ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC vs.
Revision 1.397 by root, Wed Aug 24 16:13:41 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
274# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
275extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
276# endif 415# endif
277int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 417# ifdef O_CLOEXEC
279} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
280# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
281#endif 446#endif
282 447
283/**/ 448/**/
284 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
285/* 456/*
286 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 510 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
302#else 517#else
303# define expect(expr,value) (expr) 518 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 533 #endif
534#endif
309 535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543#endif
544
545#ifndef ECB_MEMORY_FENCE
546 #if ECB_GCC_VERSION(2,5)
547 #if __i386__
548 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 #elif __amd64
552 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 #endif
564 #endif
565#endif
566
567#ifndef ECB_MEMORY_FENCE
568 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
569 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 #elif defined(_WIN32)
578 #include <WinNT.h>
579 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 #endif
581#endif
582
583#ifndef ECB_MEMORY_FENCE
584 #if !ECB_AVOID_PTHREADS
585 /*
586 * if you get undefined symbol references to pthread_mutex_lock,
587 * or failure to find pthread.h, then you should implement
588 * the ECB_MEMORY_FENCE operations for your cpu/compiler
589 * OR provide pthread.h and link against the posix thread library
590 * of your system.
591 */
592 #include <pthread.h>
593 #define ECB_NEEDS_PTHREADS 1
594 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595
596 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598 #endif
599#endif
600
601#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603#endif
604
605#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607#endif
608
609/*****************************************************************************/
610
611#define ECB_C99 (__STDC_VERSION__ >= 199901L)
612
613#if __cplusplus
614 #define ecb_inline static inline
615#elif ECB_GCC_VERSION(2,5)
616 #define ecb_inline static __inline__
617#elif ECB_C99
618 #define ecb_inline static inline
619#else
620 #define ecb_inline static
621#endif
622
623#if ECB_GCC_VERSION(3,3)
624 #define ecb_restrict __restrict__
625#elif ECB_C99
626 #define ecb_restrict restrict
627#else
628 #define ecb_restrict
629#endif
630
631typedef int ecb_bool;
632
633#define ECB_CONCAT_(a, b) a ## b
634#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635#define ECB_STRINGIFY_(a) # a
636#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637
638#define ecb_function_ ecb_inline
639
640#if ECB_GCC_VERSION(3,1)
641 #define ecb_attribute(attrlist) __attribute__(attrlist)
642 #define ecb_is_constant(expr) __builtin_constant_p (expr)
643 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645#else
646 #define ecb_attribute(attrlist)
647 #define ecb_is_constant(expr) 0
648 #define ecb_expect(expr,value) (expr)
649 #define ecb_prefetch(addr,rw,locality)
650#endif
651
652/* no emulation for ecb_decltype */
653#if ECB_GCC_VERSION(4,5)
654 #define ecb_decltype(x) __decltype(x)
655#elif ECB_GCC_VERSION(3,0)
656 #define ecb_decltype(x) __typeof(x)
657#endif
658
659#define ecb_noinline ecb_attribute ((__noinline__))
660#define ecb_noreturn ecb_attribute ((__noreturn__))
661#define ecb_unused ecb_attribute ((__unused__))
662#define ecb_const ecb_attribute ((__const__))
663#define ecb_pure ecb_attribute ((__pure__))
664
665#if ECB_GCC_VERSION(4,3)
666 #define ecb_artificial ecb_attribute ((__artificial__))
667 #define ecb_hot ecb_attribute ((__hot__))
668 #define ecb_cold ecb_attribute ((__cold__))
669#else
670 #define ecb_artificial
671 #define ecb_hot
672 #define ecb_cold
673#endif
674
675/* put around conditional expressions if you are very sure that the */
676/* expression is mostly true or mostly false. note that these return */
677/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 678#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 679#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680/* for compatibility to the rest of the world */
681#define ecb_likely(expr) ecb_expect_true (expr)
682#define ecb_unlikely(expr) ecb_expect_false (expr)
683
684/* count trailing zero bits and count # of one bits */
685#if ECB_GCC_VERSION(3,4)
686 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689 #define ecb_ctz32(x) __builtin_ctz (x)
690 #define ecb_ctz64(x) __builtin_ctzll (x)
691 #define ecb_popcount32(x) __builtin_popcount (x)
692 /* no popcountll */
693#else
694 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695 ecb_function_ int
696 ecb_ctz32 (uint32_t x)
697 {
698 int r = 0;
699
700 x &= ~x + 1; /* this isolates the lowest bit */
701
702#if ECB_branchless_on_i386
703 r += !!(x & 0xaaaaaaaa) << 0;
704 r += !!(x & 0xcccccccc) << 1;
705 r += !!(x & 0xf0f0f0f0) << 2;
706 r += !!(x & 0xff00ff00) << 3;
707 r += !!(x & 0xffff0000) << 4;
708#else
709 if (x & 0xaaaaaaaa) r += 1;
710 if (x & 0xcccccccc) r += 2;
711 if (x & 0xf0f0f0f0) r += 4;
712 if (x & 0xff00ff00) r += 8;
713 if (x & 0xffff0000) r += 16;
714#endif
715
716 return r;
717 }
718
719 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720 ecb_function_ int
721 ecb_ctz64 (uint64_t x)
722 {
723 int shift = x & 0xffffffffU ? 0 : 32;
724 return ecb_ctz32 (x >> shift) + shift;
725 }
726
727 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728 ecb_function_ int
729 ecb_popcount32 (uint32_t x)
730 {
731 x -= (x >> 1) & 0x55555555;
732 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733 x = ((x >> 4) + x) & 0x0f0f0f0f;
734 x *= 0x01010101;
735
736 return x >> 24;
737 }
738
739 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740 ecb_function_ int ecb_ld32 (uint32_t x)
741 {
742 int r = 0;
743
744 if (x >> 16) { x >>= 16; r += 16; }
745 if (x >> 8) { x >>= 8; r += 8; }
746 if (x >> 4) { x >>= 4; r += 4; }
747 if (x >> 2) { x >>= 2; r += 2; }
748 if (x >> 1) { r += 1; }
749
750 return r;
751 }
752
753 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754 ecb_function_ int ecb_ld64 (uint64_t x)
755 {
756 int r = 0;
757
758 if (x >> 32) { x >>= 32; r += 32; }
759
760 return r + ecb_ld32 (x);
761 }
762#endif
763
764/* popcount64 is only available on 64 bit cpus as gcc builtin */
765/* so for this version we are lazy */
766ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767ecb_function_ int
768ecb_popcount64 (uint64_t x)
769{
770 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771}
772
773ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781
782ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790
791#if ECB_GCC_VERSION(4,3)
792 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793 #define ecb_bswap32(x) __builtin_bswap32 (x)
794 #define ecb_bswap64(x) __builtin_bswap64 (x)
795#else
796 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797 ecb_function_ uint16_t
798 ecb_bswap16 (uint16_t x)
799 {
800 return ecb_rotl16 (x, 8);
801 }
802
803 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804 ecb_function_ uint32_t
805 ecb_bswap32 (uint32_t x)
806 {
807 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808 }
809
810 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811 ecb_function_ uint64_t
812 ecb_bswap64 (uint64_t x)
813 {
814 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815 }
816#endif
817
818#if ECB_GCC_VERSION(4,5)
819 #define ecb_unreachable() __builtin_unreachable ()
820#else
821 /* this seems to work fine, but gcc always emits a warning for it :/ */
822 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823 ecb_function_ void ecb_unreachable (void) { }
824#endif
825
826/* try to tell the compiler that some condition is definitely true */
827#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828
829ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830ecb_function_ unsigned char
831ecb_byteorder_helper (void)
832{
833 const uint32_t u = 0x11223344;
834 return *(unsigned char *)&u;
835}
836
837ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841
842#if ECB_GCC_VERSION(3,0) || ECB_C99
843 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844#else
845 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846#endif
847
848#if ecb_cplusplus_does_not_suck
849 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
850 template<typename T, int N>
851 static inline int ecb_array_length (const T (&arr)[N])
852 {
853 return N;
854 }
855#else
856 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
857#endif
858
859#endif
860
861/* ECB.H END */
862
863#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
864/* if your architecture doesn't need memory fences, e.g. because it is
865 * single-cpu/core, or if you use libev in a project that doesn't use libev
866 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
867 * libev, in which casess the memory fences become nops.
868 * alternatively, you can remove this #error and link against libpthread,
869 * which will then provide the memory fences.
870 */
871# error "memory fences not defined for your architecture, please report"
872#endif
873
874#ifndef ECB_MEMORY_FENCE
875# define ECB_MEMORY_FENCE do { } while (0)
876# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
877# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
878#endif
879
880#define expect_false(cond) ecb_expect_false (cond)
881#define expect_true(cond) ecb_expect_true (cond)
882#define noinline ecb_noinline
883
312#define inline_size static inline 884#define inline_size ecb_inline
313 885
314#if EV_MINIMAL 886#if EV_FEATURE_CODE
887# define inline_speed ecb_inline
888#else
315# define inline_speed static noinline 889# define inline_speed static noinline
890#endif
891
892#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
893
894#if EV_MINPRI == EV_MAXPRI
895# define ABSPRI(w) (((W)w), 0)
316#else 896#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 897# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
898#endif
322 899
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 900#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 901#define EMPTY2(a,b) /* used to suppress some warnings */
325 902
326typedef ev_watcher *W; 903typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 905typedef ev_watcher_time *WT;
329 906
330#define ev_active(w) ((W)(w))->active 907#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 908#define ev_at(w) ((WT)(w))->at
332 909
910#if EV_USE_REALTIME
911/* sig_atomic_t is used to avoid per-thread variables or locking but still */
912/* giving it a reasonably high chance of working on typical architectures */
913static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
914#endif
915
333#if EV_USE_MONOTONIC 916#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 917static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
918#endif
919
920#ifndef EV_FD_TO_WIN32_HANDLE
921# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
922#endif
923#ifndef EV_WIN32_HANDLE_TO_FD
924# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
925#endif
926#ifndef EV_WIN32_CLOSE_FD
927# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 928#endif
338 929
339#ifdef _WIN32 930#ifdef _WIN32
340# include "ev_win32.c" 931# include "ev_win32.c"
341#endif 932#endif
342 933
343/*****************************************************************************/ 934/*****************************************************************************/
344 935
936/* define a suitable floor function (only used by periodics atm) */
937
938#if EV_USE_FLOOR
939# include <math.h>
940# define ev_floor(v) floor (v)
941#else
942
943#include <float.h>
944
945/* a floor() replacement function, should be independent of ev_tstamp type */
946static ev_tstamp noinline
947ev_floor (ev_tstamp v)
948{
949 /* the choice of shift factor is not terribly important */
950#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
951 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
952#else
953 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
954#endif
955
956 /* argument too large for an unsigned long? */
957 if (expect_false (v >= shift))
958 {
959 ev_tstamp f;
960
961 if (v == v - 1.)
962 return v; /* very large number */
963
964 f = shift * ev_floor (v * (1. / shift));
965 return f + ev_floor (v - f);
966 }
967
968 /* special treatment for negative args? */
969 if (expect_false (v < 0.))
970 {
971 ev_tstamp f = -ev_floor (-v);
972
973 return f - (f == v ? 0 : 1);
974 }
975
976 /* fits into an unsigned long */
977 return (unsigned long)v;
978}
979
980#endif
981
982/*****************************************************************************/
983
984#ifdef __linux
985# include <sys/utsname.h>
986#endif
987
988static unsigned int noinline ecb_cold
989ev_linux_version (void)
990{
991#ifdef __linux
992 unsigned int v = 0;
993 struct utsname buf;
994 int i;
995 char *p = buf.release;
996
997 if (uname (&buf))
998 return 0;
999
1000 for (i = 3+1; --i; )
1001 {
1002 unsigned int c = 0;
1003
1004 for (;;)
1005 {
1006 if (*p >= '0' && *p <= '9')
1007 c = c * 10 + *p++ - '0';
1008 else
1009 {
1010 p += *p == '.';
1011 break;
1012 }
1013 }
1014
1015 v = (v << 8) | c;
1016 }
1017
1018 return v;
1019#else
1020 return 0;
1021#endif
1022}
1023
1024/*****************************************************************************/
1025
1026#if EV_AVOID_STDIO
1027static void noinline ecb_cold
1028ev_printerr (const char *msg)
1029{
1030 write (STDERR_FILENO, msg, strlen (msg));
1031}
1032#endif
1033
345static void (*syserr_cb)(const char *msg); 1034static void (*syserr_cb)(const char *msg);
346 1035
347void 1036void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1037ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 1038{
350 syserr_cb = cb; 1039 syserr_cb = cb;
351} 1040}
352 1041
353static void noinline 1042static void noinline ecb_cold
354syserr (const char *msg) 1043ev_syserr (const char *msg)
355{ 1044{
356 if (!msg) 1045 if (!msg)
357 msg = "(libev) system error"; 1046 msg = "(libev) system error";
358 1047
359 if (syserr_cb) 1048 if (syserr_cb)
360 syserr_cb (msg); 1049 syserr_cb (msg);
361 else 1050 else
362 { 1051 {
1052#if EV_AVOID_STDIO
1053 ev_printerr (msg);
1054 ev_printerr (": ");
1055 ev_printerr (strerror (errno));
1056 ev_printerr ("\n");
1057#else
363 perror (msg); 1058 perror (msg);
1059#endif
364 abort (); 1060 abort ();
365 } 1061 }
366} 1062}
367 1063
368static void * 1064static void *
369ev_realloc_emul (void *ptr, long size) 1065ev_realloc_emul (void *ptr, long size)
370{ 1066{
1067#if __GLIBC__
1068 return realloc (ptr, size);
1069#else
371 /* some systems, notably openbsd and darwin, fail to properly 1070 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1071 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1072 * the single unix specification, so work around them here.
374 */ 1073 */
375 1074
376 if (size) 1075 if (size)
377 return realloc (ptr, size); 1076 return realloc (ptr, size);
378 1077
379 free (ptr); 1078 free (ptr);
380 return 0; 1079 return 0;
1080#endif
381} 1081}
382 1082
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1083static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 1084
385void 1085void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1086ev_set_allocator (void *(*cb)(void *ptr, long size))
387{ 1087{
388 alloc = cb; 1088 alloc = cb;
389} 1089}
390 1090
393{ 1093{
394 ptr = alloc (ptr, size); 1094 ptr = alloc (ptr, size);
395 1095
396 if (!ptr && size) 1096 if (!ptr && size)
397 { 1097 {
1098#if EV_AVOID_STDIO
1099 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1100#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1101 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1102#endif
399 abort (); 1103 abort ();
400 } 1104 }
401 1105
402 return ptr; 1106 return ptr;
403} 1107}
405#define ev_malloc(size) ev_realloc (0, (size)) 1109#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1110#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1111
408/*****************************************************************************/ 1112/*****************************************************************************/
409 1113
1114/* set in reify when reification needed */
1115#define EV_ANFD_REIFY 1
1116
1117/* file descriptor info structure */
410typedef struct 1118typedef struct
411{ 1119{
412 WL head; 1120 WL head;
413 unsigned char events; 1121 unsigned char events; /* the events watched for */
1122 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1123 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1124 unsigned char unused;
1125#if EV_USE_EPOLL
1126 unsigned int egen; /* generation counter to counter epoll bugs */
1127#endif
415#if EV_SELECT_IS_WINSOCKET 1128#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1129 SOCKET handle;
417#endif 1130#endif
1131#if EV_USE_IOCP
1132 OVERLAPPED or, ow;
1133#endif
418} ANFD; 1134} ANFD;
419 1135
1136/* stores the pending event set for a given watcher */
420typedef struct 1137typedef struct
421{ 1138{
422 W w; 1139 W w;
423 int events; 1140 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1141} ANPENDING;
425 1142
426#if EV_USE_INOTIFY 1143#if EV_USE_INOTIFY
1144/* hash table entry per inotify-id */
427typedef struct 1145typedef struct
428{ 1146{
429 WL head; 1147 WL head;
430} ANFS; 1148} ANFS;
1149#endif
1150
1151/* Heap Entry */
1152#if EV_HEAP_CACHE_AT
1153 /* a heap element */
1154 typedef struct {
1155 ev_tstamp at;
1156 WT w;
1157 } ANHE;
1158
1159 #define ANHE_w(he) (he).w /* access watcher, read-write */
1160 #define ANHE_at(he) (he).at /* access cached at, read-only */
1161 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1162#else
1163 /* a heap element */
1164 typedef WT ANHE;
1165
1166 #define ANHE_w(he) (he)
1167 #define ANHE_at(he) (he)->at
1168 #define ANHE_at_cache(he)
431#endif 1169#endif
432 1170
433#if EV_MULTIPLICITY 1171#if EV_MULTIPLICITY
434 1172
435 struct ev_loop 1173 struct ev_loop
454 1192
455 static int ev_default_loop_ptr; 1193 static int ev_default_loop_ptr;
456 1194
457#endif 1195#endif
458 1196
1197#if EV_FEATURE_API
1198# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1199# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1200# define EV_INVOKE_PENDING invoke_cb (EV_A)
1201#else
1202# define EV_RELEASE_CB (void)0
1203# define EV_ACQUIRE_CB (void)0
1204# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1205#endif
1206
1207#define EVBREAK_RECURSE 0x80
1208
459/*****************************************************************************/ 1209/*****************************************************************************/
460 1210
1211#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1212ev_tstamp
462ev_time (void) 1213ev_time (void)
463{ 1214{
464#if EV_USE_REALTIME 1215#if EV_USE_REALTIME
1216 if (expect_true (have_realtime))
1217 {
465 struct timespec ts; 1218 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1219 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1220 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1221 }
1222#endif
1223
469 struct timeval tv; 1224 struct timeval tv;
470 gettimeofday (&tv, 0); 1225 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1226 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1227}
1228#endif
474 1229
475ev_tstamp inline_size 1230inline_size ev_tstamp
476get_clock (void) 1231get_clock (void)
477{ 1232{
478#if EV_USE_MONOTONIC 1233#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1234 if (expect_true (have_monotonic))
480 { 1235 {
501 if (delay > 0.) 1256 if (delay > 0.)
502 { 1257 {
503#if EV_USE_NANOSLEEP 1258#if EV_USE_NANOSLEEP
504 struct timespec ts; 1259 struct timespec ts;
505 1260
506 ts.tv_sec = (time_t)delay; 1261 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1262 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1263#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3)); 1264 Sleep ((unsigned long)(delay * 1e3));
512#else 1265#else
513 struct timeval tv; 1266 struct timeval tv;
514 1267
515 tv.tv_sec = (time_t)delay; 1268 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1269 /* something not guaranteed by newer posix versions, but guaranteed */
517 1270 /* by older ones */
1271 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1272 select (0, 0, 0, 0, &tv);
519#endif 1273#endif
520 } 1274 }
521} 1275}
522 1276
523/*****************************************************************************/ 1277/*****************************************************************************/
524 1278
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1279#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 1280
527int inline_size 1281/* find a suitable new size for the given array, */
1282/* hopefully by rounding to a nice-to-malloc size */
1283inline_size int
528array_nextsize (int elem, int cur, int cnt) 1284array_nextsize (int elem, int cur, int cnt)
529{ 1285{
530 int ncur = cur + 1; 1286 int ncur = cur + 1;
531 1287
532 do 1288 do
543 } 1299 }
544 1300
545 return ncur; 1301 return ncur;
546} 1302}
547 1303
548static noinline void * 1304static void * noinline ecb_cold
549array_realloc (int elem, void *base, int *cur, int cnt) 1305array_realloc (int elem, void *base, int *cur, int cnt)
550{ 1306{
551 *cur = array_nextsize (elem, *cur, cnt); 1307 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 1308 return ev_realloc (base, elem * *cur);
553} 1309}
1310
1311#define array_init_zero(base,count) \
1312 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 1313
555#define array_needsize(type,base,cur,cnt,init) \ 1314#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 1315 if (expect_false ((cnt) > (cur))) \
557 { \ 1316 { \
558 int ocur_ = (cur); \ 1317 int ecb_unused ocur_ = (cur); \
559 (base) = (type *)array_realloc \ 1318 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \ 1319 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \ 1320 init ((base) + (ocur_), (cur) - ocur_); \
562 } 1321 }
563 1322
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1329 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 1330 }
572#endif 1331#endif
573 1332
574#define array_free(stem, idx) \ 1333#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1334 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 1335
577/*****************************************************************************/ 1336/*****************************************************************************/
1337
1338/* dummy callback for pending events */
1339static void noinline
1340pendingcb (EV_P_ ev_prepare *w, int revents)
1341{
1342}
578 1343
579void noinline 1344void noinline
580ev_feed_event (EV_P_ void *w, int revents) 1345ev_feed_event (EV_P_ void *w, int revents)
581{ 1346{
582 W w_ = (W)w; 1347 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 1356 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 1357 pendings [pri][w_->pending - 1].events = revents;
593 } 1358 }
594} 1359}
595 1360
596void inline_speed 1361inline_speed void
1362feed_reverse (EV_P_ W w)
1363{
1364 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1365 rfeeds [rfeedcnt++] = w;
1366}
1367
1368inline_size void
1369feed_reverse_done (EV_P_ int revents)
1370{
1371 do
1372 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1373 while (rfeedcnt);
1374}
1375
1376inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 1377queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 1378{
599 int i; 1379 int i;
600 1380
601 for (i = 0; i < eventcnt; ++i) 1381 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 1382 ev_feed_event (EV_A_ events [i], type);
603} 1383}
604 1384
605/*****************************************************************************/ 1385/*****************************************************************************/
606 1386
607void inline_size 1387inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 1388fd_event_nocheck (EV_P_ int fd, int revents)
622{ 1389{
623 ANFD *anfd = anfds + fd; 1390 ANFD *anfd = anfds + fd;
624 ev_io *w; 1391 ev_io *w;
625 1392
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1393 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 1397 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 1398 ev_feed_event (EV_A_ (W)w, ev);
632 } 1399 }
633} 1400}
634 1401
1402/* do not submit kernel events for fds that have reify set */
1403/* because that means they changed while we were polling for new events */
1404inline_speed void
1405fd_event (EV_P_ int fd, int revents)
1406{
1407 ANFD *anfd = anfds + fd;
1408
1409 if (expect_true (!anfd->reify))
1410 fd_event_nocheck (EV_A_ fd, revents);
1411}
1412
635void 1413void
636ev_feed_fd_event (EV_P_ int fd, int revents) 1414ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 1415{
638 if (fd >= 0 && fd < anfdmax) 1416 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 1417 fd_event_nocheck (EV_A_ fd, revents);
640} 1418}
641 1419
642void inline_size 1420/* make sure the external fd watch events are in-sync */
1421/* with the kernel/libev internal state */
1422inline_size void
643fd_reify (EV_P) 1423fd_reify (EV_P)
644{ 1424{
645 int i; 1425 int i;
1426
1427#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1428 for (i = 0; i < fdchangecnt; ++i)
1429 {
1430 int fd = fdchanges [i];
1431 ANFD *anfd = anfds + fd;
1432
1433 if (anfd->reify & EV__IOFDSET && anfd->head)
1434 {
1435 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1436
1437 if (handle != anfd->handle)
1438 {
1439 unsigned long arg;
1440
1441 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1442
1443 /* handle changed, but fd didn't - we need to do it in two steps */
1444 backend_modify (EV_A_ fd, anfd->events, 0);
1445 anfd->events = 0;
1446 anfd->handle = handle;
1447 }
1448 }
1449 }
1450#endif
646 1451
647 for (i = 0; i < fdchangecnt; ++i) 1452 for (i = 0; i < fdchangecnt; ++i)
648 { 1453 {
649 int fd = fdchanges [i]; 1454 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd; 1455 ANFD *anfd = anfds + fd;
651 ev_io *w; 1456 ev_io *w;
652 1457
653 unsigned char events = 0; 1458 unsigned char o_events = anfd->events;
1459 unsigned char o_reify = anfd->reify;
654 1460
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1461 anfd->reify = 0;
656 events |= (unsigned char)w->events;
657 1462
658#if EV_SELECT_IS_WINSOCKET 1463 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
659 if (events)
660 { 1464 {
661 unsigned long argp; 1465 anfd->events = 0;
662 #ifdef EV_FD_TO_WIN32_HANDLE 1466
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1467 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
664 #else 1468 anfd->events |= (unsigned char)w->events;
665 anfd->handle = _get_osfhandle (fd); 1469
666 #endif 1470 if (o_events != anfd->events)
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1471 o_reify = EV__IOFDSET; /* actually |= */
668 } 1472 }
669#endif
670 1473
671 { 1474 if (o_reify & EV__IOFDSET)
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 1475 backend_modify (EV_A_ fd, o_events, anfd->events);
680 }
681 } 1476 }
682 1477
683 fdchangecnt = 0; 1478 fdchangecnt = 0;
684} 1479}
685 1480
686void inline_size 1481/* something about the given fd changed */
1482inline_size void
687fd_change (EV_P_ int fd, int flags) 1483fd_change (EV_P_ int fd, int flags)
688{ 1484{
689 unsigned char reify = anfds [fd].reify; 1485 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 1486 anfds [fd].reify |= flags;
691 1487
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1491 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 1492 fdchanges [fdchangecnt - 1] = fd;
697 } 1493 }
698} 1494}
699 1495
700void inline_speed 1496/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1497inline_speed void ecb_cold
701fd_kill (EV_P_ int fd) 1498fd_kill (EV_P_ int fd)
702{ 1499{
703 ev_io *w; 1500 ev_io *w;
704 1501
705 while ((w = (ev_io *)anfds [fd].head)) 1502 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 1504 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1505 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 1506 }
710} 1507}
711 1508
712int inline_size 1509/* check whether the given fd is actually valid, for error recovery */
1510inline_size int ecb_cold
713fd_valid (int fd) 1511fd_valid (int fd)
714{ 1512{
715#ifdef _WIN32 1513#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1514 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1515#else
718 return fcntl (fd, F_GETFD) != -1; 1516 return fcntl (fd, F_GETFD) != -1;
719#endif 1517#endif
720} 1518}
721 1519
722/* called on EBADF to verify fds */ 1520/* called on EBADF to verify fds */
723static void noinline 1521static void noinline ecb_cold
724fd_ebadf (EV_P) 1522fd_ebadf (EV_P)
725{ 1523{
726 int fd; 1524 int fd;
727 1525
728 for (fd = 0; fd < anfdmax; ++fd) 1526 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1527 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1528 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1529 fd_kill (EV_A_ fd);
732} 1530}
733 1531
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1532/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1533static void noinline ecb_cold
736fd_enomem (EV_P) 1534fd_enomem (EV_P)
737{ 1535{
738 int fd; 1536 int fd;
739 1537
740 for (fd = anfdmax; fd--; ) 1538 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1539 if (anfds [fd].events)
742 { 1540 {
743 fd_kill (EV_A_ fd); 1541 fd_kill (EV_A_ fd);
744 return; 1542 break;
745 } 1543 }
746} 1544}
747 1545
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1546/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1547static void noinline
753 1551
754 for (fd = 0; fd < anfdmax; ++fd) 1552 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1553 if (anfds [fd].events)
756 { 1554 {
757 anfds [fd].events = 0; 1555 anfds [fd].events = 0;
1556 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1557 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1558 }
760} 1559}
761 1560
1561/* used to prepare libev internal fd's */
1562/* this is not fork-safe */
1563inline_speed void
1564fd_intern (int fd)
1565{
1566#ifdef _WIN32
1567 unsigned long arg = 1;
1568 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1569#else
1570 fcntl (fd, F_SETFD, FD_CLOEXEC);
1571 fcntl (fd, F_SETFL, O_NONBLOCK);
1572#endif
1573}
1574
762/*****************************************************************************/ 1575/*****************************************************************************/
1576
1577/*
1578 * the heap functions want a real array index. array index 0 is guaranteed to not
1579 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1580 * the branching factor of the d-tree.
1581 */
763 1582
764/* 1583/*
765 * at the moment we allow libev the luxury of two heaps, 1584 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1585 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1586 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1587 * the difference is about 5% with 50000+ watchers.
769 */ 1588 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1589#if EV_USE_4HEAP
772 1590
773#define DHEAP 4 1591#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1592#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1593#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1594#define UPHEAP_DONE(p,k) ((p) == (k))
775 1595
776/* towards the root */ 1596/* away from the root */
777void inline_speed 1597inline_speed void
778upheap (WT *heap, int k) 1598downheap (ANHE *heap, int N, int k)
779{ 1599{
780 WT w = heap [k]; 1600 ANHE he = heap [k];
781 ev_tstamp w_at = w->at; 1601 ANHE *E = heap + N + HEAP0;
782 1602
783 for (;;) 1603 for (;;)
784 { 1604 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat; 1605 ev_tstamp minat;
809 WT *minpos; 1606 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1607 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 1608
812 // find minimum child 1609 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 1610 if (expect_true (pos + DHEAP - 1 < E))
814 { 1611 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at); 1612 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1613 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1614 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1615 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 1616 }
820 else if (pos < E) 1617 else if (pos < E)
821 { 1618 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at); 1619 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1620 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1621 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1622 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
826 } 1623 }
827 else 1624 else
828 break; 1625 break;
829 1626
830 if (w->at <= minat) 1627 if (ANHE_at (he) <= minat)
831 break; 1628 break;
832 1629
833 ev_active (*minpos) = k;
834 heap [k] = *minpos; 1630 heap [k] = *minpos;
1631 ev_active (ANHE_w (*minpos)) = k;
835 1632
836 k = minpos - heap; 1633 k = minpos - heap;
837 } 1634 }
838 1635
839 heap [k] = w; 1636 heap [k] = he;
840 ev_active (heap [k]) = k; 1637 ev_active (ANHE_w (he)) = k;
841} 1638}
842 1639
843#else // 4HEAP 1640#else /* 4HEAP */
844 1641
845#define HEAP0 1 1642#define HEAP0 1
1643#define HPARENT(k) ((k) >> 1)
1644#define UPHEAP_DONE(p,k) (!(p))
846 1645
847/* towards the root */ 1646/* away from the root */
848void inline_speed 1647inline_speed void
849upheap (WT *heap, int k) 1648downheap (ANHE *heap, int N, int k)
850{ 1649{
851 WT w = heap [k]; 1650 ANHE he = heap [k];
852 1651
853 for (;;) 1652 for (;;)
854 { 1653 {
855 int p = k >> 1; 1654 int c = k << 1;
856 1655
857 /* maybe we could use a dummy element at heap [0]? */ 1656 if (c >= N + HEAP0)
858 if (!p || heap [p]->at <= w->at)
859 break; 1657 break;
860 1658
861 heap [k] = heap [p]; 1659 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
862 ev_active (heap [k]) = k; 1660 ? 1 : 0;
863 k = p;
864 }
865 1661
866 heap [k] = w; 1662 if (ANHE_at (he) <= ANHE_at (heap [c]))
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break; 1663 break;
882 1664
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c]; 1665 heap [k] = heap [c];
890 ((W)heap [k])->active = k; 1666 ev_active (ANHE_w (heap [k])) = k;
891 1667
892 k = c; 1668 k = c;
893 } 1669 }
894 1670
895 heap [k] = w; 1671 heap [k] = he;
1672 ev_active (ANHE_w (he)) = k;
1673}
1674#endif
1675
1676/* towards the root */
1677inline_speed void
1678upheap (ANHE *heap, int k)
1679{
1680 ANHE he = heap [k];
1681
1682 for (;;)
1683 {
1684 int p = HPARENT (k);
1685
1686 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1687 break;
1688
1689 heap [k] = heap [p];
896 ev_active (heap [k]) = k; 1690 ev_active (ANHE_w (heap [k])) = k;
897} 1691 k = p;
898#endif 1692 }
899 1693
900void inline_size 1694 heap [k] = he;
1695 ev_active (ANHE_w (he)) = k;
1696}
1697
1698/* move an element suitably so it is in a correct place */
1699inline_size void
901adjustheap (WT *heap, int N, int k) 1700adjustheap (ANHE *heap, int N, int k)
902{ 1701{
1702 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
903 upheap (heap, k); 1703 upheap (heap, k);
1704 else
904 downheap (heap, N, k); 1705 downheap (heap, N, k);
1706}
1707
1708/* rebuild the heap: this function is used only once and executed rarely */
1709inline_size void
1710reheap (ANHE *heap, int N)
1711{
1712 int i;
1713
1714 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1715 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1716 for (i = 0; i < N; ++i)
1717 upheap (heap, i + HEAP0);
905} 1718}
906 1719
907/*****************************************************************************/ 1720/*****************************************************************************/
908 1721
1722/* associate signal watchers to a signal signal */
909typedef struct 1723typedef struct
910{ 1724{
1725 EV_ATOMIC_T pending;
1726#if EV_MULTIPLICITY
1727 EV_P;
1728#endif
911 WL head; 1729 WL head;
912 EV_ATOMIC_T gotsig;
913} ANSIG; 1730} ANSIG;
914 1731
915static ANSIG *signals; 1732static ANSIG signals [EV_NSIG - 1];
916static int signalmax;
917
918static EV_ATOMIC_T gotsig;
919
920void inline_size
921signals_init (ANSIG *base, int count)
922{
923 while (count--)
924 {
925 base->head = 0;
926 base->gotsig = 0;
927
928 ++base;
929 }
930}
931 1733
932/*****************************************************************************/ 1734/*****************************************************************************/
933 1735
934void inline_speed 1736#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
935fd_intern (int fd)
936{
937#ifdef _WIN32
938 int arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif
944}
945 1737
946static void noinline 1738static void noinline ecb_cold
947evpipe_init (EV_P) 1739evpipe_init (EV_P)
948{ 1740{
949 if (!ev_is_active (&pipeev)) 1741 if (!ev_is_active (&pipe_w))
950 { 1742 {
951#if EV_USE_EVENTFD 1743# if EV_USE_EVENTFD
1744 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1745 if (evfd < 0 && errno == EINVAL)
952 if ((evfd = eventfd (0, 0)) >= 0) 1746 evfd = eventfd (0, 0);
1747
1748 if (evfd >= 0)
953 { 1749 {
954 evpipe [0] = -1; 1750 evpipe [0] = -1;
955 fd_intern (evfd); 1751 fd_intern (evfd); /* doing it twice doesn't hurt */
956 ev_io_set (&pipeev, evfd, EV_READ); 1752 ev_io_set (&pipe_w, evfd, EV_READ);
957 } 1753 }
958 else 1754 else
959#endif 1755# endif
960 { 1756 {
961 while (pipe (evpipe)) 1757 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe"); 1758 ev_syserr ("(libev) error creating signal/async pipe");
963 1759
964 fd_intern (evpipe [0]); 1760 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]); 1761 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ); 1762 ev_io_set (&pipe_w, evpipe [0], EV_READ);
967 } 1763 }
968 1764
969 ev_io_start (EV_A_ &pipeev); 1765 ev_io_start (EV_A_ &pipe_w);
970 ev_unref (EV_A); /* watcher should not keep loop alive */ 1766 ev_unref (EV_A); /* watcher should not keep loop alive */
971 } 1767 }
972} 1768}
973 1769
974void inline_size 1770inline_speed void
975evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1771evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{ 1772{
977 if (!*flag) 1773 if (expect_true (*flag))
1774 return;
1775
1776 *flag = 1;
1777
1778 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1779
1780 pipe_write_skipped = 1;
1781
1782 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1783
1784 if (pipe_write_wanted)
978 { 1785 {
1786 int old_errno;
1787
1788 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1789
979 int old_errno = errno; /* save errno because write might clobber it */ 1790 old_errno = errno; /* save errno because write will clobber it */
980
981 *flag = 1;
982 1791
983#if EV_USE_EVENTFD 1792#if EV_USE_EVENTFD
984 if (evfd >= 0) 1793 if (evfd >= 0)
985 { 1794 {
986 uint64_t counter = 1; 1795 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t)); 1796 write (evfd, &counter, sizeof (uint64_t));
988 } 1797 }
989 else 1798 else
990#endif 1799#endif
1800 {
1801 /* win32 people keep sending patches that change this write() to send() */
1802 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1803 /* so when you think this write should be a send instead, please find out */
1804 /* where your send() is from - it's definitely not the microsoft send, and */
1805 /* tell me. thank you. */
991 write (evpipe [1], &old_errno, 1); 1806 write (evpipe [1], &(evpipe [1]), 1);
1807 }
992 1808
993 errno = old_errno; 1809 errno = old_errno;
994 } 1810 }
995} 1811}
996 1812
1813/* called whenever the libev signal pipe */
1814/* got some events (signal, async) */
997static void 1815static void
998pipecb (EV_P_ ev_io *iow, int revents) 1816pipecb (EV_P_ ev_io *iow, int revents)
999{ 1817{
1818 int i;
1819
1820 if (revents & EV_READ)
1821 {
1000#if EV_USE_EVENTFD 1822#if EV_USE_EVENTFD
1001 if (evfd >= 0) 1823 if (evfd >= 0)
1002 { 1824 {
1003 uint64_t counter; 1825 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t)); 1826 read (evfd, &counter, sizeof (uint64_t));
1005 } 1827 }
1006 else 1828 else
1007#endif 1829#endif
1008 { 1830 {
1009 char dummy; 1831 char dummy;
1832 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1010 read (evpipe [0], &dummy, 1); 1833 read (evpipe [0], &dummy, 1);
1834 }
1835 }
1836
1837 pipe_write_skipped = 0;
1838
1839#if EV_SIGNAL_ENABLE
1840 if (sig_pending)
1011 } 1841 {
1842 sig_pending = 0;
1012 1843
1013 if (gotsig && ev_is_default_loop (EV_A)) 1844 for (i = EV_NSIG - 1; i--; )
1014 { 1845 if (expect_false (signals [i].pending))
1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1); 1846 ev_feed_signal_event (EV_A_ i + 1);
1021 } 1847 }
1848#endif
1022 1849
1023#if EV_ASYNC_ENABLE 1850#if EV_ASYNC_ENABLE
1024 if (gotasync) 1851 if (async_pending)
1025 { 1852 {
1026 int i; 1853 async_pending = 0;
1027 gotasync = 0;
1028 1854
1029 for (i = asynccnt; i--; ) 1855 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent) 1856 if (asyncs [i]->sent)
1031 { 1857 {
1032 asyncs [i]->sent = 0; 1858 asyncs [i]->sent = 0;
1036#endif 1862#endif
1037} 1863}
1038 1864
1039/*****************************************************************************/ 1865/*****************************************************************************/
1040 1866
1867void
1868ev_feed_signal (int signum)
1869{
1870#if EV_MULTIPLICITY
1871 EV_P = signals [signum - 1].loop;
1872
1873 if (!EV_A)
1874 return;
1875#endif
1876
1877 if (!ev_active (&pipe_w))
1878 return;
1879
1880 signals [signum - 1].pending = 1;
1881 evpipe_write (EV_A_ &sig_pending);
1882}
1883
1041static void 1884static void
1042ev_sighandler (int signum) 1885ev_sighandler (int signum)
1043{ 1886{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
1048#if _WIN32 1887#ifdef _WIN32
1049 signal (signum, ev_sighandler); 1888 signal (signum, ev_sighandler);
1050#endif 1889#endif
1051 1890
1052 signals [signum - 1].gotsig = 1; 1891 ev_feed_signal (signum);
1053 evpipe_write (EV_A_ &gotsig);
1054} 1892}
1055 1893
1056void noinline 1894void noinline
1057ev_feed_signal_event (EV_P_ int signum) 1895ev_feed_signal_event (EV_P_ int signum)
1058{ 1896{
1059 WL w; 1897 WL w;
1060 1898
1899 if (expect_false (signum <= 0 || signum > EV_NSIG))
1900 return;
1901
1902 --signum;
1903
1061#if EV_MULTIPLICITY 1904#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1905 /* it is permissible to try to feed a signal to the wrong loop */
1063#endif 1906 /* or, likely more useful, feeding a signal nobody is waiting for */
1064 1907
1065 --signum; 1908 if (expect_false (signals [signum].loop != EV_A))
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return; 1909 return;
1910#endif
1069 1911
1070 signals [signum].gotsig = 0; 1912 signals [signum].pending = 0;
1071 1913
1072 for (w = signals [signum].head; w; w = w->next) 1914 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1915 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074} 1916}
1075 1917
1918#if EV_USE_SIGNALFD
1919static void
1920sigfdcb (EV_P_ ev_io *iow, int revents)
1921{
1922 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1923
1924 for (;;)
1925 {
1926 ssize_t res = read (sigfd, si, sizeof (si));
1927
1928 /* not ISO-C, as res might be -1, but works with SuS */
1929 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1930 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1931
1932 if (res < (ssize_t)sizeof (si))
1933 break;
1934 }
1935}
1936#endif
1937
1938#endif
1939
1076/*****************************************************************************/ 1940/*****************************************************************************/
1077 1941
1942#if EV_CHILD_ENABLE
1078static WL childs [EV_PID_HASHSIZE]; 1943static WL childs [EV_PID_HASHSIZE];
1079
1080#ifndef _WIN32
1081 1944
1082static ev_signal childev; 1945static ev_signal childev;
1083 1946
1084#ifndef WIFCONTINUED 1947#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0 1948# define WIFCONTINUED(status) 0
1086#endif 1949#endif
1087 1950
1088void inline_speed 1951/* handle a single child status event */
1952inline_speed void
1089child_reap (EV_P_ int chain, int pid, int status) 1953child_reap (EV_P_ int chain, int pid, int status)
1090{ 1954{
1091 ev_child *w; 1955 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1956 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093 1957
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 { 1959 {
1096 if ((w->pid == pid || !w->pid) 1960 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1))) 1961 && (!traced || (w->flags & 1)))
1098 { 1962 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1963 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1106 1970
1107#ifndef WCONTINUED 1971#ifndef WCONTINUED
1108# define WCONTINUED 0 1972# define WCONTINUED 0
1109#endif 1973#endif
1110 1974
1975/* called on sigchld etc., calls waitpid */
1111static void 1976static void
1112childcb (EV_P_ ev_signal *sw, int revents) 1977childcb (EV_P_ ev_signal *sw, int revents)
1113{ 1978{
1114 int pid, status; 1979 int pid, status;
1115 1980
1123 /* make sure we are called again until all children have been reaped */ 1988 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */ 1989 /* we need to do it this way so that the callback gets called before we continue */
1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1990 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1126 1991
1127 child_reap (EV_A_ pid, pid, status); 1992 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1) 1993 if ((EV_PID_HASHSIZE) > 1)
1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1994 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1130} 1995}
1131 1996
1132#endif 1997#endif
1133 1998
1134/*****************************************************************************/ 1999/*****************************************************************************/
1135 2000
2001#if EV_USE_IOCP
2002# include "ev_iocp.c"
2003#endif
1136#if EV_USE_PORT 2004#if EV_USE_PORT
1137# include "ev_port.c" 2005# include "ev_port.c"
1138#endif 2006#endif
1139#if EV_USE_KQUEUE 2007#if EV_USE_KQUEUE
1140# include "ev_kqueue.c" 2008# include "ev_kqueue.c"
1147#endif 2015#endif
1148#if EV_USE_SELECT 2016#if EV_USE_SELECT
1149# include "ev_select.c" 2017# include "ev_select.c"
1150#endif 2018#endif
1151 2019
1152int 2020int ecb_cold
1153ev_version_major (void) 2021ev_version_major (void)
1154{ 2022{
1155 return EV_VERSION_MAJOR; 2023 return EV_VERSION_MAJOR;
1156} 2024}
1157 2025
1158int 2026int ecb_cold
1159ev_version_minor (void) 2027ev_version_minor (void)
1160{ 2028{
1161 return EV_VERSION_MINOR; 2029 return EV_VERSION_MINOR;
1162} 2030}
1163 2031
1164/* return true if we are running with elevated privileges and should ignore env variables */ 2032/* return true if we are running with elevated privileges and should ignore env variables */
1165int inline_size 2033int inline_size ecb_cold
1166enable_secure (void) 2034enable_secure (void)
1167{ 2035{
1168#ifdef _WIN32 2036#ifdef _WIN32
1169 return 0; 2037 return 0;
1170#else 2038#else
1171 return getuid () != geteuid () 2039 return getuid () != geteuid ()
1172 || getgid () != getegid (); 2040 || getgid () != getegid ();
1173#endif 2041#endif
1174} 2042}
1175 2043
1176unsigned int 2044unsigned int ecb_cold
1177ev_supported_backends (void) 2045ev_supported_backends (void)
1178{ 2046{
1179 unsigned int flags = 0; 2047 unsigned int flags = 0;
1180 2048
1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2049 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2053 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186 2054
1187 return flags; 2055 return flags;
1188} 2056}
1189 2057
1190unsigned int 2058unsigned int ecb_cold
1191ev_recommended_backends (void) 2059ev_recommended_backends (void)
1192{ 2060{
1193 unsigned int flags = ev_supported_backends (); 2061 unsigned int flags = ev_supported_backends ();
1194 2062
1195#ifndef __NetBSD__ 2063#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */ 2064 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */ 2065 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE; 2066 flags &= ~EVBACKEND_KQUEUE;
1199#endif 2067#endif
1200#ifdef __APPLE__ 2068#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation 2069 /* only select works correctly on that "unix-certified" platform */
1202 flags &= ~EVBACKEND_POLL; 2070 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2071 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2072#endif
2073#ifdef __FreeBSD__
2074 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1203#endif 2075#endif
1204 2076
1205 return flags; 2077 return flags;
1206} 2078}
1207 2079
1208unsigned int 2080unsigned int ecb_cold
1209ev_embeddable_backends (void) 2081ev_embeddable_backends (void)
1210{ 2082{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2083 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1212 2084
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2085 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */ 2086 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1215 flags &= ~EVBACKEND_EPOLL; 2087 flags &= ~EVBACKEND_EPOLL;
1216 2088
1217 return flags; 2089 return flags;
1218} 2090}
1219 2091
1220unsigned int 2092unsigned int
1221ev_backend (EV_P) 2093ev_backend (EV_P)
1222{ 2094{
1223 return backend; 2095 return backend;
1224} 2096}
1225 2097
2098#if EV_FEATURE_API
1226unsigned int 2099unsigned int
1227ev_loop_count (EV_P) 2100ev_iteration (EV_P)
1228{ 2101{
1229 return loop_count; 2102 return loop_count;
2103}
2104
2105unsigned int
2106ev_depth (EV_P)
2107{
2108 return loop_depth;
1230} 2109}
1231 2110
1232void 2111void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2112ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{ 2113{
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2118ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{ 2119{
1241 timeout_blocktime = interval; 2120 timeout_blocktime = interval;
1242} 2121}
1243 2122
2123void
2124ev_set_userdata (EV_P_ void *data)
2125{
2126 userdata = data;
2127}
2128
2129void *
2130ev_userdata (EV_P)
2131{
2132 return userdata;
2133}
2134
2135void
2136ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2137{
2138 invoke_cb = invoke_pending_cb;
2139}
2140
2141void
2142ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2143{
2144 release_cb = release;
2145 acquire_cb = acquire;
2146}
2147#endif
2148
2149/* initialise a loop structure, must be zero-initialised */
1244static void noinline 2150static void noinline ecb_cold
1245loop_init (EV_P_ unsigned int flags) 2151loop_init (EV_P_ unsigned int flags)
1246{ 2152{
1247 if (!backend) 2153 if (!backend)
1248 { 2154 {
2155 origflags = flags;
2156
2157#if EV_USE_REALTIME
2158 if (!have_realtime)
2159 {
2160 struct timespec ts;
2161
2162 if (!clock_gettime (CLOCK_REALTIME, &ts))
2163 have_realtime = 1;
2164 }
2165#endif
2166
1249#if EV_USE_MONOTONIC 2167#if EV_USE_MONOTONIC
2168 if (!have_monotonic)
1250 { 2169 {
1251 struct timespec ts; 2170 struct timespec ts;
2171
1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2172 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1253 have_monotonic = 1; 2173 have_monotonic = 1;
1254 } 2174 }
1255#endif
1256
1257 ev_rt_now = ev_time ();
1258 mn_now = get_clock ();
1259 now_floor = mn_now;
1260 rtmn_diff = ev_rt_now - mn_now;
1261
1262 io_blocktime = 0.;
1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif 2175#endif
1270 2176
1271 /* pid check not overridable via env */ 2177 /* pid check not overridable via env */
1272#ifndef _WIN32 2178#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK) 2179 if (flags & EVFLAG_FORKCHECK)
1277 if (!(flags & EVFLAG_NOENV) 2183 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure () 2184 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS")) 2185 && getenv ("LIBEV_FLAGS"))
1280 flags = atoi (getenv ("LIBEV_FLAGS")); 2186 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 2187
1282 if (!(flags & 0x0000ffffU)) 2188 ev_rt_now = ev_time ();
2189 mn_now = get_clock ();
2190 now_floor = mn_now;
2191 rtmn_diff = ev_rt_now - mn_now;
2192#if EV_FEATURE_API
2193 invoke_cb = ev_invoke_pending;
2194#endif
2195
2196 io_blocktime = 0.;
2197 timeout_blocktime = 0.;
2198 backend = 0;
2199 backend_fd = -1;
2200 sig_pending = 0;
2201#if EV_ASYNC_ENABLE
2202 async_pending = 0;
2203#endif
2204 pipe_write_skipped = 0;
2205 pipe_write_wanted = 0;
2206#if EV_USE_INOTIFY
2207 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2208#endif
2209#if EV_USE_SIGNALFD
2210 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2211#endif
2212
2213 if (!(flags & EVBACKEND_MASK))
1283 flags |= ev_recommended_backends (); 2214 flags |= ev_recommended_backends ();
1284 2215
2216#if EV_USE_IOCP
2217 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2218#endif
1285#if EV_USE_PORT 2219#if EV_USE_PORT
1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2220 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1287#endif 2221#endif
1288#if EV_USE_KQUEUE 2222#if EV_USE_KQUEUE
1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2223 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1296#endif 2230#endif
1297#if EV_USE_SELECT 2231#if EV_USE_SELECT
1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2232 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1299#endif 2233#endif
1300 2234
2235 ev_prepare_init (&pending_w, pendingcb);
2236
2237#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1301 ev_init (&pipeev, pipecb); 2238 ev_init (&pipe_w, pipecb);
1302 ev_set_priority (&pipeev, EV_MAXPRI); 2239 ev_set_priority (&pipe_w, EV_MAXPRI);
2240#endif
1303 } 2241 }
1304} 2242}
1305 2243
1306static void noinline 2244/* free up a loop structure */
2245void ecb_cold
1307loop_destroy (EV_P) 2246ev_loop_destroy (EV_P)
1308{ 2247{
1309 int i; 2248 int i;
1310 2249
2250#if EV_MULTIPLICITY
2251 /* mimic free (0) */
2252 if (!EV_A)
2253 return;
2254#endif
2255
2256#if EV_CLEANUP_ENABLE
2257 /* queue cleanup watchers (and execute them) */
2258 if (expect_false (cleanupcnt))
2259 {
2260 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2261 EV_INVOKE_PENDING;
2262 }
2263#endif
2264
2265#if EV_CHILD_ENABLE
2266 if (ev_is_active (&childev))
2267 {
2268 ev_ref (EV_A); /* child watcher */
2269 ev_signal_stop (EV_A_ &childev);
2270 }
2271#endif
2272
1311 if (ev_is_active (&pipeev)) 2273 if (ev_is_active (&pipe_w))
1312 { 2274 {
1313 ev_ref (EV_A); /* signal watcher */ 2275 /*ev_ref (EV_A);*/
1314 ev_io_stop (EV_A_ &pipeev); 2276 /*ev_io_stop (EV_A_ &pipe_w);*/
1315 2277
1316#if EV_USE_EVENTFD 2278#if EV_USE_EVENTFD
1317 if (evfd >= 0) 2279 if (evfd >= 0)
1318 close (evfd); 2280 close (evfd);
1319#endif 2281#endif
1320 2282
1321 if (evpipe [0] >= 0) 2283 if (evpipe [0] >= 0)
1322 { 2284 {
1323 close (evpipe [0]); 2285 EV_WIN32_CLOSE_FD (evpipe [0]);
1324 close (evpipe [1]); 2286 EV_WIN32_CLOSE_FD (evpipe [1]);
1325 } 2287 }
1326 } 2288 }
2289
2290#if EV_USE_SIGNALFD
2291 if (ev_is_active (&sigfd_w))
2292 close (sigfd);
2293#endif
1327 2294
1328#if EV_USE_INOTIFY 2295#if EV_USE_INOTIFY
1329 if (fs_fd >= 0) 2296 if (fs_fd >= 0)
1330 close (fs_fd); 2297 close (fs_fd);
1331#endif 2298#endif
1332 2299
1333 if (backend_fd >= 0) 2300 if (backend_fd >= 0)
1334 close (backend_fd); 2301 close (backend_fd);
1335 2302
2303#if EV_USE_IOCP
2304 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2305#endif
1336#if EV_USE_PORT 2306#if EV_USE_PORT
1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2307 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1338#endif 2308#endif
1339#if EV_USE_KQUEUE 2309#if EV_USE_KQUEUE
1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2310 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1355#if EV_IDLE_ENABLE 2325#if EV_IDLE_ENABLE
1356 array_free (idle, [i]); 2326 array_free (idle, [i]);
1357#endif 2327#endif
1358 } 2328 }
1359 2329
1360 ev_free (anfds); anfdmax = 0; 2330 ev_free (anfds); anfds = 0; anfdmax = 0;
1361 2331
1362 /* have to use the microsoft-never-gets-it-right macro */ 2332 /* have to use the microsoft-never-gets-it-right macro */
2333 array_free (rfeed, EMPTY);
1363 array_free (fdchange, EMPTY); 2334 array_free (fdchange, EMPTY);
1364 array_free (timer, EMPTY); 2335 array_free (timer, EMPTY);
1365#if EV_PERIODIC_ENABLE 2336#if EV_PERIODIC_ENABLE
1366 array_free (periodic, EMPTY); 2337 array_free (periodic, EMPTY);
1367#endif 2338#endif
1368#if EV_FORK_ENABLE 2339#if EV_FORK_ENABLE
1369 array_free (fork, EMPTY); 2340 array_free (fork, EMPTY);
1370#endif 2341#endif
2342#if EV_CLEANUP_ENABLE
2343 array_free (cleanup, EMPTY);
2344#endif
1371 array_free (prepare, EMPTY); 2345 array_free (prepare, EMPTY);
1372 array_free (check, EMPTY); 2346 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE 2347#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY); 2348 array_free (async, EMPTY);
1375#endif 2349#endif
1376 2350
1377 backend = 0; 2351 backend = 0;
2352
2353#if EV_MULTIPLICITY
2354 if (ev_is_default_loop (EV_A))
2355#endif
2356 ev_default_loop_ptr = 0;
2357#if EV_MULTIPLICITY
2358 else
2359 ev_free (EV_A);
2360#endif
1378} 2361}
1379 2362
1380#if EV_USE_INOTIFY 2363#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P); 2364inline_size void infy_fork (EV_P);
1382#endif 2365#endif
1383 2366
1384void inline_size 2367inline_size void
1385loop_fork (EV_P) 2368loop_fork (EV_P)
1386{ 2369{
1387#if EV_USE_PORT 2370#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2371 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif 2372#endif
1395#endif 2378#endif
1396#if EV_USE_INOTIFY 2379#if EV_USE_INOTIFY
1397 infy_fork (EV_A); 2380 infy_fork (EV_A);
1398#endif 2381#endif
1399 2382
1400 if (ev_is_active (&pipeev)) 2383 if (ev_is_active (&pipe_w))
1401 { 2384 {
1402 /* this "locks" the handlers against writing to the pipe */ 2385 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
1408 2386
1409 ev_ref (EV_A); 2387 ev_ref (EV_A);
1410 ev_io_stop (EV_A_ &pipeev); 2388 ev_io_stop (EV_A_ &pipe_w);
1411 2389
1412#if EV_USE_EVENTFD 2390#if EV_USE_EVENTFD
1413 if (evfd >= 0) 2391 if (evfd >= 0)
1414 close (evfd); 2392 close (evfd);
1415#endif 2393#endif
1416 2394
1417 if (evpipe [0] >= 0) 2395 if (evpipe [0] >= 0)
1418 { 2396 {
1419 close (evpipe [0]); 2397 EV_WIN32_CLOSE_FD (evpipe [0]);
1420 close (evpipe [1]); 2398 EV_WIN32_CLOSE_FD (evpipe [1]);
1421 } 2399 }
1422 2400
2401#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1423 evpipe_init (EV_A); 2402 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */ 2403 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ); 2404 pipecb (EV_A_ &pipe_w, EV_READ);
2405#endif
1426 } 2406 }
1427 2407
1428 postfork = 0; 2408 postfork = 0;
1429} 2409}
1430 2410
1431#if EV_MULTIPLICITY 2411#if EV_MULTIPLICITY
2412
1432struct ev_loop * 2413struct ev_loop * ecb_cold
1433ev_loop_new (unsigned int flags) 2414ev_loop_new (unsigned int flags)
1434{ 2415{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2416 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 2417
1437 memset (loop, 0, sizeof (struct ev_loop)); 2418 memset (EV_A, 0, sizeof (struct ev_loop));
1438
1439 loop_init (EV_A_ flags); 2419 loop_init (EV_A_ flags);
1440 2420
1441 if (ev_backend (EV_A)) 2421 if (ev_backend (EV_A))
1442 return loop; 2422 return EV_A;
1443 2423
2424 ev_free (EV_A);
1444 return 0; 2425 return 0;
1445} 2426}
1446 2427
1447void 2428#endif /* multiplicity */
1448ev_loop_destroy (EV_P)
1449{
1450 loop_destroy (EV_A);
1451 ev_free (loop);
1452}
1453 2429
1454void 2430#if EV_VERIFY
1455ev_loop_fork (EV_P) 2431static void noinline ecb_cold
2432verify_watcher (EV_P_ W w)
1456{ 2433{
1457 postfork = 1; /* must be in line with ev_default_fork */ 2434 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2435
2436 if (w->pending)
2437 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2438}
2439
2440static void noinline ecb_cold
2441verify_heap (EV_P_ ANHE *heap, int N)
2442{
2443 int i;
2444
2445 for (i = HEAP0; i < N + HEAP0; ++i)
2446 {
2447 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2448 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2449 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2450
2451 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2452 }
2453}
2454
2455static void noinline ecb_cold
2456array_verify (EV_P_ W *ws, int cnt)
2457{
2458 while (cnt--)
2459 {
2460 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2461 verify_watcher (EV_A_ ws [cnt]);
2462 }
2463}
2464#endif
2465
2466#if EV_FEATURE_API
2467void ecb_cold
2468ev_verify (EV_P)
2469{
2470#if EV_VERIFY
2471 int i;
2472 WL w;
2473
2474 assert (activecnt >= -1);
2475
2476 assert (fdchangemax >= fdchangecnt);
2477 for (i = 0; i < fdchangecnt; ++i)
2478 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2479
2480 assert (anfdmax >= 0);
2481 for (i = 0; i < anfdmax; ++i)
2482 for (w = anfds [i].head; w; w = w->next)
2483 {
2484 verify_watcher (EV_A_ (W)w);
2485 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2486 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2487 }
2488
2489 assert (timermax >= timercnt);
2490 verify_heap (EV_A_ timers, timercnt);
2491
2492#if EV_PERIODIC_ENABLE
2493 assert (periodicmax >= periodiccnt);
2494 verify_heap (EV_A_ periodics, periodiccnt);
2495#endif
2496
2497 for (i = NUMPRI; i--; )
2498 {
2499 assert (pendingmax [i] >= pendingcnt [i]);
2500#if EV_IDLE_ENABLE
2501 assert (idleall >= 0);
2502 assert (idlemax [i] >= idlecnt [i]);
2503 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2504#endif
2505 }
2506
2507#if EV_FORK_ENABLE
2508 assert (forkmax >= forkcnt);
2509 array_verify (EV_A_ (W *)forks, forkcnt);
2510#endif
2511
2512#if EV_CLEANUP_ENABLE
2513 assert (cleanupmax >= cleanupcnt);
2514 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2515#endif
2516
2517#if EV_ASYNC_ENABLE
2518 assert (asyncmax >= asynccnt);
2519 array_verify (EV_A_ (W *)asyncs, asynccnt);
2520#endif
2521
2522#if EV_PREPARE_ENABLE
2523 assert (preparemax >= preparecnt);
2524 array_verify (EV_A_ (W *)prepares, preparecnt);
2525#endif
2526
2527#if EV_CHECK_ENABLE
2528 assert (checkmax >= checkcnt);
2529 array_verify (EV_A_ (W *)checks, checkcnt);
2530#endif
2531
2532# if 0
2533#if EV_CHILD_ENABLE
2534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2535 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2536#endif
2537# endif
2538#endif
1458} 2539}
1459#endif 2540#endif
1460 2541
1461#if EV_MULTIPLICITY 2542#if EV_MULTIPLICITY
1462struct ev_loop * 2543struct ev_loop * ecb_cold
1463ev_default_loop_init (unsigned int flags)
1464#else 2544#else
1465int 2545int
2546#endif
1466ev_default_loop (unsigned int flags) 2547ev_default_loop (unsigned int flags)
1467#endif
1468{ 2548{
1469 if (!ev_default_loop_ptr) 2549 if (!ev_default_loop_ptr)
1470 { 2550 {
1471#if EV_MULTIPLICITY 2551#if EV_MULTIPLICITY
1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2552 EV_P = ev_default_loop_ptr = &default_loop_struct;
1473#else 2553#else
1474 ev_default_loop_ptr = 1; 2554 ev_default_loop_ptr = 1;
1475#endif 2555#endif
1476 2556
1477 loop_init (EV_A_ flags); 2557 loop_init (EV_A_ flags);
1478 2558
1479 if (ev_backend (EV_A)) 2559 if (ev_backend (EV_A))
1480 { 2560 {
1481#ifndef _WIN32 2561#if EV_CHILD_ENABLE
1482 ev_signal_init (&childev, childcb, SIGCHLD); 2562 ev_signal_init (&childev, childcb, SIGCHLD);
1483 ev_set_priority (&childev, EV_MAXPRI); 2563 ev_set_priority (&childev, EV_MAXPRI);
1484 ev_signal_start (EV_A_ &childev); 2564 ev_signal_start (EV_A_ &childev);
1485 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2565 ev_unref (EV_A); /* child watcher should not keep loop alive */
1486#endif 2566#endif
1491 2571
1492 return ev_default_loop_ptr; 2572 return ev_default_loop_ptr;
1493} 2573}
1494 2574
1495void 2575void
1496ev_default_destroy (void) 2576ev_loop_fork (EV_P)
1497{ 2577{
1498#if EV_MULTIPLICITY
1499 struct ev_loop *loop = ev_default_loop_ptr;
1500#endif
1501
1502#ifndef _WIN32
1503 ev_ref (EV_A); /* child watcher */
1504 ev_signal_stop (EV_A_ &childev);
1505#endif
1506
1507 loop_destroy (EV_A);
1508}
1509
1510void
1511ev_default_fork (void)
1512{
1513#if EV_MULTIPLICITY
1514 struct ev_loop *loop = ev_default_loop_ptr;
1515#endif
1516
1517 if (backend)
1518 postfork = 1; /* must be in line with ev_loop_fork */ 2578 postfork = 1; /* must be in line with ev_default_fork */
1519} 2579}
1520 2580
1521/*****************************************************************************/ 2581/*****************************************************************************/
1522 2582
1523void 2583void
1524ev_invoke (EV_P_ void *w, int revents) 2584ev_invoke (EV_P_ void *w, int revents)
1525{ 2585{
1526 EV_CB_INVOKE ((W)w, revents); 2586 EV_CB_INVOKE ((W)w, revents);
1527} 2587}
1528 2588
1529void inline_speed 2589unsigned int
1530call_pending (EV_P) 2590ev_pending_count (EV_P)
2591{
2592 int pri;
2593 unsigned int count = 0;
2594
2595 for (pri = NUMPRI; pri--; )
2596 count += pendingcnt [pri];
2597
2598 return count;
2599}
2600
2601void noinline
2602ev_invoke_pending (EV_P)
1531{ 2603{
1532 int pri; 2604 int pri;
1533 2605
1534 for (pri = NUMPRI; pri--; ) 2606 for (pri = NUMPRI; pri--; )
1535 while (pendingcnt [pri]) 2607 while (pendingcnt [pri])
1536 { 2608 {
1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2609 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1538 2610
1539 if (expect_true (p->w))
1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542
1543 p->w->pending = 0; 2611 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 2612 EV_CB_INVOKE (p->w, p->events);
1545 } 2613 EV_FREQUENT_CHECK;
1546 } 2614 }
1547} 2615}
1548 2616
1549#if EV_IDLE_ENABLE 2617#if EV_IDLE_ENABLE
1550void inline_size 2618/* make idle watchers pending. this handles the "call-idle */
2619/* only when higher priorities are idle" logic */
2620inline_size void
1551idle_reify (EV_P) 2621idle_reify (EV_P)
1552{ 2622{
1553 if (expect_false (idleall)) 2623 if (expect_false (idleall))
1554 { 2624 {
1555 int pri; 2625 int pri;
1567 } 2637 }
1568 } 2638 }
1569} 2639}
1570#endif 2640#endif
1571 2641
1572void inline_size 2642/* make timers pending */
2643inline_size void
1573timers_reify (EV_P) 2644timers_reify (EV_P)
1574{ 2645{
2646 EV_FREQUENT_CHECK;
2647
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2648 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 2649 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 2650 do
1578
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580
1581 /* first reschedule or stop timer */
1582 if (w->repeat)
1583 { 2651 {
2652 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2653
2654 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2655
2656 /* first reschedule or stop timer */
2657 if (w->repeat)
2658 {
2659 ev_at (w) += w->repeat;
2660 if (ev_at (w) < mn_now)
2661 ev_at (w) = mn_now;
2662
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2663 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585 2664
1586 ev_at (w) += w->repeat; 2665 ANHE_at_cache (timers [HEAP0]);
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
1590 downheap (timers, timercnt, HEAP0); 2666 downheap (timers, timercnt, HEAP0);
2667 }
2668 else
2669 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2670
2671 EV_FREQUENT_CHECK;
2672 feed_reverse (EV_A_ (W)w);
1591 } 2673 }
1592 else 2674 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 2675
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2676 feed_reverse_done (EV_A_ EV_TIMER);
1596 } 2677 }
1597} 2678}
1598 2679
1599#if EV_PERIODIC_ENABLE 2680#if EV_PERIODIC_ENABLE
1600void inline_size 2681
2682static void noinline
2683periodic_recalc (EV_P_ ev_periodic *w)
2684{
2685 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2686 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2687
2688 /* the above almost always errs on the low side */
2689 while (at <= ev_rt_now)
2690 {
2691 ev_tstamp nat = at + w->interval;
2692
2693 /* when resolution fails us, we use ev_rt_now */
2694 if (expect_false (nat == at))
2695 {
2696 at = ev_rt_now;
2697 break;
2698 }
2699
2700 at = nat;
2701 }
2702
2703 ev_at (w) = at;
2704}
2705
2706/* make periodics pending */
2707inline_size void
1601periodics_reify (EV_P) 2708periodics_reify (EV_P)
1602{ 2709{
2710 EV_FREQUENT_CHECK;
2711
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2712 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 2713 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2714 int feed_count = 0;
1606 2715
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2716 do
1608
1609 /* first reschedule or stop timer */
1610 if (w->reschedule_cb)
1611 { 2717 {
2718 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2719
2720 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2721
2722 /* first reschedule or stop timer */
2723 if (w->reschedule_cb)
2724 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2725 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2726
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2727 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2728
2729 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 2730 downheap (periodics, periodiccnt, HEAP0);
2731 }
2732 else if (w->interval)
2733 {
2734 periodic_recalc (EV_A_ w);
2735 ANHE_at_cache (periodics [HEAP0]);
2736 downheap (periodics, periodiccnt, HEAP0);
2737 }
2738 else
2739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2740
2741 EV_FREQUENT_CHECK;
2742 feed_reverse (EV_A_ (W)w);
1615 } 2743 }
1616 else if (w->interval) 2744 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
1622 }
1623 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 2745
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2746 feed_reverse_done (EV_A_ EV_PERIODIC);
1627 } 2747 }
1628} 2748}
1629 2749
2750/* simply recalculate all periodics */
2751/* TODO: maybe ensure that at least one event happens when jumping forward? */
1630static void noinline 2752static void noinline ecb_cold
1631periodics_reschedule (EV_P) 2753periodics_reschedule (EV_P)
1632{ 2754{
1633 int i; 2755 int i;
1634 2756
1635 /* adjust periodics after time jump */ 2757 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 2758 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 2759 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 2760 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 2761
1640 if (w->reschedule_cb) 2762 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 2764 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2765 periodic_recalc (EV_A_ w);
2766
2767 ANHE_at_cache (periodics [i]);
2768 }
2769
2770 reheap (periodics, periodiccnt);
2771}
2772#endif
2773
2774/* adjust all timers by a given offset */
2775static void noinline ecb_cold
2776timers_reschedule (EV_P_ ev_tstamp adjust)
2777{
2778 int i;
2779
2780 for (i = 0; i < timercnt; ++i)
1644 } 2781 {
1645 2782 ANHE *he = timers + i + HEAP0;
1646 /* now rebuild the heap */ 2783 ANHE_w (*he)->at += adjust;
1647 for (i = periodiccnt >> 1; --i; ) 2784 ANHE_at_cache (*he);
1648 downheap (periodics, periodiccnt, i + HEAP0); 2785 }
1649} 2786}
1650#endif
1651 2787
1652void inline_speed 2788/* fetch new monotonic and realtime times from the kernel */
2789/* also detect if there was a timejump, and act accordingly */
2790inline_speed void
1653time_update (EV_P_ ev_tstamp max_block) 2791time_update (EV_P_ ev_tstamp max_block)
1654{ 2792{
1655 int i;
1656
1657#if EV_USE_MONOTONIC 2793#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic)) 2794 if (expect_true (have_monotonic))
1659 { 2795 {
2796 int i;
1660 ev_tstamp odiff = rtmn_diff; 2797 ev_tstamp odiff = rtmn_diff;
1661 2798
1662 mn_now = get_clock (); 2799 mn_now = get_clock ();
1663 2800
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2801 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1680 * doesn't hurt either as we only do this on time-jumps or 2817 * doesn't hurt either as we only do this on time-jumps or
1681 * in the unlikely event of having been preempted here. 2818 * in the unlikely event of having been preempted here.
1682 */ 2819 */
1683 for (i = 4; --i; ) 2820 for (i = 4; --i; )
1684 { 2821 {
2822 ev_tstamp diff;
1685 rtmn_diff = ev_rt_now - mn_now; 2823 rtmn_diff = ev_rt_now - mn_now;
1686 2824
2825 diff = odiff - rtmn_diff;
2826
1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2827 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1688 return; /* all is well */ 2828 return; /* all is well */
1689 2829
1690 ev_rt_now = ev_time (); 2830 ev_rt_now = ev_time ();
1691 mn_now = get_clock (); 2831 mn_now = get_clock ();
1692 now_floor = mn_now; 2832 now_floor = mn_now;
1693 } 2833 }
1694 2834
2835 /* no timer adjustment, as the monotonic clock doesn't jump */
2836 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1695# if EV_PERIODIC_ENABLE 2837# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A); 2838 periodics_reschedule (EV_A);
1697# endif 2839# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 } 2840 }
1701 else 2841 else
1702#endif 2842#endif
1703 { 2843 {
1704 ev_rt_now = ev_time (); 2844 ev_rt_now = ev_time ();
1705 2845
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2846 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 { 2847 {
2848 /* adjust timers. this is easy, as the offset is the same for all of them */
2849 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1708#if EV_PERIODIC_ENABLE 2850#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 2851 periodics_reschedule (EV_A);
1710#endif 2852#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1714 } 2853 }
1715 2854
1716 mn_now = ev_rt_now; 2855 mn_now = ev_rt_now;
1717 } 2856 }
1718} 2857}
1719 2858
1720void 2859void
1721ev_ref (EV_P)
1722{
1723 ++activecnt;
1724}
1725
1726void
1727ev_unref (EV_P)
1728{
1729 --activecnt;
1730}
1731
1732static int loop_done;
1733
1734void
1735ev_loop (EV_P_ int flags) 2860ev_run (EV_P_ int flags)
1736{ 2861{
2862#if EV_FEATURE_API
2863 ++loop_depth;
2864#endif
2865
2866 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2867
1737 loop_done = EVUNLOOP_CANCEL; 2868 loop_done = EVBREAK_CANCEL;
1738 2869
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2870 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1740 2871
1741 do 2872 do
1742 { 2873 {
2874#if EV_VERIFY >= 2
2875 ev_verify (EV_A);
2876#endif
2877
1743#ifndef _WIN32 2878#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 2879 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 2880 if (expect_false (getpid () != curpid))
1746 { 2881 {
1747 curpid = getpid (); 2882 curpid = getpid ();
1753 /* we might have forked, so queue fork handlers */ 2888 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork)) 2889 if (expect_false (postfork))
1755 if (forkcnt) 2890 if (forkcnt)
1756 { 2891 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2892 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A); 2893 EV_INVOKE_PENDING;
1759 } 2894 }
1760#endif 2895#endif
1761 2896
2897#if EV_PREPARE_ENABLE
1762 /* queue prepare watchers (and execute them) */ 2898 /* queue prepare watchers (and execute them) */
1763 if (expect_false (preparecnt)) 2899 if (expect_false (preparecnt))
1764 { 2900 {
1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2901 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1766 call_pending (EV_A); 2902 EV_INVOKE_PENDING;
1767 } 2903 }
2904#endif
1768 2905
1769 if (expect_false (!activecnt)) 2906 if (expect_false (loop_done))
1770 break; 2907 break;
1771 2908
1772 /* we might have forked, so reify kernel state if necessary */ 2909 /* we might have forked, so reify kernel state if necessary */
1773 if (expect_false (postfork)) 2910 if (expect_false (postfork))
1774 loop_fork (EV_A); 2911 loop_fork (EV_A);
1779 /* calculate blocking time */ 2916 /* calculate blocking time */
1780 { 2917 {
1781 ev_tstamp waittime = 0.; 2918 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.; 2919 ev_tstamp sleeptime = 0.;
1783 2920
2921 /* remember old timestamp for io_blocktime calculation */
2922 ev_tstamp prev_mn_now = mn_now;
2923
2924 /* update time to cancel out callback processing overhead */
2925 time_update (EV_A_ 1e100);
2926
2927 /* from now on, we want a pipe-wake-up */
2928 pipe_write_wanted = 1;
2929
2930 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2931
1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2932 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1785 { 2933 {
1786 /* update time to cancel out callback processing overhead */
1787 time_update (EV_A_ 1e100);
1788
1789 waittime = MAX_BLOCKTIME; 2934 waittime = MAX_BLOCKTIME;
1790 2935
1791 if (timercnt) 2936 if (timercnt)
1792 { 2937 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2938 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1794 if (waittime > to) waittime = to; 2939 if (waittime > to) waittime = to;
1795 } 2940 }
1796 2941
1797#if EV_PERIODIC_ENABLE 2942#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 2943 if (periodiccnt)
1799 { 2944 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2945 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1801 if (waittime > to) waittime = to; 2946 if (waittime > to) waittime = to;
1802 } 2947 }
1803#endif 2948#endif
1804 2949
2950 /* don't let timeouts decrease the waittime below timeout_blocktime */
1805 if (expect_false (waittime < timeout_blocktime)) 2951 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime; 2952 waittime = timeout_blocktime;
1807 2953
1808 sleeptime = waittime - backend_fudge; 2954 /* at this point, we NEED to wait, so we have to ensure */
2955 /* to pass a minimum nonzero value to the backend */
2956 if (expect_false (waittime < backend_mintime))
2957 waittime = backend_mintime;
1809 2958
2959 /* extra check because io_blocktime is commonly 0 */
1810 if (expect_true (sleeptime > io_blocktime)) 2960 if (expect_false (io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 { 2961 {
2962 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2963
2964 if (sleeptime > waittime - backend_mintime)
2965 sleeptime = waittime - backend_mintime;
2966
2967 if (expect_true (sleeptime > 0.))
2968 {
1815 ev_sleep (sleeptime); 2969 ev_sleep (sleeptime);
1816 waittime -= sleeptime; 2970 waittime -= sleeptime;
2971 }
1817 } 2972 }
1818 } 2973 }
1819 2974
2975#if EV_FEATURE_API
1820 ++loop_count; 2976 ++loop_count;
2977#endif
2978 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1821 backend_poll (EV_A_ waittime); 2979 backend_poll (EV_A_ waittime);
2980 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2981
2982 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2983
2984 if (pipe_write_skipped)
2985 {
2986 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2987 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2988 }
2989
1822 2990
1823 /* update ev_rt_now, do magic */ 2991 /* update ev_rt_now, do magic */
1824 time_update (EV_A_ waittime + sleeptime); 2992 time_update (EV_A_ waittime + sleeptime);
1825 } 2993 }
1826 2994
1833#if EV_IDLE_ENABLE 3001#if EV_IDLE_ENABLE
1834 /* queue idle watchers unless other events are pending */ 3002 /* queue idle watchers unless other events are pending */
1835 idle_reify (EV_A); 3003 idle_reify (EV_A);
1836#endif 3004#endif
1837 3005
3006#if EV_CHECK_ENABLE
1838 /* queue check watchers, to be executed first */ 3007 /* queue check watchers, to be executed first */
1839 if (expect_false (checkcnt)) 3008 if (expect_false (checkcnt))
1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3009 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3010#endif
1841 3011
1842 call_pending (EV_A); 3012 EV_INVOKE_PENDING;
1843 } 3013 }
1844 while (expect_true ( 3014 while (expect_true (
1845 activecnt 3015 activecnt
1846 && !loop_done 3016 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3017 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1848 )); 3018 ));
1849 3019
1850 if (loop_done == EVUNLOOP_ONE) 3020 if (loop_done == EVBREAK_ONE)
1851 loop_done = EVUNLOOP_CANCEL; 3021 loop_done = EVBREAK_CANCEL;
3022
3023#if EV_FEATURE_API
3024 --loop_depth;
3025#endif
1852} 3026}
1853 3027
1854void 3028void
1855ev_unloop (EV_P_ int how) 3029ev_break (EV_P_ int how)
1856{ 3030{
1857 loop_done = how; 3031 loop_done = how;
1858} 3032}
1859 3033
3034void
3035ev_ref (EV_P)
3036{
3037 ++activecnt;
3038}
3039
3040void
3041ev_unref (EV_P)
3042{
3043 --activecnt;
3044}
3045
3046void
3047ev_now_update (EV_P)
3048{
3049 time_update (EV_A_ 1e100);
3050}
3051
3052void
3053ev_suspend (EV_P)
3054{
3055 ev_now_update (EV_A);
3056}
3057
3058void
3059ev_resume (EV_P)
3060{
3061 ev_tstamp mn_prev = mn_now;
3062
3063 ev_now_update (EV_A);
3064 timers_reschedule (EV_A_ mn_now - mn_prev);
3065#if EV_PERIODIC_ENABLE
3066 /* TODO: really do this? */
3067 periodics_reschedule (EV_A);
3068#endif
3069}
3070
1860/*****************************************************************************/ 3071/*****************************************************************************/
3072/* singly-linked list management, used when the expected list length is short */
1861 3073
1862void inline_size 3074inline_size void
1863wlist_add (WL *head, WL elem) 3075wlist_add (WL *head, WL elem)
1864{ 3076{
1865 elem->next = *head; 3077 elem->next = *head;
1866 *head = elem; 3078 *head = elem;
1867} 3079}
1868 3080
1869void inline_size 3081inline_size void
1870wlist_del (WL *head, WL elem) 3082wlist_del (WL *head, WL elem)
1871{ 3083{
1872 while (*head) 3084 while (*head)
1873 { 3085 {
1874 if (*head == elem) 3086 if (expect_true (*head == elem))
1875 { 3087 {
1876 *head = elem->next; 3088 *head = elem->next;
1877 return; 3089 break;
1878 } 3090 }
1879 3091
1880 head = &(*head)->next; 3092 head = &(*head)->next;
1881 } 3093 }
1882} 3094}
1883 3095
1884void inline_speed 3096/* internal, faster, version of ev_clear_pending */
3097inline_speed void
1885clear_pending (EV_P_ W w) 3098clear_pending (EV_P_ W w)
1886{ 3099{
1887 if (w->pending) 3100 if (w->pending)
1888 { 3101 {
1889 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3102 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1890 w->pending = 0; 3103 w->pending = 0;
1891 } 3104 }
1892} 3105}
1893 3106
1894int 3107int
1898 int pending = w_->pending; 3111 int pending = w_->pending;
1899 3112
1900 if (expect_true (pending)) 3113 if (expect_true (pending))
1901 { 3114 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3116 p->w = (W)&pending_w;
1903 w_->pending = 0; 3117 w_->pending = 0;
1904 p->w = 0;
1905 return p->events; 3118 return p->events;
1906 } 3119 }
1907 else 3120 else
1908 return 0; 3121 return 0;
1909} 3122}
1910 3123
1911void inline_size 3124inline_size void
1912pri_adjust (EV_P_ W w) 3125pri_adjust (EV_P_ W w)
1913{ 3126{
1914 int pri = w->priority; 3127 int pri = ev_priority (w);
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri; 3130 ev_set_priority (w, pri);
1918} 3131}
1919 3132
1920void inline_speed 3133inline_speed void
1921ev_start (EV_P_ W w, int active) 3134ev_start (EV_P_ W w, int active)
1922{ 3135{
1923 pri_adjust (EV_A_ w); 3136 pri_adjust (EV_A_ w);
1924 w->active = active; 3137 w->active = active;
1925 ev_ref (EV_A); 3138 ev_ref (EV_A);
1926} 3139}
1927 3140
1928void inline_size 3141inline_size void
1929ev_stop (EV_P_ W w) 3142ev_stop (EV_P_ W w)
1930{ 3143{
1931 ev_unref (EV_A); 3144 ev_unref (EV_A);
1932 w->active = 0; 3145 w->active = 0;
1933} 3146}
1940 int fd = w->fd; 3153 int fd = w->fd;
1941 3154
1942 if (expect_false (ev_is_active (w))) 3155 if (expect_false (ev_is_active (w)))
1943 return; 3156 return;
1944 3157
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 3158 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3159 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3160
3161 EV_FREQUENT_CHECK;
1946 3162
1947 ev_start (EV_A_ (W)w, 1); 3163 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1949 wlist_add (&anfds[fd].head, (WL)w); 3165 wlist_add (&anfds[fd].head, (WL)w);
1950 3166
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3167 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1952 w->events &= ~EV_IOFDSET; 3168 w->events &= ~EV__IOFDSET;
3169
3170 EV_FREQUENT_CHECK;
1953} 3171}
1954 3172
1955void noinline 3173void noinline
1956ev_io_stop (EV_P_ ev_io *w) 3174ev_io_stop (EV_P_ ev_io *w)
1957{ 3175{
1958 clear_pending (EV_A_ (W)w); 3176 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 3177 if (expect_false (!ev_is_active (w)))
1960 return; 3178 return;
1961 3179
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3180 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3181
3182 EV_FREQUENT_CHECK;
1963 3183
1964 wlist_del (&anfds[w->fd].head, (WL)w); 3184 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 3185 ev_stop (EV_A_ (W)w);
1966 3186
1967 fd_change (EV_A_ w->fd, 1); 3187 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3188
3189 EV_FREQUENT_CHECK;
1968} 3190}
1969 3191
1970void noinline 3192void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 3193ev_timer_start (EV_P_ ev_timer *w)
1972{ 3194{
1973 if (expect_false (ev_is_active (w))) 3195 if (expect_false (ev_is_active (w)))
1974 return; 3196 return;
1975 3197
1976 ev_at (w) += mn_now; 3198 ev_at (w) += mn_now;
1977 3199
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3200 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 3201
3202 EV_FREQUENT_CHECK;
3203
3204 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 3206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 3207 ANHE_w (timers [ev_active (w)]) = (WT)w;
3208 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 3209 upheap (timers, ev_active (w));
1984 3210
3211 EV_FREQUENT_CHECK;
3212
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 3213 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 3214}
1987 3215
1988void noinline 3216void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 3217ev_timer_stop (EV_P_ ev_timer *w)
1990{ 3218{
1991 clear_pending (EV_A_ (W)w); 3219 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 3220 if (expect_false (!ev_is_active (w)))
1993 return; 3221 return;
1994 3222
3223 EV_FREQUENT_CHECK;
3224
1995 { 3225 {
1996 int active = ev_active (w); 3226 int active = ev_active (w);
1997 3227
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 3228 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 3229
3230 --timercnt;
3231
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 3232 if (expect_true (active < timercnt + HEAP0))
2001 { 3233 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 3234 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 3235 adjustheap (timers, timercnt, active);
2004 } 3236 }
2005
2006 --timercnt;
2007 } 3237 }
2008 3238
2009 ev_at (w) -= mn_now; 3239 ev_at (w) -= mn_now;
2010 3240
2011 ev_stop (EV_A_ (W)w); 3241 ev_stop (EV_A_ (W)w);
3242
3243 EV_FREQUENT_CHECK;
2012} 3244}
2013 3245
2014void noinline 3246void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 3247ev_timer_again (EV_P_ ev_timer *w)
2016{ 3248{
3249 EV_FREQUENT_CHECK;
3250
2017 if (ev_is_active (w)) 3251 if (ev_is_active (w))
2018 { 3252 {
2019 if (w->repeat) 3253 if (w->repeat)
2020 { 3254 {
2021 ev_at (w) = mn_now + w->repeat; 3255 ev_at (w) = mn_now + w->repeat;
3256 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 3257 adjustheap (timers, timercnt, ev_active (w));
2023 } 3258 }
2024 else 3259 else
2025 ev_timer_stop (EV_A_ w); 3260 ev_timer_stop (EV_A_ w);
2026 } 3261 }
2027 else if (w->repeat) 3262 else if (w->repeat)
2028 { 3263 {
2029 ev_at (w) = w->repeat; 3264 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 3265 ev_timer_start (EV_A_ w);
2031 } 3266 }
3267
3268 EV_FREQUENT_CHECK;
3269}
3270
3271ev_tstamp
3272ev_timer_remaining (EV_P_ ev_timer *w)
3273{
3274 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2032} 3275}
2033 3276
2034#if EV_PERIODIC_ENABLE 3277#if EV_PERIODIC_ENABLE
2035void noinline 3278void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 3279ev_periodic_start (EV_P_ ev_periodic *w)
2040 3283
2041 if (w->reschedule_cb) 3284 if (w->reschedule_cb)
2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3285 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2043 else if (w->interval) 3286 else if (w->interval)
2044 { 3287 {
2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3288 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2046 /* this formula differs from the one in periodic_reify because we do not always round up */ 3289 periodic_recalc (EV_A_ w);
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 3290 }
2049 else 3291 else
2050 ev_at (w) = w->offset; 3292 ev_at (w) = w->offset;
2051 3293
3294 EV_FREQUENT_CHECK;
3295
3296 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3297 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 3298 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 3299 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3300 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 3301 upheap (periodics, ev_active (w));
2056 3302
3303 EV_FREQUENT_CHECK;
3304
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 3305 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 3306}
2059 3307
2060void noinline 3308void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 3309ev_periodic_stop (EV_P_ ev_periodic *w)
2062{ 3310{
2063 clear_pending (EV_A_ (W)w); 3311 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 3312 if (expect_false (!ev_is_active (w)))
2065 return; 3313 return;
2066 3314
3315 EV_FREQUENT_CHECK;
3316
2067 { 3317 {
2068 int active = ev_active (w); 3318 int active = ev_active (w);
2069 3319
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 3320 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 3321
3322 --periodiccnt;
3323
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3324 if (expect_true (active < periodiccnt + HEAP0))
2073 { 3325 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3326 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 3327 adjustheap (periodics, periodiccnt, active);
2076 } 3328 }
2077
2078 --periodiccnt;
2079 } 3329 }
2080 3330
2081 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
3332
3333 EV_FREQUENT_CHECK;
2082} 3334}
2083 3335
2084void noinline 3336void noinline
2085ev_periodic_again (EV_P_ ev_periodic *w) 3337ev_periodic_again (EV_P_ ev_periodic *w)
2086{ 3338{
2092 3344
2093#ifndef SA_RESTART 3345#ifndef SA_RESTART
2094# define SA_RESTART 0 3346# define SA_RESTART 0
2095#endif 3347#endif
2096 3348
3349#if EV_SIGNAL_ENABLE
3350
2097void noinline 3351void noinline
2098ev_signal_start (EV_P_ ev_signal *w) 3352ev_signal_start (EV_P_ ev_signal *w)
2099{ 3353{
2100#if EV_MULTIPLICITY
2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2102#endif
2103 if (expect_false (ev_is_active (w))) 3354 if (expect_false (ev_is_active (w)))
2104 return; 3355 return;
2105 3356
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3357 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2107 3358
2108 evpipe_init (EV_A); 3359#if EV_MULTIPLICITY
3360 assert (("libev: a signal must not be attached to two different loops",
3361 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2109 3362
3363 signals [w->signum - 1].loop = EV_A;
3364#endif
3365
3366 EV_FREQUENT_CHECK;
3367
3368#if EV_USE_SIGNALFD
3369 if (sigfd == -2)
2110 { 3370 {
2111#ifndef _WIN32 3371 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2112 sigset_t full, prev; 3372 if (sigfd < 0 && errno == EINVAL)
2113 sigfillset (&full); 3373 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116 3374
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3375 if (sigfd >= 0)
3376 {
3377 fd_intern (sigfd); /* doing it twice will not hurt */
2118 3378
2119#ifndef _WIN32 3379 sigemptyset (&sigfd_set);
2120 sigprocmask (SIG_SETMASK, &prev, 0); 3380
2121#endif 3381 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3382 ev_set_priority (&sigfd_w, EV_MAXPRI);
3383 ev_io_start (EV_A_ &sigfd_w);
3384 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3385 }
2122 } 3386 }
3387
3388 if (sigfd >= 0)
3389 {
3390 /* TODO: check .head */
3391 sigaddset (&sigfd_set, w->signum);
3392 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3393
3394 signalfd (sigfd, &sigfd_set, 0);
3395 }
3396#endif
2123 3397
2124 ev_start (EV_A_ (W)w, 1); 3398 ev_start (EV_A_ (W)w, 1);
2125 wlist_add (&signals [w->signum - 1].head, (WL)w); 3399 wlist_add (&signals [w->signum - 1].head, (WL)w);
2126 3400
2127 if (!((WL)w)->next) 3401 if (!((WL)w)->next)
3402# if EV_USE_SIGNALFD
3403 if (sigfd < 0) /*TODO*/
3404# endif
2128 { 3405 {
2129#if _WIN32 3406# ifdef _WIN32
3407 evpipe_init (EV_A);
3408
2130 signal (w->signum, ev_sighandler); 3409 signal (w->signum, ev_sighandler);
2131#else 3410# else
2132 struct sigaction sa; 3411 struct sigaction sa;
3412
3413 evpipe_init (EV_A);
3414
2133 sa.sa_handler = ev_sighandler; 3415 sa.sa_handler = ev_sighandler;
2134 sigfillset (&sa.sa_mask); 3416 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3417 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 3418 sigaction (w->signum, &sa, 0);
3419
3420 if (origflags & EVFLAG_NOSIGMASK)
3421 {
3422 sigemptyset (&sa.sa_mask);
3423 sigaddset (&sa.sa_mask, w->signum);
3424 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3425 }
2137#endif 3426#endif
2138 } 3427 }
3428
3429 EV_FREQUENT_CHECK;
2139} 3430}
2140 3431
2141void noinline 3432void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 3433ev_signal_stop (EV_P_ ev_signal *w)
2143{ 3434{
2144 clear_pending (EV_A_ (W)w); 3435 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3436 if (expect_false (!ev_is_active (w)))
2146 return; 3437 return;
2147 3438
3439 EV_FREQUENT_CHECK;
3440
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 3441 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 3442 ev_stop (EV_A_ (W)w);
2150 3443
2151 if (!signals [w->signum - 1].head) 3444 if (!signals [w->signum - 1].head)
3445 {
3446#if EV_MULTIPLICITY
3447 signals [w->signum - 1].loop = 0; /* unattach from signal */
3448#endif
3449#if EV_USE_SIGNALFD
3450 if (sigfd >= 0)
3451 {
3452 sigset_t ss;
3453
3454 sigemptyset (&ss);
3455 sigaddset (&ss, w->signum);
3456 sigdelset (&sigfd_set, w->signum);
3457
3458 signalfd (sigfd, &sigfd_set, 0);
3459 sigprocmask (SIG_UNBLOCK, &ss, 0);
3460 }
3461 else
3462#endif
2152 signal (w->signum, SIG_DFL); 3463 signal (w->signum, SIG_DFL);
3464 }
3465
3466 EV_FREQUENT_CHECK;
2153} 3467}
3468
3469#endif
3470
3471#if EV_CHILD_ENABLE
2154 3472
2155void 3473void
2156ev_child_start (EV_P_ ev_child *w) 3474ev_child_start (EV_P_ ev_child *w)
2157{ 3475{
2158#if EV_MULTIPLICITY 3476#if EV_MULTIPLICITY
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3477 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 3478#endif
2161 if (expect_false (ev_is_active (w))) 3479 if (expect_false (ev_is_active (w)))
2162 return; 3480 return;
2163 3481
3482 EV_FREQUENT_CHECK;
3483
2164 ev_start (EV_A_ (W)w, 1); 3484 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3485 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3486
3487 EV_FREQUENT_CHECK;
2166} 3488}
2167 3489
2168void 3490void
2169ev_child_stop (EV_P_ ev_child *w) 3491ev_child_stop (EV_P_ ev_child *w)
2170{ 3492{
2171 clear_pending (EV_A_ (W)w); 3493 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 3494 if (expect_false (!ev_is_active (w)))
2173 return; 3495 return;
2174 3496
3497 EV_FREQUENT_CHECK;
3498
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3499 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 3500 ev_stop (EV_A_ (W)w);
3501
3502 EV_FREQUENT_CHECK;
2177} 3503}
3504
3505#endif
2178 3506
2179#if EV_STAT_ENABLE 3507#if EV_STAT_ENABLE
2180 3508
2181# ifdef _WIN32 3509# ifdef _WIN32
2182# undef lstat 3510# undef lstat
2183# define lstat(a,b) _stati64 (a,b) 3511# define lstat(a,b) _stati64 (a,b)
2184# endif 3512# endif
2185 3513
2186#define DEF_STAT_INTERVAL 5.0074891 3514#define DEF_STAT_INTERVAL 5.0074891
3515#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2187#define MIN_STAT_INTERVAL 0.1074891 3516#define MIN_STAT_INTERVAL 0.1074891
2188 3517
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3518static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190 3519
2191#if EV_USE_INOTIFY 3520#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192 3521
3522/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3523# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2193 3524
2194static void noinline 3525static void noinline
2195infy_add (EV_P_ ev_stat *w) 3526infy_add (EV_P_ ev_stat *w)
2196{ 3527{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3528 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198 3529
2199 if (w->wd < 0) 3530 if (w->wd >= 0)
3531 {
3532 struct statfs sfs;
3533
3534 /* now local changes will be tracked by inotify, but remote changes won't */
3535 /* unless the filesystem is known to be local, we therefore still poll */
3536 /* also do poll on <2.6.25, but with normal frequency */
3537
3538 if (!fs_2625)
3539 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3540 else if (!statfs (w->path, &sfs)
3541 && (sfs.f_type == 0x1373 /* devfs */
3542 || sfs.f_type == 0xEF53 /* ext2/3 */
3543 || sfs.f_type == 0x3153464a /* jfs */
3544 || sfs.f_type == 0x52654973 /* reiser3 */
3545 || sfs.f_type == 0x01021994 /* tempfs */
3546 || sfs.f_type == 0x58465342 /* xfs */))
3547 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3548 else
3549 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2200 { 3550 }
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3551 else
3552 {
3553 /* can't use inotify, continue to stat */
3554 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2202 3555
2203 /* monitor some parent directory for speedup hints */ 3556 /* if path is not there, monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3557 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2205 /* but an efficiency issue only */ 3558 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3559 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 { 3560 {
2208 char path [4096]; 3561 char path [4096];
2209 strcpy (path, w->path); 3562 strcpy (path, w->path);
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3566 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3567 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215 3568
2216 char *pend = strrchr (path, '/'); 3569 char *pend = strrchr (path, '/');
2217 3570
2218 if (!pend) 3571 if (!pend || pend == path)
2219 break; /* whoops, no '/', complain to your admin */ 3572 break;
2220 3573
2221 *pend = 0; 3574 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask); 3575 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 } 3576 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3577 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 } 3578 }
2226 } 3579 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229 3580
2230 if (w->wd >= 0) 3581 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3582 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3583
3584 /* now re-arm timer, if required */
3585 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3586 ev_timer_again (EV_A_ &w->timer);
3587 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2232} 3588}
2233 3589
2234static void noinline 3590static void noinline
2235infy_del (EV_P_ ev_stat *w) 3591infy_del (EV_P_ ev_stat *w)
2236{ 3592{
2239 3595
2240 if (wd < 0) 3596 if (wd < 0)
2241 return; 3597 return;
2242 3598
2243 w->wd = -2; 3599 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3600 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w); 3601 wlist_del (&fs_hash [slot].head, (WL)w);
2246 3602
2247 /* remove this watcher, if others are watching it, they will rearm */ 3603 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd); 3604 inotify_rm_watch (fs_fd, wd);
2249} 3605}
2250 3606
2251static void noinline 3607static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3608infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{ 3609{
2254 if (slot < 0) 3610 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */ 3611 /* overflow, need to check for all hash slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3612 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2257 infy_wd (EV_A_ slot, wd, ev); 3613 infy_wd (EV_A_ slot, wd, ev);
2258 else 3614 else
2259 { 3615 {
2260 WL w_; 3616 WL w_;
2261 3617
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3618 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2263 { 3619 {
2264 ev_stat *w = (ev_stat *)w_; 3620 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */ 3621 w_ = w_->next; /* lets us remove this watcher and all before it */
2266 3622
2267 if (w->wd == wd || wd == -1) 3623 if (w->wd == wd || wd == -1)
2268 { 3624 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3625 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 { 3626 {
3627 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2271 w->wd = -1; 3628 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */ 3629 infy_add (EV_A_ w); /* re-add, no matter what */
2273 } 3630 }
2274 3631
2275 stat_timer_cb (EV_A_ &w->timer, 0); 3632 stat_timer_cb (EV_A_ &w->timer, 0);
2280 3637
2281static void 3638static void
2282infy_cb (EV_P_ ev_io *w, int revents) 3639infy_cb (EV_P_ ev_io *w, int revents)
2283{ 3640{
2284 char buf [EV_INOTIFY_BUFSIZE]; 3641 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs; 3642 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf)); 3643 int len = read (fs_fd, buf, sizeof (buf));
2288 3644
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3645 for (ofs = 0; ofs < len; )
3646 {
3647 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3648 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3649 ofs += sizeof (struct inotify_event) + ev->len;
3650 }
2291} 3651}
2292 3652
2293void inline_size 3653inline_size void ecb_cold
3654ev_check_2625 (EV_P)
3655{
3656 /* kernels < 2.6.25 are borked
3657 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3658 */
3659 if (ev_linux_version () < 0x020619)
3660 return;
3661
3662 fs_2625 = 1;
3663}
3664
3665inline_size int
3666infy_newfd (void)
3667{
3668#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3669 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3670 if (fd >= 0)
3671 return fd;
3672#endif
3673 return inotify_init ();
3674}
3675
3676inline_size void
2294infy_init (EV_P) 3677infy_init (EV_P)
2295{ 3678{
2296 if (fs_fd != -2) 3679 if (fs_fd != -2)
2297 return; 3680 return;
2298 3681
3682 fs_fd = -1;
3683
3684 ev_check_2625 (EV_A);
3685
2299 fs_fd = inotify_init (); 3686 fs_fd = infy_newfd ();
2300 3687
2301 if (fs_fd >= 0) 3688 if (fs_fd >= 0)
2302 { 3689 {
3690 fd_intern (fs_fd);
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3691 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI); 3692 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w); 3693 ev_io_start (EV_A_ &fs_w);
3694 ev_unref (EV_A);
2306 } 3695 }
2307} 3696}
2308 3697
2309void inline_size 3698inline_size void
2310infy_fork (EV_P) 3699infy_fork (EV_P)
2311{ 3700{
2312 int slot; 3701 int slot;
2313 3702
2314 if (fs_fd < 0) 3703 if (fs_fd < 0)
2315 return; 3704 return;
2316 3705
3706 ev_ref (EV_A);
3707 ev_io_stop (EV_A_ &fs_w);
2317 close (fs_fd); 3708 close (fs_fd);
2318 fs_fd = inotify_init (); 3709 fs_fd = infy_newfd ();
2319 3710
3711 if (fs_fd >= 0)
3712 {
3713 fd_intern (fs_fd);
3714 ev_io_set (&fs_w, fs_fd, EV_READ);
3715 ev_io_start (EV_A_ &fs_w);
3716 ev_unref (EV_A);
3717 }
3718
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3719 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2321 { 3720 {
2322 WL w_ = fs_hash [slot].head; 3721 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0; 3722 fs_hash [slot].head = 0;
2324 3723
2325 while (w_) 3724 while (w_)
2330 w->wd = -1; 3729 w->wd = -1;
2331 3730
2332 if (fs_fd >= 0) 3731 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 3732 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else 3733 else
3734 {
3735 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3736 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2335 ev_timer_start (EV_A_ &w->timer); 3737 ev_timer_again (EV_A_ &w->timer);
3738 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3739 }
2336 } 3740 }
2337
2338 } 3741 }
2339} 3742}
2340 3743
3744#endif
3745
3746#ifdef _WIN32
3747# define EV_LSTAT(p,b) _stati64 (p, b)
3748#else
3749# define EV_LSTAT(p,b) lstat (p, b)
2341#endif 3750#endif
2342 3751
2343void 3752void
2344ev_stat_stat (EV_P_ ev_stat *w) 3753ev_stat_stat (EV_P_ ev_stat *w)
2345{ 3754{
2352static void noinline 3761static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3762stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{ 3763{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3764 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356 3765
2357 /* we copy this here each the time so that */ 3766 ev_statdata prev = w->attr;
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w); 3767 ev_stat_stat (EV_A_ w);
2361 3768
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3769 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if ( 3770 if (
2364 w->prev.st_dev != w->attr.st_dev 3771 prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino 3772 || prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode 3773 || prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink 3774 || prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid 3775 || prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid 3776 || prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev 3777 || prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size 3778 || prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime 3779 || prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime 3780 || prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime 3781 || prev.st_ctime != w->attr.st_ctime
2375 ) { 3782 ) {
3783 /* we only update w->prev on actual differences */
3784 /* in case we test more often than invoke the callback, */
3785 /* to ensure that prev is always different to attr */
3786 w->prev = prev;
3787
2376 #if EV_USE_INOTIFY 3788 #if EV_USE_INOTIFY
3789 if (fs_fd >= 0)
3790 {
2377 infy_del (EV_A_ w); 3791 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w); 3792 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */ 3793 ev_stat_stat (EV_A_ w); /* avoid race... */
3794 }
2380 #endif 3795 #endif
2381 3796
2382 ev_feed_event (EV_A_ w, EV_STAT); 3797 ev_feed_event (EV_A_ w, EV_STAT);
2383 } 3798 }
2384} 3799}
2387ev_stat_start (EV_P_ ev_stat *w) 3802ev_stat_start (EV_P_ ev_stat *w)
2388{ 3803{
2389 if (expect_false (ev_is_active (w))) 3804 if (expect_false (ev_is_active (w)))
2390 return; 3805 return;
2391 3806
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w); 3807 ev_stat_stat (EV_A_ w);
2397 3808
3809 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2398 if (w->interval < MIN_STAT_INTERVAL) 3810 w->interval = MIN_STAT_INTERVAL;
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400 3811
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3812 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2402 ev_set_priority (&w->timer, ev_priority (w)); 3813 ev_set_priority (&w->timer, ev_priority (w));
2403 3814
2404#if EV_USE_INOTIFY 3815#if EV_USE_INOTIFY
2405 infy_init (EV_A); 3816 infy_init (EV_A);
2406 3817
2407 if (fs_fd >= 0) 3818 if (fs_fd >= 0)
2408 infy_add (EV_A_ w); 3819 infy_add (EV_A_ w);
2409 else 3820 else
2410#endif 3821#endif
3822 {
2411 ev_timer_start (EV_A_ &w->timer); 3823 ev_timer_again (EV_A_ &w->timer);
3824 ev_unref (EV_A);
3825 }
2412 3826
2413 ev_start (EV_A_ (W)w, 1); 3827 ev_start (EV_A_ (W)w, 1);
3828
3829 EV_FREQUENT_CHECK;
2414} 3830}
2415 3831
2416void 3832void
2417ev_stat_stop (EV_P_ ev_stat *w) 3833ev_stat_stop (EV_P_ ev_stat *w)
2418{ 3834{
2419 clear_pending (EV_A_ (W)w); 3835 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 3836 if (expect_false (!ev_is_active (w)))
2421 return; 3837 return;
2422 3838
3839 EV_FREQUENT_CHECK;
3840
2423#if EV_USE_INOTIFY 3841#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 3842 infy_del (EV_A_ w);
2425#endif 3843#endif
3844
3845 if (ev_is_active (&w->timer))
3846 {
3847 ev_ref (EV_A);
2426 ev_timer_stop (EV_A_ &w->timer); 3848 ev_timer_stop (EV_A_ &w->timer);
3849 }
2427 3850
2428 ev_stop (EV_A_ (W)w); 3851 ev_stop (EV_A_ (W)w);
3852
3853 EV_FREQUENT_CHECK;
2429} 3854}
2430#endif 3855#endif
2431 3856
2432#if EV_IDLE_ENABLE 3857#if EV_IDLE_ENABLE
2433void 3858void
2436 if (expect_false (ev_is_active (w))) 3861 if (expect_false (ev_is_active (w)))
2437 return; 3862 return;
2438 3863
2439 pri_adjust (EV_A_ (W)w); 3864 pri_adjust (EV_A_ (W)w);
2440 3865
3866 EV_FREQUENT_CHECK;
3867
2441 { 3868 {
2442 int active = ++idlecnt [ABSPRI (w)]; 3869 int active = ++idlecnt [ABSPRI (w)];
2443 3870
2444 ++idleall; 3871 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 3872 ev_start (EV_A_ (W)w, active);
2446 3873
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3874 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 3875 idles [ABSPRI (w)][active - 1] = w;
2449 } 3876 }
3877
3878 EV_FREQUENT_CHECK;
2450} 3879}
2451 3880
2452void 3881void
2453ev_idle_stop (EV_P_ ev_idle *w) 3882ev_idle_stop (EV_P_ ev_idle *w)
2454{ 3883{
2455 clear_pending (EV_A_ (W)w); 3884 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3885 if (expect_false (!ev_is_active (w)))
2457 return; 3886 return;
2458 3887
3888 EV_FREQUENT_CHECK;
3889
2459 { 3890 {
2460 int active = ev_active (w); 3891 int active = ev_active (w);
2461 3892
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3893 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3894 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 3895
2465 ev_stop (EV_A_ (W)w); 3896 ev_stop (EV_A_ (W)w);
2466 --idleall; 3897 --idleall;
2467 } 3898 }
2468}
2469#endif
2470 3899
3900 EV_FREQUENT_CHECK;
3901}
3902#endif
3903
3904#if EV_PREPARE_ENABLE
2471void 3905void
2472ev_prepare_start (EV_P_ ev_prepare *w) 3906ev_prepare_start (EV_P_ ev_prepare *w)
2473{ 3907{
2474 if (expect_false (ev_is_active (w))) 3908 if (expect_false (ev_is_active (w)))
2475 return; 3909 return;
3910
3911 EV_FREQUENT_CHECK;
2476 3912
2477 ev_start (EV_A_ (W)w, ++preparecnt); 3913 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3914 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 3915 prepares [preparecnt - 1] = w;
3916
3917 EV_FREQUENT_CHECK;
2480} 3918}
2481 3919
2482void 3920void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 3921ev_prepare_stop (EV_P_ ev_prepare *w)
2484{ 3922{
2485 clear_pending (EV_A_ (W)w); 3923 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 3924 if (expect_false (!ev_is_active (w)))
2487 return; 3925 return;
2488 3926
3927 EV_FREQUENT_CHECK;
3928
2489 { 3929 {
2490 int active = ev_active (w); 3930 int active = ev_active (w);
2491 3931
2492 prepares [active - 1] = prepares [--preparecnt]; 3932 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 3933 ev_active (prepares [active - 1]) = active;
2494 } 3934 }
2495 3935
2496 ev_stop (EV_A_ (W)w); 3936 ev_stop (EV_A_ (W)w);
2497}
2498 3937
3938 EV_FREQUENT_CHECK;
3939}
3940#endif
3941
3942#if EV_CHECK_ENABLE
2499void 3943void
2500ev_check_start (EV_P_ ev_check *w) 3944ev_check_start (EV_P_ ev_check *w)
2501{ 3945{
2502 if (expect_false (ev_is_active (w))) 3946 if (expect_false (ev_is_active (w)))
2503 return; 3947 return;
3948
3949 EV_FREQUENT_CHECK;
2504 3950
2505 ev_start (EV_A_ (W)w, ++checkcnt); 3951 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3952 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 3953 checks [checkcnt - 1] = w;
3954
3955 EV_FREQUENT_CHECK;
2508} 3956}
2509 3957
2510void 3958void
2511ev_check_stop (EV_P_ ev_check *w) 3959ev_check_stop (EV_P_ ev_check *w)
2512{ 3960{
2513 clear_pending (EV_A_ (W)w); 3961 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 3962 if (expect_false (!ev_is_active (w)))
2515 return; 3963 return;
2516 3964
3965 EV_FREQUENT_CHECK;
3966
2517 { 3967 {
2518 int active = ev_active (w); 3968 int active = ev_active (w);
2519 3969
2520 checks [active - 1] = checks [--checkcnt]; 3970 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 3971 ev_active (checks [active - 1]) = active;
2522 } 3972 }
2523 3973
2524 ev_stop (EV_A_ (W)w); 3974 ev_stop (EV_A_ (W)w);
3975
3976 EV_FREQUENT_CHECK;
2525} 3977}
3978#endif
2526 3979
2527#if EV_EMBED_ENABLE 3980#if EV_EMBED_ENABLE
2528void noinline 3981void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 3982ev_embed_sweep (EV_P_ ev_embed *w)
2530{ 3983{
2531 ev_loop (w->other, EVLOOP_NONBLOCK); 3984 ev_run (w->other, EVRUN_NOWAIT);
2532} 3985}
2533 3986
2534static void 3987static void
2535embed_io_cb (EV_P_ ev_io *io, int revents) 3988embed_io_cb (EV_P_ ev_io *io, int revents)
2536{ 3989{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3990 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538 3991
2539 if (ev_cb (w)) 3992 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3993 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else 3994 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK); 3995 ev_run (w->other, EVRUN_NOWAIT);
2543} 3996}
2544 3997
2545static void 3998static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3999embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{ 4000{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4001 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549 4002
2550 { 4003 {
2551 struct ev_loop *loop = w->other; 4004 EV_P = w->other;
2552 4005
2553 while (fdchangecnt) 4006 while (fdchangecnt)
2554 { 4007 {
2555 fd_reify (EV_A); 4008 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4009 ev_run (EV_A_ EVRUN_NOWAIT);
2557 } 4010 }
2558 } 4011 }
4012}
4013
4014static void
4015embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4016{
4017 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4018
4019 ev_embed_stop (EV_A_ w);
4020
4021 {
4022 EV_P = w->other;
4023
4024 ev_loop_fork (EV_A);
4025 ev_run (EV_A_ EVRUN_NOWAIT);
4026 }
4027
4028 ev_embed_start (EV_A_ w);
2559} 4029}
2560 4030
2561#if 0 4031#if 0
2562static void 4032static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4033embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2571{ 4041{
2572 if (expect_false (ev_is_active (w))) 4042 if (expect_false (ev_is_active (w)))
2573 return; 4043 return;
2574 4044
2575 { 4045 {
2576 struct ev_loop *loop = w->other; 4046 EV_P = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4047 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4048 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 4049 }
4050
4051 EV_FREQUENT_CHECK;
2580 4052
2581 ev_set_priority (&w->io, ev_priority (w)); 4053 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 4054 ev_io_start (EV_A_ &w->io);
2583 4055
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 4056 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 4057 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 4058 ev_prepare_start (EV_A_ &w->prepare);
2587 4059
4060 ev_fork_init (&w->fork, embed_fork_cb);
4061 ev_fork_start (EV_A_ &w->fork);
4062
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4063 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 4064
2590 ev_start (EV_A_ (W)w, 1); 4065 ev_start (EV_A_ (W)w, 1);
4066
4067 EV_FREQUENT_CHECK;
2591} 4068}
2592 4069
2593void 4070void
2594ev_embed_stop (EV_P_ ev_embed *w) 4071ev_embed_stop (EV_P_ ev_embed *w)
2595{ 4072{
2596 clear_pending (EV_A_ (W)w); 4073 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 4074 if (expect_false (!ev_is_active (w)))
2598 return; 4075 return;
2599 4076
4077 EV_FREQUENT_CHECK;
4078
2600 ev_io_stop (EV_A_ &w->io); 4079 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 4080 ev_prepare_stop (EV_A_ &w->prepare);
4081 ev_fork_stop (EV_A_ &w->fork);
2602 4082
2603 ev_stop (EV_A_ (W)w); 4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
2604} 4086}
2605#endif 4087#endif
2606 4088
2607#if EV_FORK_ENABLE 4089#if EV_FORK_ENABLE
2608void 4090void
2609ev_fork_start (EV_P_ ev_fork *w) 4091ev_fork_start (EV_P_ ev_fork *w)
2610{ 4092{
2611 if (expect_false (ev_is_active (w))) 4093 if (expect_false (ev_is_active (w)))
2612 return; 4094 return;
2613 4095
4096 EV_FREQUENT_CHECK;
4097
2614 ev_start (EV_A_ (W)w, ++forkcnt); 4098 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 4100 forks [forkcnt - 1] = w;
4101
4102 EV_FREQUENT_CHECK;
2617} 4103}
2618 4104
2619void 4105void
2620ev_fork_stop (EV_P_ ev_fork *w) 4106ev_fork_stop (EV_P_ ev_fork *w)
2621{ 4107{
2622 clear_pending (EV_A_ (W)w); 4108 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 4109 if (expect_false (!ev_is_active (w)))
2624 return; 4110 return;
2625 4111
4112 EV_FREQUENT_CHECK;
4113
2626 { 4114 {
2627 int active = ev_active (w); 4115 int active = ev_active (w);
2628 4116
2629 forks [active - 1] = forks [--forkcnt]; 4117 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 4118 ev_active (forks [active - 1]) = active;
2631 } 4119 }
2632 4120
2633 ev_stop (EV_A_ (W)w); 4121 ev_stop (EV_A_ (W)w);
4122
4123 EV_FREQUENT_CHECK;
4124}
4125#endif
4126
4127#if EV_CLEANUP_ENABLE
4128void
4129ev_cleanup_start (EV_P_ ev_cleanup *w)
4130{
4131 if (expect_false (ev_is_active (w)))
4132 return;
4133
4134 EV_FREQUENT_CHECK;
4135
4136 ev_start (EV_A_ (W)w, ++cleanupcnt);
4137 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4138 cleanups [cleanupcnt - 1] = w;
4139
4140 /* cleanup watchers should never keep a refcount on the loop */
4141 ev_unref (EV_A);
4142 EV_FREQUENT_CHECK;
4143}
4144
4145void
4146ev_cleanup_stop (EV_P_ ev_cleanup *w)
4147{
4148 clear_pending (EV_A_ (W)w);
4149 if (expect_false (!ev_is_active (w)))
4150 return;
4151
4152 EV_FREQUENT_CHECK;
4153 ev_ref (EV_A);
4154
4155 {
4156 int active = ev_active (w);
4157
4158 cleanups [active - 1] = cleanups [--cleanupcnt];
4159 ev_active (cleanups [active - 1]) = active;
4160 }
4161
4162 ev_stop (EV_A_ (W)w);
4163
4164 EV_FREQUENT_CHECK;
2634} 4165}
2635#endif 4166#endif
2636 4167
2637#if EV_ASYNC_ENABLE 4168#if EV_ASYNC_ENABLE
2638void 4169void
2639ev_async_start (EV_P_ ev_async *w) 4170ev_async_start (EV_P_ ev_async *w)
2640{ 4171{
2641 if (expect_false (ev_is_active (w))) 4172 if (expect_false (ev_is_active (w)))
2642 return; 4173 return;
2643 4174
4175 w->sent = 0;
4176
2644 evpipe_init (EV_A); 4177 evpipe_init (EV_A);
4178
4179 EV_FREQUENT_CHECK;
2645 4180
2646 ev_start (EV_A_ (W)w, ++asynccnt); 4181 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4182 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 4183 asyncs [asynccnt - 1] = w;
4184
4185 EV_FREQUENT_CHECK;
2649} 4186}
2650 4187
2651void 4188void
2652ev_async_stop (EV_P_ ev_async *w) 4189ev_async_stop (EV_P_ ev_async *w)
2653{ 4190{
2654 clear_pending (EV_A_ (W)w); 4191 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 4192 if (expect_false (!ev_is_active (w)))
2656 return; 4193 return;
2657 4194
4195 EV_FREQUENT_CHECK;
4196
2658 { 4197 {
2659 int active = ev_active (w); 4198 int active = ev_active (w);
2660 4199
2661 asyncs [active - 1] = asyncs [--asynccnt]; 4200 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 4201 ev_active (asyncs [active - 1]) = active;
2663 } 4202 }
2664 4203
2665 ev_stop (EV_A_ (W)w); 4204 ev_stop (EV_A_ (W)w);
4205
4206 EV_FREQUENT_CHECK;
2666} 4207}
2667 4208
2668void 4209void
2669ev_async_send (EV_P_ ev_async *w) 4210ev_async_send (EV_P_ ev_async *w)
2670{ 4211{
2671 w->sent = 1; 4212 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync); 4213 evpipe_write (EV_A_ &async_pending);
2673} 4214}
2674#endif 4215#endif
2675 4216
2676/*****************************************************************************/ 4217/*****************************************************************************/
2677 4218
2687once_cb (EV_P_ struct ev_once *once, int revents) 4228once_cb (EV_P_ struct ev_once *once, int revents)
2688{ 4229{
2689 void (*cb)(int revents, void *arg) = once->cb; 4230 void (*cb)(int revents, void *arg) = once->cb;
2690 void *arg = once->arg; 4231 void *arg = once->arg;
2691 4232
2692 ev_io_stop (EV_A_ &once->io); 4233 ev_io_stop (EV_A_ &once->io);
2693 ev_timer_stop (EV_A_ &once->to); 4234 ev_timer_stop (EV_A_ &once->to);
2694 ev_free (once); 4235 ev_free (once);
2695 4236
2696 cb (revents, arg); 4237 cb (revents, arg);
2697} 4238}
2698 4239
2699static void 4240static void
2700once_cb_io (EV_P_ ev_io *w, int revents) 4241once_cb_io (EV_P_ ev_io *w, int revents)
2701{ 4242{
2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4243 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4244
4245 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2703} 4246}
2704 4247
2705static void 4248static void
2706once_cb_to (EV_P_ ev_timer *w, int revents) 4249once_cb_to (EV_P_ ev_timer *w, int revents)
2707{ 4250{
2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4251 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4252
4253 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2709} 4254}
2710 4255
2711void 4256void
2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4257ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2713{ 4258{
2714 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4259 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2715 4260
2716 if (expect_false (!once)) 4261 if (expect_false (!once))
2717 { 4262 {
2718 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4263 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2719 return; 4264 return;
2720 } 4265 }
2721 4266
2722 once->cb = cb; 4267 once->cb = cb;
2723 once->arg = arg; 4268 once->arg = arg;
2735 ev_timer_set (&once->to, timeout, 0.); 4280 ev_timer_set (&once->to, timeout, 0.);
2736 ev_timer_start (EV_A_ &once->to); 4281 ev_timer_start (EV_A_ &once->to);
2737 } 4282 }
2738} 4283}
2739 4284
4285/*****************************************************************************/
4286
4287#if EV_WALK_ENABLE
4288void ecb_cold
4289ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4290{
4291 int i, j;
4292 ev_watcher_list *wl, *wn;
4293
4294 if (types & (EV_IO | EV_EMBED))
4295 for (i = 0; i < anfdmax; ++i)
4296 for (wl = anfds [i].head; wl; )
4297 {
4298 wn = wl->next;
4299
4300#if EV_EMBED_ENABLE
4301 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4302 {
4303 if (types & EV_EMBED)
4304 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4305 }
4306 else
4307#endif
4308#if EV_USE_INOTIFY
4309 if (ev_cb ((ev_io *)wl) == infy_cb)
4310 ;
4311 else
4312#endif
4313 if ((ev_io *)wl != &pipe_w)
4314 if (types & EV_IO)
4315 cb (EV_A_ EV_IO, wl);
4316
4317 wl = wn;
4318 }
4319
4320 if (types & (EV_TIMER | EV_STAT))
4321 for (i = timercnt + HEAP0; i-- > HEAP0; )
4322#if EV_STAT_ENABLE
4323 /*TODO: timer is not always active*/
4324 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4325 {
4326 if (types & EV_STAT)
4327 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4328 }
4329 else
4330#endif
4331 if (types & EV_TIMER)
4332 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4333
4334#if EV_PERIODIC_ENABLE
4335 if (types & EV_PERIODIC)
4336 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4337 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4338#endif
4339
4340#if EV_IDLE_ENABLE
4341 if (types & EV_IDLE)
4342 for (j = NUMPRI; j--; )
4343 for (i = idlecnt [j]; i--; )
4344 cb (EV_A_ EV_IDLE, idles [j][i]);
4345#endif
4346
4347#if EV_FORK_ENABLE
4348 if (types & EV_FORK)
4349 for (i = forkcnt; i--; )
4350 if (ev_cb (forks [i]) != embed_fork_cb)
4351 cb (EV_A_ EV_FORK, forks [i]);
4352#endif
4353
4354#if EV_ASYNC_ENABLE
4355 if (types & EV_ASYNC)
4356 for (i = asynccnt; i--; )
4357 cb (EV_A_ EV_ASYNC, asyncs [i]);
4358#endif
4359
4360#if EV_PREPARE_ENABLE
4361 if (types & EV_PREPARE)
4362 for (i = preparecnt; i--; )
4363# if EV_EMBED_ENABLE
4364 if (ev_cb (prepares [i]) != embed_prepare_cb)
4365# endif
4366 cb (EV_A_ EV_PREPARE, prepares [i]);
4367#endif
4368
4369#if EV_CHECK_ENABLE
4370 if (types & EV_CHECK)
4371 for (i = checkcnt; i--; )
4372 cb (EV_A_ EV_CHECK, checks [i]);
4373#endif
4374
4375#if EV_SIGNAL_ENABLE
4376 if (types & EV_SIGNAL)
4377 for (i = 0; i < EV_NSIG - 1; ++i)
4378 for (wl = signals [i].head; wl; )
4379 {
4380 wn = wl->next;
4381 cb (EV_A_ EV_SIGNAL, wl);
4382 wl = wn;
4383 }
4384#endif
4385
4386#if EV_CHILD_ENABLE
4387 if (types & EV_CHILD)
4388 for (i = (EV_PID_HASHSIZE); i--; )
4389 for (wl = childs [i]; wl; )
4390 {
4391 wn = wl->next;
4392 cb (EV_A_ EV_CHILD, wl);
4393 wl = wn;
4394 }
4395#endif
4396/* EV_STAT 0x00001000 /* stat data changed */
4397/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4398}
4399#endif
4400
2740#if EV_MULTIPLICITY 4401#if EV_MULTIPLICITY
2741 #include "ev_wrap.h" 4402 #include "ev_wrap.h"
2742#endif 4403#endif
2743 4404
2744#ifdef __cplusplus 4405EV_CPP(})
2745}
2746#endif
2747 4406

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines