ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC vs.
Revision 1.286 by root, Wed Apr 15 19:37:15 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
52# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
55# endif 67# endif
56# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
58# endif 70# endif
59# else 71# else
60# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
62# endif 74# endif
126# define EV_USE_EVENTFD 1 138# define EV_USE_EVENTFD 1
127# else 139# else
128# define EV_USE_EVENTFD 0 140# define EV_USE_EVENTFD 0
129# endif 141# endif
130# endif 142# endif
131 143
132#endif 144#endif
133 145
134#include <math.h> 146#include <math.h>
135#include <stdlib.h> 147#include <stdlib.h>
136#include <fcntl.h> 148#include <fcntl.h>
154#ifndef _WIN32 166#ifndef _WIN32
155# include <sys/time.h> 167# include <sys/time.h>
156# include <sys/wait.h> 168# include <sys/wait.h>
157# include <unistd.h> 169# include <unistd.h>
158#else 170#else
171# include <io.h>
159# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 173# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
163# endif 176# endif
164#endif 177#endif
165 178
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
167 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
168#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
169# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
170#endif 195#endif
171 196
172#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 199#endif
175 200
176#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
177# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
178#endif 207#endif
179 208
180#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
182#endif 211#endif
235# else 264# else
236# define EV_USE_EVENTFD 0 265# define EV_USE_EVENTFD 0
237# endif 266# endif
238#endif 267#endif
239 268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 288
242#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 306# include <sys/select.h>
260# endif 307# endif
261#endif 308#endif
262 309
263#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
264# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
265#endif 319#endif
266 320
267#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
269#endif 332#endif
270 333
271#if EV_USE_EVENTFD 334#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 336# include <stdint.h>
279} 342}
280# endif 343# endif
281#endif 344#endif
282 345
283/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
284 353
285/* 354/*
286 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
328typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
329 398
330#define ev_active(w) ((W)(w))->active 399#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 400#define ev_at(w) ((WT)(w))->at
332 401
333#if EV_USE_MONOTONIC 402#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 410#endif
338 411
339#ifdef _WIN32 412#ifdef _WIN32
340# include "ev_win32.c" 413# include "ev_win32.c"
349{ 422{
350 syserr_cb = cb; 423 syserr_cb = cb;
351} 424}
352 425
353static void noinline 426static void noinline
354syserr (const char *msg) 427ev_syserr (const char *msg)
355{ 428{
356 if (!msg) 429 if (!msg)
357 msg = "(libev) system error"; 430 msg = "(libev) system error";
358 431
359 if (syserr_cb) 432 if (syserr_cb)
410typedef struct 483typedef struct
411{ 484{
412 WL head; 485 WL head;
413 unsigned char events; 486 unsigned char events;
414 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
415#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 494 SOCKET handle;
417#endif 495#endif
418} ANFD; 496} ANFD;
419 497
422 W w; 500 W w;
423 int events; 501 int events;
424} ANPENDING; 502} ANPENDING;
425 503
426#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
427typedef struct 506typedef struct
428{ 507{
429 WL head; 508 WL head;
430} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
431#endif 528#endif
432 529
433#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
434 531
435 struct ev_loop 532 struct ev_loop
460 557
461ev_tstamp 558ev_tstamp
462ev_time (void) 559ev_time (void)
463{ 560{
464#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
465 struct timespec ts; 564 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 567 }
568#endif
569
469 struct timeval tv; 570 struct timeval tv;
470 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 573}
474 574
475ev_tstamp inline_size 575inline_size ev_tstamp
476get_clock (void) 576get_clock (void)
477{ 577{
478#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
480 { 580 {
513 struct timeval tv; 613 struct timeval tv;
514 614
515 tv.tv_sec = (time_t)delay; 615 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
518 select (0, 0, 0, 0, &tv); 621 select (0, 0, 0, 0, &tv);
519#endif 622#endif
520 } 623 }
521} 624}
522 625
523/*****************************************************************************/ 626/*****************************************************************************/
524 627
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 629
527int inline_size 630inline_size int
528array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
529{ 632{
530 int ncur = cur + 1; 633 int ncur = cur + 1;
531 634
532 do 635 do
549array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
550{ 653{
551 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
553} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 660
555#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
557 { \ 663 { \
558 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 677 }
572#endif 678#endif
573 679
574#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 682
577/*****************************************************************************/ 683/*****************************************************************************/
578 684
579void noinline 685void noinline
580ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
591 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
593 } 699 }
594} 700}
595 701
596void inline_speed 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 719{
599 int i; 720 int i;
600 721
601 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
603} 724}
604 725
605/*****************************************************************************/ 726/*****************************************************************************/
606 727
607void inline_size 728inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
622{ 730{
623 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
624 ev_io *w; 732 ev_io *w;
625 733
637{ 745{
638 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
640} 748}
641 749
642void inline_size 750inline_size void
643fd_reify (EV_P) 751fd_reify (EV_P)
644{ 752{
645 int i; 753 int i;
646 754
647 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 764 events |= (unsigned char)w->events;
657 765
658#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
659 if (events) 767 if (events)
660 { 768 {
661 unsigned long argp; 769 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 770 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 772 #else
665 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
666 #endif 774 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 776 }
669#endif 777#endif
670 778
671 { 779 {
672 unsigned char o_events = anfd->events; 780 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 781 unsigned char o_reify = anfd->reify;
674 782
675 anfd->reify = 0; 783 anfd->reify = 0;
676 anfd->events = events; 784 anfd->events = events;
677 785
678 if (o_events != events || o_reify & EV_IOFDSET) 786 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 787 backend_modify (EV_A_ fd, o_events, events);
680 } 788 }
681 } 789 }
682 790
683 fdchangecnt = 0; 791 fdchangecnt = 0;
684} 792}
685 793
686void inline_size 794inline_size void
687fd_change (EV_P_ int fd, int flags) 795fd_change (EV_P_ int fd, int flags)
688{ 796{
689 unsigned char reify = anfds [fd].reify; 797 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 798 anfds [fd].reify |= flags;
691 799
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
697 } 805 }
698} 806}
699 807
700void inline_speed 808inline_speed void
701fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
702{ 810{
703 ev_io *w; 811 ev_io *w;
704 812
705 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 817 }
710} 818}
711 819
712int inline_size 820inline_size int
713fd_valid (int fd) 821fd_valid (int fd)
714{ 822{
715#ifdef _WIN32 823#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
717#else 825#else
725{ 833{
726 int fd; 834 int fd;
727 835
728 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 837 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
732} 840}
733 841
734/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 843static void noinline
753 861
754 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 863 if (anfds [fd].events)
756 { 864 {
757 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
759 } 868 }
760} 869}
761 870
762/*****************************************************************************/ 871/*****************************************************************************/
872
873/*
874 * the heap functions want a real array index. array index 0 uis guaranteed to not
875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
876 * the branching factor of the d-tree.
877 */
763 878
764/* 879/*
765 * at the moment we allow libev the luxury of two heaps, 880 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 882 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 883 * the difference is about 5% with 50000+ watchers.
769 */ 884 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 885#if EV_USE_4HEAP
772 886
773#define DHEAP 4 887#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
775 891
776/* towards the root */ 892/* away from the root */
777void inline_speed 893inline_speed void
778upheap (WT *heap, int k) 894downheap (ANHE *heap, int N, int k)
779{ 895{
780 WT w = heap [k]; 896 ANHE he = heap [k];
781 ev_tstamp w_at = w->at; 897 ANHE *E = heap + N + HEAP0;
782 898
783 for (;;) 899 for (;;)
784 { 900 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat; 901 ev_tstamp minat;
809 WT *minpos; 902 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 904
812 // find minimum child 905 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 906 if (expect_true (pos + DHEAP - 1 < E))
814 { 907 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at); 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 912 }
820 else if (pos < E) 913 else if (pos < E)
821 { 914 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at); 915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
826 } 919 }
827 else 920 else
828 break; 921 break;
829 922
830 if (w->at <= minat) 923 if (ANHE_at (he) <= minat)
831 break; 924 break;
832 925
833 ev_active (*minpos) = k;
834 heap [k] = *minpos; 926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
835 928
836 k = minpos - heap; 929 k = minpos - heap;
837 } 930 }
838 931
839 heap [k] = w; 932 heap [k] = he;
840 ev_active (heap [k]) = k; 933 ev_active (ANHE_w (he)) = k;
841} 934}
842 935
843#else // 4HEAP 936#else /* 4HEAP */
844 937
845#define HEAP0 1 938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
846 941
847/* towards the root */ 942/* away from the root */
848void inline_speed 943inline_speed void
849upheap (WT *heap, int k) 944downheap (ANHE *heap, int N, int k)
850{ 945{
851 WT w = heap [k]; 946 ANHE he = heap [k];
852 947
853 for (;;) 948 for (;;)
854 { 949 {
855 int p = k >> 1; 950 int c = k << 1;
856 951
857 /* maybe we could use a dummy element at heap [0]? */ 952 if (c > N + HEAP0 - 1)
858 if (!p || heap [p]->at <= w->at)
859 break; 953 break;
860 954
861 heap [k] = heap [p]; 955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
862 ev_active (heap [k]) = k; 956 ? 1 : 0;
863 k = p;
864 }
865 957
866 heap [k] = w; 958 if (ANHE_at (he) <= ANHE_at (heap [c]))
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break; 959 break;
882 960
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c]; 961 heap [k] = heap [c];
890 ((W)heap [k])->active = k; 962 ev_active (ANHE_w (heap [k])) = k;
891 963
892 k = c; 964 k = c;
893 } 965 }
894 966
895 heap [k] = w; 967 heap [k] = he;
968 ev_active (ANHE_w (he)) = k;
969}
970#endif
971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
896 ev_active (heap [k]) = k; 986 ev_active (ANHE_w (heap [k])) = k;
897} 987 k = p;
898#endif 988 }
899 989
900void inline_size 990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
901adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
902{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
903 upheap (heap, k); 998 upheap (heap, k);
999 else
904 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
905} 1013}
906 1014
907/*****************************************************************************/ 1015/*****************************************************************************/
908 1016
909typedef struct 1017typedef struct
915static ANSIG *signals; 1023static ANSIG *signals;
916static int signalmax; 1024static int signalmax;
917 1025
918static EV_ATOMIC_T gotsig; 1026static EV_ATOMIC_T gotsig;
919 1027
920void inline_size
921signals_init (ANSIG *base, int count)
922{
923 while (count--)
924 {
925 base->head = 0;
926 base->gotsig = 0;
927
928 ++base;
929 }
930}
931
932/*****************************************************************************/ 1028/*****************************************************************************/
933 1029
934void inline_speed 1030inline_speed void
935fd_intern (int fd) 1031fd_intern (int fd)
936{ 1032{
937#ifdef _WIN32 1033#ifdef _WIN32
938 int arg = 1; 1034 unsigned long arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else 1036#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif 1039#endif
957 } 1053 }
958 else 1054 else
959#endif 1055#endif
960 { 1056 {
961 while (pipe (evpipe)) 1057 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe"); 1058 ev_syserr ("(libev) error creating signal/async pipe");
963 1059
964 fd_intern (evpipe [0]); 1060 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]); 1061 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ); 1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 } 1063 }
969 ev_io_start (EV_A_ &pipeev); 1065 ev_io_start (EV_A_ &pipeev);
970 ev_unref (EV_A); /* watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
971 } 1067 }
972} 1068}
973 1069
974void inline_size 1070inline_size void
975evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{ 1072{
977 if (!*flag) 1073 if (!*flag)
978 { 1074 {
979 int old_errno = errno; /* save errno because write might clobber it */ 1075 int old_errno = errno; /* save errno because write might clobber it */
1057ev_feed_signal_event (EV_P_ int signum) 1153ev_feed_signal_event (EV_P_ int signum)
1058{ 1154{
1059 WL w; 1155 WL w;
1060 1156
1061#if EV_MULTIPLICITY 1157#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1063#endif 1159#endif
1064 1160
1065 --signum; 1161 --signum;
1066 1162
1067 if (signum < 0 || signum >= signalmax) 1163 if (signum < 0 || signum >= signalmax)
1083 1179
1084#ifndef WIFCONTINUED 1180#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0 1181# define WIFCONTINUED(status) 0
1086#endif 1182#endif
1087 1183
1088void inline_speed 1184inline_speed void
1089child_reap (EV_P_ int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
1090{ 1186{
1091 ev_child *w; 1187 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093 1189
1196 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
1199#endif 1295#endif
1200#ifdef __APPLE__ 1296#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
1202 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1203#endif 1300#endif
1204 1301
1205 return flags; 1302 return flags;
1206} 1303}
1207 1304
1244static void noinline 1341static void noinline
1245loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
1246{ 1343{
1247 if (!backend) 1344 if (!backend)
1248 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
1249#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1250 { 1358 {
1251 struct timespec ts; 1359 struct timespec ts;
1360
1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1253 have_monotonic = 1; 1362 have_monotonic = 1;
1254 } 1363 }
1255#endif 1364#endif
1256 1365
1257 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
1258 mn_now = get_clock (); 1367 mn_now = get_clock ();
1259 now_floor = mn_now; 1368 now_floor = mn_now;
1358 } 1467 }
1359 1468
1360 ev_free (anfds); anfdmax = 0; 1469 ev_free (anfds); anfdmax = 0;
1361 1470
1362 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1363 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1364 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1365#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1366 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1367#endif 1477#endif
1376 1486
1377 backend = 0; 1487 backend = 0;
1378} 1488}
1379 1489
1380#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1382#endif 1492#endif
1383 1493
1384void inline_size 1494inline_size void
1385loop_fork (EV_P) 1495loop_fork (EV_P)
1386{ 1496{
1387#if EV_USE_PORT 1497#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif 1499#endif
1427 1537
1428 postfork = 0; 1538 postfork = 0;
1429} 1539}
1430 1540
1431#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1432struct ev_loop * 1543struct ev_loop *
1433ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1434{ 1545{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 1547
1454void 1565void
1455ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1456{ 1567{
1457 postfork = 1; /* must be in line with ev_default_fork */ 1568 postfork = 1; /* must be in line with ev_default_fork */
1458} 1569}
1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1459#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1460 1671
1461#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1462struct ev_loop * 1673struct ev_loop *
1463ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1464#else 1675#else
1497{ 1708{
1498#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1499 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1500#endif 1711#endif
1501 1712
1713 ev_default_loop_ptr = 0;
1714
1502#ifndef _WIN32 1715#ifndef _WIN32
1503 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1504 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1505#endif 1718#endif
1506 1719
1512{ 1725{
1513#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1514 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1515#endif 1728#endif
1516 1729
1517 if (backend)
1518 postfork = 1; /* must be in line with ev_loop_fork */ 1730 postfork = 1; /* must be in line with ev_loop_fork */
1519} 1731}
1520 1732
1521/*****************************************************************************/ 1733/*****************************************************************************/
1522 1734
1523void 1735void
1524ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1525{ 1737{
1526 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1527} 1739}
1528 1740
1529void inline_speed 1741inline_speed void
1530call_pending (EV_P) 1742call_pending (EV_P)
1531{ 1743{
1532 int pri; 1744 int pri;
1533 1745
1534 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1536 { 1748 {
1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1538 1750
1539 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1540 { 1752 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1542 1754
1543 p->w->pending = 0; 1755 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1545 } 1758 }
1546 } 1759 }
1547} 1760}
1548 1761
1549#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1550void inline_size 1763inline_size void
1551idle_reify (EV_P) 1764idle_reify (EV_P)
1552{ 1765{
1553 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1554 { 1767 {
1555 int pri; 1768 int pri;
1567 } 1780 }
1568 } 1781 }
1569} 1782}
1570#endif 1783#endif
1571 1784
1572void inline_size 1785inline_size void
1573timers_reify (EV_P) 1786timers_reify (EV_P)
1574{ 1787{
1788 EV_FREQUENT_CHECK;
1789
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 1791 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 1792 do
1578
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580
1581 /* first reschedule or stop timer */
1582 if (w->repeat)
1583 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585 1806
1586 ev_at (w) += w->repeat; 1807 ANHE_at_cache (timers [HEAP0]);
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
1590 downheap (timers, timercnt, HEAP0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1591 } 1815 }
1592 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 1817
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1596 } 1819 }
1597} 1820}
1598 1821
1599#if EV_PERIODIC_ENABLE 1822#if EV_PERIODIC_ENABLE
1600void inline_size 1823inline_size void
1601periodics_reify (EV_P) 1824periodics_reify (EV_P)
1602{ 1825{
1826 EV_FREQUENT_CHECK;
1827
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 1829 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1830 int feed_count = 0;
1606 1831
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1832 do
1608
1609 /* first reschedule or stop timer */
1610 if (w->reschedule_cb)
1611 { 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1615 } 1872 }
1616 else if (w->interval) 1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
1622 }
1623 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 1874
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1627 } 1876 }
1628} 1877}
1629 1878
1630static void noinline 1879static void noinline
1631periodics_reschedule (EV_P) 1880periodics_reschedule (EV_P)
1632{ 1881{
1633 int i; 1882 int i;
1634 1883
1635 /* adjust periodics after time jump */ 1884 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 1886 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 1888
1640 if (w->reschedule_cb) 1889 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 1891 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1644 } 1907 {
1645 1908 ANHE *he = timers + i + HEAP0;
1646 /* now rebuild the heap */ 1909 ANHE_w (*he)->at += adjust;
1647 for (i = periodiccnt >> 1; --i; ) 1910 ANHE_at_cache (*he);
1648 downheap (periodics, periodiccnt, i + HEAP0); 1911 }
1649} 1912}
1650#endif
1651 1913
1652void inline_speed 1914inline_speed void
1653time_update (EV_P_ ev_tstamp max_block) 1915time_update (EV_P_ ev_tstamp max_block)
1654{ 1916{
1655 int i; 1917 int i;
1656 1918
1657#if EV_USE_MONOTONIC 1919#if EV_USE_MONOTONIC
1690 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1691 mn_now = get_clock (); 1953 mn_now = get_clock ();
1692 now_floor = mn_now; 1954 now_floor = mn_now;
1693 } 1955 }
1694 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1695# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1697# endif 1961# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 } 1962 }
1701 else 1963 else
1702#endif 1964#endif
1703 { 1965 {
1704 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1705 1967
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1708#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1710#endif 1974#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1714 } 1975 }
1715 1976
1716 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1717 } 1978 }
1718} 1979}
1719 1980
1720void
1721ev_ref (EV_P)
1722{
1723 ++activecnt;
1724}
1725
1726void
1727ev_unref (EV_P)
1728{
1729 --activecnt;
1730}
1731
1732static int loop_done; 1981static int loop_done;
1733 1982
1734void 1983void
1735ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1736{ 1985{
1738 1987
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1740 1989
1741 do 1990 do
1742 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1743#ifndef _WIN32 1996#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1746 { 1999 {
1747 curpid = getpid (); 2000 curpid = getpid ();
1764 { 2017 {
1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1766 call_pending (EV_A); 2019 call_pending (EV_A);
1767 } 2020 }
1768 2021
1769 if (expect_false (!activecnt))
1770 break;
1771
1772 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1773 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1774 loop_fork (EV_A); 2024 loop_fork (EV_A);
1775 2025
1776 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1785 { 2035 {
1786 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
1787 time_update (EV_A_ 1e100); 2037 time_update (EV_A_ 1e100);
1788 2038
1789 waittime = MAX_BLOCKTIME;
1790
1791 if (timercnt) 2039 if (timercnt)
1792 { 2040 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1794 if (waittime > to) waittime = to; 2042 if (waittime > to) waittime = to;
1795 } 2043 }
1796 2044
1797#if EV_PERIODIC_ENABLE 2045#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 2046 if (periodiccnt)
1799 { 2047 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1801 if (waittime > to) waittime = to; 2049 if (waittime > to) waittime = to;
1802 } 2050 }
1803#endif 2051#endif
1804 2052
1805 if (expect_false (waittime < timeout_blocktime)) 2053 if (expect_false (waittime < timeout_blocktime))
1855ev_unloop (EV_P_ int how) 2103ev_unloop (EV_P_ int how)
1856{ 2104{
1857 loop_done = how; 2105 loop_done = how;
1858} 2106}
1859 2107
2108void
2109ev_ref (EV_P)
2110{
2111 ++activecnt;
2112}
2113
2114void
2115ev_unref (EV_P)
2116{
2117 --activecnt;
2118}
2119
2120void
2121ev_now_update (EV_P)
2122{
2123 time_update (EV_A_ 1e100);
2124}
2125
2126void
2127ev_suspend (EV_P)
2128{
2129 ev_now_update (EV_A);
2130}
2131
2132void
2133ev_resume (EV_P)
2134{
2135 ev_tstamp mn_prev = mn_now;
2136
2137 ev_now_update (EV_A);
2138 timers_reschedule (EV_A_ mn_now - mn_prev);
2139#if EV_PERIODIC_ENABLE
2140 periodics_reschedule (EV_A);
2141#endif
2142}
2143
1860/*****************************************************************************/ 2144/*****************************************************************************/
1861 2145
1862void inline_size 2146inline_size void
1863wlist_add (WL *head, WL elem) 2147wlist_add (WL *head, WL elem)
1864{ 2148{
1865 elem->next = *head; 2149 elem->next = *head;
1866 *head = elem; 2150 *head = elem;
1867} 2151}
1868 2152
1869void inline_size 2153inline_size void
1870wlist_del (WL *head, WL elem) 2154wlist_del (WL *head, WL elem)
1871{ 2155{
1872 while (*head) 2156 while (*head)
1873 { 2157 {
1874 if (*head == elem) 2158 if (*head == elem)
1879 2163
1880 head = &(*head)->next; 2164 head = &(*head)->next;
1881 } 2165 }
1882} 2166}
1883 2167
1884void inline_speed 2168inline_speed void
1885clear_pending (EV_P_ W w) 2169clear_pending (EV_P_ W w)
1886{ 2170{
1887 if (w->pending) 2171 if (w->pending)
1888 { 2172 {
1889 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2173 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1906 } 2190 }
1907 else 2191 else
1908 return 0; 2192 return 0;
1909} 2193}
1910 2194
1911void inline_size 2195inline_size void
1912pri_adjust (EV_P_ W w) 2196pri_adjust (EV_P_ W w)
1913{ 2197{
1914 int pri = w->priority; 2198 int pri = w->priority;
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2199 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2200 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri; 2201 w->priority = pri;
1918} 2202}
1919 2203
1920void inline_speed 2204inline_speed void
1921ev_start (EV_P_ W w, int active) 2205ev_start (EV_P_ W w, int active)
1922{ 2206{
1923 pri_adjust (EV_A_ w); 2207 pri_adjust (EV_A_ w);
1924 w->active = active; 2208 w->active = active;
1925 ev_ref (EV_A); 2209 ev_ref (EV_A);
1926} 2210}
1927 2211
1928void inline_size 2212inline_size void
1929ev_stop (EV_P_ W w) 2213ev_stop (EV_P_ W w)
1930{ 2214{
1931 ev_unref (EV_A); 2215 ev_unref (EV_A);
1932 w->active = 0; 2216 w->active = 0;
1933} 2217}
1940 int fd = w->fd; 2224 int fd = w->fd;
1941 2225
1942 if (expect_false (ev_is_active (w))) 2226 if (expect_false (ev_is_active (w)))
1943 return; 2227 return;
1944 2228
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 2229 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2230 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2231
2232 EV_FREQUENT_CHECK;
1946 2233
1947 ev_start (EV_A_ (W)w, 1); 2234 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2235 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1949 wlist_add (&anfds[fd].head, (WL)w); 2236 wlist_add (&anfds[fd].head, (WL)w);
1950 2237
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2238 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET; 2239 w->events &= ~EV__IOFDSET;
2240
2241 EV_FREQUENT_CHECK;
1953} 2242}
1954 2243
1955void noinline 2244void noinline
1956ev_io_stop (EV_P_ ev_io *w) 2245ev_io_stop (EV_P_ ev_io *w)
1957{ 2246{
1958 clear_pending (EV_A_ (W)w); 2247 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 2248 if (expect_false (!ev_is_active (w)))
1960 return; 2249 return;
1961 2250
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2251 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2252
2253 EV_FREQUENT_CHECK;
1963 2254
1964 wlist_del (&anfds[w->fd].head, (WL)w); 2255 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 2256 ev_stop (EV_A_ (W)w);
1966 2257
1967 fd_change (EV_A_ w->fd, 1); 2258 fd_change (EV_A_ w->fd, 1);
2259
2260 EV_FREQUENT_CHECK;
1968} 2261}
1969 2262
1970void noinline 2263void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 2264ev_timer_start (EV_P_ ev_timer *w)
1972{ 2265{
1973 if (expect_false (ev_is_active (w))) 2266 if (expect_false (ev_is_active (w)))
1974 return; 2267 return;
1975 2268
1976 ev_at (w) += mn_now; 2269 ev_at (w) += mn_now;
1977 2270
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2271 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2276 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2277 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 2278 ANHE_w (timers [ev_active (w)]) = (WT)w;
2279 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 2280 upheap (timers, ev_active (w));
1984 2281
2282 EV_FREQUENT_CHECK;
2283
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2284 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 2285}
1987 2286
1988void noinline 2287void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 2288ev_timer_stop (EV_P_ ev_timer *w)
1990{ 2289{
1991 clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1993 return; 2292 return;
1994 2293
2294 EV_FREQUENT_CHECK;
2295
1995 { 2296 {
1996 int active = ev_active (w); 2297 int active = ev_active (w);
1997 2298
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2299 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 2300
2301 --timercnt;
2302
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 2303 if (expect_true (active < timercnt + HEAP0))
2001 { 2304 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 2305 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 2306 adjustheap (timers, timercnt, active);
2004 } 2307 }
2005
2006 --timercnt;
2007 } 2308 }
2309
2310 EV_FREQUENT_CHECK;
2008 2311
2009 ev_at (w) -= mn_now; 2312 ev_at (w) -= mn_now;
2010 2313
2011 ev_stop (EV_A_ (W)w); 2314 ev_stop (EV_A_ (W)w);
2012} 2315}
2013 2316
2014void noinline 2317void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 2318ev_timer_again (EV_P_ ev_timer *w)
2016{ 2319{
2320 EV_FREQUENT_CHECK;
2321
2017 if (ev_is_active (w)) 2322 if (ev_is_active (w))
2018 { 2323 {
2019 if (w->repeat) 2324 if (w->repeat)
2020 { 2325 {
2021 ev_at (w) = mn_now + w->repeat; 2326 ev_at (w) = mn_now + w->repeat;
2327 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 2328 adjustheap (timers, timercnt, ev_active (w));
2023 } 2329 }
2024 else 2330 else
2025 ev_timer_stop (EV_A_ w); 2331 ev_timer_stop (EV_A_ w);
2026 } 2332 }
2027 else if (w->repeat) 2333 else if (w->repeat)
2028 { 2334 {
2029 ev_at (w) = w->repeat; 2335 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 2336 ev_timer_start (EV_A_ w);
2031 } 2337 }
2338
2339 EV_FREQUENT_CHECK;
2032} 2340}
2033 2341
2034#if EV_PERIODIC_ENABLE 2342#if EV_PERIODIC_ENABLE
2035void noinline 2343void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 2344ev_periodic_start (EV_P_ ev_periodic *w)
2040 2348
2041 if (w->reschedule_cb) 2349 if (w->reschedule_cb)
2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2350 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2043 else if (w->interval) 2351 else if (w->interval)
2044 { 2352 {
2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2353 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2046 /* this formula differs from the one in periodic_reify because we do not always round up */ 2354 /* this formula differs from the one in periodic_reify because we do not always round up */
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2355 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 2356 }
2049 else 2357 else
2050 ev_at (w) = w->offset; 2358 ev_at (w) = w->offset;
2051 2359
2360 EV_FREQUENT_CHECK;
2361
2362 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2363 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2364 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 2365 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2366 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 2367 upheap (periodics, ev_active (w));
2056 2368
2369 EV_FREQUENT_CHECK;
2370
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2371 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 2372}
2059 2373
2060void noinline 2374void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 2375ev_periodic_stop (EV_P_ ev_periodic *w)
2062{ 2376{
2063 clear_pending (EV_A_ (W)w); 2377 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 2378 if (expect_false (!ev_is_active (w)))
2065 return; 2379 return;
2066 2380
2381 EV_FREQUENT_CHECK;
2382
2067 { 2383 {
2068 int active = ev_active (w); 2384 int active = ev_active (w);
2069 2385
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2386 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 2387
2388 --periodiccnt;
2389
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2390 if (expect_true (active < periodiccnt + HEAP0))
2073 { 2391 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2392 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 2393 adjustheap (periodics, periodiccnt, active);
2076 } 2394 }
2077
2078 --periodiccnt;
2079 } 2395 }
2396
2397 EV_FREQUENT_CHECK;
2080 2398
2081 ev_stop (EV_A_ (W)w); 2399 ev_stop (EV_A_ (W)w);
2082} 2400}
2083 2401
2084void noinline 2402void noinline
2096 2414
2097void noinline 2415void noinline
2098ev_signal_start (EV_P_ ev_signal *w) 2416ev_signal_start (EV_P_ ev_signal *w)
2099{ 2417{
2100#if EV_MULTIPLICITY 2418#if EV_MULTIPLICITY
2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2419 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2102#endif 2420#endif
2103 if (expect_false (ev_is_active (w))) 2421 if (expect_false (ev_is_active (w)))
2104 return; 2422 return;
2105 2423
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2424 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2107 2425
2108 evpipe_init (EV_A); 2426 evpipe_init (EV_A);
2427
2428 EV_FREQUENT_CHECK;
2109 2429
2110 { 2430 {
2111#ifndef _WIN32 2431#ifndef _WIN32
2112 sigset_t full, prev; 2432 sigset_t full, prev;
2113 sigfillset (&full); 2433 sigfillset (&full);
2114 sigprocmask (SIG_SETMASK, &full, &prev); 2434 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif 2435#endif
2116 2436
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2437 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2118 2438
2119#ifndef _WIN32 2439#ifndef _WIN32
2120 sigprocmask (SIG_SETMASK, &prev, 0); 2440 sigprocmask (SIG_SETMASK, &prev, 0);
2121#endif 2441#endif
2122 } 2442 }
2134 sigfillset (&sa.sa_mask); 2454 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2455 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 2456 sigaction (w->signum, &sa, 0);
2137#endif 2457#endif
2138 } 2458 }
2459
2460 EV_FREQUENT_CHECK;
2139} 2461}
2140 2462
2141void noinline 2463void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 2464ev_signal_stop (EV_P_ ev_signal *w)
2143{ 2465{
2144 clear_pending (EV_A_ (W)w); 2466 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2467 if (expect_false (!ev_is_active (w)))
2146 return; 2468 return;
2147 2469
2470 EV_FREQUENT_CHECK;
2471
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 2472 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 2473 ev_stop (EV_A_ (W)w);
2150 2474
2151 if (!signals [w->signum - 1].head) 2475 if (!signals [w->signum - 1].head)
2152 signal (w->signum, SIG_DFL); 2476 signal (w->signum, SIG_DFL);
2477
2478 EV_FREQUENT_CHECK;
2153} 2479}
2154 2480
2155void 2481void
2156ev_child_start (EV_P_ ev_child *w) 2482ev_child_start (EV_P_ ev_child *w)
2157{ 2483{
2158#if EV_MULTIPLICITY 2484#if EV_MULTIPLICITY
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2485 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 2486#endif
2161 if (expect_false (ev_is_active (w))) 2487 if (expect_false (ev_is_active (w)))
2162 return; 2488 return;
2163 2489
2490 EV_FREQUENT_CHECK;
2491
2164 ev_start (EV_A_ (W)w, 1); 2492 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2493 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2494
2495 EV_FREQUENT_CHECK;
2166} 2496}
2167 2497
2168void 2498void
2169ev_child_stop (EV_P_ ev_child *w) 2499ev_child_stop (EV_P_ ev_child *w)
2170{ 2500{
2171 clear_pending (EV_A_ (W)w); 2501 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 2502 if (expect_false (!ev_is_active (w)))
2173 return; 2503 return;
2174 2504
2505 EV_FREQUENT_CHECK;
2506
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2507 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 2508 ev_stop (EV_A_ (W)w);
2509
2510 EV_FREQUENT_CHECK;
2177} 2511}
2178 2512
2179#if EV_STAT_ENABLE 2513#if EV_STAT_ENABLE
2180 2514
2181# ifdef _WIN32 2515# ifdef _WIN32
2182# undef lstat 2516# undef lstat
2183# define lstat(a,b) _stati64 (a,b) 2517# define lstat(a,b) _stati64 (a,b)
2184# endif 2518# endif
2185 2519
2186#define DEF_STAT_INTERVAL 5.0074891 2520#define DEF_STAT_INTERVAL 5.0074891
2521#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2187#define MIN_STAT_INTERVAL 0.1074891 2522#define MIN_STAT_INTERVAL 0.1074891
2188 2523
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2524static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190 2525
2191#if EV_USE_INOTIFY 2526#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192 2527# define EV_INOTIFY_BUFSIZE 8192
2196{ 2531{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2532 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198 2533
2199 if (w->wd < 0) 2534 if (w->wd < 0)
2200 { 2535 {
2536 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2537 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2202 2538
2203 /* monitor some parent directory for speedup hints */ 2539 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2540 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2205 /* but an efficiency issue only */ 2541 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2542 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 { 2543 {
2208 char path [4096]; 2544 char path [4096];
2209 strcpy (path, w->path); 2545 strcpy (path, w->path);
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2549 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2550 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215 2551
2216 char *pend = strrchr (path, '/'); 2552 char *pend = strrchr (path, '/');
2217 2553
2218 if (!pend) 2554 if (!pend || pend == path)
2219 break; /* whoops, no '/', complain to your admin */ 2555 break;
2220 2556
2221 *pend = 0; 2557 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask); 2558 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 } 2559 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2560 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 } 2561 }
2226 } 2562 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229 2563
2230 if (w->wd >= 0) 2564 if (w->wd >= 0)
2565 {
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2566 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2567
2568 /* now local changes will be tracked by inotify, but remote changes won't */
2569 /* unless the filesystem it known to be local, we therefore still poll */
2570 /* also do poll on <2.6.25, but with normal frequency */
2571 struct statfs sfs;
2572
2573 if (fs_2625 && !statfs (w->path, &sfs))
2574 if (sfs.f_type == 0x1373 /* devfs */
2575 || sfs.f_type == 0xEF53 /* ext2/3 */
2576 || sfs.f_type == 0x3153464a /* jfs */
2577 || sfs.f_type == 0x52654973 /* reiser3 */
2578 || sfs.f_type == 0x01021994 /* tempfs */
2579 || sfs.f_type == 0x58465342 /* xfs */)
2580 return;
2581
2582 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2583 ev_timer_again (EV_A_ &w->timer);
2584 }
2232} 2585}
2233 2586
2234static void noinline 2587static void noinline
2235infy_del (EV_P_ ev_stat *w) 2588infy_del (EV_P_ ev_stat *w)
2236{ 2589{
2250 2603
2251static void noinline 2604static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2605infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{ 2606{
2254 if (slot < 0) 2607 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */ 2608 /* overflow, need to check for all hash slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2609 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2257 infy_wd (EV_A_ slot, wd, ev); 2610 infy_wd (EV_A_ slot, wd, ev);
2258 else 2611 else
2259 { 2612 {
2260 WL w_; 2613 WL w_;
2266 2619
2267 if (w->wd == wd || wd == -1) 2620 if (w->wd == wd || wd == -1)
2268 { 2621 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2622 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 { 2623 {
2624 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2271 w->wd = -1; 2625 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */ 2626 infy_add (EV_A_ w); /* re-add, no matter what */
2273 } 2627 }
2274 2628
2275 stat_timer_cb (EV_A_ &w->timer, 0); 2629 stat_timer_cb (EV_A_ &w->timer, 0);
2288 2642
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2643 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2644 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2291} 2645}
2292 2646
2293void inline_size 2647inline_size void
2648check_2625 (EV_P)
2649{
2650 /* kernels < 2.6.25 are borked
2651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2652 */
2653 struct utsname buf;
2654 int major, minor, micro;
2655
2656 if (uname (&buf))
2657 return;
2658
2659 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2660 return;
2661
2662 if (major < 2
2663 || (major == 2 && minor < 6)
2664 || (major == 2 && minor == 6 && micro < 25))
2665 return;
2666
2667 fs_2625 = 1;
2668}
2669
2670inline_size void
2294infy_init (EV_P) 2671infy_init (EV_P)
2295{ 2672{
2296 if (fs_fd != -2) 2673 if (fs_fd != -2)
2297 return; 2674 return;
2675
2676 fs_fd = -1;
2677
2678 check_2625 (EV_A);
2298 2679
2299 fs_fd = inotify_init (); 2680 fs_fd = inotify_init ();
2300 2681
2301 if (fs_fd >= 0) 2682 if (fs_fd >= 0)
2302 { 2683 {
2304 ev_set_priority (&fs_w, EV_MAXPRI); 2685 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w); 2686 ev_io_start (EV_A_ &fs_w);
2306 } 2687 }
2307} 2688}
2308 2689
2309void inline_size 2690inline_size void
2310infy_fork (EV_P) 2691infy_fork (EV_P)
2311{ 2692{
2312 int slot; 2693 int slot;
2313 2694
2314 if (fs_fd < 0) 2695 if (fs_fd < 0)
2330 w->wd = -1; 2711 w->wd = -1;
2331 2712
2332 if (fs_fd >= 0) 2713 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2714 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else 2715 else
2335 ev_timer_start (EV_A_ &w->timer); 2716 ev_timer_again (EV_A_ &w->timer);
2336 } 2717 }
2337
2338 } 2718 }
2339} 2719}
2340 2720
2721#endif
2722
2723#ifdef _WIN32
2724# define EV_LSTAT(p,b) _stati64 (p, b)
2725#else
2726# define EV_LSTAT(p,b) lstat (p, b)
2341#endif 2727#endif
2342 2728
2343void 2729void
2344ev_stat_stat (EV_P_ ev_stat *w) 2730ev_stat_stat (EV_P_ ev_stat *w)
2345{ 2731{
2372 || w->prev.st_atime != w->attr.st_atime 2758 || w->prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime 2759 || w->prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime 2760 || w->prev.st_ctime != w->attr.st_ctime
2375 ) { 2761 ) {
2376 #if EV_USE_INOTIFY 2762 #if EV_USE_INOTIFY
2763 if (fs_fd >= 0)
2764 {
2377 infy_del (EV_A_ w); 2765 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w); 2766 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */ 2767 ev_stat_stat (EV_A_ w); /* avoid race... */
2768 }
2380 #endif 2769 #endif
2381 2770
2382 ev_feed_event (EV_A_ w, EV_STAT); 2771 ev_feed_event (EV_A_ w, EV_STAT);
2383 } 2772 }
2384} 2773}
2387ev_stat_start (EV_P_ ev_stat *w) 2776ev_stat_start (EV_P_ ev_stat *w)
2388{ 2777{
2389 if (expect_false (ev_is_active (w))) 2778 if (expect_false (ev_is_active (w)))
2390 return; 2779 return;
2391 2780
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w); 2781 ev_stat_stat (EV_A_ w);
2397 2782
2783 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2398 if (w->interval < MIN_STAT_INTERVAL) 2784 w->interval = MIN_STAT_INTERVAL;
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400 2785
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2786 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2402 ev_set_priority (&w->timer, ev_priority (w)); 2787 ev_set_priority (&w->timer, ev_priority (w));
2403 2788
2404#if EV_USE_INOTIFY 2789#if EV_USE_INOTIFY
2405 infy_init (EV_A); 2790 infy_init (EV_A);
2406 2791
2407 if (fs_fd >= 0) 2792 if (fs_fd >= 0)
2408 infy_add (EV_A_ w); 2793 infy_add (EV_A_ w);
2409 else 2794 else
2410#endif 2795#endif
2411 ev_timer_start (EV_A_ &w->timer); 2796 ev_timer_again (EV_A_ &w->timer);
2412 2797
2413 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
2799
2800 EV_FREQUENT_CHECK;
2414} 2801}
2415 2802
2416void 2803void
2417ev_stat_stop (EV_P_ ev_stat *w) 2804ev_stat_stop (EV_P_ ev_stat *w)
2418{ 2805{
2419 clear_pending (EV_A_ (W)w); 2806 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 2807 if (expect_false (!ev_is_active (w)))
2421 return; 2808 return;
2422 2809
2810 EV_FREQUENT_CHECK;
2811
2423#if EV_USE_INOTIFY 2812#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 2813 infy_del (EV_A_ w);
2425#endif 2814#endif
2426 ev_timer_stop (EV_A_ &w->timer); 2815 ev_timer_stop (EV_A_ &w->timer);
2427 2816
2428 ev_stop (EV_A_ (W)w); 2817 ev_stop (EV_A_ (W)w);
2818
2819 EV_FREQUENT_CHECK;
2429} 2820}
2430#endif 2821#endif
2431 2822
2432#if EV_IDLE_ENABLE 2823#if EV_IDLE_ENABLE
2433void 2824void
2435{ 2826{
2436 if (expect_false (ev_is_active (w))) 2827 if (expect_false (ev_is_active (w)))
2437 return; 2828 return;
2438 2829
2439 pri_adjust (EV_A_ (W)w); 2830 pri_adjust (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2440 2833
2441 { 2834 {
2442 int active = ++idlecnt [ABSPRI (w)]; 2835 int active = ++idlecnt [ABSPRI (w)];
2443 2836
2444 ++idleall; 2837 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 2838 ev_start (EV_A_ (W)w, active);
2446 2839
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2840 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 2841 idles [ABSPRI (w)][active - 1] = w;
2449 } 2842 }
2843
2844 EV_FREQUENT_CHECK;
2450} 2845}
2451 2846
2452void 2847void
2453ev_idle_stop (EV_P_ ev_idle *w) 2848ev_idle_stop (EV_P_ ev_idle *w)
2454{ 2849{
2455 clear_pending (EV_A_ (W)w); 2850 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2851 if (expect_false (!ev_is_active (w)))
2457 return; 2852 return;
2458 2853
2854 EV_FREQUENT_CHECK;
2855
2459 { 2856 {
2460 int active = ev_active (w); 2857 int active = ev_active (w);
2461 2858
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2859 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2860 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 2861
2465 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2466 --idleall; 2863 --idleall;
2467 } 2864 }
2865
2866 EV_FREQUENT_CHECK;
2468} 2867}
2469#endif 2868#endif
2470 2869
2471void 2870void
2472ev_prepare_start (EV_P_ ev_prepare *w) 2871ev_prepare_start (EV_P_ ev_prepare *w)
2473{ 2872{
2474 if (expect_false (ev_is_active (w))) 2873 if (expect_false (ev_is_active (w)))
2475 return; 2874 return;
2875
2876 EV_FREQUENT_CHECK;
2476 2877
2477 ev_start (EV_A_ (W)w, ++preparecnt); 2878 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2879 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 2880 prepares [preparecnt - 1] = w;
2881
2882 EV_FREQUENT_CHECK;
2480} 2883}
2481 2884
2482void 2885void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 2886ev_prepare_stop (EV_P_ ev_prepare *w)
2484{ 2887{
2485 clear_pending (EV_A_ (W)w); 2888 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2889 if (expect_false (!ev_is_active (w)))
2487 return; 2890 return;
2488 2891
2892 EV_FREQUENT_CHECK;
2893
2489 { 2894 {
2490 int active = ev_active (w); 2895 int active = ev_active (w);
2491 2896
2492 prepares [active - 1] = prepares [--preparecnt]; 2897 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 2898 ev_active (prepares [active - 1]) = active;
2494 } 2899 }
2495 2900
2496 ev_stop (EV_A_ (W)w); 2901 ev_stop (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2497} 2904}
2498 2905
2499void 2906void
2500ev_check_start (EV_P_ ev_check *w) 2907ev_check_start (EV_P_ ev_check *w)
2501{ 2908{
2502 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2503 return; 2910 return;
2911
2912 EV_FREQUENT_CHECK;
2504 2913
2505 ev_start (EV_A_ (W)w, ++checkcnt); 2914 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2915 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 2916 checks [checkcnt - 1] = w;
2917
2918 EV_FREQUENT_CHECK;
2508} 2919}
2509 2920
2510void 2921void
2511ev_check_stop (EV_P_ ev_check *w) 2922ev_check_stop (EV_P_ ev_check *w)
2512{ 2923{
2513 clear_pending (EV_A_ (W)w); 2924 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 2925 if (expect_false (!ev_is_active (w)))
2515 return; 2926 return;
2516 2927
2928 EV_FREQUENT_CHECK;
2929
2517 { 2930 {
2518 int active = ev_active (w); 2931 int active = ev_active (w);
2519 2932
2520 checks [active - 1] = checks [--checkcnt]; 2933 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 2934 ev_active (checks [active - 1]) = active;
2522 } 2935 }
2523 2936
2524 ev_stop (EV_A_ (W)w); 2937 ev_stop (EV_A_ (W)w);
2938
2939 EV_FREQUENT_CHECK;
2525} 2940}
2526 2941
2527#if EV_EMBED_ENABLE 2942#if EV_EMBED_ENABLE
2528void noinline 2943void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 2944ev_embed_sweep (EV_P_ ev_embed *w)
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2971 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 } 2972 }
2558 } 2973 }
2559} 2974}
2560 2975
2976static void
2977embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2978{
2979 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2980
2981 ev_embed_stop (EV_A_ w);
2982
2983 {
2984 struct ev_loop *loop = w->other;
2985
2986 ev_loop_fork (EV_A);
2987 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2988 }
2989
2990 ev_embed_start (EV_A_ w);
2991}
2992
2561#if 0 2993#if 0
2562static void 2994static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2995embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{ 2996{
2565 ev_idle_stop (EV_A_ idle); 2997 ev_idle_stop (EV_A_ idle);
2572 if (expect_false (ev_is_active (w))) 3004 if (expect_false (ev_is_active (w)))
2573 return; 3005 return;
2574 3006
2575 { 3007 {
2576 struct ev_loop *loop = w->other; 3008 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3009 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3010 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 3011 }
3012
3013 EV_FREQUENT_CHECK;
2580 3014
2581 ev_set_priority (&w->io, ev_priority (w)); 3015 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 3016 ev_io_start (EV_A_ &w->io);
2583 3017
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 3018 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 3019 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 3020 ev_prepare_start (EV_A_ &w->prepare);
2587 3021
3022 ev_fork_init (&w->fork, embed_fork_cb);
3023 ev_fork_start (EV_A_ &w->fork);
3024
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3025 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 3026
2590 ev_start (EV_A_ (W)w, 1); 3027 ev_start (EV_A_ (W)w, 1);
3028
3029 EV_FREQUENT_CHECK;
2591} 3030}
2592 3031
2593void 3032void
2594ev_embed_stop (EV_P_ ev_embed *w) 3033ev_embed_stop (EV_P_ ev_embed *w)
2595{ 3034{
2596 clear_pending (EV_A_ (W)w); 3035 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 3036 if (expect_false (!ev_is_active (w)))
2598 return; 3037 return;
2599 3038
3039 EV_FREQUENT_CHECK;
3040
2600 ev_io_stop (EV_A_ &w->io); 3041 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 3042 ev_prepare_stop (EV_A_ &w->prepare);
3043 ev_fork_stop (EV_A_ &w->fork);
2602 3044
2603 ev_stop (EV_A_ (W)w); 3045 EV_FREQUENT_CHECK;
2604} 3046}
2605#endif 3047#endif
2606 3048
2607#if EV_FORK_ENABLE 3049#if EV_FORK_ENABLE
2608void 3050void
2609ev_fork_start (EV_P_ ev_fork *w) 3051ev_fork_start (EV_P_ ev_fork *w)
2610{ 3052{
2611 if (expect_false (ev_is_active (w))) 3053 if (expect_false (ev_is_active (w)))
2612 return; 3054 return;
3055
3056 EV_FREQUENT_CHECK;
2613 3057
2614 ev_start (EV_A_ (W)w, ++forkcnt); 3058 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3059 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 3060 forks [forkcnt - 1] = w;
3061
3062 EV_FREQUENT_CHECK;
2617} 3063}
2618 3064
2619void 3065void
2620ev_fork_stop (EV_P_ ev_fork *w) 3066ev_fork_stop (EV_P_ ev_fork *w)
2621{ 3067{
2622 clear_pending (EV_A_ (W)w); 3068 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 3069 if (expect_false (!ev_is_active (w)))
2624 return; 3070 return;
2625 3071
3072 EV_FREQUENT_CHECK;
3073
2626 { 3074 {
2627 int active = ev_active (w); 3075 int active = ev_active (w);
2628 3076
2629 forks [active - 1] = forks [--forkcnt]; 3077 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 3078 ev_active (forks [active - 1]) = active;
2631 } 3079 }
2632 3080
2633 ev_stop (EV_A_ (W)w); 3081 ev_stop (EV_A_ (W)w);
3082
3083 EV_FREQUENT_CHECK;
2634} 3084}
2635#endif 3085#endif
2636 3086
2637#if EV_ASYNC_ENABLE 3087#if EV_ASYNC_ENABLE
2638void 3088void
2640{ 3090{
2641 if (expect_false (ev_is_active (w))) 3091 if (expect_false (ev_is_active (w)))
2642 return; 3092 return;
2643 3093
2644 evpipe_init (EV_A); 3094 evpipe_init (EV_A);
3095
3096 EV_FREQUENT_CHECK;
2645 3097
2646 ev_start (EV_A_ (W)w, ++asynccnt); 3098 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3099 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 3100 asyncs [asynccnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
2649} 3103}
2650 3104
2651void 3105void
2652ev_async_stop (EV_P_ ev_async *w) 3106ev_async_stop (EV_P_ ev_async *w)
2653{ 3107{
2654 clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
2656 return; 3110 return;
2657 3111
3112 EV_FREQUENT_CHECK;
3113
2658 { 3114 {
2659 int active = ev_active (w); 3115 int active = ev_active (w);
2660 3116
2661 asyncs [active - 1] = asyncs [--asynccnt]; 3117 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 3118 ev_active (asyncs [active - 1]) = active;
2663 } 3119 }
2664 3120
2665 ev_stop (EV_A_ (W)w); 3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
2666} 3124}
2667 3125
2668void 3126void
2669ev_async_send (EV_P_ ev_async *w) 3127ev_async_send (EV_P_ ev_async *w)
2670{ 3128{
2687once_cb (EV_P_ struct ev_once *once, int revents) 3145once_cb (EV_P_ struct ev_once *once, int revents)
2688{ 3146{
2689 void (*cb)(int revents, void *arg) = once->cb; 3147 void (*cb)(int revents, void *arg) = once->cb;
2690 void *arg = once->arg; 3148 void *arg = once->arg;
2691 3149
2692 ev_io_stop (EV_A_ &once->io); 3150 ev_io_stop (EV_A_ &once->io);
2693 ev_timer_stop (EV_A_ &once->to); 3151 ev_timer_stop (EV_A_ &once->to);
2694 ev_free (once); 3152 ev_free (once);
2695 3153
2696 cb (revents, arg); 3154 cb (revents, arg);
2697} 3155}
2698 3156
2699static void 3157static void
2700once_cb_io (EV_P_ ev_io *w, int revents) 3158once_cb_io (EV_P_ ev_io *w, int revents)
2701{ 3159{
2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3160 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3161
3162 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2703} 3163}
2704 3164
2705static void 3165static void
2706once_cb_to (EV_P_ ev_timer *w, int revents) 3166once_cb_to (EV_P_ ev_timer *w, int revents)
2707{ 3167{
2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3168 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3169
3170 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2709} 3171}
2710 3172
2711void 3173void
2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3174ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2713{ 3175{
2735 ev_timer_set (&once->to, timeout, 0.); 3197 ev_timer_set (&once->to, timeout, 0.);
2736 ev_timer_start (EV_A_ &once->to); 3198 ev_timer_start (EV_A_ &once->to);
2737 } 3199 }
2738} 3200}
2739 3201
3202/*****************************************************************************/
3203
3204#if 0
3205void
3206ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3207{
3208 int i, j;
3209 ev_watcher_list *wl, *wn;
3210
3211 if (types & (EV_IO | EV_EMBED))
3212 for (i = 0; i < anfdmax; ++i)
3213 for (wl = anfds [i].head; wl; )
3214 {
3215 wn = wl->next;
3216
3217#if EV_EMBED_ENABLE
3218 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3219 {
3220 if (types & EV_EMBED)
3221 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3222 }
3223 else
3224#endif
3225#if EV_USE_INOTIFY
3226 if (ev_cb ((ev_io *)wl) == infy_cb)
3227 ;
3228 else
3229#endif
3230 if ((ev_io *)wl != &pipeev)
3231 if (types & EV_IO)
3232 cb (EV_A_ EV_IO, wl);
3233
3234 wl = wn;
3235 }
3236
3237 if (types & (EV_TIMER | EV_STAT))
3238 for (i = timercnt + HEAP0; i-- > HEAP0; )
3239#if EV_STAT_ENABLE
3240 /*TODO: timer is not always active*/
3241 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3242 {
3243 if (types & EV_STAT)
3244 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3245 }
3246 else
3247#endif
3248 if (types & EV_TIMER)
3249 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3250
3251#if EV_PERIODIC_ENABLE
3252 if (types & EV_PERIODIC)
3253 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3254 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3255#endif
3256
3257#if EV_IDLE_ENABLE
3258 if (types & EV_IDLE)
3259 for (j = NUMPRI; i--; )
3260 for (i = idlecnt [j]; i--; )
3261 cb (EV_A_ EV_IDLE, idles [j][i]);
3262#endif
3263
3264#if EV_FORK_ENABLE
3265 if (types & EV_FORK)
3266 for (i = forkcnt; i--; )
3267 if (ev_cb (forks [i]) != embed_fork_cb)
3268 cb (EV_A_ EV_FORK, forks [i]);
3269#endif
3270
3271#if EV_ASYNC_ENABLE
3272 if (types & EV_ASYNC)
3273 for (i = asynccnt; i--; )
3274 cb (EV_A_ EV_ASYNC, asyncs [i]);
3275#endif
3276
3277 if (types & EV_PREPARE)
3278 for (i = preparecnt; i--; )
3279#if EV_EMBED_ENABLE
3280 if (ev_cb (prepares [i]) != embed_prepare_cb)
3281#endif
3282 cb (EV_A_ EV_PREPARE, prepares [i]);
3283
3284 if (types & EV_CHECK)
3285 for (i = checkcnt; i--; )
3286 cb (EV_A_ EV_CHECK, checks [i]);
3287
3288 if (types & EV_SIGNAL)
3289 for (i = 0; i < signalmax; ++i)
3290 for (wl = signals [i].head; wl; )
3291 {
3292 wn = wl->next;
3293 cb (EV_A_ EV_SIGNAL, wl);
3294 wl = wn;
3295 }
3296
3297 if (types & EV_CHILD)
3298 for (i = EV_PID_HASHSIZE; i--; )
3299 for (wl = childs [i]; wl; )
3300 {
3301 wn = wl->next;
3302 cb (EV_A_ EV_CHILD, wl);
3303 wl = wn;
3304 }
3305/* EV_STAT 0x00001000 /* stat data changed */
3306/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3307}
3308#endif
3309
2740#if EV_MULTIPLICITY 3310#if EV_MULTIPLICITY
2741 #include "ev_wrap.h" 3311 #include "ev_wrap.h"
2742#endif 3312#endif
2743 3313
2744#ifdef __cplusplus 3314#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines