 789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795}
796
797void
798ev_default_fork (void)
799{
800#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
455 close (sigpipe [0]); 807 close (sigpipe [0]);
456 close (sigpipe [1]); 808 close (sigpipe [1]);
457 pipe (sigpipe); 809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
458 siginit (); 812 siginit (EV_A);
459} 813}
460 814
461/*****************************************************************************/ 815/*****************************************************************************/
462 816
463static void 817static void
464fd_reify (void) 818call_pending (EV_P)
465{ 819{
466 int i; 820 int pri;
467 821
468 for (i = 0; i < fdchangecnt; ++i) 822 for (pri = NUMPRI; pri--; )
469 { 823 while (pendingcnt [pri])
470 int fd = fdchanges [i];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473
474 int wev = 0;
475
476 for (w = anfd->head; w; w = w->next)
477 wev |= w->events;
478
479 if (anfd->wev != wev)
480 { 824 {
481 method_modify (fd, anfd->wev, wev);
482 anfd->wev = wev;
483 }
484 }
485
486 fdchangecnt = 0;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 {
494 ANPENDING *p = pendings + --pendingcnt; 825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
495 826
496 if (p->w) 827 if (p->w)
497 { 828 {
498 p->w->pending = 0; 829 p->w->pending = 0;
499 p->w->cb (p->w, p->events); 830 p->w->cb (EV_A_ p->w, p->events);
500 } 831 }
501 } 832 }
502} 833}
503 834
504static void 835static void
505timers_reify (void) 836timers_reify (EV_P)
506{ 837{
507 while (timercnt && timers [0]->at <= now) 838 while (timercnt && ((WT)timers [0])->at <= mn_now)
508 { 839 {
509 struct ev_timer *w = timers [0]; 840 struct ev_timer *w = timers [0];
510 841
511 event ((W)w, EV_TIMEOUT); 842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
512 843
513 /* first reschedule or stop timer */ 844 /* first reschedule or stop timer */
514 if (w->repeat) 845 if (w->repeat)
515 { 846 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
516 w->at = now + w->repeat; 848 ((WT)w)->at = mn_now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now));
518 downheap ((WT *)timers, timercnt, 0); 849 downheap ((WT *)timers, timercnt, 0);
519 } 850 }
520 else 851 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
522 }
523}
524 853
854 event (EV_A_ (W)w, EV_TIMEOUT);
855 }
856}
857
525static void 858static void
526periodics_reify (void) 859periodics_reify (EV_P)
527{ 860{
528 while (periodiccnt && periodics [0]->at <= ev_now) 861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
529 { 862 {
530 struct ev_periodic *w = periodics [0]; 863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
531 866
532 /* first reschedule or stop timer */ 867 /* first reschedule or stop timer */
533 if (w->interval) 868 if (w->interval)
534 { 869 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
537 downheap ((WT *)periodics, periodiccnt, 0); 872 downheap ((WT *)periodics, periodiccnt, 0);
538 } 873 }
539 else 874 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
541 876
542 event ((W)w, EV_TIMEOUT); 877 event (EV_A_ (W)w, EV_PERIODIC);
543 } 878 }
544} 879}
545 880
546static void 881static void
547periodics_reschedule (ev_tstamp diff) 882periodics_reschedule (EV_P)
548{ 883{
549 int i; 884 int i;
550 885
551 /* adjust periodics after time jump */ 886 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i) 887 for (i = 0; i < periodiccnt; ++i)
553 { 888 {
554 struct ev_periodic *w = periodics [i]; 889 struct ev_periodic *w = periodics [i];
555 890
556 if (w->interval) 891 if (w->interval)
557 { 892 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
559 894
560 if (fabs (diff) >= 1e-4) 895 if (fabs (diff) >= 1e-4)
561 { 896 {
562 evperiodic_stop (w); 897 ev_periodic_stop (EV_A_ w);
563 evperiodic_start (w); 898 ev_periodic_start (EV_A_ w);
564 899
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
566 } 901 }
567 } 902 }
568 } 903 }
569} 904}
570 905
906inline int
907time_update_monotonic (EV_P)
908{
909 mn_now = get_clock ();
910
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 }
916 else
917 {
918 now_floor = mn_now;
919 rt_now = ev_time ();
920 return 1;
921 }
922}
923
571static void 924static void
572time_update (void) 925time_update (EV_P)
573{ 926{
574 int i; 927 int i;
575 928
576 ev_now = ev_time (); 929#if EV_USE_MONOTONIC
577
578 if (have_monotonic) 930 if (expect_true (have_monotonic))
579 { 931 {
580 ev_tstamp odiff = diff; 932 if (time_update_monotonic (EV_A))
581
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */
583 { 933 {
584 now = get_clock (); 934 ev_tstamp odiff = rtmn_diff;
935
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 {
585 diff = ev_now - now; 938 rtmn_diff = rt_now - mn_now;
586 939
587 if (fabs (odiff - diff) < MIN_TIMEJUMP) 940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
588 return; /* all is well */ 941 return; /* all is well */
589 942
590 ev_now = ev_time (); 943 rt_now = ev_time ();
944 mn_now = get_clock ();
945 now_floor = mn_now;
946 }
947
948 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
591 } 951 }
592
593 periodics_reschedule (diff - odiff);
594 /* no timer adjustment, as the monotonic clock doesn't jump */
595 } 952 }
596 else 953 else
954#endif
597 { 955 {
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 956 rt_now = ev_time ();
957
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
599 { 959 {
600 periodics_reschedule (ev_now - now); 960 periodics_reschedule (EV_A);
601 961
602 /* adjust timers. this is easy, as the offset is the same for all */ 962 /* adjust timers. this is easy, as the offset is the same for all */
603 for (i = 0; i < timercnt; ++i) 963 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff; 964 ((WT)timers [i])->at += rt_now - mn_now;
605 } 965 }
606 966
607 now = ev_now; 967 mn_now = rt_now;
608 } 968 }
609} 969}
610 970
611int ev_loop_done; 971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
612 976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
613void ev_loop (int flags) 986ev_loop (EV_P_ int flags)
614{ 987{
615 double block; 988 double block;
616 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
617 990
618 do 991 do
619 { 992 {
620 /* queue check watchers (and execute them) */ 993 /* queue check watchers (and execute them) */
621 if (preparecnt) 994 if (expect_false (preparecnt))
622 { 995 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
624 call_pending (); 997 call_pending (EV_A);
625 } 998 }
626 999
627 /* update fd-related kernel structures */ 1000 /* update fd-related kernel structures */
628 fd_reify (); 1001 fd_reify (EV_A);
629 1002
630 /* calculate blocking time */ 1003 /* calculate blocking time */
631 1004
632 /* we only need this for !monotonic clockor timers, but as we basically 1005 /* we only need this for !monotonic clockor timers, but as we basically
633 always have timers, we just calculate it always */ 1006 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A);
1010 else
1011#endif
1012 {
634 ev_now = ev_time (); 1013 rt_now = ev_time ();
1014 mn_now = rt_now;
1015 }
635 1016
636 if (flags & EVLOOP_NONBLOCK || idlecnt) 1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.; 1018 block = 0.;
638 else 1019 else
639 { 1020 {
640 block = MAX_BLOCKTIME; 1021 block = MAX_BLOCKTIME;
641 1022
642 if (timercnt) 1023 if (timercnt)
643 { 1024 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
645 if (block > to) block = to; 1026 if (block > to) block = to;
646 } 1027 }
647 1028
648 if (periodiccnt) 1029 if (periodiccnt)
649 { 1030 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
651 if (block > to) block = to; 1032 if (block > to) block = to;
652 } 1033 }
653 1034
654 if (block < 0.) block = 0.; 1035 if (block < 0.) block = 0.;
655 } 1036 }
656 1037
657 method_poll (block); 1038 method_poll (EV_A_ block);
658 1039
659 /* update ev_now, do magic */ 1040 /* update rt_now, do magic */
660 time_update (); 1041 time_update (EV_A);
661 1042
662 /* queue pending timers and reschedule them */ 1043 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */ 1044 timers_reify (EV_A); /* relative timers called last */
664 periodics_reify (); /* absolute timers called first */ 1045 periodics_reify (EV_A); /* absolute timers called first */
665 1046
666 /* queue idle watchers unless io or timers are pending */ 1047 /* queue idle watchers unless io or timers are pending */
667 if (!pendingcnt) 1048 if (!pendingcnt)
668 queue_events ((W *)idles, idlecnt, EV_IDLE); 1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
669 1050
670 /* queue check watchers, to be executed first */ 1051 /* queue check watchers, to be executed first */
671 if (checkcnt) 1052 if (checkcnt)
672 queue_events ((W *)checks, checkcnt, EV_CHECK); 1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
673 1054
674 call_pending (); 1055 call_pending (EV_A);
675 } 1056 }
676 while (!ev_loop_done); 1057 while (activecnt && !loop_done);
677 1058
678 if (ev_loop_done != 2) 1059 if (loop_done != 2)
679 ev_loop_done = 0; 1060 loop_done = 0;
1061}
1062
1063void
1064ev_unloop (EV_P_ int how)
1065{
1066 loop_done = how;
680} 1067}
681 1068
682/*****************************************************************************/ 1069/*****************************************************************************/
683 1070
684static void 1071inline void
685wlist_add (WL *head, WL elem) 1072wlist_add (WL *head, WL elem)
686{ 1073{
687 elem->next = *head; 1074 elem->next = *head;
688 *head = elem; 1075 *head = elem;
689} 1076}
690 1077
691static void 1078inline void
692wlist_del (WL *head, WL elem) 1079wlist_del (WL *head, WL elem)
693{ 1080{
694 while (*head) 1081 while (*head)
695 { 1082 {
696 if (*head == elem) 1083 if (*head == elem)
701 1088
702 head = &(*head)->next; 1089 head = &(*head)->next;
703 } 1090 }
704} 1091}
705 1092
706static void 1093inline void
707ev_clear (W w) 1094ev_clear_pending (EV_P_ W w)
708{ 1095{
709 if (w->pending) 1096 if (w->pending)
710 { 1097 {
711 pendings [w->pending - 1].w = 0; 1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
712 w->pending = 0; 1099 w->pending = 0;
713 } 1100 }
714} 1101}
715 1102
716static void 1103inline void
717ev_start (W w, int active) 1104ev_start (EV_P_ W w, int active)
718{ 1105{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
719 w->active = active; 1109 w->active = active;
1110 ev_ref (EV_A);
720} 1111}
721 1112
722static void 1113inline void
723ev_stop (W w) 1114ev_stop (EV_P_ W w)
724{ 1115{
1116 ev_unref (EV_A);
725 w->active = 0; 1117 w->active = 0;
726} 1118}
727 1119
728/*****************************************************************************/ 1120/*****************************************************************************/
729 1121
730void 1122void
731evio_start (struct ev_io *w) 1123ev_io_start (EV_P_ struct ev_io *w)
732{ 1124{
1125 int fd = w->fd;
1126
733 if (ev_is_active (w)) 1127 if (ev_is_active (w))
734 return; 1128 return;
735 1129
736 int fd = w->fd; 1130 assert (("ev_io_start called with negative fd", fd >= 0));
737 1131
738 ev_start ((W)w, 1); 1132 ev_start (EV_A_ (W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
741 1135
742 ++fdchangecnt; 1136 fd_change (EV_A_ fd);
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
744 fdchanges [fdchangecnt - 1] = fd;
745} 1137}
746 1138
747void 1139void
748evio_stop (struct ev_io *w) 1140ev_io_stop (EV_P_ struct ev_io *w)
749{ 1141{
750 ev_clear ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
751 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
752 return; 1144 return;
753 1145
754 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
755 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
756 1148
757 ++fdchangecnt; 1149 fd_change (EV_A_ w->fd);
758 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
759 fdchanges [fdchangecnt - 1] = w->fd;
760} 1150}
761 1151
762void 1152void
763evtimer_start (struct ev_timer *w) 1153ev_timer_start (EV_P_ struct ev_timer *w)
764{ 1154{
765 if (ev_is_active (w)) 1155 if (ev_is_active (w))
766 return; 1156 return;
767 1157
768 w->at += now; 1158 ((WT)w)->at += mn_now;
769 1159
770 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
771 1161
772 ev_start ((W)w, ++timercnt); 1162 ev_start (EV_A_ (W)w, ++timercnt);
773 array_needsize (timers, timermax, timercnt, ); 1163 array_needsize (timers, timermax, timercnt, );
774 timers [timercnt - 1] = w; 1164 timers [timercnt - 1] = w;
775 upheap ((WT *)timers, timercnt - 1); 1165 upheap ((WT *)timers, timercnt - 1);
776}
777 1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168}
1169
778void 1170void
779evtimer_stop (struct ev_timer *w) 1171ev_timer_stop (EV_P_ struct ev_timer *w)
780{ 1172{
781 ev_clear ((W)w); 1173 ev_clear_pending (EV_A_ (W)w);
782 if (!ev_is_active (w)) 1174 if (!ev_is_active (w))
783 return; 1175 return;
784 1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
785 if (w->active < timercnt--) 1179 if (((W)w)->active < timercnt--)
786 { 1180 {
787 timers [w->active - 1] = timers [timercnt]; 1181 timers [((W)w)->active - 1] = timers [timercnt];
788 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
789 } 1183 }
790 1184
791 w->at = w->repeat; 1185 ((WT)w)->at = w->repeat;
792 1186
793 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
794} 1188}
795 1189
796void 1190void
797evtimer_again (struct ev_timer *w) 1191ev_timer_again (EV_P_ struct ev_timer *w)
798{ 1192{
799 if (ev_is_active (w)) 1193 if (ev_is_active (w))
800 { 1194 {
801 if (w->repeat) 1195 if (w->repeat)
802 { 1196 {
803 w->at = now + w->repeat; 1197 ((WT)w)->at = mn_now + w->repeat;
804 downheap ((WT *)timers, timercnt, w->active - 1); 1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
805 } 1199 }
806 else 1200 else
807 evtimer_stop (w); 1201 ev_timer_stop (EV_A_ w);
808 } 1202 }
809 else if (w->repeat) 1203 else if (w->repeat)
810 evtimer_start (w); 1204 ev_timer_start (EV_A_ w);
811} 1205}
812 1206
813void 1207void
814evperiodic_start (struct ev_periodic *w) 1208ev_periodic_start (EV_P_ struct ev_periodic *w)
815{ 1209{
816 if (ev_is_active (w)) 1210 if (ev_is_active (w))
817 return; 1211 return;
818 1212
819 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
820 1214
821 /* this formula differs from the one in periodic_reify because we do not always round up */ 1215 /* this formula differs from the one in periodic_reify because we do not always round up */
822 if (w->interval) 1216 if (w->interval)
823 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
824 1218
825 ev_start ((W)w, ++periodiccnt); 1219 ev_start (EV_A_ (W)w, ++periodiccnt);
826 array_needsize (periodics, periodicmax, periodiccnt, ); 1220 array_needsize (periodics, periodicmax, periodiccnt, );
827 periodics [periodiccnt - 1] = w; 1221 periodics [periodiccnt - 1] = w;
828 upheap ((WT *)periodics, periodiccnt - 1); 1222 upheap ((WT *)periodics, periodiccnt - 1);
829}
830 1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225}
1226
831void 1227void
832evperiodic_stop (struct ev_periodic *w) 1228ev_periodic_stop (EV_P_ struct ev_periodic *w)
833{ 1229{
834 ev_clear ((W)w); 1230 ev_clear_pending (EV_A_ (W)w);
835 if (!ev_is_active (w)) 1231 if (!ev_is_active (w))
836 return; 1232 return;
837 1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
838 if (w->active < periodiccnt--) 1236 if (((W)w)->active < periodiccnt--)
839 { 1237 {
840 periodics [w->active - 1] = periodics [periodiccnt]; 1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
841 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
842 } 1240 }
843 1241
844 ev_stop ((W)w); 1242 ev_stop (EV_A_ (W)w);
845} 1243}
846 1244
847void 1245void
848evsignal_start (struct ev_signal *w) 1246ev_idle_start (EV_P_ struct ev_idle *w)
849{ 1247{
850 if (ev_is_active (w)) 1248 if (ev_is_active (w))
851 return; 1249 return;
852 1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265}
1266
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310
1311#ifndef SA_RESTART
1312# define SA_RESTART 0
1313#endif
1314
1315void
1316ev_signal_start (EV_P_ struct ev_signal *w)
1317{
1318#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320#endif
1321 if (ev_is_active (w))
1322 return;
1323
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325
853 ev_start ((W)w, 1); 1326 ev_start (EV_A_ (W)w, 1);
854 array_needsize (signals, signalmax, w->signum, signals_init); 1327 array_needsize (signals, signalmax, w->signum, signals_init);
855 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
856 1329
857 if (!w->next) 1330 if (!((WL)w)->next)
858 { 1331 {
1332#if WIN32
1333 signal (w->signum, sighandler);
1334#else
859 struct sigaction sa; 1335 struct sigaction sa;
860 sa.sa_handler = sighandler; 1336 sa.sa_handler = sighandler;
861 sigfillset (&sa.sa_mask); 1337 sigfillset (&sa.sa_mask);
862 sa.sa_flags = 0; 1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
863 sigaction (w->signum, &sa, 0); 1339 sigaction (w->signum, &sa, 0);
1340#endif
864 } 1341 }
865} 1342}
866 1343
867void 1344void
868evsignal_stop (struct ev_signal *w) 1345ev_signal_stop (EV_P_ struct ev_signal *w)
869{ 1346{
870 ev_clear ((W)w); 1347 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1348 if (!ev_is_active (w))
872 return; 1349 return;
873 1350
874 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
875 ev_stop ((W)w); 1352 ev_stop (EV_A_ (W)w);
876 1353
877 if (!signals [w->signum - 1].head) 1354 if (!signals [w->signum - 1].head)
878 signal (w->signum, SIG_DFL); 1355 signal (w->signum, SIG_DFL);
879} 1356}
880 1357
881void evidle_start (struct ev_idle *w) 1358void
1359ev_child_start (EV_P_ struct ev_child *w)
882{ 1360{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
883 if (ev_is_active (w)) 1364 if (ev_is_active (w))
884 return; 1365 return;
885 1366
886 ev_start ((W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, 1);
887 array_needsize (idles, idlemax, idlecnt, ); 1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
888 idles [idlecnt - 1] = w;
889} 1369}
890 1370
891void evidle_stop (struct ev_idle *w) 1371void
1372ev_child_stop (EV_P_ struct ev_child *w)
892{ 1373{
893 ev_clear ((W)w); 1374 ev_clear_pending (EV_A_ (W)w);
894 if (ev_is_active (w)) 1375 if (ev_is_active (w))
895 return; 1376 return;
896 1377
897 idles [w->active - 1] = idles [--idlecnt];
898 ev_stop ((W)w);
899}
900
901void evprepare_start (struct ev_prepare *w)
902{
903 if (ev_is_active (w))
904 return;
905
906 ev_start ((W)w, ++preparecnt);
907 array_needsize (prepares, preparemax, preparecnt, );
908 prepares [preparecnt - 1] = w;
909}
910
911void evprepare_stop (struct ev_prepare *w)
912{
913 ev_clear ((W)w);
914 if (ev_is_active (w))
915 return;
916
917 prepares [w->active - 1] = prepares [--preparecnt];
918 ev_stop ((W)w);
919}
920
921void evcheck_start (struct ev_check *w)
922{
923 if (ev_is_active (w))
924 return;
925
926 ev_start ((W)w, ++checkcnt);
927 array_needsize (checks, checkmax, checkcnt, );
928 checks [checkcnt - 1] = w;
929}
930
931void evcheck_stop (struct ev_check *w)
932{
933 ev_clear ((W)w);
934 if (ev_is_active (w))
935 return;
936
937 checks [w->active - 1] = checks [--checkcnt];
938 ev_stop ((W)w);
939}
940
941void evchild_start (struct ev_child *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, 1);
947 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
948}
949
950void evchild_stop (struct ev_child *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
957 ev_stop ((W)w); 1379 ev_stop (EV_A_ (W)w);
958} 1380}
959 1381
960/*****************************************************************************/ 1382/*****************************************************************************/
961 1383
962struct ev_once 1384struct ev_once
966 void (*cb)(int revents, void *arg); 1388 void (*cb)(int revents, void *arg);
967 void *arg; 1389 void *arg;
968}; 1390};
969 1391
970static void 1392static void
971once_cb (struct ev_once *once, int revents) 1393once_cb (EV_P_ struct ev_once *once, int revents)
972{ 1394{
973 void (*cb)(int revents, void *arg) = once->cb; 1395 void (*cb)(int revents, void *arg) = once->cb;
974 void *arg = once->arg; 1396 void *arg = once->arg;
975 1397
976 evio_stop (&once->io); 1398 ev_io_stop (EV_A_ &once->io);
977 evtimer_stop (&once->to); 1399 ev_timer_stop (EV_A_ &once->to);
978 free (once); 1400 free (once);
979 1401
980 cb (revents, arg); 1402 cb (revents, arg);
981} 1403}
982 1404
983static void 1405static void
984once_cb_io (struct ev_io *w, int revents) 1406once_cb_io (EV_P_ struct ev_io *w, int revents)
985{ 1407{
986 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
987} 1409}
988 1410
989static void 1411static void
990once_cb_to (struct ev_timer *w, int revents) 1412once_cb_to (EV_P_ struct ev_timer *w, int revents)
991{ 1413{
992 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
993} 1415}
994 1416
995void 1417void
996ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
997{ 1419{
998 struct ev_once *once = malloc (sizeof (struct ev_once)); 1420 struct ev_once *once = malloc (sizeof (struct ev_once));
999 1421
1000 if (!once) 1422 if (!once)
1001 cb (EV_ERROR, arg); 1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1002 else 1424 else
1003 { 1425 {
1004 once->cb = cb; 1426 once->cb = cb;
1005 once->arg = arg; 1427 once->arg = arg;
1006 1428
1007 evw_init (&once->io, once_cb_io); 1429 ev_watcher_init (&once->io, once_cb_io);
1008
1009 if (fd >= 0) 1430 if (fd >= 0)
1010 { 1431 {
1011 evio_set (&once->io, fd, events); 1432 ev_io_set (&once->io, fd, events);
1012 evio_start (&once->io); 1433 ev_io_start (EV_A_ &once->io);
1013 } 1434 }
1014 1435
1015 evw_init (&once->to, once_cb_to); 1436 ev_watcher_init (&once->to, once_cb_to);
1016
1017 if (timeout >= 0.) 1437 if (timeout >= 0.)
1018 { 1438 {
1019 evtimer_set (&once->to, timeout, 0.); 1439 ev_timer_set (&once->to, timeout, 0.);
1020 evtimer_start (&once->to); 1440 ev_timer_start (EV_A_ &once->to);
1021 } 1441 }
1022 } 1442 }
1023} 1443}
1024 1444
1025/*****************************************************************************/
1026
1027#if 0
1028
1029struct ev_io wio;
1030
1031static void
1032sin_cb (struct ev_io *w, int revents)
1033{
1034 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1035}
1036
1037static void
1038ocb (struct ev_timer *w, int revents)
1039{
1040 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1041 evtimer_stop (w);
1042 evtimer_start (w);
1043}
1044
1045static void
1046scb (struct ev_signal *w, int revents)
1047{
1048 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1049 evio_stop (&wio);
1050 evio_start (&wio);
1051}
1052
1053static void
1054gcb (struct ev_signal *w, int revents)
1055{
1056 fprintf (stderr, "generic %x\n", revents);
1057
1058}
1059
1060int main (void)
1061{
1062 ev_init (0);
1063
1064 evio_init (&wio, sin_cb, 0, EV_READ);
1065 evio_start (&wio);
1066
1067 struct ev_timer t[10000];
1068
1069#if 0
1070 int i;
1071 for (i = 0; i < 10000; ++i)
1072 {
1073 struct ev_timer *w = t + i;
1074 evw_init (w, ocb, i);
1075 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1076 evtimer_start (w);
1077 if (drand48 () < 0.5)
1078 evtimer_stop (w);
1079 }
1080#endif
1081
1082 struct ev_timer t1;
1083 evtimer_init (&t1, ocb, 5, 10);
1084 evtimer_start (&t1);
1085
1086 struct ev_signal sig;
1087 evsignal_init (&sig, scb, SIGQUIT);
1088 evsignal_start (&sig);
1089
1090 struct ev_check cw;
1091 evcheck_init (&cw, gcb);
1092 evcheck_start (&cw);
1093
1094 struct ev_idle iw;
1095 evidle_init (&iw, gcb);
1096 evidle_start (&iw);
1097
1098 ev_loop (0);
1099
1100 return 0;
1101}
1102
1103#endif
1104
1105
1106
1107

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines