ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.20 by root, Wed Oct 31 18:28:00 2007 UTC vs.
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
132#endif
29 133
30#include <math.h> 134#include <math.h>
31#include <stdlib.h> 135#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 136#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 137#include <stddef.h>
36 138
37#include <stdio.h> 139#include <stdio.h>
38 140
39#include <assert.h> 141#include <assert.h>
40#include <errno.h> 142#include <errno.h>
41#include <sys/time.h> 143#include <sys/types.h>
42#include <time.h> 144#include <time.h>
43 145
44#ifndef HAVE_MONOTONIC 146#include <signal.h>
45# ifdef CLOCK_MONOTONIC 147
46# define HAVE_MONOTONIC 1 148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
47# endif 163# endif
48#endif 164#endif
49 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
50#ifndef HAVE_SELECT 180#ifndef EV_USE_SELECT
51# define HAVE_SELECT 1 181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
52#endif 189# endif
190#endif
53 191
54#ifndef HAVE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
55# define HAVE_EPOLL 0 196# define EV_USE_EPOLL 0
56#endif 197# endif
198#endif
57 199
58#ifndef HAVE_REALTIME 200#ifndef EV_USE_KQUEUE
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
60#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0
245#endif
246
247#ifndef CLOCK_REALTIME
248# undef EV_USE_REALTIME
249# define EV_USE_REALTIME 0
250#endif
251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
61 294
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
64 298
65#include "ev.h" 299#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline))
302#else
303# define expect(expr,value) (expr)
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
308#endif
66 309
310#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
67typedef struct ev_watcher *W; 326typedef ev_watcher *W;
68typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
70 329
71static ev_tstamp now, diff; /* monotonic clock */ 330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
338
339#ifdef _WIN32
340# include "ev_win32.c"
341#endif
342
343/*****************************************************************************/
344
345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
410typedef struct
411{
412 WL head;
413 unsigned char events;
414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
418} ANFD;
419
420typedef struct
421{
422 W w;
423 int events;
424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
433#if EV_MULTIPLICITY
434
435 struct ev_loop
436 {
437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
439 #define VAR(name,decl) decl;
440 #include "ev_vars.h"
441 #undef VAR
442 };
443 #include "ev_wrap.h"
444
445 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr;
447
448#else
449
72ev_tstamp ev_now; 450 ev_tstamp ev_rt_now;
73int ev_method; 451 #define VAR(name,decl) static decl;
452 #include "ev_vars.h"
453 #undef VAR
74 454
75static int have_monotonic; /* runtime */ 455 static int ev_default_loop_ptr;
76 456
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 457#endif
78static void (*method_modify)(int fd, int oev, int nev);
79static void (*method_poll)(ev_tstamp timeout);
80 458
81/*****************************************************************************/ 459/*****************************************************************************/
82 460
83ev_tstamp 461ev_tstamp
84ev_time (void) 462ev_time (void)
85{ 463{
86#if HAVE_REALTIME 464#if EV_USE_REALTIME
87 struct timespec ts; 465 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 466 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 467 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 468#else
91 struct timeval tv; 469 struct timeval tv;
92 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 472#endif
95} 473}
96 474
97static ev_tstamp 475ev_tstamp inline_size
98get_clock (void) 476get_clock (void)
99{ 477{
100#if HAVE_MONOTONIC 478#if EV_USE_MONOTONIC
101 if (have_monotonic) 479 if (expect_true (have_monotonic))
102 { 480 {
103 struct timespec ts; 481 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 482 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 483 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 484 }
107#endif 485#endif
108 486
109 return ev_time (); 487 return ev_time ();
110} 488}
111 489
112#define array_needsize(base,cur,cnt,init) \ 490#if EV_MULTIPLICITY
113 if ((cnt) > cur) \ 491ev_tstamp
114 { \ 492ev_now (EV_P)
115 int newcnt = cur ? cur << 1 : 16; \ 493{
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 494 return ev_rt_now;
117 init (base + cur, newcnt - cur); \ 495}
118 cur = newcnt; \ 496#endif
497
498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
119 } 502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
120 522
121/*****************************************************************************/ 523/*****************************************************************************/
122 524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
554
555#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \
557 { \
558 int ocur_ = (cur); \
559 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \
562 }
563
564#if 0
565#define array_slim(type,stem) \
566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
567 { \
568 stem ## max = array_roundsize (stem ## cnt >> 1); \
569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 }
572#endif
573
574#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
576
577/*****************************************************************************/
578
579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents)
622{
623 ANFD *anfd = anfds + fd;
624 ev_io *w;
625
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 {
628 int ev = w->events & revents;
629
630 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev);
632 }
633}
634
635void
636ev_feed_fd_event (EV_P_ int fd, int revents)
637{
638 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents);
640}
641
642void inline_size
643fd_reify (EV_P)
644{
645 int i;
646
647 for (i = 0; i < fdchangecnt; ++i)
648 {
649 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd;
651 ev_io *w;
652
653 unsigned char events = 0;
654
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
656 events |= (unsigned char)w->events;
657
658#if EV_SELECT_IS_WINSOCKET
659 if (events)
660 {
661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
668 }
669#endif
670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
681 }
682
683 fdchangecnt = 0;
684}
685
686void inline_size
687fd_change (EV_P_ int fd, int flags)
688{
689 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags;
691
692 if (expect_true (!reify))
693 {
694 ++fdchangecnt;
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd;
697 }
698}
699
700void inline_speed
701fd_kill (EV_P_ int fd)
702{
703 ev_io *w;
704
705 while ((w = (ev_io *)anfds [fd].head))
706 {
707 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 }
710}
711
712int inline_size
713fd_valid (int fd)
714{
715#ifdef _WIN32
716 return _get_osfhandle (fd) != -1;
717#else
718 return fcntl (fd, F_GETFD) != -1;
719#endif
720}
721
722/* called on EBADF to verify fds */
723static void noinline
724fd_ebadf (EV_P)
725{
726 int fd;
727
728 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF)
731 fd_kill (EV_A_ fd);
732}
733
734/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline
736fd_enomem (EV_P)
737{
738 int fd;
739
740 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events)
742 {
743 fd_kill (EV_A_ fd);
744 return;
745 }
746}
747
748/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline
750fd_rearm_all (EV_P)
751{
752 int fd;
753
754 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events)
756 {
757 anfds [fd].events = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
759 }
760}
761
762/*****************************************************************************/
763
764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775
776/* towards the root */
777void inline_speed
778upheap (WT *heap, int k)
779{
780 WT w = heap [k];
781 ev_tstamp w_at = w->at;
782
783 for (;;)
784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
811
812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
814 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at);
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else if (pos < E)
821 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at);
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
826 }
827 else
828 break;
829
830 if (w->at <= minat)
831 break;
832
833 ev_active (*minpos) = k;
834 heap [k] = *minpos;
835
836 k = minpos - heap;
837 }
838
839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
890 ((W)heap [k])->active = k;
891
892 k = c;
893 }
894
895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899
900void inline_size
901adjustheap (WT *heap, int N, int k)
902{
903 upheap (heap, k);
904 downheap (heap, N, k);
905}
906
907/*****************************************************************************/
908
123typedef struct 909typedef struct
124{ 910{
125 struct ev_io *head; 911 WL head;
126 unsigned char wev, rev; /* want, received event set */ 912 EV_ATOMIC_T gotsig;
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void
136anfds_init (ANFD *base, int count)
137{
138 while (count--)
139 {
140 base->head = 0;
141 base->wev = base->rev = EV_NONE;
142 ++base;
143 }
144}
145
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void
156event (W w, int events)
157{
158 if (w->active)
159 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events;
164 }
165}
166
167static void
168fd_event (int fd, int events)
169{
170 ANFD *anfd = anfds + fd;
171 struct ev_io *w;
172
173 for (w = anfd->head; w; w = w->next)
174 {
175 int ev = w->events & events;
176
177 if (ev)
178 event ((W)w, ev);
179 }
180}
181
182static void
183queue_events (W *events, int eventcnt, int type)
184{
185 int i;
186
187 for (i = 0; i < eventcnt; ++i)
188 event (events [i], type);
189}
190
191/* called on EBADF to verify fds */
192static void
193fd_recheck ()
194{
195 int fd;
196
197 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head)
201 evio_stop (anfds [fd].head);
202}
203
204/*****************************************************************************/
205
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void
213upheap (WT *timers, int k)
214{
215 WT w = timers [k];
216
217 while (k && timers [k >> 1]->at > w->at)
218 {
219 timers [k] = timers [k >> 1];
220 timers [k]->active = k + 1;
221 k >>= 1;
222 }
223
224 timers [k] = w;
225 timers [k]->active = k + 1;
226
227}
228
229static void
230downheap (WT *timers, int N, int k)
231{
232 WT w = timers [k];
233
234 while (k < (N >> 1))
235 {
236 int j = k << 1;
237
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
239 ++j;
240
241 if (w->at <= timers [j]->at)
242 break;
243
244 timers [k] = timers [j];
245 timers [k]->active = k + 1;
246 k = j;
247 }
248
249 timers [k] = w;
250 timers [k]->active = k + 1;
251}
252
253/*****************************************************************************/
254
255typedef struct
256{
257 struct ev_signal *head;
258 sig_atomic_t gotsig;
259} ANSIG; 913} ANSIG;
260 914
261static ANSIG *signals; 915static ANSIG *signals;
262static int signalmax; 916static int signalmax;
263 917
264static int sigpipe [2]; 918static EV_ATOMIC_T gotsig;
265static sig_atomic_t gotsig;
266static struct ev_io sigev;
267 919
268static void 920void inline_size
269signals_init (ANSIG *base, int count) 921signals_init (ANSIG *base, int count)
270{ 922{
271 while (count--) 923 while (count--)
272 { 924 {
273 base->head = 0; 925 base->head = 0;
274 base->gotsig = 0; 926 base->gotsig = 0;
927
275 ++base; 928 ++base;
276 } 929 }
277} 930}
278 931
932/*****************************************************************************/
933
934void inline_speed
935fd_intern (int fd)
936{
937#ifdef _WIN32
938 int arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif
944}
945
946static void noinline
947evpipe_init (EV_P)
948{
949 if (!ev_is_active (&pipeev))
950 {
951#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0)
953 {
954 evpipe [0] = -1;
955 fd_intern (evfd);
956 ev_io_set (&pipeev, evfd, EV_READ);
957 }
958 else
959#endif
960 {
961 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe");
963
964 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 }
968
969 ev_io_start (EV_A_ &pipeev);
970 ev_unref (EV_A); /* watcher should not keep loop alive */
971 }
972}
973
974void inline_size
975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{
977 if (!*flag)
978 {
979 int old_errno = errno; /* save errno because write might clobber it */
980
981 *flag = 1;
982
983#if EV_USE_EVENTFD
984 if (evfd >= 0)
985 {
986 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t));
988 }
989 else
990#endif
991 write (evpipe [1], &old_errno, 1);
992
993 errno = old_errno;
994 }
995}
996
279static void 997static void
998pipecb (EV_P_ ev_io *iow, int revents)
999{
1000#if EV_USE_EVENTFD
1001 if (evfd >= 0)
1002 {
1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy;
1010 read (evpipe [0], &dummy, 1);
1011 }
1012
1013 if (gotsig && ev_is_default_loop (EV_A))
1014 {
1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1);
1021 }
1022
1023#if EV_ASYNC_ENABLE
1024 if (gotasync)
1025 {
1026 int i;
1027 gotasync = 0;
1028
1029 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent)
1031 {
1032 asyncs [i]->sent = 0;
1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1034 }
1035 }
1036#endif
1037}
1038
1039/*****************************************************************************/
1040
1041static void
280sighandler (int signum) 1042ev_sighandler (int signum)
281{ 1043{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
1048#if _WIN32
1049 signal (signum, ev_sighandler);
1050#endif
1051
282 signals [signum - 1].gotsig = 1; 1052 signals [signum - 1].gotsig = 1;
1053 evpipe_write (EV_A_ &gotsig);
1054}
283 1055
284 if (!gotsig) 1056void noinline
1057ev_feed_signal_event (EV_P_ int signum)
1058{
1059 WL w;
1060
1061#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1063#endif
1064
1065 --signum;
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return;
1069
1070 signals [signum].gotsig = 0;
1071
1072 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074}
1075
1076/*****************************************************************************/
1077
1078static WL childs [EV_PID_HASHSIZE];
1079
1080#ifndef _WIN32
1081
1082static ev_signal childev;
1083
1084#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0
1086#endif
1087
1088void inline_speed
1089child_reap (EV_P_ int chain, int pid, int status)
1090{
1091 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 {
1096 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1)))
1098 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1100 w->rpid = pid;
1101 w->rstatus = status;
1102 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1103 }
1104 }
1105}
1106
1107#ifndef WCONTINUED
1108# define WCONTINUED 0
1109#endif
1110
1111static void
1112childcb (EV_P_ ev_signal *sw, int revents)
1113{
1114 int pid, status;
1115
1116 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1117 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1118 if (!WCONTINUED
1119 || errno != EINVAL
1120 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1121 return;
1122
1123 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */
1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1126
1127 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1)
1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1130}
1131
1132#endif
1133
1134/*****************************************************************************/
1135
1136#if EV_USE_PORT
1137# include "ev_port.c"
1138#endif
1139#if EV_USE_KQUEUE
1140# include "ev_kqueue.c"
1141#endif
1142#if EV_USE_EPOLL
1143# include "ev_epoll.c"
1144#endif
1145#if EV_USE_POLL
1146# include "ev_poll.c"
1147#endif
1148#if EV_USE_SELECT
1149# include "ev_select.c"
1150#endif
1151
1152int
1153ev_version_major (void)
1154{
1155 return EV_VERSION_MAJOR;
1156}
1157
1158int
1159ev_version_minor (void)
1160{
1161 return EV_VERSION_MINOR;
1162}
1163
1164/* return true if we are running with elevated privileges and should ignore env variables */
1165int inline_size
1166enable_secure (void)
1167{
1168#ifdef _WIN32
1169 return 0;
1170#else
1171 return getuid () != geteuid ()
1172 || getgid () != getegid ();
1173#endif
1174}
1175
1176unsigned int
1177ev_supported_backends (void)
1178{
1179 unsigned int flags = 0;
1180
1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1182 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1183 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1184 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186
1187 return flags;
1188}
1189
1190unsigned int
1191ev_recommended_backends (void)
1192{
1193 unsigned int flags = ev_supported_backends ();
1194
1195#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE;
1199#endif
1200#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation
1202 flags &= ~EVBACKEND_POLL;
1203#endif
1204
1205 return flags;
1206}
1207
1208unsigned int
1209ev_embeddable_backends (void)
1210{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1212
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
1218}
1219
1220unsigned int
1221ev_backend (EV_P)
1222{
1223 return backend;
1224}
1225
1226unsigned int
1227ev_loop_count (EV_P)
1228{
1229 return loop_count;
1230}
1231
1232void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{
1235 io_blocktime = interval;
1236}
1237
1238void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{
1241 timeout_blocktime = interval;
1242}
1243
1244static void noinline
1245loop_init (EV_P_ unsigned int flags)
1246{
1247 if (!backend)
1248 {
1249#if EV_USE_MONOTONIC
285 { 1250 {
1251 struct timespec ts;
1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1253 have_monotonic = 1;
1254 }
1255#endif
1256
1257 ev_rt_now = ev_time ();
1258 mn_now = get_clock ();
1259 now_floor = mn_now;
1260 rtmn_diff = ev_rt_now - mn_now;
1261
1262 io_blocktime = 0.;
1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif
1270
1271 /* pid check not overridable via env */
1272#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK)
1274 curpid = getpid ();
1275#endif
1276
1277 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS"))
1280 flags = atoi (getenv ("LIBEV_FLAGS"));
1281
1282 if (!(flags & 0x0000ffffU))
1283 flags |= ev_recommended_backends ();
1284
1285#if EV_USE_PORT
1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1287#endif
1288#if EV_USE_KQUEUE
1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1290#endif
1291#if EV_USE_EPOLL
1292 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1293#endif
1294#if EV_USE_POLL
1295 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1296#endif
1297#if EV_USE_SELECT
1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1299#endif
1300
1301 ev_init (&pipeev, pipecb);
1302 ev_set_priority (&pipeev, EV_MAXPRI);
1303 }
1304}
1305
1306static void noinline
1307loop_destroy (EV_P)
1308{
1309 int i;
1310
1311 if (ev_is_active (&pipeev))
1312 {
1313 ev_ref (EV_A); /* signal watcher */
1314 ev_io_stop (EV_A_ &pipeev);
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 close (evfd);
1319#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1326 }
1327
1328#if EV_USE_INOTIFY
1329 if (fs_fd >= 0)
1330 close (fs_fd);
1331#endif
1332
1333 if (backend_fd >= 0)
1334 close (backend_fd);
1335
1336#if EV_USE_PORT
1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1338#endif
1339#if EV_USE_KQUEUE
1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1341#endif
1342#if EV_USE_EPOLL
1343 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1344#endif
1345#if EV_USE_POLL
1346 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1347#endif
1348#if EV_USE_SELECT
1349 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1350#endif
1351
1352 for (i = NUMPRI; i--; )
1353 {
1354 array_free (pending, [i]);
1355#if EV_IDLE_ENABLE
1356 array_free (idle, [i]);
1357#endif
1358 }
1359
1360 ev_free (anfds); anfdmax = 0;
1361
1362 /* have to use the microsoft-never-gets-it-right macro */
1363 array_free (fdchange, EMPTY);
1364 array_free (timer, EMPTY);
1365#if EV_PERIODIC_ENABLE
1366 array_free (periodic, EMPTY);
1367#endif
1368#if EV_FORK_ENABLE
1369 array_free (fork, EMPTY);
1370#endif
1371 array_free (prepare, EMPTY);
1372 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY);
1375#endif
1376
1377 backend = 0;
1378}
1379
1380#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P);
1382#endif
1383
1384void inline_size
1385loop_fork (EV_P)
1386{
1387#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif
1390#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1392#endif
1393#if EV_USE_EPOLL
1394 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1395#endif
1396#if EV_USE_INOTIFY
1397 infy_fork (EV_A);
1398#endif
1399
1400 if (ev_is_active (&pipeev))
1401 {
1402 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */
286 gotsig = 1; 1404 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
1408
1409 ev_ref (EV_A);
1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
1419 close (evpipe [0]);
1420 close (evpipe [1]);
1421 }
1422
1423 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ);
1426 }
1427
1428 postfork = 0;
1429}
1430
1431#if EV_MULTIPLICITY
1432struct ev_loop *
1433ev_loop_new (unsigned int flags)
1434{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436
1437 memset (loop, 0, sizeof (struct ev_loop));
1438
1439 loop_init (EV_A_ flags);
1440
1441 if (ev_backend (EV_A))
1442 return loop;
1443
1444 return 0;
1445}
1446
1447void
1448ev_loop_destroy (EV_P)
1449{
1450 loop_destroy (EV_A);
1451 ev_free (loop);
1452}
1453
1454void
1455ev_loop_fork (EV_P)
1456{
1457 postfork = 1; /* must be in line with ev_default_fork */
1458}
1459#endif
1460
1461#if EV_MULTIPLICITY
1462struct ev_loop *
1463ev_default_loop_init (unsigned int flags)
1464#else
1465int
1466ev_default_loop (unsigned int flags)
1467#endif
1468{
1469 if (!ev_default_loop_ptr)
288 } 1470 {
289} 1471#if EV_MULTIPLICITY
1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1473#else
1474 ev_default_loop_ptr = 1;
1475#endif
290 1476
291static void 1477 loop_init (EV_A_ flags);
292sigcb (struct ev_io *iow, int revents) 1478
1479 if (ev_backend (EV_A))
1480 {
1481#ifndef _WIN32
1482 ev_signal_init (&childev, childcb, SIGCHLD);
1483 ev_set_priority (&childev, EV_MAXPRI);
1484 ev_signal_start (EV_A_ &childev);
1485 ev_unref (EV_A); /* child watcher should not keep loop alive */
1486#endif
1487 }
1488 else
1489 ev_default_loop_ptr = 0;
1490 }
1491
1492 return ev_default_loop_ptr;
1493}
1494
1495void
1496ev_default_destroy (void)
293{ 1497{
294 struct ev_signal *w; 1498#if EV_MULTIPLICITY
1499 struct ev_loop *loop = ev_default_loop_ptr;
1500#endif
1501
1502#ifndef _WIN32
1503 ev_ref (EV_A); /* child watcher */
1504 ev_signal_stop (EV_A_ &childev);
1505#endif
1506
1507 loop_destroy (EV_A);
1508}
1509
1510void
1511ev_default_fork (void)
1512{
1513#if EV_MULTIPLICITY
1514 struct ev_loop *loop = ev_default_loop_ptr;
1515#endif
1516
1517 if (backend)
1518 postfork = 1; /* must be in line with ev_loop_fork */
1519}
1520
1521/*****************************************************************************/
1522
1523void
1524ev_invoke (EV_P_ void *w, int revents)
1525{
1526 EV_CB_INVOKE ((W)w, revents);
1527}
1528
1529void inline_speed
1530call_pending (EV_P)
1531{
295 int sig; 1532 int pri;
296 1533
297 gotsig = 0; 1534 for (pri = NUMPRI; pri--; )
298 read (sigpipe [0], &revents, 1); 1535 while (pendingcnt [pri])
299
300 for (sig = signalmax; sig--; )
301 if (signals [sig].gotsig)
302 { 1536 {
303 signals [sig].gotsig = 0; 1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
304 1538
305 for (w = signals [sig].head; w; w = w->next) 1539 if (expect_true (p->w))
306 event ((W)w, EV_SIGNAL); 1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542
1543 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events);
1545 }
307 } 1546 }
308} 1547}
309 1548
310static void 1549#if EV_IDLE_ENABLE
311siginit (void) 1550void inline_size
1551idle_reify (EV_P)
312{ 1552{
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 1553 if (expect_false (idleall))
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315
316 /* rather than sort out wether we really need nb, set it */
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
319
320 evio_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev);
322}
323
324/*****************************************************************************/
325
326static struct ev_idle **idles;
327static int idlemax, idlecnt;
328
329static struct ev_prepare **prepares;
330static int preparemax, preparecnt;
331
332static struct ev_check **checks;
333static int checkmax, checkcnt;
334
335/*****************************************************************************/
336
337#if HAVE_EPOLL
338# include "ev_epoll.c"
339#endif
340#if HAVE_SELECT
341# include "ev_select.c"
342#endif
343
344int ev_init (int flags)
345{
346#if HAVE_MONOTONIC
347 {
348 struct timespec ts;
349 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
350 have_monotonic = 1;
351 }
352#endif
353
354 ev_now = ev_time ();
355 now = get_clock ();
356 diff = ev_now - now;
357
358 if (pipe (sigpipe))
359 return 0;
360
361 ev_method = EVMETHOD_NONE;
362#if HAVE_EPOLL
363 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
364#endif
365#if HAVE_SELECT
366 if (ev_method == EVMETHOD_NONE) select_init (flags);
367#endif
368
369 if (ev_method)
370 {
371 evw_init (&sigev, sigcb);
372 siginit ();
373 } 1554 {
1555 int pri;
374 1556
375 return ev_method; 1557 for (pri = NUMPRI; pri--; )
376}
377
378/*****************************************************************************/
379
380void ev_prefork (void)
381{
382 /* nop */
383}
384
385void ev_postfork_parent (void)
386{
387 /* nop */
388}
389
390void ev_postfork_child (void)
391{
392#if HAVE_EPOLL
393 if (ev_method == EVMETHOD_EPOLL)
394 epoll_postfork_child ();
395#endif
396
397 evio_stop (&sigev);
398 close (sigpipe [0]);
399 close (sigpipe [1]);
400 pipe (sigpipe);
401 siginit ();
402}
403
404/*****************************************************************************/
405
406static void
407fd_reify (void)
408{
409 int i;
410
411 for (i = 0; i < fdchangecnt; ++i)
412 {
413 int fd = fdchanges [i];
414 ANFD *anfd = anfds + fd;
415 struct ev_io *w;
416
417 int wev = 0;
418
419 for (w = anfd->head; w; w = w->next)
420 wev |= w->events;
421
422 if (anfd->wev != wev)
423 { 1558 {
424 method_modify (fd, anfd->wev, wev); 1559 if (pendingcnt [pri])
425 anfd->wev = wev; 1560 break;
1561
1562 if (idlecnt [pri])
1563 {
1564 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1565 break;
1566 }
426 } 1567 }
427 } 1568 }
428
429 fdchangecnt = 0;
430} 1569}
1570#endif
431 1571
432static void 1572void inline_size
433call_pending ()
434{
435 while (pendingcnt)
436 {
437 ANPENDING *p = pendings + --pendingcnt;
438
439 if (p->w)
440 {
441 p->w->pending = 0;
442 p->w->cb (p->w, p->events);
443 }
444 }
445}
446
447static void
448timers_reify () 1573timers_reify (EV_P)
449{ 1574{
450 while (timercnt && timers [0]->at <= now) 1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
451 { 1576 {
452 struct ev_timer *w = timers [0]; 1577 ev_timer *w = (ev_timer *)timers [HEAP0];
453 1578
454 event ((W)w, EV_TIMEOUT); 1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
455 1580
456 /* first reschedule or stop timer */ 1581 /* first reschedule or stop timer */
457 if (w->repeat) 1582 if (w->repeat)
458 { 1583 {
459 w->at = now + w->repeat; 1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
460 assert (("timer timeout in the past, negative repeat?", w->at > now)); 1585
1586 ev_at (w) += w->repeat;
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
461 downheap ((WT *)timers, timercnt, 0); 1590 downheap (timers, timercnt, HEAP0);
462 } 1591 }
463 else 1592 else
464 evtimer_stop (w); /* nonrepeating: stop timer */ 1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
465 }
466}
467 1594
468static void 1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1596 }
1597}
1598
1599#if EV_PERIODIC_ENABLE
1600void inline_size
469periodics_reify () 1601periodics_reify (EV_P)
470{ 1602{
471 while (periodiccnt && periodics [0]->at <= ev_now) 1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
472 { 1604 {
473 struct ev_periodic *w = periodics [0]; 1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1606
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
474 1608
475 /* first reschedule or stop timer */ 1609 /* first reschedule or stop timer */
476 if (w->interval) 1610 if (w->reschedule_cb)
477 { 1611 {
478 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
479 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
480 downheap ((WT *)periodics, periodiccnt, 0); 1614 downheap (periodics, periodiccnt, 1);
1615 }
1616 else if (w->interval)
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
481 } 1622 }
482 else 1623 else
483 evperiodic_stop (w); /* nonrepeating: stop timer */ 1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
484 1625
485 event ((W)w, EV_TIMEOUT); 1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
486 } 1627 }
487} 1628}
488 1629
489static void 1630static void noinline
490periodics_reschedule (ev_tstamp diff) 1631periodics_reschedule (EV_P)
491{ 1632{
492 int i; 1633 int i;
493 1634
494 /* adjust periodics after time jump */ 1635 /* adjust periodics after time jump */
495 for (i = 0; i < periodiccnt; ++i) 1636 for (i = 1; i <= periodiccnt; ++i)
496 { 1637 {
497 struct ev_periodic *w = periodics [i]; 1638 ev_periodic *w = (ev_periodic *)periodics [i];
498 1639
1640 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
499 if (w->interval) 1642 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1644 }
1645
1646 /* now rebuild the heap */
1647 for (i = periodiccnt >> 1; --i; )
1648 downheap (periodics, periodiccnt, i + HEAP0);
1649}
1650#endif
1651
1652void inline_speed
1653time_update (EV_P_ ev_tstamp max_block)
1654{
1655 int i;
1656
1657#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic))
1659 {
1660 ev_tstamp odiff = rtmn_diff;
1661
1662 mn_now = get_clock ();
1663
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1665 /* interpolate in the meantime */
1666 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
500 { 1667 {
501 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1668 ev_rt_now = rtmn_diff + mn_now;
502 1669 return;
503 if (fabs (diff) >= 1e-4)
504 {
505 evperiodic_stop (w);
506 evperiodic_start (w);
507
508 i = 0; /* restart loop, inefficient, but time jumps should be rare */
509 }
510 } 1670 }
511 }
512}
513 1671
514static void 1672 now_floor = mn_now;
515time_update ()
516{
517 int i;
518
519 ev_now = ev_time (); 1673 ev_rt_now = ev_time ();
520 1674
521 if (have_monotonic)
522 {
523 ev_tstamp odiff = diff;
524
525 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1675 /* loop a few times, before making important decisions.
1676 * on the choice of "4": one iteration isn't enough,
1677 * in case we get preempted during the calls to
1678 * ev_time and get_clock. a second call is almost guaranteed
1679 * to succeed in that case, though. and looping a few more times
1680 * doesn't hurt either as we only do this on time-jumps or
1681 * in the unlikely event of having been preempted here.
1682 */
1683 for (i = 4; --i; )
526 { 1684 {
527 now = get_clock ();
528 diff = ev_now - now; 1685 rtmn_diff = ev_rt_now - mn_now;
529 1686
530 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
531 return; /* all is well */ 1688 return; /* all is well */
532 1689
533 ev_now = ev_time (); 1690 ev_rt_now = ev_time ();
1691 mn_now = get_clock ();
1692 now_floor = mn_now;
534 } 1693 }
535 1694
1695# if EV_PERIODIC_ENABLE
536 periodics_reschedule (diff - odiff); 1696 periodics_reschedule (EV_A);
1697# endif
537 /* no timer adjustment, as the monotonic clock doesn't jump */ 1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
538 } 1700 }
539 else 1701 else
1702#endif
540 { 1703 {
541 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1704 ev_rt_now = ev_time ();
1705
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
542 { 1707 {
1708#if EV_PERIODIC_ENABLE
543 periodics_reschedule (ev_now - now); 1709 periodics_reschedule (EV_A);
544 1710#endif
545 /* adjust timers. this is easy, as the offset is the same for all */ 1711 /* adjust timers. this is easy, as the offset is the same for all of them */
546 for (i = 0; i < timercnt; ++i) 1712 for (i = 1; i <= timercnt; ++i)
547 timers [i]->at += diff; 1713 ev_at (timers [i]) += ev_rt_now - mn_now;
548 } 1714 }
549 1715
550 now = ev_now; 1716 mn_now = ev_rt_now;
551 } 1717 }
552} 1718}
553 1719
554int ev_loop_done; 1720void
1721ev_ref (EV_P)
1722{
1723 ++activecnt;
1724}
555 1725
1726void
1727ev_unref (EV_P)
1728{
1729 --activecnt;
1730}
1731
1732static int loop_done;
1733
1734void
556void ev_loop (int flags) 1735ev_loop (EV_P_ int flags)
557{ 1736{
558 double block; 1737 loop_done = EVUNLOOP_CANCEL;
559 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1738
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
560 1740
561 do 1741 do
562 { 1742 {
1743#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid))
1746 {
1747 curpid = getpid ();
1748 postfork = 1;
1749 }
1750#endif
1751
1752#if EV_FORK_ENABLE
1753 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork))
1755 if (forkcnt)
1756 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A);
1759 }
1760#endif
1761
563 /* queue check watchers (and execute them) */ 1762 /* queue prepare watchers (and execute them) */
564 if (checkcnt) 1763 if (expect_false (preparecnt))
565 { 1764 {
566 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
567 call_pending (); 1766 call_pending (EV_A);
568 } 1767 }
569 1768
1769 if (expect_false (!activecnt))
1770 break;
1771
1772 /* we might have forked, so reify kernel state if necessary */
1773 if (expect_false (postfork))
1774 loop_fork (EV_A);
1775
570 /* update fd-related kernel structures */ 1776 /* update fd-related kernel structures */
571 fd_reify (); 1777 fd_reify (EV_A);
572 1778
573 /* calculate blocking time */ 1779 /* calculate blocking time */
1780 {
1781 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.;
574 1783
575 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
576 ev_now = ev_time ();
577
578 if (flags & EVLOOP_NONBLOCK || idlecnt)
579 block = 0.;
580 else
581 { 1785 {
1786 /* update time to cancel out callback processing overhead */
1787 time_update (EV_A_ 1e100);
1788
582 block = MAX_BLOCKTIME; 1789 waittime = MAX_BLOCKTIME;
583 1790
584 if (timercnt) 1791 if (timercnt)
585 { 1792 {
586 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
587 if (block > to) block = to; 1794 if (waittime > to) waittime = to;
588 } 1795 }
589 1796
1797#if EV_PERIODIC_ENABLE
590 if (periodiccnt) 1798 if (periodiccnt)
591 { 1799 {
592 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
593 if (block > to) block = to; 1801 if (waittime > to) waittime = to;
594 } 1802 }
1803#endif
595 1804
596 if (block < 0.) block = 0.; 1805 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime;
1807
1808 sleeptime = waittime - backend_fudge;
1809
1810 if (expect_true (sleeptime > io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 {
1815 ev_sleep (sleeptime);
1816 waittime -= sleeptime;
1817 }
597 } 1818 }
598 1819
599 method_poll (block); 1820 ++loop_count;
1821 backend_poll (EV_A_ waittime);
600 1822
601 /* update ev_now, do magic */ 1823 /* update ev_rt_now, do magic */
602 time_update (); 1824 time_update (EV_A_ waittime + sleeptime);
1825 }
603 1826
604 /* queue pending timers and reschedule them */ 1827 /* queue pending timers and reschedule them */
605 timers_reify (); /* relative timers called last */ 1828 timers_reify (EV_A); /* relative timers called last */
1829#if EV_PERIODIC_ENABLE
606 periodics_reify (); /* absolute timers called first */ 1830 periodics_reify (EV_A); /* absolute timers called first */
1831#endif
607 1832
1833#if EV_IDLE_ENABLE
608 /* queue idle watchers unless io or timers are pending */ 1834 /* queue idle watchers unless other events are pending */
609 if (!pendingcnt) 1835 idle_reify (EV_A);
610 queue_events ((W *)idles, idlecnt, EV_IDLE); 1836#endif
611 1837
612 /* queue check watchers, to be executed first */ 1838 /* queue check watchers, to be executed first */
613 if (checkcnt) 1839 if (expect_false (checkcnt))
614 queue_events ((W *)checks, checkcnt, EV_CHECK); 1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
615 1841
616 call_pending (); 1842 call_pending (EV_A);
617 } 1843 }
618 while (!ev_loop_done); 1844 while (expect_true (
1845 activecnt
1846 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 ));
619 1849
620 if (ev_loop_done != 2) 1850 if (loop_done == EVUNLOOP_ONE)
1851 loop_done = EVUNLOOP_CANCEL;
1852}
1853
1854void
1855ev_unloop (EV_P_ int how)
1856{
621 ev_loop_done = 0; 1857 loop_done = how;
622} 1858}
623 1859
624/*****************************************************************************/ 1860/*****************************************************************************/
625 1861
626static void 1862void inline_size
627wlist_add (WL *head, WL elem) 1863wlist_add (WL *head, WL elem)
628{ 1864{
629 elem->next = *head; 1865 elem->next = *head;
630 *head = elem; 1866 *head = elem;
631} 1867}
632 1868
633static void 1869void inline_size
634wlist_del (WL *head, WL elem) 1870wlist_del (WL *head, WL elem)
635{ 1871{
636 while (*head) 1872 while (*head)
637 { 1873 {
638 if (*head == elem) 1874 if (*head == elem)
643 1879
644 head = &(*head)->next; 1880 head = &(*head)->next;
645 } 1881 }
646} 1882}
647 1883
648static void 1884void inline_speed
649ev_clear (W w) 1885clear_pending (EV_P_ W w)
650{ 1886{
651 if (w->pending) 1887 if (w->pending)
652 { 1888 {
653 pendings [w->pending - 1].w = 0; 1889 pendings [ABSPRI (w)][w->pending - 1].w = 0;
654 w->pending = 0; 1890 w->pending = 0;
655 } 1891 }
656} 1892}
657 1893
658static void 1894int
1895ev_clear_pending (EV_P_ void *w)
1896{
1897 W w_ = (W)w;
1898 int pending = w_->pending;
1899
1900 if (expect_true (pending))
1901 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1903 w_->pending = 0;
1904 p->w = 0;
1905 return p->events;
1906 }
1907 else
1908 return 0;
1909}
1910
1911void inline_size
1912pri_adjust (EV_P_ W w)
1913{
1914 int pri = w->priority;
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri;
1918}
1919
1920void inline_speed
659ev_start (W w, int active) 1921ev_start (EV_P_ W w, int active)
660{ 1922{
1923 pri_adjust (EV_A_ w);
661 w->active = active; 1924 w->active = active;
1925 ev_ref (EV_A);
662} 1926}
663 1927
664static void 1928void inline_size
665ev_stop (W w) 1929ev_stop (EV_P_ W w)
666{ 1930{
1931 ev_unref (EV_A);
667 w->active = 0; 1932 w->active = 0;
668} 1933}
669 1934
670/*****************************************************************************/ 1935/*****************************************************************************/
671 1936
672void 1937void noinline
673evio_start (struct ev_io *w) 1938ev_io_start (EV_P_ ev_io *w)
674{ 1939{
1940 int fd = w->fd;
1941
675 if (ev_is_active (w)) 1942 if (expect_false (ev_is_active (w)))
676 return; 1943 return;
677 1944
678 int fd = w->fd; 1945 assert (("ev_io_start called with negative fd", fd >= 0));
679 1946
680 ev_start ((W)w, 1); 1947 ev_start (EV_A_ (W)w, 1);
681 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
682 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1949 wlist_add (&anfds[fd].head, (WL)w);
683 1950
684 ++fdchangecnt; 1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
685 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1952 w->events &= ~EV_IOFDSET;
686 fdchanges [fdchangecnt - 1] = fd;
687} 1953}
688 1954
689void 1955void noinline
690evio_stop (struct ev_io *w) 1956ev_io_stop (EV_P_ ev_io *w)
691{ 1957{
692 ev_clear ((W)w); 1958 clear_pending (EV_A_ (W)w);
693 if (!ev_is_active (w)) 1959 if (expect_false (!ev_is_active (w)))
694 return; 1960 return;
695 1961
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1963
696 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1964 wlist_del (&anfds[w->fd].head, (WL)w);
697 ev_stop ((W)w); 1965 ev_stop (EV_A_ (W)w);
698 1966
699 ++fdchangecnt; 1967 fd_change (EV_A_ w->fd, 1);
700 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
701 fdchanges [fdchangecnt - 1] = w->fd;
702} 1968}
703 1969
704void 1970void noinline
705evtimer_start (struct ev_timer *w) 1971ev_timer_start (EV_P_ ev_timer *w)
706{ 1972{
707 if (ev_is_active (w)) 1973 if (expect_false (ev_is_active (w)))
708 return; 1974 return;
709 1975
710 w->at += now; 1976 ev_at (w) += mn_now;
711 1977
712 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
713 1979
714 ev_start ((W)w, ++timercnt); 1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
715 array_needsize (timers, timermax, timercnt, ); 1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
716 timers [timercnt - 1] = w; 1982 timers [ev_active (w)] = (WT)w;
717 upheap ((WT *)timers, timercnt - 1); 1983 upheap (timers, ev_active (w));
718}
719 1984
720void 1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1986}
1987
1988void noinline
721evtimer_stop (struct ev_timer *w) 1989ev_timer_stop (EV_P_ ev_timer *w)
722{ 1990{
723 ev_clear ((W)w); 1991 clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 1992 if (expect_false (!ev_is_active (w)))
725 return; 1993 return;
726 1994
727 if (w->active < timercnt--) 1995 {
1996 int active = ev_active (w);
1997
1998 assert (("internal timer heap corruption", timers [active] == (WT)w));
1999
2000 if (expect_true (active < timercnt + HEAP0 - 1))
728 { 2001 {
729 timers [w->active - 1] = timers [timercnt]; 2002 timers [active] = timers [timercnt + HEAP0 - 1];
730 downheap ((WT *)timers, timercnt, w->active - 1); 2003 adjustheap (timers, timercnt, active);
731 } 2004 }
732 2005
733 w->at = w->repeat; 2006 --timercnt;
2007 }
734 2008
2009 ev_at (w) -= mn_now;
2010
735 ev_stop ((W)w); 2011 ev_stop (EV_A_ (W)w);
736} 2012}
737 2013
738void 2014void noinline
739evtimer_again (struct ev_timer *w) 2015ev_timer_again (EV_P_ ev_timer *w)
740{ 2016{
741 if (ev_is_active (w)) 2017 if (ev_is_active (w))
742 { 2018 {
743 if (w->repeat) 2019 if (w->repeat)
744 { 2020 {
745 w->at = now + w->repeat; 2021 ev_at (w) = mn_now + w->repeat;
746 downheap ((WT *)timers, timercnt, w->active - 1); 2022 adjustheap (timers, timercnt, ev_active (w));
747 } 2023 }
748 else 2024 else
749 evtimer_stop (w); 2025 ev_timer_stop (EV_A_ w);
750 } 2026 }
751 else if (w->repeat) 2027 else if (w->repeat)
2028 {
2029 ev_at (w) = w->repeat;
752 evtimer_start (w); 2030 ev_timer_start (EV_A_ w);
2031 }
753} 2032}
754 2033
755void 2034#if EV_PERIODIC_ENABLE
2035void noinline
756evperiodic_start (struct ev_periodic *w) 2036ev_periodic_start (EV_P_ ev_periodic *w)
757{ 2037{
758 if (ev_is_active (w)) 2038 if (expect_false (ev_is_active (w)))
759 return; 2039 return;
760 2040
761 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2041 if (w->reschedule_cb)
762 2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2043 else if (w->interval)
2044 {
2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
763 /* this formula differs from the one in periodic_reify because we do not always round up */ 2046 /* this formula differs from the one in periodic_reify because we do not always round up */
764 if (w->interval)
765 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 }
2049 else
2050 ev_at (w) = w->offset;
766 2051
767 ev_start ((W)w, ++periodiccnt); 2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
768 array_needsize (periodics, periodicmax, periodiccnt, ); 2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
769 periodics [periodiccnt - 1] = w; 2054 periodics [ev_active (w)] = (WT)w;
770 upheap ((WT *)periodics, periodiccnt - 1); 2055 upheap (periodics, ev_active (w));
771}
772 2056
773void 2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
2058}
2059
2060void noinline
774evperiodic_stop (struct ev_periodic *w) 2061ev_periodic_stop (EV_P_ ev_periodic *w)
775{ 2062{
776 ev_clear ((W)w); 2063 clear_pending (EV_A_ (W)w);
777 if (!ev_is_active (w)) 2064 if (expect_false (!ev_is_active (w)))
778 return; 2065 return;
779 2066
780 if (w->active < periodiccnt--) 2067 {
2068 int active = ev_active (w);
2069
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2071
2072 if (expect_true (active < periodiccnt + HEAP0 - 1))
781 { 2073 {
782 periodics [w->active - 1] = periodics [periodiccnt]; 2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
783 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2075 adjustheap (periodics, periodiccnt, active);
784 } 2076 }
785 2077
2078 --periodiccnt;
2079 }
2080
786 ev_stop ((W)w); 2081 ev_stop (EV_A_ (W)w);
787} 2082}
788 2083
789void 2084void noinline
2085ev_periodic_again (EV_P_ ev_periodic *w)
2086{
2087 /* TODO: use adjustheap and recalculation */
2088 ev_periodic_stop (EV_A_ w);
2089 ev_periodic_start (EV_A_ w);
2090}
2091#endif
2092
2093#ifndef SA_RESTART
2094# define SA_RESTART 0
2095#endif
2096
2097void noinline
790evsignal_start (struct ev_signal *w) 2098ev_signal_start (EV_P_ ev_signal *w)
791{ 2099{
2100#if EV_MULTIPLICITY
2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2102#endif
792 if (ev_is_active (w)) 2103 if (expect_false (ev_is_active (w)))
793 return; 2104 return;
794 2105
795 ev_start ((W)w, 1); 2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2107
2108 evpipe_init (EV_A);
2109
2110 {
2111#ifndef _WIN32
2112 sigset_t full, prev;
2113 sigfillset (&full);
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116
796 array_needsize (signals, signalmax, w->signum, signals_init); 2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2118
2119#ifndef _WIN32
2120 sigprocmask (SIG_SETMASK, &prev, 0);
2121#endif
2122 }
2123
2124 ev_start (EV_A_ (W)w, 1);
797 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2125 wlist_add (&signals [w->signum - 1].head, (WL)w);
798 2126
799 if (!w->next) 2127 if (!((WL)w)->next)
800 { 2128 {
2129#if _WIN32
2130 signal (w->signum, ev_sighandler);
2131#else
801 struct sigaction sa; 2132 struct sigaction sa;
802 sa.sa_handler = sighandler; 2133 sa.sa_handler = ev_sighandler;
803 sigfillset (&sa.sa_mask); 2134 sigfillset (&sa.sa_mask);
804 sa.sa_flags = 0; 2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
805 sigaction (w->signum, &sa, 0); 2136 sigaction (w->signum, &sa, 0);
2137#endif
806 } 2138 }
807} 2139}
808 2140
809void 2141void noinline
810evsignal_stop (struct ev_signal *w) 2142ev_signal_stop (EV_P_ ev_signal *w)
811{ 2143{
812 ev_clear ((W)w); 2144 clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
814 return; 2146 return;
815 2147
816 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2148 wlist_del (&signals [w->signum - 1].head, (WL)w);
817 ev_stop ((W)w); 2149 ev_stop (EV_A_ (W)w);
818 2150
819 if (!signals [w->signum - 1].head) 2151 if (!signals [w->signum - 1].head)
820 signal (w->signum, SIG_DFL); 2152 signal (w->signum, SIG_DFL);
821} 2153}
822 2154
823void evidle_start (struct ev_idle *w) 2155void
2156ev_child_start (EV_P_ ev_child *w)
824{ 2157{
2158#if EV_MULTIPLICITY
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif
825 if (ev_is_active (w)) 2161 if (expect_false (ev_is_active (w)))
826 return; 2162 return;
827 2163
828 ev_start ((W)w, ++idlecnt); 2164 ev_start (EV_A_ (W)w, 1);
829 array_needsize (idles, idlemax, idlecnt, ); 2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
830 idles [idlecnt - 1] = w;
831} 2166}
832 2167
833void evidle_stop (struct ev_idle *w) 2168void
2169ev_child_stop (EV_P_ ev_child *w)
834{ 2170{
835 ev_clear ((W)w); 2171 clear_pending (EV_A_ (W)w);
836 if (ev_is_active (w)) 2172 if (expect_false (!ev_is_active (w)))
837 return; 2173 return;
838 2174
839 idles [w->active - 1] = idles [--idlecnt]; 2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
840 ev_stop ((W)w); 2176 ev_stop (EV_A_ (W)w);
841} 2177}
842 2178
843void evprepare_start (struct ev_prepare *w) 2179#if EV_STAT_ENABLE
2180
2181# ifdef _WIN32
2182# undef lstat
2183# define lstat(a,b) _stati64 (a,b)
2184# endif
2185
2186#define DEF_STAT_INTERVAL 5.0074891
2187#define MIN_STAT_INTERVAL 0.1074891
2188
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190
2191#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192
2193
2194static void noinline
2195infy_add (EV_P_ ev_stat *w)
844{ 2196{
845 if (ev_is_active (w)) 2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198
2199 if (w->wd < 0)
2200 {
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2202
2203 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */
2205 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 {
2208 char path [4096];
2209 strcpy (path, w->path);
2210
2211 do
2212 {
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215
2216 char *pend = strrchr (path, '/');
2217
2218 if (!pend)
2219 break; /* whoops, no '/', complain to your admin */
2220
2221 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 }
2226 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229
2230 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2232}
2233
2234static void noinline
2235infy_del (EV_P_ ev_stat *w)
2236{
2237 int slot;
2238 int wd = w->wd;
2239
2240 if (wd < 0)
846 return; 2241 return;
847 2242
2243 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w);
2246
2247 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd);
2249}
2250
2251static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{
2254 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2257 infy_wd (EV_A_ slot, wd, ev);
2258 else
2259 {
2260 WL w_;
2261
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2263 {
2264 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */
2266
2267 if (w->wd == wd || wd == -1)
2268 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 {
2271 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */
2273 }
2274
2275 stat_timer_cb (EV_A_ &w->timer, 0);
2276 }
2277 }
2278 }
2279}
2280
2281static void
2282infy_cb (EV_P_ ev_io *w, int revents)
2283{
2284 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf));
2288
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2291}
2292
2293void inline_size
2294infy_init (EV_P)
2295{
2296 if (fs_fd != -2)
2297 return;
2298
2299 fs_fd = inotify_init ();
2300
2301 if (fs_fd >= 0)
2302 {
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w);
2306 }
2307}
2308
2309void inline_size
2310infy_fork (EV_P)
2311{
2312 int slot;
2313
2314 if (fs_fd < 0)
2315 return;
2316
2317 close (fs_fd);
2318 fs_fd = inotify_init ();
2319
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2321 {
2322 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0;
2324
2325 while (w_)
2326 {
2327 ev_stat *w = (ev_stat *)w_;
2328 w_ = w_->next; /* lets us add this watcher */
2329
2330 w->wd = -1;
2331
2332 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else
2335 ev_timer_start (EV_A_ &w->timer);
2336 }
2337
2338 }
2339}
2340
2341#endif
2342
2343void
2344ev_stat_stat (EV_P_ ev_stat *w)
2345{
2346 if (lstat (w->path, &w->attr) < 0)
2347 w->attr.st_nlink = 0;
2348 else if (!w->attr.st_nlink)
2349 w->attr.st_nlink = 1;
2350}
2351
2352static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356
2357 /* we copy this here each the time so that */
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w);
2361
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if (
2364 w->prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime
2375 ) {
2376 #if EV_USE_INOTIFY
2377 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */
2380 #endif
2381
2382 ev_feed_event (EV_A_ w, EV_STAT);
2383 }
2384}
2385
2386void
2387ev_stat_start (EV_P_ ev_stat *w)
2388{
2389 if (expect_false (ev_is_active (w)))
2390 return;
2391
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w);
2397
2398 if (w->interval < MIN_STAT_INTERVAL)
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2402 ev_set_priority (&w->timer, ev_priority (w));
2403
2404#if EV_USE_INOTIFY
2405 infy_init (EV_A);
2406
2407 if (fs_fd >= 0)
2408 infy_add (EV_A_ w);
2409 else
2410#endif
2411 ev_timer_start (EV_A_ &w->timer);
2412
2413 ev_start (EV_A_ (W)w, 1);
2414}
2415
2416void
2417ev_stat_stop (EV_P_ ev_stat *w)
2418{
2419 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w)))
2421 return;
2422
2423#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w);
2425#endif
2426 ev_timer_stop (EV_A_ &w->timer);
2427
2428 ev_stop (EV_A_ (W)w);
2429}
2430#endif
2431
2432#if EV_IDLE_ENABLE
2433void
2434ev_idle_start (EV_P_ ev_idle *w)
2435{
2436 if (expect_false (ev_is_active (w)))
2437 return;
2438
2439 pri_adjust (EV_A_ (W)w);
2440
2441 {
2442 int active = ++idlecnt [ABSPRI (w)];
2443
2444 ++idleall;
2445 ev_start (EV_A_ (W)w, active);
2446
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w;
2449 }
2450}
2451
2452void
2453ev_idle_stop (EV_P_ ev_idle *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ev_active (w);
2461
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464
2465 ev_stop (EV_A_ (W)w);
2466 --idleall;
2467 }
2468}
2469#endif
2470
2471void
2472ev_prepare_start (EV_P_ ev_prepare *w)
2473{
2474 if (expect_false (ev_is_active (w)))
2475 return;
2476
848 ev_start ((W)w, ++preparecnt); 2477 ev_start (EV_A_ (W)w, ++preparecnt);
849 array_needsize (prepares, preparemax, preparecnt, ); 2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
850 prepares [preparecnt - 1] = w; 2479 prepares [preparecnt - 1] = w;
851} 2480}
852 2481
2482void
853void evprepare_stop (struct ev_prepare *w) 2483ev_prepare_stop (EV_P_ ev_prepare *w)
854{ 2484{
855 ev_clear ((W)w); 2485 clear_pending (EV_A_ (W)w);
856 if (ev_is_active (w)) 2486 if (expect_false (!ev_is_active (w)))
857 return; 2487 return;
858 2488
2489 {
2490 int active = ev_active (w);
2491
859 prepares [w->active - 1] = prepares [--preparecnt]; 2492 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active;
2494 }
2495
860 ev_stop ((W)w); 2496 ev_stop (EV_A_ (W)w);
861} 2497}
862 2498
2499void
863void evcheck_start (struct ev_check *w) 2500ev_check_start (EV_P_ ev_check *w)
864{ 2501{
865 if (ev_is_active (w)) 2502 if (expect_false (ev_is_active (w)))
866 return; 2503 return;
867 2504
868 ev_start ((W)w, ++checkcnt); 2505 ev_start (EV_A_ (W)w, ++checkcnt);
869 array_needsize (checks, checkmax, checkcnt, ); 2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
870 checks [checkcnt - 1] = w; 2507 checks [checkcnt - 1] = w;
871} 2508}
872 2509
2510void
873void evcheck_stop (struct ev_check *w) 2511ev_check_stop (EV_P_ ev_check *w)
874{ 2512{
875 ev_clear ((W)w); 2513 clear_pending (EV_A_ (W)w);
876 if (ev_is_active (w)) 2514 if (expect_false (!ev_is_active (w)))
877 return; 2515 return;
878 2516
2517 {
2518 int active = ev_active (w);
2519
879 checks [w->active - 1] = checks [--checkcnt]; 2520 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active;
2522 }
2523
880 ev_stop ((W)w); 2524 ev_stop (EV_A_ (W)w);
881} 2525}
2526
2527#if EV_EMBED_ENABLE
2528void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w)
2530{
2531 ev_loop (w->other, EVLOOP_NONBLOCK);
2532}
2533
2534static void
2535embed_io_cb (EV_P_ ev_io *io, int revents)
2536{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538
2539 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK);
2543}
2544
2545static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549
2550 {
2551 struct ev_loop *loop = w->other;
2552
2553 while (fdchangecnt)
2554 {
2555 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 }
2558 }
2559}
2560
2561#if 0
2562static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{
2565 ev_idle_stop (EV_A_ idle);
2566}
2567#endif
2568
2569void
2570ev_embed_start (EV_P_ ev_embed *w)
2571{
2572 if (expect_false (ev_is_active (w)))
2573 return;
2574
2575 {
2576 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 }
2580
2581 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io);
2583
2584 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare);
2587
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589
2590 ev_start (EV_A_ (W)w, 1);
2591}
2592
2593void
2594ev_embed_stop (EV_P_ ev_embed *w)
2595{
2596 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w)))
2598 return;
2599
2600 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare);
2602
2603 ev_stop (EV_A_ (W)w);
2604}
2605#endif
2606
2607#if EV_FORK_ENABLE
2608void
2609ev_fork_start (EV_P_ ev_fork *w)
2610{
2611 if (expect_false (ev_is_active (w)))
2612 return;
2613
2614 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w;
2617}
2618
2619void
2620ev_fork_stop (EV_P_ ev_fork *w)
2621{
2622 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w)))
2624 return;
2625
2626 {
2627 int active = ev_active (w);
2628
2629 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active;
2631 }
2632
2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_ASYNC_ENABLE
2638void
2639ev_async_start (EV_P_ ev_async *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 evpipe_init (EV_A);
2645
2646 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w;
2649}
2650
2651void
2652ev_async_stop (EV_P_ ev_async *w)
2653{
2654 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w)))
2656 return;
2657
2658 {
2659 int active = ev_active (w);
2660
2661 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active;
2663 }
2664
2665 ev_stop (EV_A_ (W)w);
2666}
2667
2668void
2669ev_async_send (EV_P_ ev_async *w)
2670{
2671 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync);
2673}
2674#endif
882 2675
883/*****************************************************************************/ 2676/*****************************************************************************/
884 2677
885struct ev_once 2678struct ev_once
886{ 2679{
887 struct ev_io io; 2680 ev_io io;
888 struct ev_timer to; 2681 ev_timer to;
889 void (*cb)(int revents, void *arg); 2682 void (*cb)(int revents, void *arg);
890 void *arg; 2683 void *arg;
891}; 2684};
892 2685
893static void 2686static void
894once_cb (struct ev_once *once, int revents) 2687once_cb (EV_P_ struct ev_once *once, int revents)
895{ 2688{
896 void (*cb)(int revents, void *arg) = once->cb; 2689 void (*cb)(int revents, void *arg) = once->cb;
897 void *arg = once->arg; 2690 void *arg = once->arg;
898 2691
899 evio_stop (&once->io); 2692 ev_io_stop (EV_A_ &once->io);
900 evtimer_stop (&once->to); 2693 ev_timer_stop (EV_A_ &once->to);
901 free (once); 2694 ev_free (once);
902 2695
903 cb (revents, arg); 2696 cb (revents, arg);
904} 2697}
905 2698
906static void 2699static void
907once_cb_io (struct ev_io *w, int revents) 2700once_cb_io (EV_P_ ev_io *w, int revents)
908{ 2701{
909 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
910} 2703}
911 2704
912static void 2705static void
913once_cb_to (struct ev_timer *w, int revents) 2706once_cb_to (EV_P_ ev_timer *w, int revents)
914{ 2707{
915 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
916} 2709}
917 2710
918void 2711void
919ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
920{ 2713{
921 struct ev_once *once = malloc (sizeof (struct ev_once)); 2714 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
922 2715
923 if (!once) 2716 if (expect_false (!once))
924 cb (EV_ERROR, arg); 2717 {
925 else 2718 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2719 return;
926 { 2720 }
2721
927 once->cb = cb; 2722 once->cb = cb;
928 once->arg = arg; 2723 once->arg = arg;
929 2724
930 evw_init (&once->io, once_cb_io); 2725 ev_init (&once->io, once_cb_io);
931
932 if (fd >= 0) 2726 if (fd >= 0)
933 { 2727 {
934 evio_set (&once->io, fd, events); 2728 ev_io_set (&once->io, fd, events);
935 evio_start (&once->io); 2729 ev_io_start (EV_A_ &once->io);
936 } 2730 }
937 2731
938 evw_init (&once->to, once_cb_to); 2732 ev_init (&once->to, once_cb_to);
939
940 if (timeout >= 0.) 2733 if (timeout >= 0.)
941 { 2734 {
942 evtimer_set (&once->to, timeout, 0.); 2735 ev_timer_set (&once->to, timeout, 0.);
943 evtimer_start (&once->to); 2736 ev_timer_start (EV_A_ &once->to);
944 }
945 }
946}
947
948/*****************************************************************************/
949
950#if 0
951
952struct ev_io wio;
953
954static void
955sin_cb (struct ev_io *w, int revents)
956{
957 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
958}
959
960static void
961ocb (struct ev_timer *w, int revents)
962{
963 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
964 evtimer_stop (w);
965 evtimer_start (w);
966}
967
968static void
969scb (struct ev_signal *w, int revents)
970{
971 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
972 evio_stop (&wio);
973 evio_start (&wio);
974}
975
976static void
977gcb (struct ev_signal *w, int revents)
978{
979 fprintf (stderr, "generic %x\n", revents);
980
981}
982
983int main (void)
984{
985 ev_init (0);
986
987 evio_init (&wio, sin_cb, 0, EV_READ);
988 evio_start (&wio);
989
990 struct ev_timer t[10000];
991
992#if 0
993 int i;
994 for (i = 0; i < 10000; ++i)
995 { 2737 }
996 struct ev_timer *w = t + i;
997 evw_init (w, ocb, i);
998 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
999 evtimer_start (w);
1000 if (drand48 () < 0.5)
1001 evtimer_stop (w);
1002 }
1003#endif
1004
1005 struct ev_timer t1;
1006 evtimer_init (&t1, ocb, 5, 10);
1007 evtimer_start (&t1);
1008
1009 struct ev_signal sig;
1010 evsignal_init (&sig, scb, SIGQUIT);
1011 evsignal_start (&sig);
1012
1013 struct ev_check cw;
1014 evcheck_init (&cw, gcb);
1015 evcheck_start (&cw);
1016
1017 struct ev_idle iw;
1018 evidle_init (&iw, gcb);
1019 evidle_start (&iw);
1020
1021 ev_loop (0);
1022
1023 return 0;
1024} 2738}
1025 2739
2740#if EV_MULTIPLICITY
2741 #include "ev_wrap.h"
1026#endif 2742#endif
1027 2743
2744#ifdef __cplusplus
2745}
2746#endif
1028 2747
1029
1030

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines