ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC vs.
Revision 1.395 by root, Wed Aug 24 16:08:17 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
274# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
275extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
276# endif 415# endif
277int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 417# ifdef O_CLOEXEC
279} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
280# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
281#endif 446#endif
282 447
283/**/ 448/**/
284 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
285/* 456/*
286 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 510 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
302#else 517#else
303# define expect(expr,value) (expr) 518 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 533 #endif
534#endif
309 535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543#endif
544
545#ifndef ECB_MEMORY_FENCE
546 #if ECB_GCC_VERSION(2,5)
547 #if __i386__
548 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 #elif __amd64
552 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 #endif
564 #endif
565#endif
566
567#ifndef ECB_MEMORY_FENCE
568 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
569 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 #elif defined(_WIN32)
578 #include <WinNT.h>
579 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 #endif
581#endif
582
583#ifndef ECB_MEMORY_FENCE
584 #if !ECB_AVOID_PTHREADS
585 /*
586 * if you get undefined symbol references to pthread_mutex_lock,
587 * or failure to find pthread.h, then you should implement
588 * the ECB_MEMORY_FENCE operations for your cpu/compiler
589 * OR provide pthread.h and link against the posix thread library
590 * of your system.
591 */
592 #include <pthread.h>
593 #define ECB_NEEDS_PTHREADS 1
594 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595
596 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598 #endif
599#endif
600
601#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603#endif
604
605#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607#endif
608
609/*****************************************************************************/
610
611#define ECB_C99 (__STDC_VERSION__ >= 199901L)
612
613#if __cplusplus
614 #define ecb_inline static inline
615#elif ECB_GCC_VERSION(2,5)
616 #define ecb_inline static __inline__
617#elif ECB_C99
618 #define ecb_inline static inline
619#else
620 #define ecb_inline static
621#endif
622
623#if ECB_GCC_VERSION(3,3)
624 #define ecb_restrict __restrict__
625#elif ECB_C99
626 #define ecb_restrict restrict
627#else
628 #define ecb_restrict
629#endif
630
631typedef int ecb_bool;
632
633#define ECB_CONCAT_(a, b) a ## b
634#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635#define ECB_STRINGIFY_(a) # a
636#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637
638#define ecb_function_ ecb_inline
639
640#if ECB_GCC_VERSION(3,1)
641 #define ecb_attribute(attrlist) __attribute__(attrlist)
642 #define ecb_is_constant(expr) __builtin_constant_p (expr)
643 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645#else
646 #define ecb_attribute(attrlist)
647 #define ecb_is_constant(expr) 0
648 #define ecb_expect(expr,value) (expr)
649 #define ecb_prefetch(addr,rw,locality)
650#endif
651
652/* no emulation for ecb_decltype */
653#if ECB_GCC_VERSION(4,5)
654 #define ecb_decltype(x) __decltype(x)
655#elif ECB_GCC_VERSION(3,0)
656 #define ecb_decltype(x) __typeof(x)
657#endif
658
659#define ecb_noinline ecb_attribute ((__noinline__))
660#define ecb_noreturn ecb_attribute ((__noreturn__))
661#define ecb_unused ecb_attribute ((__unused__))
662#define ecb_const ecb_attribute ((__const__))
663#define ecb_pure ecb_attribute ((__pure__))
664
665#if ECB_GCC_VERSION(4,3)
666 #define ecb_artificial ecb_attribute ((__artificial__))
667 #define ecb_hot ecb_attribute ((__hot__))
668 #define ecb_cold ecb_attribute ((__cold__))
669#else
670 #define ecb_artificial
671 #define ecb_hot
672 #define ecb_cold
673#endif
674
675/* put around conditional expressions if you are very sure that the */
676/* expression is mostly true or mostly false. note that these return */
677/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 678#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 679#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680/* for compatibility to the rest of the world */
681#define ecb_likely(expr) ecb_expect_true (expr)
682#define ecb_unlikely(expr) ecb_expect_false (expr)
683
684/* count trailing zero bits and count # of one bits */
685#if ECB_GCC_VERSION(3,4)
686 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689 #define ecb_ctz32(x) __builtin_ctz (x)
690 #define ecb_ctz64(x) __builtin_ctzll (x)
691 #define ecb_popcount32(x) __builtin_popcount (x)
692 /* no popcountll */
693#else
694 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695 ecb_function_ int
696 ecb_ctz32 (uint32_t x)
697 {
698 int r = 0;
699
700 x &= ~x + 1; /* this isolates the lowest bit */
701
702#if ECB_branchless_on_i386
703 r += !!(x & 0xaaaaaaaa) << 0;
704 r += !!(x & 0xcccccccc) << 1;
705 r += !!(x & 0xf0f0f0f0) << 2;
706 r += !!(x & 0xff00ff00) << 3;
707 r += !!(x & 0xffff0000) << 4;
708#else
709 if (x & 0xaaaaaaaa) r += 1;
710 if (x & 0xcccccccc) r += 2;
711 if (x & 0xf0f0f0f0) r += 4;
712 if (x & 0xff00ff00) r += 8;
713 if (x & 0xffff0000) r += 16;
714#endif
715
716 return r;
717 }
718
719 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720 ecb_function_ int
721 ecb_ctz64 (uint64_t x)
722 {
723 int shift = x & 0xffffffffU ? 0 : 32;
724 return ecb_ctz32 (x >> shift) + shift;
725 }
726
727 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728 ecb_function_ int
729 ecb_popcount32 (uint32_t x)
730 {
731 x -= (x >> 1) & 0x55555555;
732 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733 x = ((x >> 4) + x) & 0x0f0f0f0f;
734 x *= 0x01010101;
735
736 return x >> 24;
737 }
738
739 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740 ecb_function_ int ecb_ld32 (uint32_t x)
741 {
742 int r = 0;
743
744 if (x >> 16) { x >>= 16; r += 16; }
745 if (x >> 8) { x >>= 8; r += 8; }
746 if (x >> 4) { x >>= 4; r += 4; }
747 if (x >> 2) { x >>= 2; r += 2; }
748 if (x >> 1) { r += 1; }
749
750 return r;
751 }
752
753 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754 ecb_function_ int ecb_ld64 (uint64_t x)
755 {
756 int r = 0;
757
758 if (x >> 32) { x >>= 32; r += 32; }
759
760 return r + ecb_ld32 (x);
761 }
762#endif
763
764/* popcount64 is only available on 64 bit cpus as gcc builtin */
765/* so for this version we are lazy */
766ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767ecb_function_ int
768ecb_popcount64 (uint64_t x)
769{
770 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771}
772
773ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781
782ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790
791#if ECB_GCC_VERSION(4,3)
792 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793 #define ecb_bswap32(x) __builtin_bswap32 (x)
794 #define ecb_bswap64(x) __builtin_bswap64 (x)
795#else
796 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797 ecb_function_ uint16_t
798 ecb_bswap16 (uint16_t x)
799 {
800 return ecb_rotl16 (x, 8);
801 }
802
803 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804 ecb_function_ uint32_t
805 ecb_bswap32 (uint32_t x)
806 {
807 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808 }
809
810 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811 ecb_function_ uint64_t
812 ecb_bswap64 (uint64_t x)
813 {
814 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815 }
816#endif
817
818#if ECB_GCC_VERSION(4,5)
819 #define ecb_unreachable() __builtin_unreachable ()
820#else
821 /* this seems to work fine, but gcc always emits a warning for it :/ */
822 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823 ecb_function_ void ecb_unreachable (void) { }
824#endif
825
826/* try to tell the compiler that some condition is definitely true */
827#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828
829ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830ecb_function_ unsigned char
831ecb_byteorder_helper (void)
832{
833 const uint32_t u = 0x11223344;
834 return *(unsigned char *)&u;
835}
836
837ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841
842#if ECB_GCC_VERSION(3,0) || ECB_C99
843 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844#else
845 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846#endif
847
848#if ecb_cplusplus_does_not_suck
849 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
850 template<typename T, int N>
851 static inline int ecb_array_length (const T (&arr)[N])
852 {
853 return N;
854 }
855#else
856 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
857#endif
858
859#endif
860
861/* ECB.H END */
862
863#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
864# undef ECB_MEMORY_FENCE
865# undef ECB_MEMORY_FENCE_ACQUIRE
866# undef ECB_MEMORY_FENCE_RELEASE
867#endif
868
869#define expect_false(cond) ecb_expect_false (cond)
870#define expect_true(cond) ecb_expect_true (cond)
871#define noinline ecb_noinline
872
312#define inline_size static inline 873#define inline_size ecb_inline
313 874
314#if EV_MINIMAL 875#if EV_FEATURE_CODE
876# define inline_speed ecb_inline
877#else
315# define inline_speed static noinline 878# define inline_speed static noinline
879#endif
880
881#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
882
883#if EV_MINPRI == EV_MAXPRI
884# define ABSPRI(w) (((W)w), 0)
316#else 885#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 886# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
887#endif
322 888
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 889#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 890#define EMPTY2(a,b) /* used to suppress some warnings */
325 891
326typedef ev_watcher *W; 892typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 894typedef ev_watcher_time *WT;
329 895
330#define ev_active(w) ((W)(w))->active 896#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 897#define ev_at(w) ((WT)(w))->at
332 898
899#if EV_USE_REALTIME
900/* sig_atomic_t is used to avoid per-thread variables or locking but still */
901/* giving it a reasonably high chance of working on typical architectures */
902static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
903#endif
904
333#if EV_USE_MONOTONIC 905#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 906static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
907#endif
908
909#ifndef EV_FD_TO_WIN32_HANDLE
910# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
911#endif
912#ifndef EV_WIN32_HANDLE_TO_FD
913# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
914#endif
915#ifndef EV_WIN32_CLOSE_FD
916# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 917#endif
338 918
339#ifdef _WIN32 919#ifdef _WIN32
340# include "ev_win32.c" 920# include "ev_win32.c"
341#endif 921#endif
342 922
343/*****************************************************************************/ 923/*****************************************************************************/
344 924
925/* define a suitable floor function (only used by periodics atm) */
926
927#if EV_USE_FLOOR
928# include <math.h>
929# define ev_floor(v) floor (v)
930#else
931
932#include <float.h>
933
934/* a floor() replacement function, should be independent of ev_tstamp type */
935static ev_tstamp noinline
936ev_floor (ev_tstamp v)
937{
938 /* the choice of shift factor is not terribly important */
939#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
940 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
941#else
942 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
943#endif
944
945 /* argument too large for an unsigned long? */
946 if (expect_false (v >= shift))
947 {
948 ev_tstamp f;
949
950 if (v == v - 1.)
951 return v; /* very large number */
952
953 f = shift * ev_floor (v * (1. / shift));
954 return f + ev_floor (v - f);
955 }
956
957 /* special treatment for negative args? */
958 if (expect_false (v < 0.))
959 {
960 ev_tstamp f = -ev_floor (-v);
961
962 return f - (f == v ? 0 : 1);
963 }
964
965 /* fits into an unsigned long */
966 return (unsigned long)v;
967}
968
969#endif
970
971/*****************************************************************************/
972
973#ifdef __linux
974# include <sys/utsname.h>
975#endif
976
977static unsigned int noinline ecb_cold
978ev_linux_version (void)
979{
980#ifdef __linux
981 unsigned int v = 0;
982 struct utsname buf;
983 int i;
984 char *p = buf.release;
985
986 if (uname (&buf))
987 return 0;
988
989 for (i = 3+1; --i; )
990 {
991 unsigned int c = 0;
992
993 for (;;)
994 {
995 if (*p >= '0' && *p <= '9')
996 c = c * 10 + *p++ - '0';
997 else
998 {
999 p += *p == '.';
1000 break;
1001 }
1002 }
1003
1004 v = (v << 8) | c;
1005 }
1006
1007 return v;
1008#else
1009 return 0;
1010#endif
1011}
1012
1013/*****************************************************************************/
1014
1015#if EV_AVOID_STDIO
1016static void noinline ecb_cold
1017ev_printerr (const char *msg)
1018{
1019 write (STDERR_FILENO, msg, strlen (msg));
1020}
1021#endif
1022
345static void (*syserr_cb)(const char *msg); 1023static void (*syserr_cb)(const char *msg);
346 1024
347void 1025void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1026ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 1027{
350 syserr_cb = cb; 1028 syserr_cb = cb;
351} 1029}
352 1030
353static void noinline 1031static void noinline ecb_cold
354syserr (const char *msg) 1032ev_syserr (const char *msg)
355{ 1033{
356 if (!msg) 1034 if (!msg)
357 msg = "(libev) system error"; 1035 msg = "(libev) system error";
358 1036
359 if (syserr_cb) 1037 if (syserr_cb)
360 syserr_cb (msg); 1038 syserr_cb (msg);
361 else 1039 else
362 { 1040 {
1041#if EV_AVOID_STDIO
1042 ev_printerr (msg);
1043 ev_printerr (": ");
1044 ev_printerr (strerror (errno));
1045 ev_printerr ("\n");
1046#else
363 perror (msg); 1047 perror (msg);
1048#endif
364 abort (); 1049 abort ();
365 } 1050 }
366} 1051}
367 1052
368static void * 1053static void *
369ev_realloc_emul (void *ptr, long size) 1054ev_realloc_emul (void *ptr, long size)
370{ 1055{
1056#if __GLIBC__
1057 return realloc (ptr, size);
1058#else
371 /* some systems, notably openbsd and darwin, fail to properly 1059 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1060 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1061 * the single unix specification, so work around them here.
374 */ 1062 */
375 1063
376 if (size) 1064 if (size)
377 return realloc (ptr, size); 1065 return realloc (ptr, size);
378 1066
379 free (ptr); 1067 free (ptr);
380 return 0; 1068 return 0;
1069#endif
381} 1070}
382 1071
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1072static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 1073
385void 1074void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1075ev_set_allocator (void *(*cb)(void *ptr, long size))
387{ 1076{
388 alloc = cb; 1077 alloc = cb;
389} 1078}
390 1079
393{ 1082{
394 ptr = alloc (ptr, size); 1083 ptr = alloc (ptr, size);
395 1084
396 if (!ptr && size) 1085 if (!ptr && size)
397 { 1086 {
1087#if EV_AVOID_STDIO
1088 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1089#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1090 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1091#endif
399 abort (); 1092 abort ();
400 } 1093 }
401 1094
402 return ptr; 1095 return ptr;
403} 1096}
405#define ev_malloc(size) ev_realloc (0, (size)) 1098#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1099#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1100
408/*****************************************************************************/ 1101/*****************************************************************************/
409 1102
1103/* set in reify when reification needed */
1104#define EV_ANFD_REIFY 1
1105
1106/* file descriptor info structure */
410typedef struct 1107typedef struct
411{ 1108{
412 WL head; 1109 WL head;
413 unsigned char events; 1110 unsigned char events; /* the events watched for */
1111 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1112 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1113 unsigned char unused;
1114#if EV_USE_EPOLL
1115 unsigned int egen; /* generation counter to counter epoll bugs */
1116#endif
415#if EV_SELECT_IS_WINSOCKET 1117#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1118 SOCKET handle;
417#endif 1119#endif
1120#if EV_USE_IOCP
1121 OVERLAPPED or, ow;
1122#endif
418} ANFD; 1123} ANFD;
419 1124
1125/* stores the pending event set for a given watcher */
420typedef struct 1126typedef struct
421{ 1127{
422 W w; 1128 W w;
423 int events; 1129 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1130} ANPENDING;
425 1131
426#if EV_USE_INOTIFY 1132#if EV_USE_INOTIFY
1133/* hash table entry per inotify-id */
427typedef struct 1134typedef struct
428{ 1135{
429 WL head; 1136 WL head;
430} ANFS; 1137} ANFS;
1138#endif
1139
1140/* Heap Entry */
1141#if EV_HEAP_CACHE_AT
1142 /* a heap element */
1143 typedef struct {
1144 ev_tstamp at;
1145 WT w;
1146 } ANHE;
1147
1148 #define ANHE_w(he) (he).w /* access watcher, read-write */
1149 #define ANHE_at(he) (he).at /* access cached at, read-only */
1150 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1151#else
1152 /* a heap element */
1153 typedef WT ANHE;
1154
1155 #define ANHE_w(he) (he)
1156 #define ANHE_at(he) (he)->at
1157 #define ANHE_at_cache(he)
431#endif 1158#endif
432 1159
433#if EV_MULTIPLICITY 1160#if EV_MULTIPLICITY
434 1161
435 struct ev_loop 1162 struct ev_loop
454 1181
455 static int ev_default_loop_ptr; 1182 static int ev_default_loop_ptr;
456 1183
457#endif 1184#endif
458 1185
1186#if EV_FEATURE_API
1187# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1188# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1189# define EV_INVOKE_PENDING invoke_cb (EV_A)
1190#else
1191# define EV_RELEASE_CB (void)0
1192# define EV_ACQUIRE_CB (void)0
1193# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1194#endif
1195
1196#define EVBREAK_RECURSE 0x80
1197
459/*****************************************************************************/ 1198/*****************************************************************************/
460 1199
1200#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1201ev_tstamp
462ev_time (void) 1202ev_time (void)
463{ 1203{
464#if EV_USE_REALTIME 1204#if EV_USE_REALTIME
1205 if (expect_true (have_realtime))
1206 {
465 struct timespec ts; 1207 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1208 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1209 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1210 }
1211#endif
1212
469 struct timeval tv; 1213 struct timeval tv;
470 gettimeofday (&tv, 0); 1214 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1215 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1216}
1217#endif
474 1218
475ev_tstamp inline_size 1219inline_size ev_tstamp
476get_clock (void) 1220get_clock (void)
477{ 1221{
478#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
480 { 1224 {
501 if (delay > 0.) 1245 if (delay > 0.)
502 { 1246 {
503#if EV_USE_NANOSLEEP 1247#if EV_USE_NANOSLEEP
504 struct timespec ts; 1248 struct timespec ts;
505 1249
506 ts.tv_sec = (time_t)delay; 1250 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1251 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1252#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3)); 1253 Sleep ((unsigned long)(delay * 1e3));
512#else 1254#else
513 struct timeval tv; 1255 struct timeval tv;
514 1256
515 tv.tv_sec = (time_t)delay; 1257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1258 /* something not guaranteed by newer posix versions, but guaranteed */
517 1259 /* by older ones */
1260 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1261 select (0, 0, 0, 0, &tv);
519#endif 1262#endif
520 } 1263 }
521} 1264}
522 1265
523/*****************************************************************************/ 1266/*****************************************************************************/
524 1267
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1268#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 1269
527int inline_size 1270/* find a suitable new size for the given array, */
1271/* hopefully by rounding to a nice-to-malloc size */
1272inline_size int
528array_nextsize (int elem, int cur, int cnt) 1273array_nextsize (int elem, int cur, int cnt)
529{ 1274{
530 int ncur = cur + 1; 1275 int ncur = cur + 1;
531 1276
532 do 1277 do
543 } 1288 }
544 1289
545 return ncur; 1290 return ncur;
546} 1291}
547 1292
548static noinline void * 1293static void * noinline ecb_cold
549array_realloc (int elem, void *base, int *cur, int cnt) 1294array_realloc (int elem, void *base, int *cur, int cnt)
550{ 1295{
551 *cur = array_nextsize (elem, *cur, cnt); 1296 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 1297 return ev_realloc (base, elem * *cur);
553} 1298}
1299
1300#define array_init_zero(base,count) \
1301 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 1302
555#define array_needsize(type,base,cur,cnt,init) \ 1303#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 1304 if (expect_false ((cnt) > (cur))) \
557 { \ 1305 { \
558 int ocur_ = (cur); \ 1306 int ecb_unused ocur_ = (cur); \
559 (base) = (type *)array_realloc \ 1307 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \ 1308 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \ 1309 init ((base) + (ocur_), (cur) - ocur_); \
562 } 1310 }
563 1311
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1318 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 1319 }
572#endif 1320#endif
573 1321
574#define array_free(stem, idx) \ 1322#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1323 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 1324
577/*****************************************************************************/ 1325/*****************************************************************************/
1326
1327/* dummy callback for pending events */
1328static void noinline
1329pendingcb (EV_P_ ev_prepare *w, int revents)
1330{
1331}
578 1332
579void noinline 1333void noinline
580ev_feed_event (EV_P_ void *w, int revents) 1334ev_feed_event (EV_P_ void *w, int revents)
581{ 1335{
582 W w_ = (W)w; 1336 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 1345 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 1346 pendings [pri][w_->pending - 1].events = revents;
593 } 1347 }
594} 1348}
595 1349
596void inline_speed 1350inline_speed void
1351feed_reverse (EV_P_ W w)
1352{
1353 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1354 rfeeds [rfeedcnt++] = w;
1355}
1356
1357inline_size void
1358feed_reverse_done (EV_P_ int revents)
1359{
1360 do
1361 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1362 while (rfeedcnt);
1363}
1364
1365inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 1366queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 1367{
599 int i; 1368 int i;
600 1369
601 for (i = 0; i < eventcnt; ++i) 1370 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 1371 ev_feed_event (EV_A_ events [i], type);
603} 1372}
604 1373
605/*****************************************************************************/ 1374/*****************************************************************************/
606 1375
607void inline_size 1376inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 1377fd_event_nocheck (EV_P_ int fd, int revents)
622{ 1378{
623 ANFD *anfd = anfds + fd; 1379 ANFD *anfd = anfds + fd;
624 ev_io *w; 1380 ev_io *w;
625 1381
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1382 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 1386 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 1387 ev_feed_event (EV_A_ (W)w, ev);
632 } 1388 }
633} 1389}
634 1390
1391/* do not submit kernel events for fds that have reify set */
1392/* because that means they changed while we were polling for new events */
1393inline_speed void
1394fd_event (EV_P_ int fd, int revents)
1395{
1396 ANFD *anfd = anfds + fd;
1397
1398 if (expect_true (!anfd->reify))
1399 fd_event_nocheck (EV_A_ fd, revents);
1400}
1401
635void 1402void
636ev_feed_fd_event (EV_P_ int fd, int revents) 1403ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 1404{
638 if (fd >= 0 && fd < anfdmax) 1405 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 1406 fd_event_nocheck (EV_A_ fd, revents);
640} 1407}
641 1408
642void inline_size 1409/* make sure the external fd watch events are in-sync */
1410/* with the kernel/libev internal state */
1411inline_size void
643fd_reify (EV_P) 1412fd_reify (EV_P)
644{ 1413{
645 int i; 1414 int i;
1415
1416#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1417 for (i = 0; i < fdchangecnt; ++i)
1418 {
1419 int fd = fdchanges [i];
1420 ANFD *anfd = anfds + fd;
1421
1422 if (anfd->reify & EV__IOFDSET && anfd->head)
1423 {
1424 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1425
1426 if (handle != anfd->handle)
1427 {
1428 unsigned long arg;
1429
1430 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1431
1432 /* handle changed, but fd didn't - we need to do it in two steps */
1433 backend_modify (EV_A_ fd, anfd->events, 0);
1434 anfd->events = 0;
1435 anfd->handle = handle;
1436 }
1437 }
1438 }
1439#endif
646 1440
647 for (i = 0; i < fdchangecnt; ++i) 1441 for (i = 0; i < fdchangecnt; ++i)
648 { 1442 {
649 int fd = fdchanges [i]; 1443 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd; 1444 ANFD *anfd = anfds + fd;
651 ev_io *w; 1445 ev_io *w;
652 1446
653 unsigned char events = 0; 1447 unsigned char o_events = anfd->events;
1448 unsigned char o_reify = anfd->reify;
654 1449
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1450 anfd->reify = 0;
656 events |= (unsigned char)w->events;
657 1451
658#if EV_SELECT_IS_WINSOCKET 1452 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
659 if (events)
660 { 1453 {
661 unsigned long argp; 1454 anfd->events = 0;
662 #ifdef EV_FD_TO_WIN32_HANDLE 1455
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1456 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
664 #else 1457 anfd->events |= (unsigned char)w->events;
665 anfd->handle = _get_osfhandle (fd); 1458
666 #endif 1459 if (o_events != anfd->events)
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1460 o_reify = EV__IOFDSET; /* actually |= */
668 } 1461 }
669#endif
670 1462
671 { 1463 if (o_reify & EV__IOFDSET)
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 1464 backend_modify (EV_A_ fd, o_events, anfd->events);
680 }
681 } 1465 }
682 1466
683 fdchangecnt = 0; 1467 fdchangecnt = 0;
684} 1468}
685 1469
686void inline_size 1470/* something about the given fd changed */
1471inline_size void
687fd_change (EV_P_ int fd, int flags) 1472fd_change (EV_P_ int fd, int flags)
688{ 1473{
689 unsigned char reify = anfds [fd].reify; 1474 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 1475 anfds [fd].reify |= flags;
691 1476
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1480 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 1481 fdchanges [fdchangecnt - 1] = fd;
697 } 1482 }
698} 1483}
699 1484
700void inline_speed 1485/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1486inline_speed void ecb_cold
701fd_kill (EV_P_ int fd) 1487fd_kill (EV_P_ int fd)
702{ 1488{
703 ev_io *w; 1489 ev_io *w;
704 1490
705 while ((w = (ev_io *)anfds [fd].head)) 1491 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 1493 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1494 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 1495 }
710} 1496}
711 1497
712int inline_size 1498/* check whether the given fd is actually valid, for error recovery */
1499inline_size int ecb_cold
713fd_valid (int fd) 1500fd_valid (int fd)
714{ 1501{
715#ifdef _WIN32 1502#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1503 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1504#else
718 return fcntl (fd, F_GETFD) != -1; 1505 return fcntl (fd, F_GETFD) != -1;
719#endif 1506#endif
720} 1507}
721 1508
722/* called on EBADF to verify fds */ 1509/* called on EBADF to verify fds */
723static void noinline 1510static void noinline ecb_cold
724fd_ebadf (EV_P) 1511fd_ebadf (EV_P)
725{ 1512{
726 int fd; 1513 int fd;
727 1514
728 for (fd = 0; fd < anfdmax; ++fd) 1515 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1516 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1517 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1518 fd_kill (EV_A_ fd);
732} 1519}
733 1520
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1521/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1522static void noinline ecb_cold
736fd_enomem (EV_P) 1523fd_enomem (EV_P)
737{ 1524{
738 int fd; 1525 int fd;
739 1526
740 for (fd = anfdmax; fd--; ) 1527 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1528 if (anfds [fd].events)
742 { 1529 {
743 fd_kill (EV_A_ fd); 1530 fd_kill (EV_A_ fd);
744 return; 1531 break;
745 } 1532 }
746} 1533}
747 1534
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1535/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1536static void noinline
753 1540
754 for (fd = 0; fd < anfdmax; ++fd) 1541 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1542 if (anfds [fd].events)
756 { 1543 {
757 anfds [fd].events = 0; 1544 anfds [fd].events = 0;
1545 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1546 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1547 }
760} 1548}
761 1549
1550/* used to prepare libev internal fd's */
1551/* this is not fork-safe */
1552inline_speed void
1553fd_intern (int fd)
1554{
1555#ifdef _WIN32
1556 unsigned long arg = 1;
1557 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1558#else
1559 fcntl (fd, F_SETFD, FD_CLOEXEC);
1560 fcntl (fd, F_SETFL, O_NONBLOCK);
1561#endif
1562}
1563
762/*****************************************************************************/ 1564/*****************************************************************************/
1565
1566/*
1567 * the heap functions want a real array index. array index 0 is guaranteed to not
1568 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1569 * the branching factor of the d-tree.
1570 */
763 1571
764/* 1572/*
765 * at the moment we allow libev the luxury of two heaps, 1573 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1574 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1575 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1576 * the difference is about 5% with 50000+ watchers.
769 */ 1577 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1578#if EV_USE_4HEAP
772 1579
773#define DHEAP 4 1580#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1581#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1582#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1583#define UPHEAP_DONE(p,k) ((p) == (k))
775 1584
776/* towards the root */ 1585/* away from the root */
777void inline_speed 1586inline_speed void
778upheap (WT *heap, int k) 1587downheap (ANHE *heap, int N, int k)
779{ 1588{
780 WT w = heap [k]; 1589 ANHE he = heap [k];
781 ev_tstamp w_at = w->at; 1590 ANHE *E = heap + N + HEAP0;
782 1591
783 for (;;) 1592 for (;;)
784 { 1593 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat; 1594 ev_tstamp minat;
809 WT *minpos; 1595 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1596 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 1597
812 // find minimum child 1598 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 1599 if (expect_true (pos + DHEAP - 1 < E))
814 { 1600 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at); 1601 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1602 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1603 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1604 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 1605 }
820 else if (pos < E) 1606 else if (pos < E)
821 { 1607 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at); 1608 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1609 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1610 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1611 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
826 } 1612 }
827 else 1613 else
828 break; 1614 break;
829 1615
830 if (w->at <= minat) 1616 if (ANHE_at (he) <= minat)
831 break; 1617 break;
832 1618
833 ev_active (*minpos) = k;
834 heap [k] = *minpos; 1619 heap [k] = *minpos;
1620 ev_active (ANHE_w (*minpos)) = k;
835 1621
836 k = minpos - heap; 1622 k = minpos - heap;
837 } 1623 }
838 1624
839 heap [k] = w; 1625 heap [k] = he;
840 ev_active (heap [k]) = k; 1626 ev_active (ANHE_w (he)) = k;
841} 1627}
842 1628
843#else // 4HEAP 1629#else /* 4HEAP */
844 1630
845#define HEAP0 1 1631#define HEAP0 1
1632#define HPARENT(k) ((k) >> 1)
1633#define UPHEAP_DONE(p,k) (!(p))
846 1634
847/* towards the root */ 1635/* away from the root */
848void inline_speed 1636inline_speed void
849upheap (WT *heap, int k) 1637downheap (ANHE *heap, int N, int k)
850{ 1638{
851 WT w = heap [k]; 1639 ANHE he = heap [k];
852 1640
853 for (;;) 1641 for (;;)
854 { 1642 {
855 int p = k >> 1; 1643 int c = k << 1;
856 1644
857 /* maybe we could use a dummy element at heap [0]? */ 1645 if (c >= N + HEAP0)
858 if (!p || heap [p]->at <= w->at)
859 break; 1646 break;
860 1647
861 heap [k] = heap [p]; 1648 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
862 ev_active (heap [k]) = k; 1649 ? 1 : 0;
863 k = p;
864 }
865 1650
866 heap [k] = w; 1651 if (ANHE_at (he) <= ANHE_at (heap [c]))
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break; 1652 break;
882 1653
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c]; 1654 heap [k] = heap [c];
890 ((W)heap [k])->active = k; 1655 ev_active (ANHE_w (heap [k])) = k;
891 1656
892 k = c; 1657 k = c;
893 } 1658 }
894 1659
895 heap [k] = w; 1660 heap [k] = he;
1661 ev_active (ANHE_w (he)) = k;
1662}
1663#endif
1664
1665/* towards the root */
1666inline_speed void
1667upheap (ANHE *heap, int k)
1668{
1669 ANHE he = heap [k];
1670
1671 for (;;)
1672 {
1673 int p = HPARENT (k);
1674
1675 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1676 break;
1677
1678 heap [k] = heap [p];
896 ev_active (heap [k]) = k; 1679 ev_active (ANHE_w (heap [k])) = k;
897} 1680 k = p;
898#endif 1681 }
899 1682
900void inline_size 1683 heap [k] = he;
1684 ev_active (ANHE_w (he)) = k;
1685}
1686
1687/* move an element suitably so it is in a correct place */
1688inline_size void
901adjustheap (WT *heap, int N, int k) 1689adjustheap (ANHE *heap, int N, int k)
902{ 1690{
1691 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
903 upheap (heap, k); 1692 upheap (heap, k);
1693 else
904 downheap (heap, N, k); 1694 downheap (heap, N, k);
1695}
1696
1697/* rebuild the heap: this function is used only once and executed rarely */
1698inline_size void
1699reheap (ANHE *heap, int N)
1700{
1701 int i;
1702
1703 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1704 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1705 for (i = 0; i < N; ++i)
1706 upheap (heap, i + HEAP0);
905} 1707}
906 1708
907/*****************************************************************************/ 1709/*****************************************************************************/
908 1710
1711/* associate signal watchers to a signal signal */
909typedef struct 1712typedef struct
910{ 1713{
1714 EV_ATOMIC_T pending;
1715#if EV_MULTIPLICITY
1716 EV_P;
1717#endif
911 WL head; 1718 WL head;
912 EV_ATOMIC_T gotsig;
913} ANSIG; 1719} ANSIG;
914 1720
915static ANSIG *signals; 1721static ANSIG signals [EV_NSIG - 1];
916static int signalmax;
917
918static EV_ATOMIC_T gotsig;
919
920void inline_size
921signals_init (ANSIG *base, int count)
922{
923 while (count--)
924 {
925 base->head = 0;
926 base->gotsig = 0;
927
928 ++base;
929 }
930}
931 1722
932/*****************************************************************************/ 1723/*****************************************************************************/
933 1724
934void inline_speed 1725#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
935fd_intern (int fd)
936{
937#ifdef _WIN32
938 int arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif
944}
945 1726
946static void noinline 1727static void noinline ecb_cold
947evpipe_init (EV_P) 1728evpipe_init (EV_P)
948{ 1729{
949 if (!ev_is_active (&pipeev)) 1730 if (!ev_is_active (&pipe_w))
950 { 1731 {
951#if EV_USE_EVENTFD 1732# if EV_USE_EVENTFD
1733 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1734 if (evfd < 0 && errno == EINVAL)
952 if ((evfd = eventfd (0, 0)) >= 0) 1735 evfd = eventfd (0, 0);
1736
1737 if (evfd >= 0)
953 { 1738 {
954 evpipe [0] = -1; 1739 evpipe [0] = -1;
955 fd_intern (evfd); 1740 fd_intern (evfd); /* doing it twice doesn't hurt */
956 ev_io_set (&pipeev, evfd, EV_READ); 1741 ev_io_set (&pipe_w, evfd, EV_READ);
957 } 1742 }
958 else 1743 else
959#endif 1744# endif
960 { 1745 {
961 while (pipe (evpipe)) 1746 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe"); 1747 ev_syserr ("(libev) error creating signal/async pipe");
963 1748
964 fd_intern (evpipe [0]); 1749 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]); 1750 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ); 1751 ev_io_set (&pipe_w, evpipe [0], EV_READ);
967 } 1752 }
968 1753
969 ev_io_start (EV_A_ &pipeev); 1754 ev_io_start (EV_A_ &pipe_w);
970 ev_unref (EV_A); /* watcher should not keep loop alive */ 1755 ev_unref (EV_A); /* watcher should not keep loop alive */
971 } 1756 }
972} 1757}
973 1758
974void inline_size 1759inline_speed void
975evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1760evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{ 1761{
977 if (!*flag) 1762 if (expect_true (*flag))
1763 return;
1764
1765 *flag = 1;
1766
1767 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1768
1769 pipe_write_skipped = 1;
1770
1771 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1772
1773 if (pipe_write_wanted)
978 { 1774 {
1775 int old_errno;
1776
1777 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1778
979 int old_errno = errno; /* save errno because write might clobber it */ 1779 old_errno = errno; /* save errno because write will clobber it */
980
981 *flag = 1;
982 1780
983#if EV_USE_EVENTFD 1781#if EV_USE_EVENTFD
984 if (evfd >= 0) 1782 if (evfd >= 0)
985 { 1783 {
986 uint64_t counter = 1; 1784 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t)); 1785 write (evfd, &counter, sizeof (uint64_t));
988 } 1786 }
989 else 1787 else
990#endif 1788#endif
1789 {
1790 /* win32 people keep sending patches that change this write() to send() */
1791 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1792 /* so when you think this write should be a send instead, please find out */
1793 /* where your send() is from - it's definitely not the microsoft send, and */
1794 /* tell me. thank you. */
991 write (evpipe [1], &old_errno, 1); 1795 write (evpipe [1], &(evpipe [1]), 1);
1796 }
992 1797
993 errno = old_errno; 1798 errno = old_errno;
994 } 1799 }
995} 1800}
996 1801
1802/* called whenever the libev signal pipe */
1803/* got some events (signal, async) */
997static void 1804static void
998pipecb (EV_P_ ev_io *iow, int revents) 1805pipecb (EV_P_ ev_io *iow, int revents)
999{ 1806{
1807 int i;
1808
1809 if (revents & EV_READ)
1810 {
1000#if EV_USE_EVENTFD 1811#if EV_USE_EVENTFD
1001 if (evfd >= 0) 1812 if (evfd >= 0)
1002 { 1813 {
1003 uint64_t counter; 1814 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t)); 1815 read (evfd, &counter, sizeof (uint64_t));
1005 } 1816 }
1006 else 1817 else
1007#endif 1818#endif
1008 { 1819 {
1009 char dummy; 1820 char dummy;
1821 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1010 read (evpipe [0], &dummy, 1); 1822 read (evpipe [0], &dummy, 1);
1823 }
1824 }
1825
1826 pipe_write_skipped = 0;
1827
1828#if EV_SIGNAL_ENABLE
1829 if (sig_pending)
1011 } 1830 {
1831 sig_pending = 0;
1012 1832
1013 if (gotsig && ev_is_default_loop (EV_A)) 1833 for (i = EV_NSIG - 1; i--; )
1014 { 1834 if (expect_false (signals [i].pending))
1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1); 1835 ev_feed_signal_event (EV_A_ i + 1);
1021 } 1836 }
1837#endif
1022 1838
1023#if EV_ASYNC_ENABLE 1839#if EV_ASYNC_ENABLE
1024 if (gotasync) 1840 if (async_pending)
1025 { 1841 {
1026 int i; 1842 async_pending = 0;
1027 gotasync = 0;
1028 1843
1029 for (i = asynccnt; i--; ) 1844 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent) 1845 if (asyncs [i]->sent)
1031 { 1846 {
1032 asyncs [i]->sent = 0; 1847 asyncs [i]->sent = 0;
1036#endif 1851#endif
1037} 1852}
1038 1853
1039/*****************************************************************************/ 1854/*****************************************************************************/
1040 1855
1856void
1857ev_feed_signal (int signum)
1858{
1859#if EV_MULTIPLICITY
1860 EV_P = signals [signum - 1].loop;
1861
1862 if (!EV_A)
1863 return;
1864#endif
1865
1866 if (!ev_active (&pipe_w))
1867 return;
1868
1869 signals [signum - 1].pending = 1;
1870 evpipe_write (EV_A_ &sig_pending);
1871}
1872
1041static void 1873static void
1042ev_sighandler (int signum) 1874ev_sighandler (int signum)
1043{ 1875{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
1048#if _WIN32 1876#ifdef _WIN32
1049 signal (signum, ev_sighandler); 1877 signal (signum, ev_sighandler);
1050#endif 1878#endif
1051 1879
1052 signals [signum - 1].gotsig = 1; 1880 ev_feed_signal (signum);
1053 evpipe_write (EV_A_ &gotsig);
1054} 1881}
1055 1882
1056void noinline 1883void noinline
1057ev_feed_signal_event (EV_P_ int signum) 1884ev_feed_signal_event (EV_P_ int signum)
1058{ 1885{
1059 WL w; 1886 WL w;
1060 1887
1888 if (expect_false (signum <= 0 || signum > EV_NSIG))
1889 return;
1890
1891 --signum;
1892
1061#if EV_MULTIPLICITY 1893#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1894 /* it is permissible to try to feed a signal to the wrong loop */
1063#endif 1895 /* or, likely more useful, feeding a signal nobody is waiting for */
1064 1896
1065 --signum; 1897 if (expect_false (signals [signum].loop != EV_A))
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return; 1898 return;
1899#endif
1069 1900
1070 signals [signum].gotsig = 0; 1901 signals [signum].pending = 0;
1071 1902
1072 for (w = signals [signum].head; w; w = w->next) 1903 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1904 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074} 1905}
1075 1906
1907#if EV_USE_SIGNALFD
1908static void
1909sigfdcb (EV_P_ ev_io *iow, int revents)
1910{
1911 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1912
1913 for (;;)
1914 {
1915 ssize_t res = read (sigfd, si, sizeof (si));
1916
1917 /* not ISO-C, as res might be -1, but works with SuS */
1918 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1919 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1920
1921 if (res < (ssize_t)sizeof (si))
1922 break;
1923 }
1924}
1925#endif
1926
1927#endif
1928
1076/*****************************************************************************/ 1929/*****************************************************************************/
1077 1930
1931#if EV_CHILD_ENABLE
1078static WL childs [EV_PID_HASHSIZE]; 1932static WL childs [EV_PID_HASHSIZE];
1079
1080#ifndef _WIN32
1081 1933
1082static ev_signal childev; 1934static ev_signal childev;
1083 1935
1084#ifndef WIFCONTINUED 1936#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0 1937# define WIFCONTINUED(status) 0
1086#endif 1938#endif
1087 1939
1088void inline_speed 1940/* handle a single child status event */
1941inline_speed void
1089child_reap (EV_P_ int chain, int pid, int status) 1942child_reap (EV_P_ int chain, int pid, int status)
1090{ 1943{
1091 ev_child *w; 1944 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1945 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093 1946
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1947 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 { 1948 {
1096 if ((w->pid == pid || !w->pid) 1949 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1))) 1950 && (!traced || (w->flags & 1)))
1098 { 1951 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1952 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1106 1959
1107#ifndef WCONTINUED 1960#ifndef WCONTINUED
1108# define WCONTINUED 0 1961# define WCONTINUED 0
1109#endif 1962#endif
1110 1963
1964/* called on sigchld etc., calls waitpid */
1111static void 1965static void
1112childcb (EV_P_ ev_signal *sw, int revents) 1966childcb (EV_P_ ev_signal *sw, int revents)
1113{ 1967{
1114 int pid, status; 1968 int pid, status;
1115 1969
1123 /* make sure we are called again until all children have been reaped */ 1977 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */ 1978 /* we need to do it this way so that the callback gets called before we continue */
1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1979 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1126 1980
1127 child_reap (EV_A_ pid, pid, status); 1981 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1) 1982 if ((EV_PID_HASHSIZE) > 1)
1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1983 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1130} 1984}
1131 1985
1132#endif 1986#endif
1133 1987
1134/*****************************************************************************/ 1988/*****************************************************************************/
1135 1989
1990#if EV_USE_IOCP
1991# include "ev_iocp.c"
1992#endif
1136#if EV_USE_PORT 1993#if EV_USE_PORT
1137# include "ev_port.c" 1994# include "ev_port.c"
1138#endif 1995#endif
1139#if EV_USE_KQUEUE 1996#if EV_USE_KQUEUE
1140# include "ev_kqueue.c" 1997# include "ev_kqueue.c"
1147#endif 2004#endif
1148#if EV_USE_SELECT 2005#if EV_USE_SELECT
1149# include "ev_select.c" 2006# include "ev_select.c"
1150#endif 2007#endif
1151 2008
1152int 2009int ecb_cold
1153ev_version_major (void) 2010ev_version_major (void)
1154{ 2011{
1155 return EV_VERSION_MAJOR; 2012 return EV_VERSION_MAJOR;
1156} 2013}
1157 2014
1158int 2015int ecb_cold
1159ev_version_minor (void) 2016ev_version_minor (void)
1160{ 2017{
1161 return EV_VERSION_MINOR; 2018 return EV_VERSION_MINOR;
1162} 2019}
1163 2020
1164/* return true if we are running with elevated privileges and should ignore env variables */ 2021/* return true if we are running with elevated privileges and should ignore env variables */
1165int inline_size 2022int inline_size ecb_cold
1166enable_secure (void) 2023enable_secure (void)
1167{ 2024{
1168#ifdef _WIN32 2025#ifdef _WIN32
1169 return 0; 2026 return 0;
1170#else 2027#else
1171 return getuid () != geteuid () 2028 return getuid () != geteuid ()
1172 || getgid () != getegid (); 2029 || getgid () != getegid ();
1173#endif 2030#endif
1174} 2031}
1175 2032
1176unsigned int 2033unsigned int ecb_cold
1177ev_supported_backends (void) 2034ev_supported_backends (void)
1178{ 2035{
1179 unsigned int flags = 0; 2036 unsigned int flags = 0;
1180 2037
1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2038 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2042 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186 2043
1187 return flags; 2044 return flags;
1188} 2045}
1189 2046
1190unsigned int 2047unsigned int ecb_cold
1191ev_recommended_backends (void) 2048ev_recommended_backends (void)
1192{ 2049{
1193 unsigned int flags = ev_supported_backends (); 2050 unsigned int flags = ev_supported_backends ();
1194 2051
1195#ifndef __NetBSD__ 2052#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */ 2053 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */ 2054 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE; 2055 flags &= ~EVBACKEND_KQUEUE;
1199#endif 2056#endif
1200#ifdef __APPLE__ 2057#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation 2058 /* only select works correctly on that "unix-certified" platform */
1202 flags &= ~EVBACKEND_POLL; 2059 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2060 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2061#endif
2062#ifdef __FreeBSD__
2063 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1203#endif 2064#endif
1204 2065
1205 return flags; 2066 return flags;
1206} 2067}
1207 2068
1208unsigned int 2069unsigned int ecb_cold
1209ev_embeddable_backends (void) 2070ev_embeddable_backends (void)
1210{ 2071{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2072 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1212 2073
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2074 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */ 2075 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1215 flags &= ~EVBACKEND_EPOLL; 2076 flags &= ~EVBACKEND_EPOLL;
1216 2077
1217 return flags; 2078 return flags;
1218} 2079}
1219 2080
1220unsigned int 2081unsigned int
1221ev_backend (EV_P) 2082ev_backend (EV_P)
1222{ 2083{
1223 return backend; 2084 return backend;
1224} 2085}
1225 2086
2087#if EV_FEATURE_API
1226unsigned int 2088unsigned int
1227ev_loop_count (EV_P) 2089ev_iteration (EV_P)
1228{ 2090{
1229 return loop_count; 2091 return loop_count;
2092}
2093
2094unsigned int
2095ev_depth (EV_P)
2096{
2097 return loop_depth;
1230} 2098}
1231 2099
1232void 2100void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2101ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{ 2102{
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2107ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{ 2108{
1241 timeout_blocktime = interval; 2109 timeout_blocktime = interval;
1242} 2110}
1243 2111
2112void
2113ev_set_userdata (EV_P_ void *data)
2114{
2115 userdata = data;
2116}
2117
2118void *
2119ev_userdata (EV_P)
2120{
2121 return userdata;
2122}
2123
2124void
2125ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2126{
2127 invoke_cb = invoke_pending_cb;
2128}
2129
2130void
2131ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2132{
2133 release_cb = release;
2134 acquire_cb = acquire;
2135}
2136#endif
2137
2138/* initialise a loop structure, must be zero-initialised */
1244static void noinline 2139static void noinline ecb_cold
1245loop_init (EV_P_ unsigned int flags) 2140loop_init (EV_P_ unsigned int flags)
1246{ 2141{
1247 if (!backend) 2142 if (!backend)
1248 { 2143 {
2144 origflags = flags;
2145
2146#if EV_USE_REALTIME
2147 if (!have_realtime)
2148 {
2149 struct timespec ts;
2150
2151 if (!clock_gettime (CLOCK_REALTIME, &ts))
2152 have_realtime = 1;
2153 }
2154#endif
2155
1249#if EV_USE_MONOTONIC 2156#if EV_USE_MONOTONIC
2157 if (!have_monotonic)
1250 { 2158 {
1251 struct timespec ts; 2159 struct timespec ts;
2160
1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2161 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1253 have_monotonic = 1; 2162 have_monotonic = 1;
1254 } 2163 }
1255#endif
1256
1257 ev_rt_now = ev_time ();
1258 mn_now = get_clock ();
1259 now_floor = mn_now;
1260 rtmn_diff = ev_rt_now - mn_now;
1261
1262 io_blocktime = 0.;
1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif 2164#endif
1270 2165
1271 /* pid check not overridable via env */ 2166 /* pid check not overridable via env */
1272#ifndef _WIN32 2167#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK) 2168 if (flags & EVFLAG_FORKCHECK)
1277 if (!(flags & EVFLAG_NOENV) 2172 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure () 2173 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS")) 2174 && getenv ("LIBEV_FLAGS"))
1280 flags = atoi (getenv ("LIBEV_FLAGS")); 2175 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 2176
1282 if (!(flags & 0x0000ffffU)) 2177 ev_rt_now = ev_time ();
2178 mn_now = get_clock ();
2179 now_floor = mn_now;
2180 rtmn_diff = ev_rt_now - mn_now;
2181#if EV_FEATURE_API
2182 invoke_cb = ev_invoke_pending;
2183#endif
2184
2185 io_blocktime = 0.;
2186 timeout_blocktime = 0.;
2187 backend = 0;
2188 backend_fd = -1;
2189 sig_pending = 0;
2190#if EV_ASYNC_ENABLE
2191 async_pending = 0;
2192#endif
2193 pipe_write_skipped = 0;
2194 pipe_write_wanted = 0;
2195#if EV_USE_INOTIFY
2196 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2197#endif
2198#if EV_USE_SIGNALFD
2199 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2200#endif
2201
2202 if (!(flags & EVBACKEND_MASK))
1283 flags |= ev_recommended_backends (); 2203 flags |= ev_recommended_backends ();
1284 2204
2205#if EV_USE_IOCP
2206 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2207#endif
1285#if EV_USE_PORT 2208#if EV_USE_PORT
1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2209 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1287#endif 2210#endif
1288#if EV_USE_KQUEUE 2211#if EV_USE_KQUEUE
1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2212 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1296#endif 2219#endif
1297#if EV_USE_SELECT 2220#if EV_USE_SELECT
1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2221 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1299#endif 2222#endif
1300 2223
2224 ev_prepare_init (&pending_w, pendingcb);
2225
2226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1301 ev_init (&pipeev, pipecb); 2227 ev_init (&pipe_w, pipecb);
1302 ev_set_priority (&pipeev, EV_MAXPRI); 2228 ev_set_priority (&pipe_w, EV_MAXPRI);
2229#endif
1303 } 2230 }
1304} 2231}
1305 2232
1306static void noinline 2233/* free up a loop structure */
2234void ecb_cold
1307loop_destroy (EV_P) 2235ev_loop_destroy (EV_P)
1308{ 2236{
1309 int i; 2237 int i;
1310 2238
2239#if EV_MULTIPLICITY
2240 /* mimic free (0) */
2241 if (!EV_A)
2242 return;
2243#endif
2244
2245#if EV_CLEANUP_ENABLE
2246 /* queue cleanup watchers (and execute them) */
2247 if (expect_false (cleanupcnt))
2248 {
2249 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2250 EV_INVOKE_PENDING;
2251 }
2252#endif
2253
2254#if EV_CHILD_ENABLE
2255 if (ev_is_active (&childev))
2256 {
2257 ev_ref (EV_A); /* child watcher */
2258 ev_signal_stop (EV_A_ &childev);
2259 }
2260#endif
2261
1311 if (ev_is_active (&pipeev)) 2262 if (ev_is_active (&pipe_w))
1312 { 2263 {
1313 ev_ref (EV_A); /* signal watcher */ 2264 /*ev_ref (EV_A);*/
1314 ev_io_stop (EV_A_ &pipeev); 2265 /*ev_io_stop (EV_A_ &pipe_w);*/
1315 2266
1316#if EV_USE_EVENTFD 2267#if EV_USE_EVENTFD
1317 if (evfd >= 0) 2268 if (evfd >= 0)
1318 close (evfd); 2269 close (evfd);
1319#endif 2270#endif
1320 2271
1321 if (evpipe [0] >= 0) 2272 if (evpipe [0] >= 0)
1322 { 2273 {
1323 close (evpipe [0]); 2274 EV_WIN32_CLOSE_FD (evpipe [0]);
1324 close (evpipe [1]); 2275 EV_WIN32_CLOSE_FD (evpipe [1]);
1325 } 2276 }
1326 } 2277 }
2278
2279#if EV_USE_SIGNALFD
2280 if (ev_is_active (&sigfd_w))
2281 close (sigfd);
2282#endif
1327 2283
1328#if EV_USE_INOTIFY 2284#if EV_USE_INOTIFY
1329 if (fs_fd >= 0) 2285 if (fs_fd >= 0)
1330 close (fs_fd); 2286 close (fs_fd);
1331#endif 2287#endif
1332 2288
1333 if (backend_fd >= 0) 2289 if (backend_fd >= 0)
1334 close (backend_fd); 2290 close (backend_fd);
1335 2291
2292#if EV_USE_IOCP
2293 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2294#endif
1336#if EV_USE_PORT 2295#if EV_USE_PORT
1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2296 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1338#endif 2297#endif
1339#if EV_USE_KQUEUE 2298#if EV_USE_KQUEUE
1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2299 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1355#if EV_IDLE_ENABLE 2314#if EV_IDLE_ENABLE
1356 array_free (idle, [i]); 2315 array_free (idle, [i]);
1357#endif 2316#endif
1358 } 2317 }
1359 2318
1360 ev_free (anfds); anfdmax = 0; 2319 ev_free (anfds); anfds = 0; anfdmax = 0;
1361 2320
1362 /* have to use the microsoft-never-gets-it-right macro */ 2321 /* have to use the microsoft-never-gets-it-right macro */
2322 array_free (rfeed, EMPTY);
1363 array_free (fdchange, EMPTY); 2323 array_free (fdchange, EMPTY);
1364 array_free (timer, EMPTY); 2324 array_free (timer, EMPTY);
1365#if EV_PERIODIC_ENABLE 2325#if EV_PERIODIC_ENABLE
1366 array_free (periodic, EMPTY); 2326 array_free (periodic, EMPTY);
1367#endif 2327#endif
1368#if EV_FORK_ENABLE 2328#if EV_FORK_ENABLE
1369 array_free (fork, EMPTY); 2329 array_free (fork, EMPTY);
1370#endif 2330#endif
2331#if EV_CLEANUP_ENABLE
2332 array_free (cleanup, EMPTY);
2333#endif
1371 array_free (prepare, EMPTY); 2334 array_free (prepare, EMPTY);
1372 array_free (check, EMPTY); 2335 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE 2336#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY); 2337 array_free (async, EMPTY);
1375#endif 2338#endif
1376 2339
1377 backend = 0; 2340 backend = 0;
2341
2342#if EV_MULTIPLICITY
2343 if (ev_is_default_loop (EV_A))
2344#endif
2345 ev_default_loop_ptr = 0;
2346#if EV_MULTIPLICITY
2347 else
2348 ev_free (EV_A);
2349#endif
1378} 2350}
1379 2351
1380#if EV_USE_INOTIFY 2352#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P); 2353inline_size void infy_fork (EV_P);
1382#endif 2354#endif
1383 2355
1384void inline_size 2356inline_size void
1385loop_fork (EV_P) 2357loop_fork (EV_P)
1386{ 2358{
1387#if EV_USE_PORT 2359#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2360 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif 2361#endif
1395#endif 2367#endif
1396#if EV_USE_INOTIFY 2368#if EV_USE_INOTIFY
1397 infy_fork (EV_A); 2369 infy_fork (EV_A);
1398#endif 2370#endif
1399 2371
1400 if (ev_is_active (&pipeev)) 2372 if (ev_is_active (&pipe_w))
1401 { 2373 {
1402 /* this "locks" the handlers against writing to the pipe */ 2374 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
1408 2375
1409 ev_ref (EV_A); 2376 ev_ref (EV_A);
1410 ev_io_stop (EV_A_ &pipeev); 2377 ev_io_stop (EV_A_ &pipe_w);
1411 2378
1412#if EV_USE_EVENTFD 2379#if EV_USE_EVENTFD
1413 if (evfd >= 0) 2380 if (evfd >= 0)
1414 close (evfd); 2381 close (evfd);
1415#endif 2382#endif
1416 2383
1417 if (evpipe [0] >= 0) 2384 if (evpipe [0] >= 0)
1418 { 2385 {
1419 close (evpipe [0]); 2386 EV_WIN32_CLOSE_FD (evpipe [0]);
1420 close (evpipe [1]); 2387 EV_WIN32_CLOSE_FD (evpipe [1]);
1421 } 2388 }
1422 2389
2390#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1423 evpipe_init (EV_A); 2391 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */ 2392 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ); 2393 pipecb (EV_A_ &pipe_w, EV_READ);
2394#endif
1426 } 2395 }
1427 2396
1428 postfork = 0; 2397 postfork = 0;
1429} 2398}
1430 2399
1431#if EV_MULTIPLICITY 2400#if EV_MULTIPLICITY
2401
1432struct ev_loop * 2402struct ev_loop * ecb_cold
1433ev_loop_new (unsigned int flags) 2403ev_loop_new (unsigned int flags)
1434{ 2404{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2405 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 2406
1437 memset (loop, 0, sizeof (struct ev_loop)); 2407 memset (EV_A, 0, sizeof (struct ev_loop));
1438
1439 loop_init (EV_A_ flags); 2408 loop_init (EV_A_ flags);
1440 2409
1441 if (ev_backend (EV_A)) 2410 if (ev_backend (EV_A))
1442 return loop; 2411 return EV_A;
1443 2412
2413 ev_free (EV_A);
1444 return 0; 2414 return 0;
1445} 2415}
1446 2416
1447void 2417#endif /* multiplicity */
1448ev_loop_destroy (EV_P)
1449{
1450 loop_destroy (EV_A);
1451 ev_free (loop);
1452}
1453 2418
1454void 2419#if EV_VERIFY
1455ev_loop_fork (EV_P) 2420static void noinline ecb_cold
2421verify_watcher (EV_P_ W w)
1456{ 2422{
1457 postfork = 1; /* must be in line with ev_default_fork */ 2423 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2424
2425 if (w->pending)
2426 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2427}
2428
2429static void noinline ecb_cold
2430verify_heap (EV_P_ ANHE *heap, int N)
2431{
2432 int i;
2433
2434 for (i = HEAP0; i < N + HEAP0; ++i)
2435 {
2436 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2437 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2438 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2439
2440 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2441 }
2442}
2443
2444static void noinline ecb_cold
2445array_verify (EV_P_ W *ws, int cnt)
2446{
2447 while (cnt--)
2448 {
2449 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2450 verify_watcher (EV_A_ ws [cnt]);
2451 }
2452}
2453#endif
2454
2455#if EV_FEATURE_API
2456void ecb_cold
2457ev_verify (EV_P)
2458{
2459#if EV_VERIFY
2460 int i;
2461 WL w;
2462
2463 assert (activecnt >= -1);
2464
2465 assert (fdchangemax >= fdchangecnt);
2466 for (i = 0; i < fdchangecnt; ++i)
2467 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2468
2469 assert (anfdmax >= 0);
2470 for (i = 0; i < anfdmax; ++i)
2471 for (w = anfds [i].head; w; w = w->next)
2472 {
2473 verify_watcher (EV_A_ (W)w);
2474 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2475 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2476 }
2477
2478 assert (timermax >= timercnt);
2479 verify_heap (EV_A_ timers, timercnt);
2480
2481#if EV_PERIODIC_ENABLE
2482 assert (periodicmax >= periodiccnt);
2483 verify_heap (EV_A_ periodics, periodiccnt);
2484#endif
2485
2486 for (i = NUMPRI; i--; )
2487 {
2488 assert (pendingmax [i] >= pendingcnt [i]);
2489#if EV_IDLE_ENABLE
2490 assert (idleall >= 0);
2491 assert (idlemax [i] >= idlecnt [i]);
2492 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2493#endif
2494 }
2495
2496#if EV_FORK_ENABLE
2497 assert (forkmax >= forkcnt);
2498 array_verify (EV_A_ (W *)forks, forkcnt);
2499#endif
2500
2501#if EV_CLEANUP_ENABLE
2502 assert (cleanupmax >= cleanupcnt);
2503 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2504#endif
2505
2506#if EV_ASYNC_ENABLE
2507 assert (asyncmax >= asynccnt);
2508 array_verify (EV_A_ (W *)asyncs, asynccnt);
2509#endif
2510
2511#if EV_PREPARE_ENABLE
2512 assert (preparemax >= preparecnt);
2513 array_verify (EV_A_ (W *)prepares, preparecnt);
2514#endif
2515
2516#if EV_CHECK_ENABLE
2517 assert (checkmax >= checkcnt);
2518 array_verify (EV_A_ (W *)checks, checkcnt);
2519#endif
2520
2521# if 0
2522#if EV_CHILD_ENABLE
2523 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2524 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2525#endif
2526# endif
2527#endif
1458} 2528}
1459#endif 2529#endif
1460 2530
1461#if EV_MULTIPLICITY 2531#if EV_MULTIPLICITY
1462struct ev_loop * 2532struct ev_loop * ecb_cold
1463ev_default_loop_init (unsigned int flags)
1464#else 2533#else
1465int 2534int
2535#endif
1466ev_default_loop (unsigned int flags) 2536ev_default_loop (unsigned int flags)
1467#endif
1468{ 2537{
1469 if (!ev_default_loop_ptr) 2538 if (!ev_default_loop_ptr)
1470 { 2539 {
1471#if EV_MULTIPLICITY 2540#if EV_MULTIPLICITY
1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2541 EV_P = ev_default_loop_ptr = &default_loop_struct;
1473#else 2542#else
1474 ev_default_loop_ptr = 1; 2543 ev_default_loop_ptr = 1;
1475#endif 2544#endif
1476 2545
1477 loop_init (EV_A_ flags); 2546 loop_init (EV_A_ flags);
1478 2547
1479 if (ev_backend (EV_A)) 2548 if (ev_backend (EV_A))
1480 { 2549 {
1481#ifndef _WIN32 2550#if EV_CHILD_ENABLE
1482 ev_signal_init (&childev, childcb, SIGCHLD); 2551 ev_signal_init (&childev, childcb, SIGCHLD);
1483 ev_set_priority (&childev, EV_MAXPRI); 2552 ev_set_priority (&childev, EV_MAXPRI);
1484 ev_signal_start (EV_A_ &childev); 2553 ev_signal_start (EV_A_ &childev);
1485 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2554 ev_unref (EV_A); /* child watcher should not keep loop alive */
1486#endif 2555#endif
1491 2560
1492 return ev_default_loop_ptr; 2561 return ev_default_loop_ptr;
1493} 2562}
1494 2563
1495void 2564void
1496ev_default_destroy (void) 2565ev_loop_fork (EV_P)
1497{ 2566{
1498#if EV_MULTIPLICITY
1499 struct ev_loop *loop = ev_default_loop_ptr;
1500#endif
1501
1502#ifndef _WIN32
1503 ev_ref (EV_A); /* child watcher */
1504 ev_signal_stop (EV_A_ &childev);
1505#endif
1506
1507 loop_destroy (EV_A);
1508}
1509
1510void
1511ev_default_fork (void)
1512{
1513#if EV_MULTIPLICITY
1514 struct ev_loop *loop = ev_default_loop_ptr;
1515#endif
1516
1517 if (backend)
1518 postfork = 1; /* must be in line with ev_loop_fork */ 2567 postfork = 1; /* must be in line with ev_default_fork */
1519} 2568}
1520 2569
1521/*****************************************************************************/ 2570/*****************************************************************************/
1522 2571
1523void 2572void
1524ev_invoke (EV_P_ void *w, int revents) 2573ev_invoke (EV_P_ void *w, int revents)
1525{ 2574{
1526 EV_CB_INVOKE ((W)w, revents); 2575 EV_CB_INVOKE ((W)w, revents);
1527} 2576}
1528 2577
1529void inline_speed 2578unsigned int
1530call_pending (EV_P) 2579ev_pending_count (EV_P)
2580{
2581 int pri;
2582 unsigned int count = 0;
2583
2584 for (pri = NUMPRI; pri--; )
2585 count += pendingcnt [pri];
2586
2587 return count;
2588}
2589
2590void noinline
2591ev_invoke_pending (EV_P)
1531{ 2592{
1532 int pri; 2593 int pri;
1533 2594
1534 for (pri = NUMPRI; pri--; ) 2595 for (pri = NUMPRI; pri--; )
1535 while (pendingcnt [pri]) 2596 while (pendingcnt [pri])
1536 { 2597 {
1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2598 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1538 2599
1539 if (expect_true (p->w))
1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542
1543 p->w->pending = 0; 2600 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 2601 EV_CB_INVOKE (p->w, p->events);
1545 } 2602 EV_FREQUENT_CHECK;
1546 } 2603 }
1547} 2604}
1548 2605
1549#if EV_IDLE_ENABLE 2606#if EV_IDLE_ENABLE
1550void inline_size 2607/* make idle watchers pending. this handles the "call-idle */
2608/* only when higher priorities are idle" logic */
2609inline_size void
1551idle_reify (EV_P) 2610idle_reify (EV_P)
1552{ 2611{
1553 if (expect_false (idleall)) 2612 if (expect_false (idleall))
1554 { 2613 {
1555 int pri; 2614 int pri;
1567 } 2626 }
1568 } 2627 }
1569} 2628}
1570#endif 2629#endif
1571 2630
1572void inline_size 2631/* make timers pending */
2632inline_size void
1573timers_reify (EV_P) 2633timers_reify (EV_P)
1574{ 2634{
2635 EV_FREQUENT_CHECK;
2636
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2637 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 2638 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 2639 do
1578
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580
1581 /* first reschedule or stop timer */
1582 if (w->repeat)
1583 { 2640 {
2641 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2642
2643 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2644
2645 /* first reschedule or stop timer */
2646 if (w->repeat)
2647 {
2648 ev_at (w) += w->repeat;
2649 if (ev_at (w) < mn_now)
2650 ev_at (w) = mn_now;
2651
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2652 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585 2653
1586 ev_at (w) += w->repeat; 2654 ANHE_at_cache (timers [HEAP0]);
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
1590 downheap (timers, timercnt, HEAP0); 2655 downheap (timers, timercnt, HEAP0);
2656 }
2657 else
2658 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2659
2660 EV_FREQUENT_CHECK;
2661 feed_reverse (EV_A_ (W)w);
1591 } 2662 }
1592 else 2663 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 2664
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2665 feed_reverse_done (EV_A_ EV_TIMER);
1596 } 2666 }
1597} 2667}
1598 2668
1599#if EV_PERIODIC_ENABLE 2669#if EV_PERIODIC_ENABLE
1600void inline_size 2670
2671static void noinline
2672periodic_recalc (EV_P_ ev_periodic *w)
2673{
2674 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2675 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2676
2677 /* the above almost always errs on the low side */
2678 while (at <= ev_rt_now)
2679 {
2680 ev_tstamp nat = at + w->interval;
2681
2682 /* when resolution fails us, we use ev_rt_now */
2683 if (expect_false (nat == at))
2684 {
2685 at = ev_rt_now;
2686 break;
2687 }
2688
2689 at = nat;
2690 }
2691
2692 ev_at (w) = at;
2693}
2694
2695/* make periodics pending */
2696inline_size void
1601periodics_reify (EV_P) 2697periodics_reify (EV_P)
1602{ 2698{
2699 EV_FREQUENT_CHECK;
2700
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2701 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 2702 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2703 int feed_count = 0;
1606 2704
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2705 do
1608
1609 /* first reschedule or stop timer */
1610 if (w->reschedule_cb)
1611 { 2706 {
2707 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2708
2709 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2710
2711 /* first reschedule or stop timer */
2712 if (w->reschedule_cb)
2713 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2714 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2715
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2716 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2717
2718 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 2719 downheap (periodics, periodiccnt, HEAP0);
2720 }
2721 else if (w->interval)
2722 {
2723 periodic_recalc (EV_A_ w);
2724 ANHE_at_cache (periodics [HEAP0]);
2725 downheap (periodics, periodiccnt, HEAP0);
2726 }
2727 else
2728 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2729
2730 EV_FREQUENT_CHECK;
2731 feed_reverse (EV_A_ (W)w);
1615 } 2732 }
1616 else if (w->interval) 2733 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
1622 }
1623 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 2734
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2735 feed_reverse_done (EV_A_ EV_PERIODIC);
1627 } 2736 }
1628} 2737}
1629 2738
2739/* simply recalculate all periodics */
2740/* TODO: maybe ensure that at least one event happens when jumping forward? */
1630static void noinline 2741static void noinline ecb_cold
1631periodics_reschedule (EV_P) 2742periodics_reschedule (EV_P)
1632{ 2743{
1633 int i; 2744 int i;
1634 2745
1635 /* adjust periodics after time jump */ 2746 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 2747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 2748 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 2749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 2750
1640 if (w->reschedule_cb) 2751 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 2753 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2754 periodic_recalc (EV_A_ w);
2755
2756 ANHE_at_cache (periodics [i]);
2757 }
2758
2759 reheap (periodics, periodiccnt);
2760}
2761#endif
2762
2763/* adjust all timers by a given offset */
2764static void noinline ecb_cold
2765timers_reschedule (EV_P_ ev_tstamp adjust)
2766{
2767 int i;
2768
2769 for (i = 0; i < timercnt; ++i)
1644 } 2770 {
1645 2771 ANHE *he = timers + i + HEAP0;
1646 /* now rebuild the heap */ 2772 ANHE_w (*he)->at += adjust;
1647 for (i = periodiccnt >> 1; --i; ) 2773 ANHE_at_cache (*he);
1648 downheap (periodics, periodiccnt, i + HEAP0); 2774 }
1649} 2775}
1650#endif
1651 2776
1652void inline_speed 2777/* fetch new monotonic and realtime times from the kernel */
2778/* also detect if there was a timejump, and act accordingly */
2779inline_speed void
1653time_update (EV_P_ ev_tstamp max_block) 2780time_update (EV_P_ ev_tstamp max_block)
1654{ 2781{
1655 int i;
1656
1657#if EV_USE_MONOTONIC 2782#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic)) 2783 if (expect_true (have_monotonic))
1659 { 2784 {
2785 int i;
1660 ev_tstamp odiff = rtmn_diff; 2786 ev_tstamp odiff = rtmn_diff;
1661 2787
1662 mn_now = get_clock (); 2788 mn_now = get_clock ();
1663 2789
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2790 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1680 * doesn't hurt either as we only do this on time-jumps or 2806 * doesn't hurt either as we only do this on time-jumps or
1681 * in the unlikely event of having been preempted here. 2807 * in the unlikely event of having been preempted here.
1682 */ 2808 */
1683 for (i = 4; --i; ) 2809 for (i = 4; --i; )
1684 { 2810 {
2811 ev_tstamp diff;
1685 rtmn_diff = ev_rt_now - mn_now; 2812 rtmn_diff = ev_rt_now - mn_now;
1686 2813
2814 diff = odiff - rtmn_diff;
2815
1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2816 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1688 return; /* all is well */ 2817 return; /* all is well */
1689 2818
1690 ev_rt_now = ev_time (); 2819 ev_rt_now = ev_time ();
1691 mn_now = get_clock (); 2820 mn_now = get_clock ();
1692 now_floor = mn_now; 2821 now_floor = mn_now;
1693 } 2822 }
1694 2823
2824 /* no timer adjustment, as the monotonic clock doesn't jump */
2825 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1695# if EV_PERIODIC_ENABLE 2826# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A); 2827 periodics_reschedule (EV_A);
1697# endif 2828# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 } 2829 }
1701 else 2830 else
1702#endif 2831#endif
1703 { 2832 {
1704 ev_rt_now = ev_time (); 2833 ev_rt_now = ev_time ();
1705 2834
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2835 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 { 2836 {
2837 /* adjust timers. this is easy, as the offset is the same for all of them */
2838 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1708#if EV_PERIODIC_ENABLE 2839#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 2840 periodics_reschedule (EV_A);
1710#endif 2841#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1714 } 2842 }
1715 2843
1716 mn_now = ev_rt_now; 2844 mn_now = ev_rt_now;
1717 } 2845 }
1718} 2846}
1719 2847
1720void 2848void
1721ev_ref (EV_P)
1722{
1723 ++activecnt;
1724}
1725
1726void
1727ev_unref (EV_P)
1728{
1729 --activecnt;
1730}
1731
1732static int loop_done;
1733
1734void
1735ev_loop (EV_P_ int flags) 2849ev_run (EV_P_ int flags)
1736{ 2850{
2851#if EV_FEATURE_API
2852 ++loop_depth;
2853#endif
2854
2855 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2856
1737 loop_done = EVUNLOOP_CANCEL; 2857 loop_done = EVBREAK_CANCEL;
1738 2858
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2859 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1740 2860
1741 do 2861 do
1742 { 2862 {
2863#if EV_VERIFY >= 2
2864 ev_verify (EV_A);
2865#endif
2866
1743#ifndef _WIN32 2867#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 2868 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 2869 if (expect_false (getpid () != curpid))
1746 { 2870 {
1747 curpid = getpid (); 2871 curpid = getpid ();
1753 /* we might have forked, so queue fork handlers */ 2877 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork)) 2878 if (expect_false (postfork))
1755 if (forkcnt) 2879 if (forkcnt)
1756 { 2880 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A); 2882 EV_INVOKE_PENDING;
1759 } 2883 }
1760#endif 2884#endif
1761 2885
2886#if EV_PREPARE_ENABLE
1762 /* queue prepare watchers (and execute them) */ 2887 /* queue prepare watchers (and execute them) */
1763 if (expect_false (preparecnt)) 2888 if (expect_false (preparecnt))
1764 { 2889 {
1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2890 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1766 call_pending (EV_A); 2891 EV_INVOKE_PENDING;
1767 } 2892 }
2893#endif
1768 2894
1769 if (expect_false (!activecnt)) 2895 if (expect_false (loop_done))
1770 break; 2896 break;
1771 2897
1772 /* we might have forked, so reify kernel state if necessary */ 2898 /* we might have forked, so reify kernel state if necessary */
1773 if (expect_false (postfork)) 2899 if (expect_false (postfork))
1774 loop_fork (EV_A); 2900 loop_fork (EV_A);
1779 /* calculate blocking time */ 2905 /* calculate blocking time */
1780 { 2906 {
1781 ev_tstamp waittime = 0.; 2907 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.; 2908 ev_tstamp sleeptime = 0.;
1783 2909
2910 /* remember old timestamp for io_blocktime calculation */
2911 ev_tstamp prev_mn_now = mn_now;
2912
2913 /* update time to cancel out callback processing overhead */
2914 time_update (EV_A_ 1e100);
2915
2916 /* from now on, we want a pipe-wake-up */
2917 pipe_write_wanted = 1;
2918
2919 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2920
1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2921 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1785 { 2922 {
1786 /* update time to cancel out callback processing overhead */
1787 time_update (EV_A_ 1e100);
1788
1789 waittime = MAX_BLOCKTIME; 2923 waittime = MAX_BLOCKTIME;
1790 2924
1791 if (timercnt) 2925 if (timercnt)
1792 { 2926 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2927 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1794 if (waittime > to) waittime = to; 2928 if (waittime > to) waittime = to;
1795 } 2929 }
1796 2930
1797#if EV_PERIODIC_ENABLE 2931#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 2932 if (periodiccnt)
1799 { 2933 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2934 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1801 if (waittime > to) waittime = to; 2935 if (waittime > to) waittime = to;
1802 } 2936 }
1803#endif 2937#endif
1804 2938
2939 /* don't let timeouts decrease the waittime below timeout_blocktime */
1805 if (expect_false (waittime < timeout_blocktime)) 2940 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime; 2941 waittime = timeout_blocktime;
1807 2942
1808 sleeptime = waittime - backend_fudge; 2943 /* at this point, we NEED to wait, so we have to ensure */
2944 /* to pass a minimum nonzero value to the backend */
2945 if (expect_false (waittime < backend_mintime))
2946 waittime = backend_mintime;
1809 2947
2948 /* extra check because io_blocktime is commonly 0 */
1810 if (expect_true (sleeptime > io_blocktime)) 2949 if (expect_false (io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 { 2950 {
2951 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2952
2953 if (sleeptime > waittime - backend_mintime)
2954 sleeptime = waittime - backend_mintime;
2955
2956 if (expect_true (sleeptime > 0.))
2957 {
1815 ev_sleep (sleeptime); 2958 ev_sleep (sleeptime);
1816 waittime -= sleeptime; 2959 waittime -= sleeptime;
2960 }
1817 } 2961 }
1818 } 2962 }
1819 2963
2964#if EV_FEATURE_API
1820 ++loop_count; 2965 ++loop_count;
2966#endif
2967 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1821 backend_poll (EV_A_ waittime); 2968 backend_poll (EV_A_ waittime);
2969 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2970
2971 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2972
2973 if (pipe_write_skipped)
2974 {
2975 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2976 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2977 }
2978
1822 2979
1823 /* update ev_rt_now, do magic */ 2980 /* update ev_rt_now, do magic */
1824 time_update (EV_A_ waittime + sleeptime); 2981 time_update (EV_A_ waittime + sleeptime);
1825 } 2982 }
1826 2983
1833#if EV_IDLE_ENABLE 2990#if EV_IDLE_ENABLE
1834 /* queue idle watchers unless other events are pending */ 2991 /* queue idle watchers unless other events are pending */
1835 idle_reify (EV_A); 2992 idle_reify (EV_A);
1836#endif 2993#endif
1837 2994
2995#if EV_CHECK_ENABLE
1838 /* queue check watchers, to be executed first */ 2996 /* queue check watchers, to be executed first */
1839 if (expect_false (checkcnt)) 2997 if (expect_false (checkcnt))
1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2998 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2999#endif
1841 3000
1842 call_pending (EV_A); 3001 EV_INVOKE_PENDING;
1843 } 3002 }
1844 while (expect_true ( 3003 while (expect_true (
1845 activecnt 3004 activecnt
1846 && !loop_done 3005 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3006 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1848 )); 3007 ));
1849 3008
1850 if (loop_done == EVUNLOOP_ONE) 3009 if (loop_done == EVBREAK_ONE)
1851 loop_done = EVUNLOOP_CANCEL; 3010 loop_done = EVBREAK_CANCEL;
3011
3012#if EV_FEATURE_API
3013 --loop_depth;
3014#endif
1852} 3015}
1853 3016
1854void 3017void
1855ev_unloop (EV_P_ int how) 3018ev_break (EV_P_ int how)
1856{ 3019{
1857 loop_done = how; 3020 loop_done = how;
1858} 3021}
1859 3022
3023void
3024ev_ref (EV_P)
3025{
3026 ++activecnt;
3027}
3028
3029void
3030ev_unref (EV_P)
3031{
3032 --activecnt;
3033}
3034
3035void
3036ev_now_update (EV_P)
3037{
3038 time_update (EV_A_ 1e100);
3039}
3040
3041void
3042ev_suspend (EV_P)
3043{
3044 ev_now_update (EV_A);
3045}
3046
3047void
3048ev_resume (EV_P)
3049{
3050 ev_tstamp mn_prev = mn_now;
3051
3052 ev_now_update (EV_A);
3053 timers_reschedule (EV_A_ mn_now - mn_prev);
3054#if EV_PERIODIC_ENABLE
3055 /* TODO: really do this? */
3056 periodics_reschedule (EV_A);
3057#endif
3058}
3059
1860/*****************************************************************************/ 3060/*****************************************************************************/
3061/* singly-linked list management, used when the expected list length is short */
1861 3062
1862void inline_size 3063inline_size void
1863wlist_add (WL *head, WL elem) 3064wlist_add (WL *head, WL elem)
1864{ 3065{
1865 elem->next = *head; 3066 elem->next = *head;
1866 *head = elem; 3067 *head = elem;
1867} 3068}
1868 3069
1869void inline_size 3070inline_size void
1870wlist_del (WL *head, WL elem) 3071wlist_del (WL *head, WL elem)
1871{ 3072{
1872 while (*head) 3073 while (*head)
1873 { 3074 {
1874 if (*head == elem) 3075 if (expect_true (*head == elem))
1875 { 3076 {
1876 *head = elem->next; 3077 *head = elem->next;
1877 return; 3078 break;
1878 } 3079 }
1879 3080
1880 head = &(*head)->next; 3081 head = &(*head)->next;
1881 } 3082 }
1882} 3083}
1883 3084
1884void inline_speed 3085/* internal, faster, version of ev_clear_pending */
3086inline_speed void
1885clear_pending (EV_P_ W w) 3087clear_pending (EV_P_ W w)
1886{ 3088{
1887 if (w->pending) 3089 if (w->pending)
1888 { 3090 {
1889 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3091 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1890 w->pending = 0; 3092 w->pending = 0;
1891 } 3093 }
1892} 3094}
1893 3095
1894int 3096int
1898 int pending = w_->pending; 3100 int pending = w_->pending;
1899 3101
1900 if (expect_true (pending)) 3102 if (expect_true (pending))
1901 { 3103 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3104 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3105 p->w = (W)&pending_w;
1903 w_->pending = 0; 3106 w_->pending = 0;
1904 p->w = 0;
1905 return p->events; 3107 return p->events;
1906 } 3108 }
1907 else 3109 else
1908 return 0; 3110 return 0;
1909} 3111}
1910 3112
1911void inline_size 3113inline_size void
1912pri_adjust (EV_P_ W w) 3114pri_adjust (EV_P_ W w)
1913{ 3115{
1914 int pri = w->priority; 3116 int pri = ev_priority (w);
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3117 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3118 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri; 3119 ev_set_priority (w, pri);
1918} 3120}
1919 3121
1920void inline_speed 3122inline_speed void
1921ev_start (EV_P_ W w, int active) 3123ev_start (EV_P_ W w, int active)
1922{ 3124{
1923 pri_adjust (EV_A_ w); 3125 pri_adjust (EV_A_ w);
1924 w->active = active; 3126 w->active = active;
1925 ev_ref (EV_A); 3127 ev_ref (EV_A);
1926} 3128}
1927 3129
1928void inline_size 3130inline_size void
1929ev_stop (EV_P_ W w) 3131ev_stop (EV_P_ W w)
1930{ 3132{
1931 ev_unref (EV_A); 3133 ev_unref (EV_A);
1932 w->active = 0; 3134 w->active = 0;
1933} 3135}
1940 int fd = w->fd; 3142 int fd = w->fd;
1941 3143
1942 if (expect_false (ev_is_active (w))) 3144 if (expect_false (ev_is_active (w)))
1943 return; 3145 return;
1944 3146
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 3147 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3148 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3149
3150 EV_FREQUENT_CHECK;
1946 3151
1947 ev_start (EV_A_ (W)w, 1); 3152 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3153 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1949 wlist_add (&anfds[fd].head, (WL)w); 3154 wlist_add (&anfds[fd].head, (WL)w);
1950 3155
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3156 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1952 w->events &= ~EV_IOFDSET; 3157 w->events &= ~EV__IOFDSET;
3158
3159 EV_FREQUENT_CHECK;
1953} 3160}
1954 3161
1955void noinline 3162void noinline
1956ev_io_stop (EV_P_ ev_io *w) 3163ev_io_stop (EV_P_ ev_io *w)
1957{ 3164{
1958 clear_pending (EV_A_ (W)w); 3165 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 3166 if (expect_false (!ev_is_active (w)))
1960 return; 3167 return;
1961 3168
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3169 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3170
3171 EV_FREQUENT_CHECK;
1963 3172
1964 wlist_del (&anfds[w->fd].head, (WL)w); 3173 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 3174 ev_stop (EV_A_ (W)w);
1966 3175
1967 fd_change (EV_A_ w->fd, 1); 3176 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3177
3178 EV_FREQUENT_CHECK;
1968} 3179}
1969 3180
1970void noinline 3181void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 3182ev_timer_start (EV_P_ ev_timer *w)
1972{ 3183{
1973 if (expect_false (ev_is_active (w))) 3184 if (expect_false (ev_is_active (w)))
1974 return; 3185 return;
1975 3186
1976 ev_at (w) += mn_now; 3187 ev_at (w) += mn_now;
1977 3188
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3189 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 3190
3191 EV_FREQUENT_CHECK;
3192
3193 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3194 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 3195 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 3196 ANHE_w (timers [ev_active (w)]) = (WT)w;
3197 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 3198 upheap (timers, ev_active (w));
1984 3199
3200 EV_FREQUENT_CHECK;
3201
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 3202 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 3203}
1987 3204
1988void noinline 3205void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 3206ev_timer_stop (EV_P_ ev_timer *w)
1990{ 3207{
1991 clear_pending (EV_A_ (W)w); 3208 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 3209 if (expect_false (!ev_is_active (w)))
1993 return; 3210 return;
1994 3211
3212 EV_FREQUENT_CHECK;
3213
1995 { 3214 {
1996 int active = ev_active (w); 3215 int active = ev_active (w);
1997 3216
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 3217 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 3218
3219 --timercnt;
3220
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 3221 if (expect_true (active < timercnt + HEAP0))
2001 { 3222 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 3223 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 3224 adjustheap (timers, timercnt, active);
2004 } 3225 }
2005
2006 --timercnt;
2007 } 3226 }
2008 3227
2009 ev_at (w) -= mn_now; 3228 ev_at (w) -= mn_now;
2010 3229
2011 ev_stop (EV_A_ (W)w); 3230 ev_stop (EV_A_ (W)w);
3231
3232 EV_FREQUENT_CHECK;
2012} 3233}
2013 3234
2014void noinline 3235void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 3236ev_timer_again (EV_P_ ev_timer *w)
2016{ 3237{
3238 EV_FREQUENT_CHECK;
3239
2017 if (ev_is_active (w)) 3240 if (ev_is_active (w))
2018 { 3241 {
2019 if (w->repeat) 3242 if (w->repeat)
2020 { 3243 {
2021 ev_at (w) = mn_now + w->repeat; 3244 ev_at (w) = mn_now + w->repeat;
3245 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 3246 adjustheap (timers, timercnt, ev_active (w));
2023 } 3247 }
2024 else 3248 else
2025 ev_timer_stop (EV_A_ w); 3249 ev_timer_stop (EV_A_ w);
2026 } 3250 }
2027 else if (w->repeat) 3251 else if (w->repeat)
2028 { 3252 {
2029 ev_at (w) = w->repeat; 3253 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 3254 ev_timer_start (EV_A_ w);
2031 } 3255 }
3256
3257 EV_FREQUENT_CHECK;
3258}
3259
3260ev_tstamp
3261ev_timer_remaining (EV_P_ ev_timer *w)
3262{
3263 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2032} 3264}
2033 3265
2034#if EV_PERIODIC_ENABLE 3266#if EV_PERIODIC_ENABLE
2035void noinline 3267void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 3268ev_periodic_start (EV_P_ ev_periodic *w)
2040 3272
2041 if (w->reschedule_cb) 3273 if (w->reschedule_cb)
2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3274 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2043 else if (w->interval) 3275 else if (w->interval)
2044 { 3276 {
2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3277 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2046 /* this formula differs from the one in periodic_reify because we do not always round up */ 3278 periodic_recalc (EV_A_ w);
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 3279 }
2049 else 3280 else
2050 ev_at (w) = w->offset; 3281 ev_at (w) = w->offset;
2051 3282
3283 EV_FREQUENT_CHECK;
3284
3285 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3286 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 3287 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 3288 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3289 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 3290 upheap (periodics, ev_active (w));
2056 3291
3292 EV_FREQUENT_CHECK;
3293
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 3294 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 3295}
2059 3296
2060void noinline 3297void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 3298ev_periodic_stop (EV_P_ ev_periodic *w)
2062{ 3299{
2063 clear_pending (EV_A_ (W)w); 3300 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 3301 if (expect_false (!ev_is_active (w)))
2065 return; 3302 return;
2066 3303
3304 EV_FREQUENT_CHECK;
3305
2067 { 3306 {
2068 int active = ev_active (w); 3307 int active = ev_active (w);
2069 3308
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 3309 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 3310
3311 --periodiccnt;
3312
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3313 if (expect_true (active < periodiccnt + HEAP0))
2073 { 3314 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3315 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 3316 adjustheap (periodics, periodiccnt, active);
2076 } 3317 }
2077
2078 --periodiccnt;
2079 } 3318 }
2080 3319
2081 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
2082} 3323}
2083 3324
2084void noinline 3325void noinline
2085ev_periodic_again (EV_P_ ev_periodic *w) 3326ev_periodic_again (EV_P_ ev_periodic *w)
2086{ 3327{
2092 3333
2093#ifndef SA_RESTART 3334#ifndef SA_RESTART
2094# define SA_RESTART 0 3335# define SA_RESTART 0
2095#endif 3336#endif
2096 3337
3338#if EV_SIGNAL_ENABLE
3339
2097void noinline 3340void noinline
2098ev_signal_start (EV_P_ ev_signal *w) 3341ev_signal_start (EV_P_ ev_signal *w)
2099{ 3342{
2100#if EV_MULTIPLICITY
2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2102#endif
2103 if (expect_false (ev_is_active (w))) 3343 if (expect_false (ev_is_active (w)))
2104 return; 3344 return;
2105 3345
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3346 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2107 3347
2108 evpipe_init (EV_A); 3348#if EV_MULTIPLICITY
3349 assert (("libev: a signal must not be attached to two different loops",
3350 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2109 3351
3352 signals [w->signum - 1].loop = EV_A;
3353#endif
3354
3355 EV_FREQUENT_CHECK;
3356
3357#if EV_USE_SIGNALFD
3358 if (sigfd == -2)
2110 { 3359 {
2111#ifndef _WIN32 3360 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2112 sigset_t full, prev; 3361 if (sigfd < 0 && errno == EINVAL)
2113 sigfillset (&full); 3362 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116 3363
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3364 if (sigfd >= 0)
3365 {
3366 fd_intern (sigfd); /* doing it twice will not hurt */
2118 3367
2119#ifndef _WIN32 3368 sigemptyset (&sigfd_set);
2120 sigprocmask (SIG_SETMASK, &prev, 0); 3369
2121#endif 3370 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3371 ev_set_priority (&sigfd_w, EV_MAXPRI);
3372 ev_io_start (EV_A_ &sigfd_w);
3373 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3374 }
2122 } 3375 }
3376
3377 if (sigfd >= 0)
3378 {
3379 /* TODO: check .head */
3380 sigaddset (&sigfd_set, w->signum);
3381 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3382
3383 signalfd (sigfd, &sigfd_set, 0);
3384 }
3385#endif
2123 3386
2124 ev_start (EV_A_ (W)w, 1); 3387 ev_start (EV_A_ (W)w, 1);
2125 wlist_add (&signals [w->signum - 1].head, (WL)w); 3388 wlist_add (&signals [w->signum - 1].head, (WL)w);
2126 3389
2127 if (!((WL)w)->next) 3390 if (!((WL)w)->next)
3391# if EV_USE_SIGNALFD
3392 if (sigfd < 0) /*TODO*/
3393# endif
2128 { 3394 {
2129#if _WIN32 3395# ifdef _WIN32
3396 evpipe_init (EV_A);
3397
2130 signal (w->signum, ev_sighandler); 3398 signal (w->signum, ev_sighandler);
2131#else 3399# else
2132 struct sigaction sa; 3400 struct sigaction sa;
3401
3402 evpipe_init (EV_A);
3403
2133 sa.sa_handler = ev_sighandler; 3404 sa.sa_handler = ev_sighandler;
2134 sigfillset (&sa.sa_mask); 3405 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3406 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 3407 sigaction (w->signum, &sa, 0);
3408
3409 if (origflags & EVFLAG_NOSIGMASK)
3410 {
3411 sigemptyset (&sa.sa_mask);
3412 sigaddset (&sa.sa_mask, w->signum);
3413 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3414 }
2137#endif 3415#endif
2138 } 3416 }
3417
3418 EV_FREQUENT_CHECK;
2139} 3419}
2140 3420
2141void noinline 3421void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 3422ev_signal_stop (EV_P_ ev_signal *w)
2143{ 3423{
2144 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2146 return; 3426 return;
2147 3427
3428 EV_FREQUENT_CHECK;
3429
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 3430 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 3431 ev_stop (EV_A_ (W)w);
2150 3432
2151 if (!signals [w->signum - 1].head) 3433 if (!signals [w->signum - 1].head)
3434 {
3435#if EV_MULTIPLICITY
3436 signals [w->signum - 1].loop = 0; /* unattach from signal */
3437#endif
3438#if EV_USE_SIGNALFD
3439 if (sigfd >= 0)
3440 {
3441 sigset_t ss;
3442
3443 sigemptyset (&ss);
3444 sigaddset (&ss, w->signum);
3445 sigdelset (&sigfd_set, w->signum);
3446
3447 signalfd (sigfd, &sigfd_set, 0);
3448 sigprocmask (SIG_UNBLOCK, &ss, 0);
3449 }
3450 else
3451#endif
2152 signal (w->signum, SIG_DFL); 3452 signal (w->signum, SIG_DFL);
3453 }
3454
3455 EV_FREQUENT_CHECK;
2153} 3456}
3457
3458#endif
3459
3460#if EV_CHILD_ENABLE
2154 3461
2155void 3462void
2156ev_child_start (EV_P_ ev_child *w) 3463ev_child_start (EV_P_ ev_child *w)
2157{ 3464{
2158#if EV_MULTIPLICITY 3465#if EV_MULTIPLICITY
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3466 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 3467#endif
2161 if (expect_false (ev_is_active (w))) 3468 if (expect_false (ev_is_active (w)))
2162 return; 3469 return;
2163 3470
3471 EV_FREQUENT_CHECK;
3472
2164 ev_start (EV_A_ (W)w, 1); 3473 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3474 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3475
3476 EV_FREQUENT_CHECK;
2166} 3477}
2167 3478
2168void 3479void
2169ev_child_stop (EV_P_ ev_child *w) 3480ev_child_stop (EV_P_ ev_child *w)
2170{ 3481{
2171 clear_pending (EV_A_ (W)w); 3482 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 3483 if (expect_false (!ev_is_active (w)))
2173 return; 3484 return;
2174 3485
3486 EV_FREQUENT_CHECK;
3487
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3488 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 3489 ev_stop (EV_A_ (W)w);
3490
3491 EV_FREQUENT_CHECK;
2177} 3492}
3493
3494#endif
2178 3495
2179#if EV_STAT_ENABLE 3496#if EV_STAT_ENABLE
2180 3497
2181# ifdef _WIN32 3498# ifdef _WIN32
2182# undef lstat 3499# undef lstat
2183# define lstat(a,b) _stati64 (a,b) 3500# define lstat(a,b) _stati64 (a,b)
2184# endif 3501# endif
2185 3502
2186#define DEF_STAT_INTERVAL 5.0074891 3503#define DEF_STAT_INTERVAL 5.0074891
3504#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2187#define MIN_STAT_INTERVAL 0.1074891 3505#define MIN_STAT_INTERVAL 0.1074891
2188 3506
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3507static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190 3508
2191#if EV_USE_INOTIFY 3509#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192 3510
3511/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3512# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2193 3513
2194static void noinline 3514static void noinline
2195infy_add (EV_P_ ev_stat *w) 3515infy_add (EV_P_ ev_stat *w)
2196{ 3516{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3517 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198 3518
2199 if (w->wd < 0) 3519 if (w->wd >= 0)
3520 {
3521 struct statfs sfs;
3522
3523 /* now local changes will be tracked by inotify, but remote changes won't */
3524 /* unless the filesystem is known to be local, we therefore still poll */
3525 /* also do poll on <2.6.25, but with normal frequency */
3526
3527 if (!fs_2625)
3528 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3529 else if (!statfs (w->path, &sfs)
3530 && (sfs.f_type == 0x1373 /* devfs */
3531 || sfs.f_type == 0xEF53 /* ext2/3 */
3532 || sfs.f_type == 0x3153464a /* jfs */
3533 || sfs.f_type == 0x52654973 /* reiser3 */
3534 || sfs.f_type == 0x01021994 /* tempfs */
3535 || sfs.f_type == 0x58465342 /* xfs */))
3536 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3537 else
3538 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2200 { 3539 }
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3540 else
3541 {
3542 /* can't use inotify, continue to stat */
3543 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2202 3544
2203 /* monitor some parent directory for speedup hints */ 3545 /* if path is not there, monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3546 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2205 /* but an efficiency issue only */ 3547 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3548 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 { 3549 {
2208 char path [4096]; 3550 char path [4096];
2209 strcpy (path, w->path); 3551 strcpy (path, w->path);
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3555 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3556 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215 3557
2216 char *pend = strrchr (path, '/'); 3558 char *pend = strrchr (path, '/');
2217 3559
2218 if (!pend) 3560 if (!pend || pend == path)
2219 break; /* whoops, no '/', complain to your admin */ 3561 break;
2220 3562
2221 *pend = 0; 3563 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask); 3564 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 } 3565 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3566 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 } 3567 }
2226 } 3568 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229 3569
2230 if (w->wd >= 0) 3570 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3571 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3572
3573 /* now re-arm timer, if required */
3574 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3575 ev_timer_again (EV_A_ &w->timer);
3576 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2232} 3577}
2233 3578
2234static void noinline 3579static void noinline
2235infy_del (EV_P_ ev_stat *w) 3580infy_del (EV_P_ ev_stat *w)
2236{ 3581{
2239 3584
2240 if (wd < 0) 3585 if (wd < 0)
2241 return; 3586 return;
2242 3587
2243 w->wd = -2; 3588 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3589 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w); 3590 wlist_del (&fs_hash [slot].head, (WL)w);
2246 3591
2247 /* remove this watcher, if others are watching it, they will rearm */ 3592 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd); 3593 inotify_rm_watch (fs_fd, wd);
2249} 3594}
2250 3595
2251static void noinline 3596static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3597infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{ 3598{
2254 if (slot < 0) 3599 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */ 3600 /* overflow, need to check for all hash slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3601 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2257 infy_wd (EV_A_ slot, wd, ev); 3602 infy_wd (EV_A_ slot, wd, ev);
2258 else 3603 else
2259 { 3604 {
2260 WL w_; 3605 WL w_;
2261 3606
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3607 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2263 { 3608 {
2264 ev_stat *w = (ev_stat *)w_; 3609 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */ 3610 w_ = w_->next; /* lets us remove this watcher and all before it */
2266 3611
2267 if (w->wd == wd || wd == -1) 3612 if (w->wd == wd || wd == -1)
2268 { 3613 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3614 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 { 3615 {
3616 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2271 w->wd = -1; 3617 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */ 3618 infy_add (EV_A_ w); /* re-add, no matter what */
2273 } 3619 }
2274 3620
2275 stat_timer_cb (EV_A_ &w->timer, 0); 3621 stat_timer_cb (EV_A_ &w->timer, 0);
2280 3626
2281static void 3627static void
2282infy_cb (EV_P_ ev_io *w, int revents) 3628infy_cb (EV_P_ ev_io *w, int revents)
2283{ 3629{
2284 char buf [EV_INOTIFY_BUFSIZE]; 3630 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs; 3631 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf)); 3632 int len = read (fs_fd, buf, sizeof (buf));
2288 3633
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3634 for (ofs = 0; ofs < len; )
3635 {
3636 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3637 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3638 ofs += sizeof (struct inotify_event) + ev->len;
3639 }
2291} 3640}
2292 3641
2293void inline_size 3642inline_size void ecb_cold
3643ev_check_2625 (EV_P)
3644{
3645 /* kernels < 2.6.25 are borked
3646 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3647 */
3648 if (ev_linux_version () < 0x020619)
3649 return;
3650
3651 fs_2625 = 1;
3652}
3653
3654inline_size int
3655infy_newfd (void)
3656{
3657#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3658 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3659 if (fd >= 0)
3660 return fd;
3661#endif
3662 return inotify_init ();
3663}
3664
3665inline_size void
2294infy_init (EV_P) 3666infy_init (EV_P)
2295{ 3667{
2296 if (fs_fd != -2) 3668 if (fs_fd != -2)
2297 return; 3669 return;
2298 3670
3671 fs_fd = -1;
3672
3673 ev_check_2625 (EV_A);
3674
2299 fs_fd = inotify_init (); 3675 fs_fd = infy_newfd ();
2300 3676
2301 if (fs_fd >= 0) 3677 if (fs_fd >= 0)
2302 { 3678 {
3679 fd_intern (fs_fd);
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3680 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI); 3681 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w); 3682 ev_io_start (EV_A_ &fs_w);
3683 ev_unref (EV_A);
2306 } 3684 }
2307} 3685}
2308 3686
2309void inline_size 3687inline_size void
2310infy_fork (EV_P) 3688infy_fork (EV_P)
2311{ 3689{
2312 int slot; 3690 int slot;
2313 3691
2314 if (fs_fd < 0) 3692 if (fs_fd < 0)
2315 return; 3693 return;
2316 3694
3695 ev_ref (EV_A);
3696 ev_io_stop (EV_A_ &fs_w);
2317 close (fs_fd); 3697 close (fs_fd);
2318 fs_fd = inotify_init (); 3698 fs_fd = infy_newfd ();
2319 3699
3700 if (fs_fd >= 0)
3701 {
3702 fd_intern (fs_fd);
3703 ev_io_set (&fs_w, fs_fd, EV_READ);
3704 ev_io_start (EV_A_ &fs_w);
3705 ev_unref (EV_A);
3706 }
3707
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3708 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2321 { 3709 {
2322 WL w_ = fs_hash [slot].head; 3710 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0; 3711 fs_hash [slot].head = 0;
2324 3712
2325 while (w_) 3713 while (w_)
2330 w->wd = -1; 3718 w->wd = -1;
2331 3719
2332 if (fs_fd >= 0) 3720 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 3721 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else 3722 else
3723 {
3724 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3725 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2335 ev_timer_start (EV_A_ &w->timer); 3726 ev_timer_again (EV_A_ &w->timer);
3727 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3728 }
2336 } 3729 }
2337
2338 } 3730 }
2339} 3731}
2340 3732
3733#endif
3734
3735#ifdef _WIN32
3736# define EV_LSTAT(p,b) _stati64 (p, b)
3737#else
3738# define EV_LSTAT(p,b) lstat (p, b)
2341#endif 3739#endif
2342 3740
2343void 3741void
2344ev_stat_stat (EV_P_ ev_stat *w) 3742ev_stat_stat (EV_P_ ev_stat *w)
2345{ 3743{
2352static void noinline 3750static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3751stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{ 3752{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3753 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356 3754
2357 /* we copy this here each the time so that */ 3755 ev_statdata prev = w->attr;
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w); 3756 ev_stat_stat (EV_A_ w);
2361 3757
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3758 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if ( 3759 if (
2364 w->prev.st_dev != w->attr.st_dev 3760 prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino 3761 || prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode 3762 || prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink 3763 || prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid 3764 || prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid 3765 || prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev 3766 || prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size 3767 || prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime 3768 || prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime 3769 || prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime 3770 || prev.st_ctime != w->attr.st_ctime
2375 ) { 3771 ) {
3772 /* we only update w->prev on actual differences */
3773 /* in case we test more often than invoke the callback, */
3774 /* to ensure that prev is always different to attr */
3775 w->prev = prev;
3776
2376 #if EV_USE_INOTIFY 3777 #if EV_USE_INOTIFY
3778 if (fs_fd >= 0)
3779 {
2377 infy_del (EV_A_ w); 3780 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w); 3781 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */ 3782 ev_stat_stat (EV_A_ w); /* avoid race... */
3783 }
2380 #endif 3784 #endif
2381 3785
2382 ev_feed_event (EV_A_ w, EV_STAT); 3786 ev_feed_event (EV_A_ w, EV_STAT);
2383 } 3787 }
2384} 3788}
2387ev_stat_start (EV_P_ ev_stat *w) 3791ev_stat_start (EV_P_ ev_stat *w)
2388{ 3792{
2389 if (expect_false (ev_is_active (w))) 3793 if (expect_false (ev_is_active (w)))
2390 return; 3794 return;
2391 3795
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w); 3796 ev_stat_stat (EV_A_ w);
2397 3797
3798 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2398 if (w->interval < MIN_STAT_INTERVAL) 3799 w->interval = MIN_STAT_INTERVAL;
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400 3800
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3801 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2402 ev_set_priority (&w->timer, ev_priority (w)); 3802 ev_set_priority (&w->timer, ev_priority (w));
2403 3803
2404#if EV_USE_INOTIFY 3804#if EV_USE_INOTIFY
2405 infy_init (EV_A); 3805 infy_init (EV_A);
2406 3806
2407 if (fs_fd >= 0) 3807 if (fs_fd >= 0)
2408 infy_add (EV_A_ w); 3808 infy_add (EV_A_ w);
2409 else 3809 else
2410#endif 3810#endif
3811 {
2411 ev_timer_start (EV_A_ &w->timer); 3812 ev_timer_again (EV_A_ &w->timer);
3813 ev_unref (EV_A);
3814 }
2412 3815
2413 ev_start (EV_A_ (W)w, 1); 3816 ev_start (EV_A_ (W)w, 1);
3817
3818 EV_FREQUENT_CHECK;
2414} 3819}
2415 3820
2416void 3821void
2417ev_stat_stop (EV_P_ ev_stat *w) 3822ev_stat_stop (EV_P_ ev_stat *w)
2418{ 3823{
2419 clear_pending (EV_A_ (W)w); 3824 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 3825 if (expect_false (!ev_is_active (w)))
2421 return; 3826 return;
2422 3827
3828 EV_FREQUENT_CHECK;
3829
2423#if EV_USE_INOTIFY 3830#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 3831 infy_del (EV_A_ w);
2425#endif 3832#endif
3833
3834 if (ev_is_active (&w->timer))
3835 {
3836 ev_ref (EV_A);
2426 ev_timer_stop (EV_A_ &w->timer); 3837 ev_timer_stop (EV_A_ &w->timer);
3838 }
2427 3839
2428 ev_stop (EV_A_ (W)w); 3840 ev_stop (EV_A_ (W)w);
3841
3842 EV_FREQUENT_CHECK;
2429} 3843}
2430#endif 3844#endif
2431 3845
2432#if EV_IDLE_ENABLE 3846#if EV_IDLE_ENABLE
2433void 3847void
2436 if (expect_false (ev_is_active (w))) 3850 if (expect_false (ev_is_active (w)))
2437 return; 3851 return;
2438 3852
2439 pri_adjust (EV_A_ (W)w); 3853 pri_adjust (EV_A_ (W)w);
2440 3854
3855 EV_FREQUENT_CHECK;
3856
2441 { 3857 {
2442 int active = ++idlecnt [ABSPRI (w)]; 3858 int active = ++idlecnt [ABSPRI (w)];
2443 3859
2444 ++idleall; 3860 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 3861 ev_start (EV_A_ (W)w, active);
2446 3862
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3863 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 3864 idles [ABSPRI (w)][active - 1] = w;
2449 } 3865 }
3866
3867 EV_FREQUENT_CHECK;
2450} 3868}
2451 3869
2452void 3870void
2453ev_idle_stop (EV_P_ ev_idle *w) 3871ev_idle_stop (EV_P_ ev_idle *w)
2454{ 3872{
2455 clear_pending (EV_A_ (W)w); 3873 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3874 if (expect_false (!ev_is_active (w)))
2457 return; 3875 return;
2458 3876
3877 EV_FREQUENT_CHECK;
3878
2459 { 3879 {
2460 int active = ev_active (w); 3880 int active = ev_active (w);
2461 3881
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3882 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3883 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 3884
2465 ev_stop (EV_A_ (W)w); 3885 ev_stop (EV_A_ (W)w);
2466 --idleall; 3886 --idleall;
2467 } 3887 }
2468}
2469#endif
2470 3888
3889 EV_FREQUENT_CHECK;
3890}
3891#endif
3892
3893#if EV_PREPARE_ENABLE
2471void 3894void
2472ev_prepare_start (EV_P_ ev_prepare *w) 3895ev_prepare_start (EV_P_ ev_prepare *w)
2473{ 3896{
2474 if (expect_false (ev_is_active (w))) 3897 if (expect_false (ev_is_active (w)))
2475 return; 3898 return;
3899
3900 EV_FREQUENT_CHECK;
2476 3901
2477 ev_start (EV_A_ (W)w, ++preparecnt); 3902 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3903 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 3904 prepares [preparecnt - 1] = w;
3905
3906 EV_FREQUENT_CHECK;
2480} 3907}
2481 3908
2482void 3909void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 3910ev_prepare_stop (EV_P_ ev_prepare *w)
2484{ 3911{
2485 clear_pending (EV_A_ (W)w); 3912 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 3913 if (expect_false (!ev_is_active (w)))
2487 return; 3914 return;
2488 3915
3916 EV_FREQUENT_CHECK;
3917
2489 { 3918 {
2490 int active = ev_active (w); 3919 int active = ev_active (w);
2491 3920
2492 prepares [active - 1] = prepares [--preparecnt]; 3921 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 3922 ev_active (prepares [active - 1]) = active;
2494 } 3923 }
2495 3924
2496 ev_stop (EV_A_ (W)w); 3925 ev_stop (EV_A_ (W)w);
2497}
2498 3926
3927 EV_FREQUENT_CHECK;
3928}
3929#endif
3930
3931#if EV_CHECK_ENABLE
2499void 3932void
2500ev_check_start (EV_P_ ev_check *w) 3933ev_check_start (EV_P_ ev_check *w)
2501{ 3934{
2502 if (expect_false (ev_is_active (w))) 3935 if (expect_false (ev_is_active (w)))
2503 return; 3936 return;
3937
3938 EV_FREQUENT_CHECK;
2504 3939
2505 ev_start (EV_A_ (W)w, ++checkcnt); 3940 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3941 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 3942 checks [checkcnt - 1] = w;
3943
3944 EV_FREQUENT_CHECK;
2508} 3945}
2509 3946
2510void 3947void
2511ev_check_stop (EV_P_ ev_check *w) 3948ev_check_stop (EV_P_ ev_check *w)
2512{ 3949{
2513 clear_pending (EV_A_ (W)w); 3950 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 3951 if (expect_false (!ev_is_active (w)))
2515 return; 3952 return;
2516 3953
3954 EV_FREQUENT_CHECK;
3955
2517 { 3956 {
2518 int active = ev_active (w); 3957 int active = ev_active (w);
2519 3958
2520 checks [active - 1] = checks [--checkcnt]; 3959 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 3960 ev_active (checks [active - 1]) = active;
2522 } 3961 }
2523 3962
2524 ev_stop (EV_A_ (W)w); 3963 ev_stop (EV_A_ (W)w);
3964
3965 EV_FREQUENT_CHECK;
2525} 3966}
3967#endif
2526 3968
2527#if EV_EMBED_ENABLE 3969#if EV_EMBED_ENABLE
2528void noinline 3970void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 3971ev_embed_sweep (EV_P_ ev_embed *w)
2530{ 3972{
2531 ev_loop (w->other, EVLOOP_NONBLOCK); 3973 ev_run (w->other, EVRUN_NOWAIT);
2532} 3974}
2533 3975
2534static void 3976static void
2535embed_io_cb (EV_P_ ev_io *io, int revents) 3977embed_io_cb (EV_P_ ev_io *io, int revents)
2536{ 3978{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3979 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538 3980
2539 if (ev_cb (w)) 3981 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3982 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else 3983 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK); 3984 ev_run (w->other, EVRUN_NOWAIT);
2543} 3985}
2544 3986
2545static void 3987static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3988embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{ 3989{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3990 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549 3991
2550 { 3992 {
2551 struct ev_loop *loop = w->other; 3993 EV_P = w->other;
2552 3994
2553 while (fdchangecnt) 3995 while (fdchangecnt)
2554 { 3996 {
2555 fd_reify (EV_A); 3997 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3998 ev_run (EV_A_ EVRUN_NOWAIT);
2557 } 3999 }
2558 } 4000 }
4001}
4002
4003static void
4004embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4005{
4006 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4007
4008 ev_embed_stop (EV_A_ w);
4009
4010 {
4011 EV_P = w->other;
4012
4013 ev_loop_fork (EV_A);
4014 ev_run (EV_A_ EVRUN_NOWAIT);
4015 }
4016
4017 ev_embed_start (EV_A_ w);
2559} 4018}
2560 4019
2561#if 0 4020#if 0
2562static void 4021static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4022embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2571{ 4030{
2572 if (expect_false (ev_is_active (w))) 4031 if (expect_false (ev_is_active (w)))
2573 return; 4032 return;
2574 4033
2575 { 4034 {
2576 struct ev_loop *loop = w->other; 4035 EV_P = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4036 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4037 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 4038 }
4039
4040 EV_FREQUENT_CHECK;
2580 4041
2581 ev_set_priority (&w->io, ev_priority (w)); 4042 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 4043 ev_io_start (EV_A_ &w->io);
2583 4044
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 4045 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 4046 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 4047 ev_prepare_start (EV_A_ &w->prepare);
2587 4048
4049 ev_fork_init (&w->fork, embed_fork_cb);
4050 ev_fork_start (EV_A_ &w->fork);
4051
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4052 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 4053
2590 ev_start (EV_A_ (W)w, 1); 4054 ev_start (EV_A_ (W)w, 1);
4055
4056 EV_FREQUENT_CHECK;
2591} 4057}
2592 4058
2593void 4059void
2594ev_embed_stop (EV_P_ ev_embed *w) 4060ev_embed_stop (EV_P_ ev_embed *w)
2595{ 4061{
2596 clear_pending (EV_A_ (W)w); 4062 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 4063 if (expect_false (!ev_is_active (w)))
2598 return; 4064 return;
2599 4065
4066 EV_FREQUENT_CHECK;
4067
2600 ev_io_stop (EV_A_ &w->io); 4068 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 4069 ev_prepare_stop (EV_A_ &w->prepare);
4070 ev_fork_stop (EV_A_ &w->fork);
2602 4071
2603 ev_stop (EV_A_ (W)w); 4072 ev_stop (EV_A_ (W)w);
4073
4074 EV_FREQUENT_CHECK;
2604} 4075}
2605#endif 4076#endif
2606 4077
2607#if EV_FORK_ENABLE 4078#if EV_FORK_ENABLE
2608void 4079void
2609ev_fork_start (EV_P_ ev_fork *w) 4080ev_fork_start (EV_P_ ev_fork *w)
2610{ 4081{
2611 if (expect_false (ev_is_active (w))) 4082 if (expect_false (ev_is_active (w)))
2612 return; 4083 return;
2613 4084
4085 EV_FREQUENT_CHECK;
4086
2614 ev_start (EV_A_ (W)w, ++forkcnt); 4087 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4088 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 4089 forks [forkcnt - 1] = w;
4090
4091 EV_FREQUENT_CHECK;
2617} 4092}
2618 4093
2619void 4094void
2620ev_fork_stop (EV_P_ ev_fork *w) 4095ev_fork_stop (EV_P_ ev_fork *w)
2621{ 4096{
2622 clear_pending (EV_A_ (W)w); 4097 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 4098 if (expect_false (!ev_is_active (w)))
2624 return; 4099 return;
2625 4100
4101 EV_FREQUENT_CHECK;
4102
2626 { 4103 {
2627 int active = ev_active (w); 4104 int active = ev_active (w);
2628 4105
2629 forks [active - 1] = forks [--forkcnt]; 4106 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 4107 ev_active (forks [active - 1]) = active;
2631 } 4108 }
2632 4109
2633 ev_stop (EV_A_ (W)w); 4110 ev_stop (EV_A_ (W)w);
4111
4112 EV_FREQUENT_CHECK;
4113}
4114#endif
4115
4116#if EV_CLEANUP_ENABLE
4117void
4118ev_cleanup_start (EV_P_ ev_cleanup *w)
4119{
4120 if (expect_false (ev_is_active (w)))
4121 return;
4122
4123 EV_FREQUENT_CHECK;
4124
4125 ev_start (EV_A_ (W)w, ++cleanupcnt);
4126 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4127 cleanups [cleanupcnt - 1] = w;
4128
4129 /* cleanup watchers should never keep a refcount on the loop */
4130 ev_unref (EV_A);
4131 EV_FREQUENT_CHECK;
4132}
4133
4134void
4135ev_cleanup_stop (EV_P_ ev_cleanup *w)
4136{
4137 clear_pending (EV_A_ (W)w);
4138 if (expect_false (!ev_is_active (w)))
4139 return;
4140
4141 EV_FREQUENT_CHECK;
4142 ev_ref (EV_A);
4143
4144 {
4145 int active = ev_active (w);
4146
4147 cleanups [active - 1] = cleanups [--cleanupcnt];
4148 ev_active (cleanups [active - 1]) = active;
4149 }
4150
4151 ev_stop (EV_A_ (W)w);
4152
4153 EV_FREQUENT_CHECK;
2634} 4154}
2635#endif 4155#endif
2636 4156
2637#if EV_ASYNC_ENABLE 4157#if EV_ASYNC_ENABLE
2638void 4158void
2639ev_async_start (EV_P_ ev_async *w) 4159ev_async_start (EV_P_ ev_async *w)
2640{ 4160{
2641 if (expect_false (ev_is_active (w))) 4161 if (expect_false (ev_is_active (w)))
2642 return; 4162 return;
2643 4163
4164 w->sent = 0;
4165
2644 evpipe_init (EV_A); 4166 evpipe_init (EV_A);
4167
4168 EV_FREQUENT_CHECK;
2645 4169
2646 ev_start (EV_A_ (W)w, ++asynccnt); 4170 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4171 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 4172 asyncs [asynccnt - 1] = w;
4173
4174 EV_FREQUENT_CHECK;
2649} 4175}
2650 4176
2651void 4177void
2652ev_async_stop (EV_P_ ev_async *w) 4178ev_async_stop (EV_P_ ev_async *w)
2653{ 4179{
2654 clear_pending (EV_A_ (W)w); 4180 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 4181 if (expect_false (!ev_is_active (w)))
2656 return; 4182 return;
2657 4183
4184 EV_FREQUENT_CHECK;
4185
2658 { 4186 {
2659 int active = ev_active (w); 4187 int active = ev_active (w);
2660 4188
2661 asyncs [active - 1] = asyncs [--asynccnt]; 4189 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 4190 ev_active (asyncs [active - 1]) = active;
2663 } 4191 }
2664 4192
2665 ev_stop (EV_A_ (W)w); 4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
2666} 4196}
2667 4197
2668void 4198void
2669ev_async_send (EV_P_ ev_async *w) 4199ev_async_send (EV_P_ ev_async *w)
2670{ 4200{
2671 w->sent = 1; 4201 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync); 4202 evpipe_write (EV_A_ &async_pending);
2673} 4203}
2674#endif 4204#endif
2675 4205
2676/*****************************************************************************/ 4206/*****************************************************************************/
2677 4207
2687once_cb (EV_P_ struct ev_once *once, int revents) 4217once_cb (EV_P_ struct ev_once *once, int revents)
2688{ 4218{
2689 void (*cb)(int revents, void *arg) = once->cb; 4219 void (*cb)(int revents, void *arg) = once->cb;
2690 void *arg = once->arg; 4220 void *arg = once->arg;
2691 4221
2692 ev_io_stop (EV_A_ &once->io); 4222 ev_io_stop (EV_A_ &once->io);
2693 ev_timer_stop (EV_A_ &once->to); 4223 ev_timer_stop (EV_A_ &once->to);
2694 ev_free (once); 4224 ev_free (once);
2695 4225
2696 cb (revents, arg); 4226 cb (revents, arg);
2697} 4227}
2698 4228
2699static void 4229static void
2700once_cb_io (EV_P_ ev_io *w, int revents) 4230once_cb_io (EV_P_ ev_io *w, int revents)
2701{ 4231{
2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4232 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4233
4234 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2703} 4235}
2704 4236
2705static void 4237static void
2706once_cb_to (EV_P_ ev_timer *w, int revents) 4238once_cb_to (EV_P_ ev_timer *w, int revents)
2707{ 4239{
2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4240 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4241
4242 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2709} 4243}
2710 4244
2711void 4245void
2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4246ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2713{ 4247{
2714 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4248 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2715 4249
2716 if (expect_false (!once)) 4250 if (expect_false (!once))
2717 { 4251 {
2718 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4252 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2719 return; 4253 return;
2720 } 4254 }
2721 4255
2722 once->cb = cb; 4256 once->cb = cb;
2723 once->arg = arg; 4257 once->arg = arg;
2735 ev_timer_set (&once->to, timeout, 0.); 4269 ev_timer_set (&once->to, timeout, 0.);
2736 ev_timer_start (EV_A_ &once->to); 4270 ev_timer_start (EV_A_ &once->to);
2737 } 4271 }
2738} 4272}
2739 4273
4274/*****************************************************************************/
4275
4276#if EV_WALK_ENABLE
4277void ecb_cold
4278ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4279{
4280 int i, j;
4281 ev_watcher_list *wl, *wn;
4282
4283 if (types & (EV_IO | EV_EMBED))
4284 for (i = 0; i < anfdmax; ++i)
4285 for (wl = anfds [i].head; wl; )
4286 {
4287 wn = wl->next;
4288
4289#if EV_EMBED_ENABLE
4290 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4291 {
4292 if (types & EV_EMBED)
4293 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4294 }
4295 else
4296#endif
4297#if EV_USE_INOTIFY
4298 if (ev_cb ((ev_io *)wl) == infy_cb)
4299 ;
4300 else
4301#endif
4302 if ((ev_io *)wl != &pipe_w)
4303 if (types & EV_IO)
4304 cb (EV_A_ EV_IO, wl);
4305
4306 wl = wn;
4307 }
4308
4309 if (types & (EV_TIMER | EV_STAT))
4310 for (i = timercnt + HEAP0; i-- > HEAP0; )
4311#if EV_STAT_ENABLE
4312 /*TODO: timer is not always active*/
4313 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4314 {
4315 if (types & EV_STAT)
4316 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4317 }
4318 else
4319#endif
4320 if (types & EV_TIMER)
4321 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4322
4323#if EV_PERIODIC_ENABLE
4324 if (types & EV_PERIODIC)
4325 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4326 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4327#endif
4328
4329#if EV_IDLE_ENABLE
4330 if (types & EV_IDLE)
4331 for (j = NUMPRI; j--; )
4332 for (i = idlecnt [j]; i--; )
4333 cb (EV_A_ EV_IDLE, idles [j][i]);
4334#endif
4335
4336#if EV_FORK_ENABLE
4337 if (types & EV_FORK)
4338 for (i = forkcnt; i--; )
4339 if (ev_cb (forks [i]) != embed_fork_cb)
4340 cb (EV_A_ EV_FORK, forks [i]);
4341#endif
4342
4343#if EV_ASYNC_ENABLE
4344 if (types & EV_ASYNC)
4345 for (i = asynccnt; i--; )
4346 cb (EV_A_ EV_ASYNC, asyncs [i]);
4347#endif
4348
4349#if EV_PREPARE_ENABLE
4350 if (types & EV_PREPARE)
4351 for (i = preparecnt; i--; )
4352# if EV_EMBED_ENABLE
4353 if (ev_cb (prepares [i]) != embed_prepare_cb)
4354# endif
4355 cb (EV_A_ EV_PREPARE, prepares [i]);
4356#endif
4357
4358#if EV_CHECK_ENABLE
4359 if (types & EV_CHECK)
4360 for (i = checkcnt; i--; )
4361 cb (EV_A_ EV_CHECK, checks [i]);
4362#endif
4363
4364#if EV_SIGNAL_ENABLE
4365 if (types & EV_SIGNAL)
4366 for (i = 0; i < EV_NSIG - 1; ++i)
4367 for (wl = signals [i].head; wl; )
4368 {
4369 wn = wl->next;
4370 cb (EV_A_ EV_SIGNAL, wl);
4371 wl = wn;
4372 }
4373#endif
4374
4375#if EV_CHILD_ENABLE
4376 if (types & EV_CHILD)
4377 for (i = (EV_PID_HASHSIZE); i--; )
4378 for (wl = childs [i]; wl; )
4379 {
4380 wn = wl->next;
4381 cb (EV_A_ EV_CHILD, wl);
4382 wl = wn;
4383 }
4384#endif
4385/* EV_STAT 0x00001000 /* stat data changed */
4386/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4387}
4388#endif
4389
2740#if EV_MULTIPLICITY 4390#if EV_MULTIPLICITY
2741 #include "ev_wrap.h" 4391 #include "ev_wrap.h"
2742#endif 4392#endif
2743 4393
2744#ifdef __cplusplus 4394EV_CPP(})
2745}
2746#endif
2747 4395

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines