ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
422 W w; 446 W w;
423 int events; 447 int events;
424} ANPENDING; 448} ANPENDING;
425 449
426#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
427typedef struct 452typedef struct
428{ 453{
429 WL head; 454 WL head;
430} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
431#endif 474#endif
432 475
433#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
434 477
435 struct ev_loop 478 struct ev_loop
760} 803}
761 804
762/*****************************************************************************/ 805/*****************************************************************************/
763 806
764/* 807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
765 * at the moment we allow libev the luxury of two heaps, 814 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 816 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 817 * the difference is about 5% with 50000+ watchers.
769 */ 818 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 819#if EV_USE_4HEAP
772 820
773#define DHEAP 4 821#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775 823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
776/* towards the root */ 824#define UPHEAP_DONE(p,k) ((p) == (k))
777void inline_speed
778upheap (WT *heap, int k)
779{
780 WT w = heap [k];
781 ev_tstamp w_at = w->at;
782
783 for (;;)
784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798 825
799/* away from the root */ 826/* away from the root */
800void inline_speed 827void inline_speed
801downheap (WT *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
802{ 829{
803 WT w = heap [k]; 830 ANHE he = heap [k];
804 WT *E = heap + N + HEAP0; 831 ANHE *E = heap + N + HEAP0;
805 832
806 for (;;) 833 for (;;)
807 { 834 {
808 ev_tstamp minat; 835 ev_tstamp minat;
809 WT *minpos; 836 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 838
812 // find minimum child 839 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 840 if (expect_true (pos + DHEAP - 1 < E))
814 { 841 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at); 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 846 }
820 else if (pos < E) 847 else if (pos < E)
821 { 848 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at); 849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
826 } 853 }
827 else 854 else
828 break; 855 break;
829 856
830 if (w->at <= minat) 857 if (ANHE_at (he) <= minat)
831 break; 858 break;
832 859
833 ev_active (*minpos) = k;
834 heap [k] = *minpos; 860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
835 862
836 k = minpos - heap; 863 k = minpos - heap;
837 } 864 }
838 865
839 heap [k] = w; 866 heap [k] = he;
840 ev_active (heap [k]) = k; 867 ev_active (ANHE_w (he)) = k;
841} 868}
842 869
843#else // 4HEAP 870#else /* 4HEAP */
844 871
845#define HEAP0 1 872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
846 905
847/* towards the root */ 906/* towards the root */
848void inline_speed 907void inline_speed
849upheap (WT *heap, int k) 908upheap (ANHE *heap, int k)
850{ 909{
851 WT w = heap [k]; 910 ANHE he = heap [k];
852 911
853 for (;;) 912 for (;;)
854 { 913 {
855 int p = k >> 1; 914 int p = HPARENT (k);
856 915
857 /* maybe we could use a dummy element at heap [0]? */ 916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
858 if (!p || heap [p]->at <= w->at)
859 break; 917 break;
860 918
861 heap [k] = heap [p]; 919 heap [k] = heap [p];
862 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (heap [k])) = k;
863 k = p; 921 k = p;
864 } 922 }
865 923
866 heap [k] = w; 924 heap [k] = he;
867 ev_active (heap [k]) = k; 925 ev_active (ANHE_w (he)) = k;
868} 926}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
890 ((W)heap [k])->active = k;
891
892 k = c;
893 }
894
895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899 927
900void inline_size 928void inline_size
901adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
902{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
903 upheap (heap, k); 932 upheap (heap, k);
933 else
904 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
905} 947}
906 948
907/*****************************************************************************/ 949/*****************************************************************************/
908 950
909typedef struct 951typedef struct
1427 1469
1428 postfork = 0; 1470 postfork = 0;
1429} 1471}
1430 1472
1431#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1432struct ev_loop * 1475struct ev_loop *
1433ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1434{ 1477{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 1479
1454void 1497void
1455ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1456{ 1499{
1457 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1458} 1501}
1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1459#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1460 1602
1461#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1462struct ev_loop * 1604struct ev_loop *
1463ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1464#else 1606#else
1540 { 1682 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542 1684
1543 p->w->pending = 0; 1685 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1545 } 1688 }
1546 } 1689 }
1547} 1690}
1548 1691
1549#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1570#endif 1713#endif
1571 1714
1572void inline_size 1715void inline_size
1573timers_reify (EV_P) 1716timers_reify (EV_P)
1574{ 1717{
1718 EV_FREQUENT_CHECK;
1719
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 1721 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1578 1723
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580 1725
1581 /* first reschedule or stop timer */ 1726 /* first reschedule or stop timer */
1582 if (w->repeat) 1727 if (w->repeat)
1583 { 1728 {
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585
1586 ev_at (w) += w->repeat; 1729 ev_at (w) += w->repeat;
1587 if (ev_at (w) < mn_now) 1730 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now; 1731 ev_at (w) = mn_now;
1589 1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1590 downheap (timers, timercnt, HEAP0); 1736 downheap (timers, timercnt, HEAP0);
1591 } 1737 }
1592 else 1738 else
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 1740
1741 EV_FREQUENT_CHECK;
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1596 } 1743 }
1597} 1744}
1598 1745
1599#if EV_PERIODIC_ENABLE 1746#if EV_PERIODIC_ENABLE
1600void inline_size 1747void inline_size
1601periodics_reify (EV_P) 1748periodics_reify (EV_P)
1602{ 1749{
1750 EV_FREQUENT_CHECK;
1751
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 1753 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1606 1755
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1608 1757
1609 /* first reschedule or stop timer */ 1758 /* first reschedule or stop timer */
1610 if (w->reschedule_cb) 1759 if (w->reschedule_cb)
1611 { 1760 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 1766 downheap (periodics, periodiccnt, HEAP0);
1615 } 1767 }
1616 else if (w->interval) 1768 else if (w->interval)
1617 { 1769 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1621 downheap (periodics, periodiccnt, HEAP0); 1785 downheap (periodics, periodiccnt, HEAP0);
1622 } 1786 }
1623 else 1787 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 1789
1790 EV_FREQUENT_CHECK;
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1627 } 1792 }
1628} 1793}
1629 1794
1630static void noinline 1795static void noinline
1631periodics_reschedule (EV_P) 1796periodics_reschedule (EV_P)
1632{ 1797{
1633 int i; 1798 int i;
1634 1799
1635 /* adjust periodics after time jump */ 1800 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 1802 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 1804
1640 if (w->reschedule_cb) 1805 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 1807 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1644 }
1645 1809
1646 /* now rebuild the heap */ 1810 ANHE_at_cache (periodics [i]);
1647 for (i = periodiccnt >> 1; --i; ) 1811 }
1812
1648 downheap (periodics, periodiccnt, i + HEAP0); 1813 reheap (periodics, periodiccnt);
1649} 1814}
1650#endif 1815#endif
1651 1816
1652void inline_speed 1817void inline_speed
1653time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1707 { 1872 {
1708#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1710#endif 1875#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now; 1878 {
1879 ANHE *he = timers + i + HEAP0;
1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1714 } 1883 }
1715 1884
1716 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1717 } 1886 }
1718} 1887}
1738 1907
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1740 1909
1741 do 1910 do
1742 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1743#ifndef _WIN32 1916#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1746 { 1919 {
1747 curpid = getpid (); 1920 curpid = getpid ();
1788 1961
1789 waittime = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1790 1963
1791 if (timercnt) 1964 if (timercnt)
1792 { 1965 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1794 if (waittime > to) waittime = to; 1967 if (waittime > to) waittime = to;
1795 } 1968 }
1796 1969
1797#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 1971 if (periodiccnt)
1799 { 1972 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1801 if (waittime > to) waittime = to; 1974 if (waittime > to) waittime = to;
1802 } 1975 }
1803#endif 1976#endif
1804 1977
1805 if (expect_false (waittime < timeout_blocktime)) 1978 if (expect_false (waittime < timeout_blocktime))
1942 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1943 return; 2116 return;
1944 2117
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1946 2119
2120 EV_FREQUENT_CHECK;
2121
1947 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1949 wlist_add (&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1950 2125
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET; 2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1953} 2130}
1954 2131
1955void noinline 2132void noinline
1956ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1957{ 2134{
1958 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1960 return; 2137 return;
1961 2138
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140
2141 EV_FREQUENT_CHECK;
1963 2142
1964 wlist_del (&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1966 2145
1967 fd_change (EV_A_ w->fd, 1); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1968} 2149}
1969 2150
1970void noinline 2151void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1972{ 2153{
1975 2156
1976 ev_at (w) += mn_now; 2157 ev_at (w) += mn_now;
1977 2158
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
2167 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 2168 upheap (timers, ev_active (w));
1984 2169
2170 EV_FREQUENT_CHECK;
2171
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 2173}
1987 2174
1988void noinline 2175void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1990{ 2177{
1991 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1993 return; 2180 return;
1994 2181
2182 EV_FREQUENT_CHECK;
2183
1995 { 2184 {
1996 int active = ev_active (w); 2185 int active = ev_active (w);
1997 2186
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 2188
2189 --timercnt;
2190
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 2191 if (expect_true (active < timercnt + HEAP0))
2001 { 2192 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 2193 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
2004 } 2195 }
2005
2006 --timercnt;
2007 } 2196 }
2197
2198 EV_FREQUENT_CHECK;
2008 2199
2009 ev_at (w) -= mn_now; 2200 ev_at (w) -= mn_now;
2010 2201
2011 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
2012} 2203}
2013 2204
2014void noinline 2205void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
2016{ 2207{
2208 EV_FREQUENT_CHECK;
2209
2017 if (ev_is_active (w)) 2210 if (ev_is_active (w))
2018 { 2211 {
2019 if (w->repeat) 2212 if (w->repeat)
2020 { 2213 {
2021 ev_at (w) = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 2216 adjustheap (timers, timercnt, ev_active (w));
2023 } 2217 }
2024 else 2218 else
2025 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
2026 } 2220 }
2027 else if (w->repeat) 2221 else if (w->repeat)
2028 { 2222 {
2029 ev_at (w) = w->repeat; 2223 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
2031 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
2032} 2228}
2033 2229
2034#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
2035void noinline 2231void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 2244 }
2049 else 2245 else
2050 ev_at (w) = w->offset; 2246 ev_at (w) = w->offset;
2051 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2254 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 2255 upheap (periodics, ev_active (w));
2056 2256
2257 EV_FREQUENT_CHECK;
2258
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 2260}
2059 2261
2060void noinline 2262void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
2062{ 2264{
2063 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
2065 return; 2267 return;
2066 2268
2269 EV_FREQUENT_CHECK;
2270
2067 { 2271 {
2068 int active = ev_active (w); 2272 int active = ev_active (w);
2069 2273
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 2275
2276 --periodiccnt;
2277
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2278 if (expect_true (active < periodiccnt + HEAP0))
2073 { 2279 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
2076 } 2282 }
2077
2078 --periodiccnt;
2079 } 2283 }
2284
2285 EV_FREQUENT_CHECK;
2080 2286
2081 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
2082} 2288}
2083 2289
2084void noinline 2290void noinline
2104 return; 2310 return;
2105 2311
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2107 2313
2108 evpipe_init (EV_A); 2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2109 2317
2110 { 2318 {
2111#ifndef _WIN32 2319#ifndef _WIN32
2112 sigset_t full, prev; 2320 sigset_t full, prev;
2113 sigfillset (&full); 2321 sigfillset (&full);
2134 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
2137#endif 2345#endif
2138 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
2139} 2349}
2140 2350
2141void noinline 2351void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
2143{ 2353{
2144 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
2146 return; 2356 return;
2147 2357
2358 EV_FREQUENT_CHECK;
2359
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
2150 2362
2151 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
2152 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
2153} 2367}
2154 2368
2155void 2369void
2156ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
2157{ 2371{
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 2374#endif
2161 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
2162 return; 2376 return;
2163 2377
2378 EV_FREQUENT_CHECK;
2379
2164 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
2166} 2384}
2167 2385
2168void 2386void
2169ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
2170{ 2388{
2171 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
2173 return; 2391 return;
2174 2392
2393 EV_FREQUENT_CHECK;
2394
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
2177} 2399}
2178 2400
2179#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
2180 2402
2181# ifdef _WIN32 2403# ifdef _WIN32
2409 else 2631 else
2410#endif 2632#endif
2411 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2412 2634
2413 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2414} 2638}
2415 2639
2416void 2640void
2417ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2418{ 2642{
2419 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2421 return; 2645 return;
2422 2646
2647 EV_FREQUENT_CHECK;
2648
2423#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2425#endif 2651#endif
2426 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2427 2653
2428 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2429} 2657}
2430#endif 2658#endif
2431 2659
2432#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2433void 2661void
2435{ 2663{
2436 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2437 return; 2665 return;
2438 2666
2439 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2440 2670
2441 { 2671 {
2442 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2443 2673
2444 ++idleall; 2674 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2446 2676
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2449 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2450} 2682}
2451 2683
2452void 2684void
2453ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2454{ 2686{
2455 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2457 return; 2689 return;
2458 2690
2691 EV_FREQUENT_CHECK;
2692
2459 { 2693 {
2460 int active = ev_active (w); 2694 int active = ev_active (w);
2461 2695
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 2698
2465 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2466 --idleall; 2700 --idleall;
2467 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2468} 2704}
2469#endif 2705#endif
2470 2706
2471void 2707void
2472ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2473{ 2709{
2474 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2475 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2476 2714
2477 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2480} 2720}
2481 2721
2482void 2722void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2484{ 2724{
2485 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2487 return; 2727 return;
2488 2728
2729 EV_FREQUENT_CHECK;
2730
2489 { 2731 {
2490 int active = ev_active (w); 2732 int active = ev_active (w);
2491 2733
2492 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 2735 ev_active (prepares [active - 1]) = active;
2494 } 2736 }
2495 2737
2496 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2497} 2741}
2498 2742
2499void 2743void
2500ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2501{ 2745{
2502 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2503 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2504 2750
2505 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2508} 2756}
2509 2757
2510void 2758void
2511ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2512{ 2760{
2513 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2515 return; 2763 return;
2516 2764
2765 EV_FREQUENT_CHECK;
2766
2517 { 2767 {
2518 int active = ev_active (w); 2768 int active = ev_active (w);
2519 2769
2520 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 2771 ev_active (checks [active - 1]) = active;
2522 } 2772 }
2523 2773
2524 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2525} 2777}
2526 2778
2527#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2528void noinline 2780void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2576 struct ev_loop *loop = w->other; 2828 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 2831 }
2580 2832
2833 EV_FREQUENT_CHECK;
2834
2581 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2583 2837
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 2839 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 2840 ev_prepare_start (EV_A_ &w->prepare);
2587 2841
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 2843
2590 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2591} 2847}
2592 2848
2593void 2849void
2594ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2595{ 2851{
2596 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2598 return; 2854 return;
2599 2855
2856 EV_FREQUENT_CHECK;
2857
2600 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 2859 ev_prepare_stop (EV_A_ &w->prepare);
2602 2860
2603 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2604} 2864}
2605#endif 2865#endif
2606 2866
2607#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2608void 2868void
2609ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2610{ 2870{
2611 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2612 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2613 2875
2614 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2617} 2881}
2618 2882
2619void 2883void
2620ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2621{ 2885{
2622 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2624 return; 2888 return;
2625 2889
2890 EV_FREQUENT_CHECK;
2891
2626 { 2892 {
2627 int active = ev_active (w); 2893 int active = ev_active (w);
2628 2894
2629 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 2896 ev_active (forks [active - 1]) = active;
2631 } 2897 }
2632 2898
2633 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2634} 2902}
2635#endif 2903#endif
2636 2904
2637#if EV_ASYNC_ENABLE 2905#if EV_ASYNC_ENABLE
2638void 2906void
2640{ 2908{
2641 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2642 return; 2910 return;
2643 2911
2644 evpipe_init (EV_A); 2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2645 2915
2646 ev_start (EV_A_ (W)w, ++asynccnt); 2916 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2649} 2921}
2650 2922
2651void 2923void
2652ev_async_stop (EV_P_ ev_async *w) 2924ev_async_stop (EV_P_ ev_async *w)
2653{ 2925{
2654 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2656 return; 2928 return;
2657 2929
2930 EV_FREQUENT_CHECK;
2931
2658 { 2932 {
2659 int active = ev_active (w); 2933 int active = ev_active (w);
2660 2934
2661 asyncs [active - 1] = asyncs [--asynccnt]; 2935 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 2936 ev_active (asyncs [active - 1]) = active;
2663 } 2937 }
2664 2938
2665 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2666} 2942}
2667 2943
2668void 2944void
2669ev_async_send (EV_P_ ev_async *w) 2945ev_async_send (EV_P_ ev_async *w)
2670{ 2946{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines