ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.125 by root, Sat Nov 17 02:28:43 2007 UTC vs.
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108#endif 182#endif
114# define EV_USE_POLL 1 188# define EV_USE_POLL 1
115# endif 189# endif
116#endif 190#endif
117 191
118#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
119# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
120#endif 198#endif
121 199
122#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
124#endif 202#endif
125 203
126#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 205# define EV_USE_PORT 0
128#endif 206#endif
129 207
130/**/ 208#ifndef EV_USE_INOTIFY
131 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 211# else
134# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 241
138#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
141#endif 245#endif
143#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
146#endif 250#endif
147 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
148#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 268# include <winsock.h>
150#endif 269#endif
151 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
152/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 294
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 298
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 299#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 301# define noinline __attribute__ ((noinline))
168#else 302#else
169# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
170# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
171#endif 308#endif
172 309
173#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
175 319
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 322
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
181 325
182typedef struct ev_watcher *W; 326typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
185 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
187 338
188#ifdef _WIN32 339#ifdef _WIN32
189# include "ev_win32.c" 340# include "ev_win32.c"
190#endif 341#endif
191 342
192/*****************************************************************************/ 343/*****************************************************************************/
193 344
194static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
195 346
347void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 349{
198 syserr_cb = cb; 350 syserr_cb = cb;
199} 351}
200 352
201static void 353static void noinline
202syserr (const char *msg) 354syserr (const char *msg)
203{ 355{
204 if (!msg) 356 if (!msg)
205 msg = "(libev) system error"; 357 msg = "(libev) system error";
206 358
211 perror (msg); 363 perror (msg);
212 abort (); 364 abort ();
213 } 365 }
214} 366}
215 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
216static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 384
385void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 387{
220 alloc = cb; 388 alloc = cb;
221} 389}
222 390
223static void * 391inline_speed void *
224ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
225{ 393{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
227 395
228 if (!ptr && size) 396 if (!ptr && size)
229 { 397 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 399 abort ();
252typedef struct 420typedef struct
253{ 421{
254 W w; 422 W w;
255 int events; 423 int events;
256} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
257 432
258#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
259 434
260 struct ev_loop 435 struct ev_loop
261 { 436 {
295 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 472#endif
298} 473}
299 474
300inline ev_tstamp 475ev_tstamp inline_size
301get_clock (void) 476get_clock (void)
302{ 477{
303#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
305 { 480 {
318{ 493{
319 return ev_rt_now; 494 return ev_rt_now;
320} 495}
321#endif 496#endif
322 497
323#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
324 554
325#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
327 { \ 557 { \
328 int newcnt = cur; \ 558 int ocur_ = (cur); \
329 do \ 559 (base) = (type *)array_realloc \
330 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 562 }
339 563
564#if 0
340#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 567 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 571 }
572#endif
347 573
348#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 576
351/*****************************************************************************/ 577/*****************************************************************************/
352 578
353static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
354anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
355{ 609{
356 while (count--) 610 while (count--)
357 { 611 {
358 base->head = 0; 612 base->head = 0;
361 615
362 ++base; 616 ++base;
363 } 617 }
364} 618}
365 619
366void 620void inline_speed
367ev_feed_event (EV_P_ void *w, int revents)
368{
369 W w_ = (W)w;
370
371 if (expect_false (w_->pending))
372 {
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
374 return;
375 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381}
382
383static void
384queue_events (EV_P_ W *events, int eventcnt, int type)
385{
386 int i;
387
388 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type);
390}
391
392inline void
393fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
394{ 622{
395 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 624 ev_io *w;
397 625
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 627 {
400 int ev = w->events & revents; 628 int ev = w->events & revents;
401 629
402 if (ev) 630 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
405} 633}
406 634
407void 635void
408ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 637{
638 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
411} 640}
412 641
413/*****************************************************************************/ 642void inline_size
414
415inline void
416fd_reify (EV_P) 643fd_reify (EV_P)
417{ 644{
418 int i; 645 int i;
419 646
420 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
421 { 648 {
422 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 651 ev_io *w;
425 652
426 int events = 0; 653 unsigned char events = 0;
427 654
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 656 events |= (unsigned char)w->events;
430 657
431#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
432 if (events) 659 if (events)
433 { 660 {
434 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
435 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 } 668 }
438#endif 669#endif
439 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
440 anfd->reify = 0; 675 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
444 } 681 }
445 682
446 fdchangecnt = 0; 683 fdchangecnt = 0;
447} 684}
448 685
449static void 686void inline_size
450fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
451{ 688{
452 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
456 691
692 if (expect_true (!reify))
693 {
457 ++fdchangecnt; 694 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
460} 698}
461 699
462static void 700void inline_speed
463fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
464{ 702{
465 struct ev_io *w; 703 ev_io *w;
466 704
467 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
468 { 706 {
469 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 709 }
472} 710}
473 711
474inline int 712int inline_size
475fd_valid (int fd) 713fd_valid (int fd)
476{ 714{
477#ifdef _WIN32 715#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 716 return _get_osfhandle (fd) != -1;
479#else 717#else
480 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
481#endif 719#endif
482} 720}
483 721
484/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
485static void 723static void noinline
486fd_ebadf (EV_P) 724fd_ebadf (EV_P)
487{ 725{
488 int fd; 726 int fd;
489 727
490 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
493 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
494} 732}
495 733
496/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 735static void noinline
498fd_enomem (EV_P) 736fd_enomem (EV_P)
499{ 737{
500 int fd; 738 int fd;
501 739
502 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
506 return; 744 return;
507 } 745 }
508} 746}
509 747
510/* usually called after fork if method needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 749static void noinline
512fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
513{ 751{
514 int fd; 752 int fd;
515 753
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 755 if (anfds [fd].events)
519 { 756 {
520 anfds [fd].events = 0; 757 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 759 }
523} 760}
524 761
525/*****************************************************************************/ 762/*****************************************************************************/
526 763
527static void 764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775
776/* towards the root */
777void inline_speed
528upheap (WT *heap, int k) 778upheap (WT *heap, int k)
529{ 779{
530 WT w = heap [k]; 780 WT w = heap [k];
781 ev_tstamp w_at = w->at;
531 782
532 while (k && heap [k >> 1]->at > w->at) 783 for (;;)
533 { 784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
534 heap [k] = heap [k >> 1]; 790 heap [k] = heap [p];
535 ((W)heap [k])->active = k + 1; 791 ev_active (heap [k]) = k;
536 k >>= 1; 792 k = p;
537 } 793 }
538 794
539 heap [k] = w; 795 heap [k] = w;
540 ((W)heap [k])->active = k + 1; 796 ev_active (heap [k]) = k;
541
542} 797}
543 798
544static void 799/* away from the root */
800void inline_speed
545downheap (WT *heap, int N, int k) 801downheap (WT *heap, int N, int k)
546{ 802{
547 WT w = heap [k]; 803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
548 805
549 while (k < (N >> 1)) 806 for (;;)
550 { 807 {
551 int j = k << 1; 808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
552 811
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
554 ++j; 814 {
555 815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at);
556 if (w->at <= heap [j]->at) 816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else if (pos < E)
821 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at);
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
826 }
827 else
557 break; 828 break;
558 829
559 heap [k] = heap [j]; 830 if (w->at <= minat)
560 ((W)heap [k])->active = k + 1; 831 break;
561 k = j; 832
833 ev_active (*minpos) = k;
834 heap [k] = *minpos;
835
836 k = minpos - heap;
562 } 837 }
563 838
564 heap [k] = w; 839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
565 ((W)heap [k])->active = k + 1; 890 ((W)heap [k])->active = k;
566} 891
892 k = c;
893 }
567 894
568inline void 895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899
900void inline_size
569adjustheap (WT *heap, int N, int k) 901adjustheap (WT *heap, int N, int k)
570{ 902{
571 upheap (heap, k); 903 upheap (heap, k);
572 downheap (heap, N, k); 904 downheap (heap, N, k);
573} 905}
575/*****************************************************************************/ 907/*****************************************************************************/
576 908
577typedef struct 909typedef struct
578{ 910{
579 WL head; 911 WL head;
580 sig_atomic_t volatile gotsig; 912 EV_ATOMIC_T gotsig;
581} ANSIG; 913} ANSIG;
582 914
583static ANSIG *signals; 915static ANSIG *signals;
584static int signalmax; 916static int signalmax;
585 917
586static int sigpipe [2]; 918static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 919
590static void 920void inline_size
591signals_init (ANSIG *base, int count) 921signals_init (ANSIG *base, int count)
592{ 922{
593 while (count--) 923 while (count--)
594 { 924 {
595 base->head = 0; 925 base->head = 0;
597 927
598 ++base; 928 ++base;
599 } 929 }
600} 930}
601 931
602static void 932/*****************************************************************************/
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608 933
609 signals [signum - 1].gotsig = 1; 934void inline_speed
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 935fd_intern (int fd)
655{ 936{
656#ifdef _WIN32 937#ifdef _WIN32
657 int arg = 1; 938 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 941 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 942 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 943#endif
663} 944}
664 945
946static void noinline
947evpipe_init (EV_P)
948{
949 if (!ev_is_active (&pipeev))
950 {
951#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0)
953 {
954 evpipe [0] = -1;
955 fd_intern (evfd);
956 ev_io_set (&pipeev, evfd, EV_READ);
957 }
958 else
959#endif
960 {
961 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe");
963
964 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 }
968
969 ev_io_start (EV_A_ &pipeev);
970 ev_unref (EV_A); /* watcher should not keep loop alive */
971 }
972}
973
974void inline_size
975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{
977 if (!*flag)
978 {
979 int old_errno = errno; /* save errno because write might clobber it */
980
981 *flag = 1;
982
983#if EV_USE_EVENTFD
984 if (evfd >= 0)
985 {
986 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t));
988 }
989 else
990#endif
991 write (evpipe [1], &old_errno, 1);
992
993 errno = old_errno;
994 }
995}
996
665static void 997static void
666siginit (EV_P) 998pipecb (EV_P_ ev_io *iow, int revents)
667{ 999{
668 fd_intern (sigpipe [0]); 1000#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1001 if (evfd >= 0)
1002 {
1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy;
1010 read (evpipe [0], &dummy, 1);
1011 }
670 1012
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1013 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1014 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1);
1021 }
1022
1023#if EV_ASYNC_ENABLE
1024 if (gotasync)
1025 {
1026 int i;
1027 gotasync = 0;
1028
1029 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent)
1031 {
1032 asyncs [i]->sent = 0;
1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1034 }
1035 }
1036#endif
674} 1037}
675 1038
676/*****************************************************************************/ 1039/*****************************************************************************/
677 1040
678static struct ev_child *childs [PID_HASHSIZE]; 1041static void
1042ev_sighandler (int signum)
1043{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
1048#if _WIN32
1049 signal (signum, ev_sighandler);
1050#endif
1051
1052 signals [signum - 1].gotsig = 1;
1053 evpipe_write (EV_A_ &gotsig);
1054}
1055
1056void noinline
1057ev_feed_signal_event (EV_P_ int signum)
1058{
1059 WL w;
1060
1061#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1063#endif
1064
1065 --signum;
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return;
1069
1070 signals [signum].gotsig = 0;
1071
1072 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074}
1075
1076/*****************************************************************************/
1077
1078static WL childs [EV_PID_HASHSIZE];
679 1079
680#ifndef _WIN32 1080#ifndef _WIN32
681 1081
682static struct ev_signal childev; 1082static ev_signal childev;
1083
1084#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0
1086#endif
1087
1088void inline_speed
1089child_reap (EV_P_ int chain, int pid, int status)
1090{
1091 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 {
1096 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1)))
1098 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1100 w->rpid = pid;
1101 w->rstatus = status;
1102 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1103 }
1104 }
1105}
683 1106
684#ifndef WCONTINUED 1107#ifndef WCONTINUED
685# define WCONTINUED 0 1108# define WCONTINUED 0
686#endif 1109#endif
687 1110
688static void 1111static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1112childcb (EV_P_ ev_signal *sw, int revents)
705{ 1113{
706 int pid, status; 1114 int pid, status;
707 1115
1116 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1117 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1118 if (!WCONTINUED
1119 || errno != EINVAL
1120 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1121 return;
1122
710 /* make sure we are called again until all childs have been reaped */ 1123 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1126
713 child_reap (EV_A_ sw, pid, pid, status); 1127 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1130}
717 1131
718#endif 1132#endif
719 1133
720/*****************************************************************************/ 1134/*****************************************************************************/
746{ 1160{
747 return EV_VERSION_MINOR; 1161 return EV_VERSION_MINOR;
748} 1162}
749 1163
750/* return true if we are running with elevated privileges and should ignore env variables */ 1164/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1165int inline_size
752enable_secure (void) 1166enable_secure (void)
753{ 1167{
754#ifdef _WIN32 1168#ifdef _WIN32
755 return 0; 1169 return 0;
756#else 1170#else
758 || getgid () != getegid (); 1172 || getgid () != getegid ();
759#endif 1173#endif
760} 1174}
761 1175
762unsigned int 1176unsigned int
763ev_method (EV_P) 1177ev_supported_backends (void)
764{ 1178{
765 return method; 1179 unsigned int flags = 0;
766}
767 1180
768static void 1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1182 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1183 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1184 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186
1187 return flags;
1188}
1189
1190unsigned int
1191ev_recommended_backends (void)
1192{
1193 unsigned int flags = ev_supported_backends ();
1194
1195#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE;
1199#endif
1200#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation
1202 flags &= ~EVBACKEND_POLL;
1203#endif
1204
1205 return flags;
1206}
1207
1208unsigned int
1209ev_embeddable_backends (void)
1210{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1212
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
1218}
1219
1220unsigned int
1221ev_backend (EV_P)
1222{
1223 return backend;
1224}
1225
1226unsigned int
1227ev_loop_count (EV_P)
1228{
1229 return loop_count;
1230}
1231
1232void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{
1235 io_blocktime = interval;
1236}
1237
1238void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{
1241 timeout_blocktime = interval;
1242}
1243
1244static void noinline
769loop_init (EV_P_ unsigned int flags) 1245loop_init (EV_P_ unsigned int flags)
770{ 1246{
771 if (!method) 1247 if (!backend)
772 { 1248 {
773#if EV_USE_MONOTONIC 1249#if EV_USE_MONOTONIC
774 { 1250 {
775 struct timespec ts; 1251 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1253 have_monotonic = 1;
778 } 1254 }
779#endif 1255#endif
780 1256
781 ev_rt_now = ev_time (); 1257 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1258 mn_now = get_clock ();
783 now_floor = mn_now; 1259 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1260 rtmn_diff = ev_rt_now - mn_now;
785 1261
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1262 io_blocktime = 0.;
1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif
1270
1271 /* pid check not overridable via env */
1272#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK)
1274 curpid = getpid ();
1275#endif
1276
1277 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1280 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1281
789 if (!(flags & 0x0000ffff)) 1282 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1283 flags |= ev_recommended_backends ();
791 1284
792 method = 0;
793#if EV_USE_PORT 1285#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1287#endif
796#if EV_USE_KQUEUE 1288#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1290#endif
799#if EV_USE_EPOLL 1291#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1292 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1293#endif
802#if EV_USE_POLL 1294#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1295 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1296#endif
805#if EV_USE_SELECT 1297#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1299#endif
808 1300
809 ev_init (&sigev, sigcb); 1301 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1302 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1303 }
812} 1304}
813 1305
814static void 1306static void noinline
815loop_destroy (EV_P) 1307loop_destroy (EV_P)
816{ 1308{
817 int i; 1309 int i;
818 1310
1311 if (ev_is_active (&pipeev))
1312 {
1313 ev_ref (EV_A); /* signal watcher */
1314 ev_io_stop (EV_A_ &pipeev);
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 close (evfd);
1319#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1326 }
1327
1328#if EV_USE_INOTIFY
1329 if (fs_fd >= 0)
1330 close (fs_fd);
1331#endif
1332
1333 if (backend_fd >= 0)
1334 close (backend_fd);
1335
819#if EV_USE_PORT 1336#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1338#endif
822#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1341#endif
825#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1343 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1344#endif
828#if EV_USE_POLL 1345#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1346 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1347#endif
831#if EV_USE_SELECT 1348#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1349 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1350#endif
834 1351
835 for (i = NUMPRI; i--; ) 1352 for (i = NUMPRI; i--; )
1353 {
836 array_free (pending, [i]); 1354 array_free (pending, [i]);
1355#if EV_IDLE_ENABLE
1356 array_free (idle, [i]);
1357#endif
1358 }
1359
1360 ev_free (anfds); anfdmax = 0;
837 1361
838 /* have to use the microsoft-never-gets-it-right macro */ 1362 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1363 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1364 array_free (timer, EMPTY);
841#if EV_PERIODICS 1365#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1366 array_free (periodic, EMPTY);
843#endif 1367#endif
1368#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1369 array_free (fork, EMPTY);
1370#endif
845 array_free (prepare, EMPTY0); 1371 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1372 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY);
1375#endif
847 1376
848 method = 0; 1377 backend = 0;
849} 1378}
850 1379
851static void 1380#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P);
1382#endif
1383
1384void inline_size
852loop_fork (EV_P) 1385loop_fork (EV_P)
853{ 1386{
854#if EV_USE_PORT 1387#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1389#endif
857#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1391 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1392#endif
860#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1395#endif
1396#if EV_USE_INOTIFY
1397 infy_fork (EV_A);
1398#endif
863 1399
864 if (ev_is_active (&sigev)) 1400 if (ev_is_active (&pipeev))
865 { 1401 {
866 /* default loop */ 1402 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
867 1408
868 ev_ref (EV_A); 1409 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
870 close (sigpipe [0]); 1419 close (evpipe [0]);
871 close (sigpipe [1]); 1420 close (evpipe [1]);
1421 }
872 1422
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1423 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1426 }
878 1427
879 postfork = 0; 1428 postfork = 0;
880} 1429}
881 1430
887 1436
888 memset (loop, 0, sizeof (struct ev_loop)); 1437 memset (loop, 0, sizeof (struct ev_loop));
889 1438
890 loop_init (EV_A_ flags); 1439 loop_init (EV_A_ flags);
891 1440
892 if (ev_method (EV_A)) 1441 if (ev_backend (EV_A))
893 return loop; 1442 return loop;
894 1443
895 return 0; 1444 return 0;
896} 1445}
897 1446
903} 1452}
904 1453
905void 1454void
906ev_loop_fork (EV_P) 1455ev_loop_fork (EV_P)
907{ 1456{
908 postfork = 1; 1457 postfork = 1; /* must be in line with ev_default_fork */
909} 1458}
910
911#endif 1459#endif
912 1460
913#if EV_MULTIPLICITY 1461#if EV_MULTIPLICITY
914struct ev_loop * 1462struct ev_loop *
915ev_default_loop_init (unsigned int flags) 1463ev_default_loop_init (unsigned int flags)
916#else 1464#else
917int 1465int
918ev_default_loop (unsigned int flags) 1466ev_default_loop (unsigned int flags)
919#endif 1467#endif
920{ 1468{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1469 if (!ev_default_loop_ptr)
926 { 1470 {
927#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1473#else
930 ev_default_loop_ptr = 1; 1474 ev_default_loop_ptr = 1;
931#endif 1475#endif
932 1476
933 loop_init (EV_A_ flags); 1477 loop_init (EV_A_ flags);
934 1478
935 if (ev_method (EV_A)) 1479 if (ev_backend (EV_A))
936 { 1480 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1481#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1482 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1483 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1484 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1485 ev_unref (EV_A); /* child watcher should not keep loop alive */
960#ifndef _WIN32 1502#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1503 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1504 ev_signal_stop (EV_A_ &childev);
963#endif 1505#endif
964 1506
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1507 loop_destroy (EV_A);
972} 1508}
973 1509
974void 1510void
975ev_default_fork (void) 1511ev_default_fork (void)
976{ 1512{
977#if EV_MULTIPLICITY 1513#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1514 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1515#endif
980 1516
981 if (method) 1517 if (backend)
982 postfork = 1; 1518 postfork = 1; /* must be in line with ev_loop_fork */
983} 1519}
984 1520
985/*****************************************************************************/ 1521/*****************************************************************************/
986 1522
987static int 1523void
988any_pending (EV_P) 1524ev_invoke (EV_P_ void *w, int revents)
989{ 1525{
990 int pri; 1526 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1527}
998 1528
999inline void 1529void inline_speed
1000call_pending (EV_P) 1530call_pending (EV_P)
1001{ 1531{
1002 int pri; 1532 int pri;
1003 1533
1004 for (pri = NUMPRI; pri--; ) 1534 for (pri = NUMPRI; pri--; )
1006 { 1536 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1538
1009 if (expect_true (p->w)) 1539 if (expect_true (p->w))
1010 { 1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542
1011 p->w->pending = 0; 1543 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1544 EV_CB_INVOKE (p->w, p->events);
1013 } 1545 }
1014 } 1546 }
1015} 1547}
1016 1548
1017inline void 1549#if EV_IDLE_ENABLE
1550void inline_size
1551idle_reify (EV_P)
1552{
1553 if (expect_false (idleall))
1554 {
1555 int pri;
1556
1557 for (pri = NUMPRI; pri--; )
1558 {
1559 if (pendingcnt [pri])
1560 break;
1561
1562 if (idlecnt [pri])
1563 {
1564 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1565 break;
1566 }
1567 }
1568 }
1569}
1570#endif
1571
1572void inline_size
1018timers_reify (EV_P) 1573timers_reify (EV_P)
1019{ 1574{
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1021 { 1576 {
1022 struct ev_timer *w = timers [0]; 1577 ev_timer *w = (ev_timer *)timers [HEAP0];
1023 1578
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1580
1026 /* first reschedule or stop timer */ 1581 /* first reschedule or stop timer */
1027 if (w->repeat) 1582 if (w->repeat)
1028 { 1583 {
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1585
1031 ((WT)w)->at += w->repeat; 1586 ev_at (w) += w->repeat;
1032 if (((WT)w)->at < mn_now) 1587 if (ev_at (w) < mn_now)
1033 ((WT)w)->at = mn_now; 1588 ev_at (w) = mn_now;
1034 1589
1035 downheap ((WT *)timers, timercnt, 0); 1590 downheap (timers, timercnt, HEAP0);
1036 } 1591 }
1037 else 1592 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1594
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1596 }
1042} 1597}
1043 1598
1044#if EV_PERIODICS 1599#if EV_PERIODIC_ENABLE
1045inline void 1600void inline_size
1046periodics_reify (EV_P) 1601periodics_reify (EV_P)
1047{ 1602{
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1049 { 1604 {
1050 struct ev_periodic *w = periodics [0]; 1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1051 1606
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1608
1054 /* first reschedule or stop timer */ 1609 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1610 if (w->reschedule_cb)
1056 { 1611 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0); 1614 downheap (periodics, periodiccnt, 1);
1060 } 1615 }
1061 else if (w->interval) 1616 else if (w->interval)
1062 { 1617 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0); 1621 downheap (periodics, periodiccnt, HEAP0);
1066 } 1622 }
1067 else 1623 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1625
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1627 }
1072} 1628}
1073 1629
1074static void 1630static void noinline
1075periodics_reschedule (EV_P) 1631periodics_reschedule (EV_P)
1076{ 1632{
1077 int i; 1633 int i;
1078 1634
1079 /* adjust periodics after time jump */ 1635 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1636 for (i = 1; i <= periodiccnt; ++i)
1081 { 1637 {
1082 struct ev_periodic *w = periodics [i]; 1638 ev_periodic *w = (ev_periodic *)periodics [i];
1083 1639
1084 if (w->reschedule_cb) 1640 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1642 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1088 } 1644 }
1089 1645
1090 /* now rebuild the heap */ 1646 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; ) 1647 for (i = periodiccnt >> 1; --i; )
1092 downheap ((WT *)periodics, periodiccnt, i); 1648 downheap (periodics, periodiccnt, i + HEAP0);
1093} 1649}
1094#endif 1650#endif
1095 1651
1096inline int 1652void inline_speed
1097time_update_monotonic (EV_P) 1653time_update (EV_P_ ev_tstamp max_block)
1098{ 1654{
1655 int i;
1656
1657#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic))
1659 {
1660 ev_tstamp odiff = rtmn_diff;
1661
1099 mn_now = get_clock (); 1662 mn_now = get_clock ();
1100 1663
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1665 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1666 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1667 {
1103 ev_rt_now = rtmn_diff + mn_now; 1668 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1669 return;
1105 } 1670 }
1106 else 1671
1107 {
1108 now_floor = mn_now; 1672 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1673 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1674
1114inline void 1675 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1676 * on the choice of "4": one iteration isn't enough,
1116{ 1677 * in case we get preempted during the calls to
1117 int i; 1678 * ev_time and get_clock. a second call is almost guaranteed
1118 1679 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1680 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1681 * in the unlikely event of having been preempted here.
1121 { 1682 */
1122 if (time_update_monotonic (EV_A)) 1683 for (i = 4; --i; )
1123 { 1684 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 1685 rtmn_diff = ev_rt_now - mn_now;
1129 1686
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 1688 return; /* all is well */
1132 1689
1133 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 1691 mn_now = get_clock ();
1135 now_floor = mn_now; 1692 now_floor = mn_now;
1136 } 1693 }
1137 1694
1138# if EV_PERIODICS 1695# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A);
1697# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 }
1701 else
1702#endif
1703 {
1704 ev_rt_now = ev_time ();
1705
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 {
1708#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 1709 periodics_reschedule (EV_A);
1140# endif 1710#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */ 1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1143 } 1714 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1715
1161 mn_now = ev_rt_now; 1716 mn_now = ev_rt_now;
1162 } 1717 }
1163} 1718}
1164 1719
1177static int loop_done; 1732static int loop_done;
1178 1733
1179void 1734void
1180ev_loop (EV_P_ int flags) 1735ev_loop (EV_P_ int flags)
1181{ 1736{
1182 double block; 1737 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1738
1185 while (activecnt) 1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1740
1741 do
1186 { 1742 {
1743#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid))
1746 {
1747 curpid = getpid ();
1748 postfork = 1;
1749 }
1750#endif
1751
1752#if EV_FORK_ENABLE
1753 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork))
1755 if (forkcnt)
1756 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A);
1759 }
1760#endif
1761
1187 /* queue check watchers (and execute them) */ 1762 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1763 if (expect_false (preparecnt))
1189 { 1764 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1766 call_pending (EV_A);
1192 } 1767 }
1193 1768
1769 if (expect_false (!activecnt))
1770 break;
1771
1194 /* we might have forked, so reify kernel state if necessary */ 1772 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1773 if (expect_false (postfork))
1196 loop_fork (EV_A); 1774 loop_fork (EV_A);
1197 1775
1198 /* update fd-related kernel structures */ 1776 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1777 fd_reify (EV_A);
1200 1778
1201 /* calculate blocking time */ 1779 /* calculate blocking time */
1780 {
1781 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.;
1202 1783
1203 /* we only need this for !monotonic clock or timers, but as we basically 1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1785 {
1211 ev_rt_now = ev_time (); 1786 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1787 time_update (EV_A_ 1e100);
1213 }
1214 1788
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1789 waittime = MAX_BLOCKTIME;
1220 1790
1221 if (timercnt) 1791 if (timercnt)
1222 { 1792 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 1794 if (waittime > to) waittime = to;
1225 } 1795 }
1226 1796
1227#if EV_PERIODICS 1797#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1798 if (periodiccnt)
1229 { 1799 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1801 if (waittime > to) waittime = to;
1232 } 1802 }
1233#endif 1803#endif
1234 1804
1235 if (expect_false (block < 0.)) block = 0.; 1805 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime;
1807
1808 sleeptime = waittime - backend_fudge;
1809
1810 if (expect_true (sleeptime > io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 {
1815 ev_sleep (sleeptime);
1816 waittime -= sleeptime;
1817 }
1236 } 1818 }
1237 1819
1238 method_poll (EV_A_ block); 1820 ++loop_count;
1821 backend_poll (EV_A_ waittime);
1239 1822
1240 /* update ev_rt_now, do magic */ 1823 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 1824 time_update (EV_A_ waittime + sleeptime);
1825 }
1242 1826
1243 /* queue pending timers and reschedule them */ 1827 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 1828 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 1829#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 1830 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 1831#endif
1248 1832
1833#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 1834 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 1835 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1836#endif
1252 1837
1253 /* queue check watchers, to be executed first */ 1838 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 1839 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 1841
1257 call_pending (EV_A); 1842 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 1843 }
1844 while (expect_true (
1845 activecnt
1846 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 ));
1262 1849
1263 if (loop_done != 2) 1850 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 1851 loop_done = EVUNLOOP_CANCEL;
1265} 1852}
1266 1853
1267void 1854void
1268ev_unloop (EV_P_ int how) 1855ev_unloop (EV_P_ int how)
1269{ 1856{
1270 loop_done = how; 1857 loop_done = how;
1271} 1858}
1272 1859
1273/*****************************************************************************/ 1860/*****************************************************************************/
1274 1861
1275inline void 1862void inline_size
1276wlist_add (WL *head, WL elem) 1863wlist_add (WL *head, WL elem)
1277{ 1864{
1278 elem->next = *head; 1865 elem->next = *head;
1279 *head = elem; 1866 *head = elem;
1280} 1867}
1281 1868
1282inline void 1869void inline_size
1283wlist_del (WL *head, WL elem) 1870wlist_del (WL *head, WL elem)
1284{ 1871{
1285 while (*head) 1872 while (*head)
1286 { 1873 {
1287 if (*head == elem) 1874 if (*head == elem)
1292 1879
1293 head = &(*head)->next; 1880 head = &(*head)->next;
1294 } 1881 }
1295} 1882}
1296 1883
1297inline void 1884void inline_speed
1298ev_clear_pending (EV_P_ W w) 1885clear_pending (EV_P_ W w)
1299{ 1886{
1300 if (w->pending) 1887 if (w->pending)
1301 { 1888 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1889 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 1890 w->pending = 0;
1304 } 1891 }
1305} 1892}
1306 1893
1307inline void 1894int
1895ev_clear_pending (EV_P_ void *w)
1896{
1897 W w_ = (W)w;
1898 int pending = w_->pending;
1899
1900 if (expect_true (pending))
1901 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1903 w_->pending = 0;
1904 p->w = 0;
1905 return p->events;
1906 }
1907 else
1908 return 0;
1909}
1910
1911void inline_size
1912pri_adjust (EV_P_ W w)
1913{
1914 int pri = w->priority;
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri;
1918}
1919
1920void inline_speed
1308ev_start (EV_P_ W w, int active) 1921ev_start (EV_P_ W w, int active)
1309{ 1922{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1923 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 1924 w->active = active;
1314 ev_ref (EV_A); 1925 ev_ref (EV_A);
1315} 1926}
1316 1927
1317inline void 1928void inline_size
1318ev_stop (EV_P_ W w) 1929ev_stop (EV_P_ W w)
1319{ 1930{
1320 ev_unref (EV_A); 1931 ev_unref (EV_A);
1321 w->active = 0; 1932 w->active = 0;
1322} 1933}
1323 1934
1324/*****************************************************************************/ 1935/*****************************************************************************/
1325 1936
1326void 1937void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 1938ev_io_start (EV_P_ ev_io *w)
1328{ 1939{
1329 int fd = w->fd; 1940 int fd = w->fd;
1330 1941
1331 if (expect_false (ev_is_active (w))) 1942 if (expect_false (ev_is_active (w)))
1332 return; 1943 return;
1333 1944
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 1945 assert (("ev_io_start called with negative fd", fd >= 0));
1335 1946
1336 ev_start (EV_A_ (W)w, 1); 1947 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1949 wlist_add (&anfds[fd].head, (WL)w);
1339 1950
1340 fd_change (EV_A_ fd); 1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET;
1341} 1953}
1342 1954
1343void 1955void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 1956ev_io_stop (EV_P_ ev_io *w)
1345{ 1957{
1346 ev_clear_pending (EV_A_ (W)w); 1958 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 1959 if (expect_false (!ev_is_active (w)))
1348 return; 1960 return;
1349 1961
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 1963
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1964 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 1965 ev_stop (EV_A_ (W)w);
1354 1966
1355 fd_change (EV_A_ w->fd); 1967 fd_change (EV_A_ w->fd, 1);
1356} 1968}
1357 1969
1358void 1970void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 1971ev_timer_start (EV_P_ ev_timer *w)
1360{ 1972{
1361 if (expect_false (ev_is_active (w))) 1973 if (expect_false (ev_is_active (w)))
1362 return; 1974 return;
1363 1975
1364 ((WT)w)->at += mn_now; 1976 ev_at (w) += mn_now;
1365 1977
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 1979
1368 ev_start (EV_A_ (W)w, ++timercnt); 1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1370 timers [timercnt - 1] = w; 1982 timers [ev_active (w)] = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 1983 upheap (timers, ev_active (w));
1372 1984
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1374} 1986}
1375 1987
1376void 1988void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 1989ev_timer_stop (EV_P_ ev_timer *w)
1378{ 1990{
1379 ev_clear_pending (EV_A_ (W)w); 1991 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 1992 if (expect_false (!ev_is_active (w)))
1381 return; 1993 return;
1382 1994
1995 {
1996 int active = ev_active (w);
1997
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1998 assert (("internal timer heap corruption", timers [active] == (WT)w));
1384 1999
1385 if (expect_true (((W)w)->active < timercnt--)) 2000 if (expect_true (active < timercnt + HEAP0 - 1))
1386 { 2001 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2002 timers [active] = timers [timercnt + HEAP0 - 1];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2003 adjustheap (timers, timercnt, active);
1389 } 2004 }
1390 2005
1391 ((WT)w)->at -= mn_now; 2006 --timercnt;
2007 }
2008
2009 ev_at (w) -= mn_now;
1392 2010
1393 ev_stop (EV_A_ (W)w); 2011 ev_stop (EV_A_ (W)w);
1394} 2012}
1395 2013
1396void 2014void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2015ev_timer_again (EV_P_ ev_timer *w)
1398{ 2016{
1399 if (ev_is_active (w)) 2017 if (ev_is_active (w))
1400 { 2018 {
1401 if (w->repeat) 2019 if (w->repeat)
1402 { 2020 {
1403 ((WT)w)->at = mn_now + w->repeat; 2021 ev_at (w) = mn_now + w->repeat;
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2022 adjustheap (timers, timercnt, ev_active (w));
1405 } 2023 }
1406 else 2024 else
1407 ev_timer_stop (EV_A_ w); 2025 ev_timer_stop (EV_A_ w);
1408 } 2026 }
1409 else if (w->repeat) 2027 else if (w->repeat)
1410 { 2028 {
1411 w->at = w->repeat; 2029 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2030 ev_timer_start (EV_A_ w);
1413 } 2031 }
1414} 2032}
1415 2033
1416#if EV_PERIODICS 2034#if EV_PERIODIC_ENABLE
1417void 2035void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2036ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2037{
1420 if (expect_false (ev_is_active (w))) 2038 if (expect_false (ev_is_active (w)))
1421 return; 2039 return;
1422 2040
1423 if (w->reschedule_cb) 2041 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2043 else if (w->interval)
1426 { 2044 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2046 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2048 }
2049 else
2050 ev_at (w) = w->offset;
1431 2051
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2054 periodics [ev_active (w)] = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2055 upheap (periodics, ev_active (w));
1436 2056
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1438} 2058}
1439 2059
1440void 2060void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2061ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2062{
1443 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 2064 if (expect_false (!ev_is_active (w)))
1445 return; 2065 return;
1446 2066
2067 {
2068 int active = ev_active (w);
2069
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1448 2071
1449 if (expect_true (((W)w)->active < periodiccnt--)) 2072 if (expect_true (active < periodiccnt + HEAP0 - 1))
1450 { 2073 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2075 adjustheap (periodics, periodiccnt, active);
1453 } 2076 }
2077
2078 --periodiccnt;
2079 }
1454 2080
1455 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1456} 2082}
1457 2083
1458void 2084void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2085ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2086{
1461 /* TODO: use adjustheap and recalculation */ 2087 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2088 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2089 ev_periodic_start (EV_A_ w);
1464} 2090}
1465#endif 2091#endif
1466 2092
1467void 2093#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 2094# define SA_RESTART 0
2095#endif
2096
2097void noinline
2098ev_signal_start (EV_P_ ev_signal *w)
1469{ 2099{
2100#if EV_MULTIPLICITY
2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2102#endif
1470 if (expect_false (ev_is_active (w))) 2103 if (expect_false (ev_is_active (w)))
1471 return; 2104 return;
1472 2105
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART
1534# define SA_RESTART 0
1535#endif
1536
1537void
1538ev_signal_start (EV_P_ struct ev_signal *w)
1539{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w)))
1544 return;
1545
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 2107
2108 evpipe_init (EV_A);
2109
2110 {
2111#ifndef _WIN32
2112 sigset_t full, prev;
2113 sigfillset (&full);
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2118
2119#ifndef _WIN32
2120 sigprocmask (SIG_SETMASK, &prev, 0);
2121#endif
2122 }
2123
1548 ev_start (EV_A_ (W)w, 1); 2124 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2126
1552 if (!((WL)w)->next) 2127 if (!((WL)w)->next)
1553 { 2128 {
1554#if _WIN32 2129#if _WIN32
1555 signal (w->signum, sighandler); 2130 signal (w->signum, ev_sighandler);
1556#else 2131#else
1557 struct sigaction sa; 2132 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2133 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2134 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2136 sigaction (w->signum, &sa, 0);
1562#endif 2137#endif
1563 } 2138 }
1564} 2139}
1565 2140
1566void 2141void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2142ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2143{
1569 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1571 return; 2146 return;
1572 2147
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2148 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2149 ev_stop (EV_A_ (W)w);
1575 2150
1576 if (!signals [w->signum - 1].head) 2151 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2152 signal (w->signum, SIG_DFL);
1578} 2153}
1579 2154
1580void 2155void
1581ev_child_start (EV_P_ struct ev_child *w) 2156ev_child_start (EV_P_ ev_child *w)
1582{ 2157{
1583#if EV_MULTIPLICITY 2158#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2160#endif
1586 if (expect_false (ev_is_active (w))) 2161 if (expect_false (ev_is_active (w)))
1587 return; 2162 return;
1588 2163
1589 ev_start (EV_A_ (W)w, 1); 2164 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591} 2166}
1592 2167
1593void 2168void
1594ev_child_stop (EV_P_ struct ev_child *w) 2169ev_child_stop (EV_P_ ev_child *w)
1595{ 2170{
1596 ev_clear_pending (EV_A_ (W)w); 2171 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2172 if (expect_false (!ev_is_active (w)))
1598 return; 2173 return;
1599 2174
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2176 ev_stop (EV_A_ (W)w);
1602} 2177}
1603 2178
2179#if EV_STAT_ENABLE
2180
2181# ifdef _WIN32
2182# undef lstat
2183# define lstat(a,b) _stati64 (a,b)
2184# endif
2185
2186#define DEF_STAT_INTERVAL 5.0074891
2187#define MIN_STAT_INTERVAL 0.1074891
2188
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190
2191#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192
2193
2194static void noinline
2195infy_add (EV_P_ ev_stat *w)
2196{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198
2199 if (w->wd < 0)
2200 {
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2202
2203 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */
2205 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 {
2208 char path [4096];
2209 strcpy (path, w->path);
2210
2211 do
2212 {
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215
2216 char *pend = strrchr (path, '/');
2217
2218 if (!pend)
2219 break; /* whoops, no '/', complain to your admin */
2220
2221 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 }
2226 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229
2230 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2232}
2233
2234static void noinline
2235infy_del (EV_P_ ev_stat *w)
2236{
2237 int slot;
2238 int wd = w->wd;
2239
2240 if (wd < 0)
2241 return;
2242
2243 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w);
2246
2247 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd);
2249}
2250
2251static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{
2254 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2257 infy_wd (EV_A_ slot, wd, ev);
2258 else
2259 {
2260 WL w_;
2261
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2263 {
2264 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */
2266
2267 if (w->wd == wd || wd == -1)
2268 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 {
2271 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */
2273 }
2274
2275 stat_timer_cb (EV_A_ &w->timer, 0);
2276 }
2277 }
2278 }
2279}
2280
2281static void
2282infy_cb (EV_P_ ev_io *w, int revents)
2283{
2284 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf));
2288
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2291}
2292
2293void inline_size
2294infy_init (EV_P)
2295{
2296 if (fs_fd != -2)
2297 return;
2298
2299 fs_fd = inotify_init ();
2300
2301 if (fs_fd >= 0)
2302 {
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w);
2306 }
2307}
2308
2309void inline_size
2310infy_fork (EV_P)
2311{
2312 int slot;
2313
2314 if (fs_fd < 0)
2315 return;
2316
2317 close (fs_fd);
2318 fs_fd = inotify_init ();
2319
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2321 {
2322 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0;
2324
2325 while (w_)
2326 {
2327 ev_stat *w = (ev_stat *)w_;
2328 w_ = w_->next; /* lets us add this watcher */
2329
2330 w->wd = -1;
2331
2332 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else
2335 ev_timer_start (EV_A_ &w->timer);
2336 }
2337
2338 }
2339}
2340
2341#endif
2342
2343void
2344ev_stat_stat (EV_P_ ev_stat *w)
2345{
2346 if (lstat (w->path, &w->attr) < 0)
2347 w->attr.st_nlink = 0;
2348 else if (!w->attr.st_nlink)
2349 w->attr.st_nlink = 1;
2350}
2351
2352static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356
2357 /* we copy this here each the time so that */
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w);
2361
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if (
2364 w->prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime
2375 ) {
2376 #if EV_USE_INOTIFY
2377 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */
2380 #endif
2381
2382 ev_feed_event (EV_A_ w, EV_STAT);
2383 }
2384}
2385
2386void
2387ev_stat_start (EV_P_ ev_stat *w)
2388{
2389 if (expect_false (ev_is_active (w)))
2390 return;
2391
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w);
2397
2398 if (w->interval < MIN_STAT_INTERVAL)
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2402 ev_set_priority (&w->timer, ev_priority (w));
2403
2404#if EV_USE_INOTIFY
2405 infy_init (EV_A);
2406
2407 if (fs_fd >= 0)
2408 infy_add (EV_A_ w);
2409 else
2410#endif
2411 ev_timer_start (EV_A_ &w->timer);
2412
2413 ev_start (EV_A_ (W)w, 1);
2414}
2415
2416void
2417ev_stat_stop (EV_P_ ev_stat *w)
2418{
2419 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w)))
2421 return;
2422
2423#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w);
2425#endif
2426 ev_timer_stop (EV_A_ &w->timer);
2427
2428 ev_stop (EV_A_ (W)w);
2429}
2430#endif
2431
2432#if EV_IDLE_ENABLE
2433void
2434ev_idle_start (EV_P_ ev_idle *w)
2435{
2436 if (expect_false (ev_is_active (w)))
2437 return;
2438
2439 pri_adjust (EV_A_ (W)w);
2440
2441 {
2442 int active = ++idlecnt [ABSPRI (w)];
2443
2444 ++idleall;
2445 ev_start (EV_A_ (W)w, active);
2446
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w;
2449 }
2450}
2451
2452void
2453ev_idle_stop (EV_P_ ev_idle *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ev_active (w);
2461
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464
2465 ev_stop (EV_A_ (W)w);
2466 --idleall;
2467 }
2468}
2469#endif
2470
2471void
2472ev_prepare_start (EV_P_ ev_prepare *w)
2473{
2474 if (expect_false (ev_is_active (w)))
2475 return;
2476
2477 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w;
2480}
2481
2482void
2483ev_prepare_stop (EV_P_ ev_prepare *w)
2484{
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active;
2494 }
2495
2496 ev_stop (EV_A_ (W)w);
2497}
2498
2499void
2500ev_check_start (EV_P_ ev_check *w)
2501{
2502 if (expect_false (ev_is_active (w)))
2503 return;
2504
2505 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w;
2508}
2509
2510void
2511ev_check_stop (EV_P_ ev_check *w)
2512{
2513 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w)))
2515 return;
2516
2517 {
2518 int active = ev_active (w);
2519
2520 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active;
2522 }
2523
2524 ev_stop (EV_A_ (W)w);
2525}
2526
2527#if EV_EMBED_ENABLE
2528void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w)
2530{
2531 ev_loop (w->other, EVLOOP_NONBLOCK);
2532}
2533
2534static void
2535embed_io_cb (EV_P_ ev_io *io, int revents)
2536{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538
2539 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK);
2543}
2544
2545static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549
2550 {
2551 struct ev_loop *loop = w->other;
2552
2553 while (fdchangecnt)
2554 {
2555 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 }
2558 }
2559}
2560
2561#if 0
2562static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{
2565 ev_idle_stop (EV_A_ idle);
2566}
2567#endif
2568
2569void
2570ev_embed_start (EV_P_ ev_embed *w)
2571{
2572 if (expect_false (ev_is_active (w)))
2573 return;
2574
2575 {
2576 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 }
2580
2581 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io);
2583
2584 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare);
2587
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589
2590 ev_start (EV_A_ (W)w, 1);
2591}
2592
2593void
2594ev_embed_stop (EV_P_ ev_embed *w)
2595{
2596 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w)))
2598 return;
2599
2600 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare);
2602
2603 ev_stop (EV_A_ (W)w);
2604}
2605#endif
2606
2607#if EV_FORK_ENABLE
2608void
2609ev_fork_start (EV_P_ ev_fork *w)
2610{
2611 if (expect_false (ev_is_active (w)))
2612 return;
2613
2614 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w;
2617}
2618
2619void
2620ev_fork_stop (EV_P_ ev_fork *w)
2621{
2622 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w)))
2624 return;
2625
2626 {
2627 int active = ev_active (w);
2628
2629 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active;
2631 }
2632
2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_ASYNC_ENABLE
2638void
2639ev_async_start (EV_P_ ev_async *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 evpipe_init (EV_A);
2645
2646 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w;
2649}
2650
2651void
2652ev_async_stop (EV_P_ ev_async *w)
2653{
2654 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w)))
2656 return;
2657
2658 {
2659 int active = ev_active (w);
2660
2661 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active;
2663 }
2664
2665 ev_stop (EV_A_ (W)w);
2666}
2667
2668void
2669ev_async_send (EV_P_ ev_async *w)
2670{
2671 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync);
2673}
2674#endif
2675
1604/*****************************************************************************/ 2676/*****************************************************************************/
1605 2677
1606struct ev_once 2678struct ev_once
1607{ 2679{
1608 struct ev_io io; 2680 ev_io io;
1609 struct ev_timer to; 2681 ev_timer to;
1610 void (*cb)(int revents, void *arg); 2682 void (*cb)(int revents, void *arg);
1611 void *arg; 2683 void *arg;
1612}; 2684};
1613 2685
1614static void 2686static void
1623 2695
1624 cb (revents, arg); 2696 cb (revents, arg);
1625} 2697}
1626 2698
1627static void 2699static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 2700once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 2701{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1631} 2703}
1632 2704
1633static void 2705static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 2706once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 2707{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1637} 2709}
1638 2710
1639void 2711void
1663 ev_timer_set (&once->to, timeout, 0.); 2735 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 2736 ev_timer_start (EV_A_ &once->to);
1665 } 2737 }
1666} 2738}
1667 2739
2740#if EV_MULTIPLICITY
2741 #include "ev_wrap.h"
2742#endif
2743
1668#ifdef __cplusplus 2744#ifdef __cplusplus
1669} 2745}
1670#endif 2746#endif
1671 2747

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines