ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.122 by root, Sat Nov 17 02:00:48 2007 UTC vs.
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108#endif 182#endif
114# define EV_USE_POLL 1 188# define EV_USE_POLL 1
115# endif 189# endif
116#endif 190#endif
117 191
118#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
119# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
120#endif 198#endif
121 199
122#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
124#endif 202#endif
125 203
126#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 205# define EV_USE_PORT 0
128#endif 206#endif
129 207
130/**/ 208#ifndef EV_USE_INOTIFY
131 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 211# else
134# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 241
138#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
141#endif 245#endif
143#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
146#endif 250#endif
147 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
148#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 268# include <winsock.h>
150#endif 269#endif
151 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
152/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 294
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 298
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 299#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline inline 301# define noinline __attribute__ ((noinline))
168#else 302#else
169# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
170# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
171#endif 308#endif
172 309
173#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
175 319
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 322
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
181 325
182typedef struct ev_watcher *W; 326typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
185 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
187 338
188#ifdef _WIN32 339#ifdef _WIN32
189# include "ev_win32.c" 340# include "ev_win32.c"
190#endif 341#endif
191 342
192/*****************************************************************************/ 343/*****************************************************************************/
193 344
194static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
195 346
347void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 349{
198 syserr_cb = cb; 350 syserr_cb = cb;
199} 351}
200 352
201static void 353static void noinline
202syserr (const char *msg) 354syserr (const char *msg)
203{ 355{
204 if (!msg) 356 if (!msg)
205 msg = "(libev) system error"; 357 msg = "(libev) system error";
206 358
211 perror (msg); 363 perror (msg);
212 abort (); 364 abort ();
213 } 365 }
214} 366}
215 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
216static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 384
385void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 387{
220 alloc = cb; 388 alloc = cb;
221} 389}
222 390
223static void * 391inline_speed void *
224ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
225{ 393{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
227 395
228 if (!ptr && size) 396 if (!ptr && size)
229 { 397 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 399 abort ();
252typedef struct 420typedef struct
253{ 421{
254 W w; 422 W w;
255 int events; 423 int events;
256} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
428typedef struct
429{
430 WL head;
431} ANFS;
432#endif
433
434/* Heap Entry */
435#if EV_HEAP_CACHE_AT
436 typedef struct {
437 WT w;
438 ev_tstamp at;
439 } ANHE;
440
441 #define ANHE_w(he) (he) /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */
444#else
445 typedef WT ANHE;
446
447 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he)
450#endif
257 451
258#if EV_MULTIPLICITY 452#if EV_MULTIPLICITY
259 453
260 struct ev_loop 454 struct ev_loop
261 { 455 {
295 gettimeofday (&tv, 0); 489 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 490 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 491#endif
298} 492}
299 493
300inline ev_tstamp 494ev_tstamp inline_size
301get_clock (void) 495get_clock (void)
302{ 496{
303#if EV_USE_MONOTONIC 497#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 498 if (expect_true (have_monotonic))
305 { 499 {
318{ 512{
319 return ev_rt_now; 513 return ev_rt_now;
320} 514}
321#endif 515#endif
322 516
323#define array_roundsize(type,n) (((n) | 4) & ~3) 517void
518ev_sleep (ev_tstamp delay)
519{
520 if (delay > 0.)
521 {
522#if EV_USE_NANOSLEEP
523 struct timespec ts;
524
525 ts.tv_sec = (time_t)delay;
526 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
527
528 nanosleep (&ts, 0);
529#elif defined(_WIN32)
530 Sleep ((unsigned long)(delay * 1e3));
531#else
532 struct timeval tv;
533
534 tv.tv_sec = (time_t)delay;
535 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
536
537 select (0, 0, 0, 0, &tv);
538#endif
539 }
540}
541
542/*****************************************************************************/
543
544#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
545
546int inline_size
547array_nextsize (int elem, int cur, int cnt)
548{
549 int ncur = cur + 1;
550
551 do
552 ncur <<= 1;
553 while (cnt > ncur);
554
555 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
556 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
557 {
558 ncur *= elem;
559 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
560 ncur = ncur - sizeof (void *) * 4;
561 ncur /= elem;
562 }
563
564 return ncur;
565}
566
567static noinline void *
568array_realloc (int elem, void *base, int *cur, int cnt)
569{
570 *cur = array_nextsize (elem, *cur, cnt);
571 return ev_realloc (base, elem * *cur);
572}
324 573
325#define array_needsize(type,base,cur,cnt,init) \ 574#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 575 if (expect_false ((cnt) > (cur))) \
327 { \ 576 { \
328 int newcnt = cur; \ 577 int ocur_ = (cur); \
329 do \ 578 (base) = (type *)array_realloc \
330 { \ 579 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 580 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 581 }
339 582
583#if 0
340#define array_slim(type,stem) \ 584#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 585 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 586 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 587 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 588 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 589 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 590 }
591#endif
347 592
348#define array_free(stem, idx) \ 593#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 594 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 595
351/*****************************************************************************/ 596/*****************************************************************************/
352 597
353static void 598void noinline
599ev_feed_event (EV_P_ void *w, int revents)
600{
601 W w_ = (W)w;
602 int pri = ABSPRI (w_);
603
604 if (expect_false (w_->pending))
605 pendings [pri][w_->pending - 1].events |= revents;
606 else
607 {
608 w_->pending = ++pendingcnt [pri];
609 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
610 pendings [pri][w_->pending - 1].w = w_;
611 pendings [pri][w_->pending - 1].events = revents;
612 }
613}
614
615void inline_speed
616queue_events (EV_P_ W *events, int eventcnt, int type)
617{
618 int i;
619
620 for (i = 0; i < eventcnt; ++i)
621 ev_feed_event (EV_A_ events [i], type);
622}
623
624/*****************************************************************************/
625
626void inline_size
354anfds_init (ANFD *base, int count) 627anfds_init (ANFD *base, int count)
355{ 628{
356 while (count--) 629 while (count--)
357 { 630 {
358 base->head = 0; 631 base->head = 0;
361 634
362 ++base; 635 ++base;
363 } 636 }
364} 637}
365 638
366void 639void inline_speed
367ev_feed_event (EV_P_ void *w, int revents)
368{
369 W w_ = (W)w;
370
371 if (w_->pending)
372 {
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
374 return;
375 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381}
382
383static void
384queue_events (EV_P_ W *events, int eventcnt, int type)
385{
386 int i;
387
388 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type);
390}
391
392inline void
393fd_event (EV_P_ int fd, int revents) 640fd_event (EV_P_ int fd, int revents)
394{ 641{
395 ANFD *anfd = anfds + fd; 642 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 643 ev_io *w;
397 644
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 645 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 646 {
400 int ev = w->events & revents; 647 int ev = w->events & revents;
401 648
402 if (ev) 649 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 650 ev_feed_event (EV_A_ (W)w, ev);
405} 652}
406 653
407void 654void
408ev_feed_fd_event (EV_P_ int fd, int revents) 655ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 656{
657 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 658 fd_event (EV_A_ fd, revents);
411} 659}
412 660
413/*****************************************************************************/ 661void inline_size
414
415static void
416fd_reify (EV_P) 662fd_reify (EV_P)
417{ 663{
418 int i; 664 int i;
419 665
420 for (i = 0; i < fdchangecnt; ++i) 666 for (i = 0; i < fdchangecnt; ++i)
421 { 667 {
422 int fd = fdchanges [i]; 668 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 669 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 670 ev_io *w;
425 671
426 int events = 0; 672 unsigned char events = 0;
427 673
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 674 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 675 events |= (unsigned char)w->events;
430 676
431#if EV_SELECT_IS_WINSOCKET 677#if EV_SELECT_IS_WINSOCKET
432 if (events) 678 if (events)
433 { 679 {
434 unsigned long argp; 680 unsigned long argp;
681 #ifdef EV_FD_TO_WIN32_HANDLE
682 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
683 #else
435 anfd->handle = _get_osfhandle (fd); 684 anfd->handle = _get_osfhandle (fd);
685 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 686 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 } 687 }
438#endif 688#endif
439 689
690 {
691 unsigned char o_events = anfd->events;
692 unsigned char o_reify = anfd->reify;
693
440 anfd->reify = 0; 694 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 695 anfd->events = events;
696
697 if (o_events != events || o_reify & EV_IOFDSET)
698 backend_modify (EV_A_ fd, o_events, events);
699 }
444 } 700 }
445 701
446 fdchangecnt = 0; 702 fdchangecnt = 0;
447} 703}
448 704
449static void 705void inline_size
450fd_change (EV_P_ int fd) 706fd_change (EV_P_ int fd, int flags)
451{ 707{
452 if (anfds [fd].reify) 708 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 709 anfds [fd].reify |= flags;
456 710
711 if (expect_true (!reify))
712 {
457 ++fdchangecnt; 713 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 714 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 715 fdchanges [fdchangecnt - 1] = fd;
716 }
460} 717}
461 718
462static void 719void inline_speed
463fd_kill (EV_P_ int fd) 720fd_kill (EV_P_ int fd)
464{ 721{
465 struct ev_io *w; 722 ev_io *w;
466 723
467 while ((w = (struct ev_io *)anfds [fd].head)) 724 while ((w = (ev_io *)anfds [fd].head))
468 { 725 {
469 ev_io_stop (EV_A_ w); 726 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 727 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 728 }
472} 729}
473 730
474static int 731int inline_size
475fd_valid (int fd) 732fd_valid (int fd)
476{ 733{
477#ifdef _WIN32 734#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 735 return _get_osfhandle (fd) != -1;
479#else 736#else
480 return fcntl (fd, F_GETFD) != -1; 737 return fcntl (fd, F_GETFD) != -1;
481#endif 738#endif
482} 739}
483 740
484/* called on EBADF to verify fds */ 741/* called on EBADF to verify fds */
485static void 742static void noinline
486fd_ebadf (EV_P) 743fd_ebadf (EV_P)
487{ 744{
488 int fd; 745 int fd;
489 746
490 for (fd = 0; fd < anfdmax; ++fd) 747 for (fd = 0; fd < anfdmax; ++fd)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 749 if (!fd_valid (fd) == -1 && errno == EBADF)
493 fd_kill (EV_A_ fd); 750 fd_kill (EV_A_ fd);
494} 751}
495 752
496/* called on ENOMEM in select/poll to kill some fds and retry */ 753/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 754static void noinline
498fd_enomem (EV_P) 755fd_enomem (EV_P)
499{ 756{
500 int fd; 757 int fd;
501 758
502 for (fd = anfdmax; fd--; ) 759 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 762 fd_kill (EV_A_ fd);
506 return; 763 return;
507 } 764 }
508} 765}
509 766
510/* usually called after fork if method needs to re-arm all fds from scratch */ 767/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 768static void noinline
512fd_rearm_all (EV_P) 769fd_rearm_all (EV_P)
513{ 770{
514 int fd; 771 int fd;
515 772
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 773 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 774 if (anfds [fd].events)
519 { 775 {
520 anfds [fd].events = 0; 776 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 777 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 778 }
523} 779}
524 780
525/*****************************************************************************/ 781/*****************************************************************************/
526 782
527static void 783/*
784 * the heap functions want a real array index. array index 0 uis guaranteed to not
785 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
786 * the branching factor of the d-tree.
787 */
788
789/*
790 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers.
794 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP
797
798#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800
801/* towards the root */
802void inline_speed
528upheap (WT *heap, int k) 803upheap (ANHE *heap, int k)
529{ 804{
530 WT w = heap [k]; 805 ANHE he = heap [k];
531 806
532 while (k && heap [k >> 1]->at > w->at) 807 for (;;)
533 { 808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
534 heap [k] = heap [k >> 1]; 814 heap [k] = heap [p];
535 ((W)heap [k])->active = k + 1; 815 ev_active (ANHE_w (heap [k])) = k;
536 k >>= 1; 816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822
823/* away from the root */
824void inline_speed
825downheap (ANHE *heap, int N, int k)
826{
827 ANHE he = heap [k];
828 ANHE *E = heap + N + HEAP0;
829
830 for (;;)
831 {
832 ev_tstamp minat;
833 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
835
836 // find minimum child
837 if (expect_true (pos + DHEAP - 1 < E))
838 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 }
844 else if (pos < E)
845 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else
852 break;
853
854 if (ANHE_at (he) <= minat)
855 break;
856
857 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859
860 k = minpos - heap;
861 }
862
863 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865}
866
867#else // 4HEAP
868
869#define HEAP0 1
870
871/* towards the root */
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
537 } 888 }
538 889
539 heap [k] = w; 890 heap [k] = w;
540 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
541
542} 892}
543 893
544static void 894/* away from the root */
895void inline_speed
545downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
546{ 897{
547 WT w = heap [k]; 898 ANHE he = heap [k];
548 899
549 while (k < (N >> 1)) 900 for (;;)
550 { 901 {
551 int j = k << 1; 902 int c = k << 1;
552 903
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 904 if (c > N)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break; 905 break;
558 906
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (w->at <= ANHE_at (heap [c]))
911 break;
912
559 heap [k] = heap [j]; 913 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
561 k = j; 916 k = c;
562 } 917 }
563 918
564 heap [k] = w; 919 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
566} 921}
922#endif
567 923
568inline void 924void inline_size
569adjustheap (WT *heap, int N, int k) 925adjustheap (ANHE *heap, int N, int k)
570{ 926{
571 upheap (heap, k); 927 upheap (heap, k);
572 downheap (heap, N, k); 928 downheap (heap, N, k);
573} 929}
574 930
575/*****************************************************************************/ 931/*****************************************************************************/
576 932
577typedef struct 933typedef struct
578{ 934{
579 WL head; 935 WL head;
580 sig_atomic_t volatile gotsig; 936 EV_ATOMIC_T gotsig;
581} ANSIG; 937} ANSIG;
582 938
583static ANSIG *signals; 939static ANSIG *signals;
584static int signalmax; 940static int signalmax;
585 941
586static int sigpipe [2]; 942static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 943
590static void 944void inline_size
591signals_init (ANSIG *base, int count) 945signals_init (ANSIG *base, int count)
592{ 946{
593 while (count--) 947 while (count--)
594 { 948 {
595 base->head = 0; 949 base->head = 0;
597 951
598 ++base; 952 ++base;
599 } 953 }
600} 954}
601 955
602static void 956/*****************************************************************************/
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608 957
609 signals [signum - 1].gotsig = 1; 958void inline_speed
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 959fd_intern (int fd)
655{ 960{
656#ifdef _WIN32 961#ifdef _WIN32
657 int arg = 1; 962 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 963 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 965 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 966 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 967#endif
663} 968}
664 969
970static void noinline
971evpipe_init (EV_P)
972{
973 if (!ev_is_active (&pipeev))
974 {
975#if EV_USE_EVENTFD
976 if ((evfd = eventfd (0, 0)) >= 0)
977 {
978 evpipe [0] = -1;
979 fd_intern (evfd);
980 ev_io_set (&pipeev, evfd, EV_READ);
981 }
982 else
983#endif
984 {
985 while (pipe (evpipe))
986 syserr ("(libev) error creating signal/async pipe");
987
988 fd_intern (evpipe [0]);
989 fd_intern (evpipe [1]);
990 ev_io_set (&pipeev, evpipe [0], EV_READ);
991 }
992
993 ev_io_start (EV_A_ &pipeev);
994 ev_unref (EV_A); /* watcher should not keep loop alive */
995 }
996}
997
998void inline_size
999evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1000{
1001 if (!*flag)
1002 {
1003 int old_errno = errno; /* save errno because write might clobber it */
1004
1005 *flag = 1;
1006
1007#if EV_USE_EVENTFD
1008 if (evfd >= 0)
1009 {
1010 uint64_t counter = 1;
1011 write (evfd, &counter, sizeof (uint64_t));
1012 }
1013 else
1014#endif
1015 write (evpipe [1], &old_errno, 1);
1016
1017 errno = old_errno;
1018 }
1019}
1020
665static void 1021static void
666siginit (EV_P) 1022pipecb (EV_P_ ev_io *iow, int revents)
667{ 1023{
668 fd_intern (sigpipe [0]); 1024#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1025 if (evfd >= 0)
1026 {
1027 uint64_t counter;
1028 read (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 {
1033 char dummy;
1034 read (evpipe [0], &dummy, 1);
1035 }
670 1036
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1037 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1038 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1039 int signum;
1040 gotsig = 0;
1041
1042 for (signum = signalmax; signum--; )
1043 if (signals [signum].gotsig)
1044 ev_feed_signal_event (EV_A_ signum + 1);
1045 }
1046
1047#if EV_ASYNC_ENABLE
1048 if (gotasync)
1049 {
1050 int i;
1051 gotasync = 0;
1052
1053 for (i = asynccnt; i--; )
1054 if (asyncs [i]->sent)
1055 {
1056 asyncs [i]->sent = 0;
1057 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1058 }
1059 }
1060#endif
674} 1061}
675 1062
676/*****************************************************************************/ 1063/*****************************************************************************/
677 1064
678static struct ev_child *childs [PID_HASHSIZE]; 1065static void
1066ev_sighandler (int signum)
1067{
1068#if EV_MULTIPLICITY
1069 struct ev_loop *loop = &default_loop_struct;
1070#endif
1071
1072#if _WIN32
1073 signal (signum, ev_sighandler);
1074#endif
1075
1076 signals [signum - 1].gotsig = 1;
1077 evpipe_write (EV_A_ &gotsig);
1078}
1079
1080void noinline
1081ev_feed_signal_event (EV_P_ int signum)
1082{
1083 WL w;
1084
1085#if EV_MULTIPLICITY
1086 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1087#endif
1088
1089 --signum;
1090
1091 if (signum < 0 || signum >= signalmax)
1092 return;
1093
1094 signals [signum].gotsig = 0;
1095
1096 for (w = signals [signum].head; w; w = w->next)
1097 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1098}
1099
1100/*****************************************************************************/
1101
1102static WL childs [EV_PID_HASHSIZE];
679 1103
680#ifndef _WIN32 1104#ifndef _WIN32
681 1105
682static struct ev_signal childev; 1106static ev_signal childev;
1107
1108#ifndef WIFCONTINUED
1109# define WIFCONTINUED(status) 0
1110#endif
1111
1112void inline_speed
1113child_reap (EV_P_ int chain, int pid, int status)
1114{
1115 ev_child *w;
1116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1117
1118 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1119 {
1120 if ((w->pid == pid || !w->pid)
1121 && (!traced || (w->flags & 1)))
1122 {
1123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1124 w->rpid = pid;
1125 w->rstatus = status;
1126 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1127 }
1128 }
1129}
683 1130
684#ifndef WCONTINUED 1131#ifndef WCONTINUED
685# define WCONTINUED 0 1132# define WCONTINUED 0
686#endif 1133#endif
687 1134
688static void 1135static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1136childcb (EV_P_ ev_signal *sw, int revents)
705{ 1137{
706 int pid, status; 1138 int pid, status;
707 1139
1140 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1141 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1142 if (!WCONTINUED
1143 || errno != EINVAL
1144 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1145 return;
1146
710 /* make sure we are called again until all childs have been reaped */ 1147 /* make sure we are called again until all children have been reaped */
1148 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1149 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1150
713 child_reap (EV_A_ sw, pid, pid, status); 1151 child_reap (EV_A_ pid, pid, status);
1152 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1153 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1154}
717 1155
718#endif 1156#endif
719 1157
720/*****************************************************************************/ 1158/*****************************************************************************/
746{ 1184{
747 return EV_VERSION_MINOR; 1185 return EV_VERSION_MINOR;
748} 1186}
749 1187
750/* return true if we are running with elevated privileges and should ignore env variables */ 1188/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1189int inline_size
752enable_secure (void) 1190enable_secure (void)
753{ 1191{
754#ifdef _WIN32 1192#ifdef _WIN32
755 return 0; 1193 return 0;
756#else 1194#else
758 || getgid () != getegid (); 1196 || getgid () != getegid ();
759#endif 1197#endif
760} 1198}
761 1199
762unsigned int 1200unsigned int
763ev_method (EV_P) 1201ev_supported_backends (void)
764{ 1202{
765 return method; 1203 unsigned int flags = 0;
766}
767 1204
768static void 1205 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1206 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1207 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1208 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1209 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1210
1211 return flags;
1212}
1213
1214unsigned int
1215ev_recommended_backends (void)
1216{
1217 unsigned int flags = ev_supported_backends ();
1218
1219#ifndef __NetBSD__
1220 /* kqueue is borked on everything but netbsd apparently */
1221 /* it usually doesn't work correctly on anything but sockets and pipes */
1222 flags &= ~EVBACKEND_KQUEUE;
1223#endif
1224#ifdef __APPLE__
1225 // flags &= ~EVBACKEND_KQUEUE; for documentation
1226 flags &= ~EVBACKEND_POLL;
1227#endif
1228
1229 return flags;
1230}
1231
1232unsigned int
1233ev_embeddable_backends (void)
1234{
1235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1236
1237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1238 /* please fix it and tell me how to detect the fix */
1239 flags &= ~EVBACKEND_EPOLL;
1240
1241 return flags;
1242}
1243
1244unsigned int
1245ev_backend (EV_P)
1246{
1247 return backend;
1248}
1249
1250unsigned int
1251ev_loop_count (EV_P)
1252{
1253 return loop_count;
1254}
1255
1256void
1257ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1258{
1259 io_blocktime = interval;
1260}
1261
1262void
1263ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1264{
1265 timeout_blocktime = interval;
1266}
1267
1268static void noinline
769loop_init (EV_P_ unsigned int flags) 1269loop_init (EV_P_ unsigned int flags)
770{ 1270{
771 if (!method) 1271 if (!backend)
772 { 1272 {
773#if EV_USE_MONOTONIC 1273#if EV_USE_MONOTONIC
774 { 1274 {
775 struct timespec ts; 1275 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1276 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1277 have_monotonic = 1;
778 } 1278 }
779#endif 1279#endif
780 1280
781 ev_rt_now = ev_time (); 1281 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1282 mn_now = get_clock ();
783 now_floor = mn_now; 1283 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1284 rtmn_diff = ev_rt_now - mn_now;
785 1285
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1286 io_blocktime = 0.;
1287 timeout_blocktime = 0.;
1288 backend = 0;
1289 backend_fd = -1;
1290 gotasync = 0;
1291#if EV_USE_INOTIFY
1292 fs_fd = -2;
1293#endif
1294
1295 /* pid check not overridable via env */
1296#ifndef _WIN32
1297 if (flags & EVFLAG_FORKCHECK)
1298 curpid = getpid ();
1299#endif
1300
1301 if (!(flags & EVFLAG_NOENV)
1302 && !enable_secure ()
1303 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1304 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1305
789 if (!(flags & 0x0000ffff)) 1306 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1307 flags |= ev_recommended_backends ();
791 1308
792 method = 0;
793#if EV_USE_PORT 1309#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1310 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1311#endif
796#if EV_USE_KQUEUE 1312#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1313 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1314#endif
799#if EV_USE_EPOLL 1315#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1316 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1317#endif
802#if EV_USE_POLL 1318#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1319 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1320#endif
805#if EV_USE_SELECT 1321#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1322 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1323#endif
808 1324
809 ev_init (&sigev, sigcb); 1325 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1326 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1327 }
812} 1328}
813 1329
814void 1330static void noinline
815loop_destroy (EV_P) 1331loop_destroy (EV_P)
816{ 1332{
817 int i; 1333 int i;
818 1334
1335 if (ev_is_active (&pipeev))
1336 {
1337 ev_ref (EV_A); /* signal watcher */
1338 ev_io_stop (EV_A_ &pipeev);
1339
1340#if EV_USE_EVENTFD
1341 if (evfd >= 0)
1342 close (evfd);
1343#endif
1344
1345 if (evpipe [0] >= 0)
1346 {
1347 close (evpipe [0]);
1348 close (evpipe [1]);
1349 }
1350 }
1351
1352#if EV_USE_INOTIFY
1353 if (fs_fd >= 0)
1354 close (fs_fd);
1355#endif
1356
1357 if (backend_fd >= 0)
1358 close (backend_fd);
1359
819#if EV_USE_PORT 1360#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1361 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1362#endif
822#if EV_USE_KQUEUE 1363#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1364 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1365#endif
825#if EV_USE_EPOLL 1366#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1367 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1368#endif
828#if EV_USE_POLL 1369#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1370 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1371#endif
831#if EV_USE_SELECT 1372#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1373 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1374#endif
834 1375
835 for (i = NUMPRI; i--; ) 1376 for (i = NUMPRI; i--; )
1377 {
836 array_free (pending, [i]); 1378 array_free (pending, [i]);
1379#if EV_IDLE_ENABLE
1380 array_free (idle, [i]);
1381#endif
1382 }
1383
1384 ev_free (anfds); anfdmax = 0;
837 1385
838 /* have to use the microsoft-never-gets-it-right macro */ 1386 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1387 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1388 array_free (timer, EMPTY);
841#if EV_PERIODICS 1389#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1390 array_free (periodic, EMPTY);
843#endif 1391#endif
1392#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1393 array_free (fork, EMPTY);
1394#endif
845 array_free (prepare, EMPTY0); 1395 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1396 array_free (check, EMPTY);
1397#if EV_ASYNC_ENABLE
1398 array_free (async, EMPTY);
1399#endif
847 1400
848 method = 0; 1401 backend = 0;
849} 1402}
850 1403
851static void 1404#if EV_USE_INOTIFY
1405void inline_size infy_fork (EV_P);
1406#endif
1407
1408void inline_size
852loop_fork (EV_P) 1409loop_fork (EV_P)
853{ 1410{
854#if EV_USE_PORT 1411#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1412 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1413#endif
857#if EV_USE_KQUEUE 1414#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1415 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1416#endif
860#if EV_USE_EPOLL 1417#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1418 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1419#endif
1420#if EV_USE_INOTIFY
1421 infy_fork (EV_A);
1422#endif
863 1423
864 if (ev_is_active (&sigev)) 1424 if (ev_is_active (&pipeev))
865 { 1425 {
866 /* default loop */ 1426 /* this "locks" the handlers against writing to the pipe */
1427 /* while we modify the fd vars */
1428 gotsig = 1;
1429#if EV_ASYNC_ENABLE
1430 gotasync = 1;
1431#endif
867 1432
868 ev_ref (EV_A); 1433 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1434 ev_io_stop (EV_A_ &pipeev);
1435
1436#if EV_USE_EVENTFD
1437 if (evfd >= 0)
1438 close (evfd);
1439#endif
1440
1441 if (evpipe [0] >= 0)
1442 {
870 close (sigpipe [0]); 1443 close (evpipe [0]);
871 close (sigpipe [1]); 1444 close (evpipe [1]);
1445 }
872 1446
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1447 evpipe_init (EV_A);
1448 /* now iterate over everything, in case we missed something */
1449 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1450 }
878 1451
879 postfork = 0; 1452 postfork = 0;
880} 1453}
881 1454
887 1460
888 memset (loop, 0, sizeof (struct ev_loop)); 1461 memset (loop, 0, sizeof (struct ev_loop));
889 1462
890 loop_init (EV_A_ flags); 1463 loop_init (EV_A_ flags);
891 1464
892 if (ev_method (EV_A)) 1465 if (ev_backend (EV_A))
893 return loop; 1466 return loop;
894 1467
895 return 0; 1468 return 0;
896} 1469}
897 1470
903} 1476}
904 1477
905void 1478void
906ev_loop_fork (EV_P) 1479ev_loop_fork (EV_P)
907{ 1480{
908 postfork = 1; 1481 postfork = 1; /* must be in line with ev_default_fork */
909} 1482}
910
911#endif 1483#endif
912 1484
913#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
914struct ev_loop * 1486struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1487ev_default_loop_init (unsigned int flags)
916#else 1488#else
917int 1489int
918ev_default_loop (unsigned int flags) 1490ev_default_loop (unsigned int flags)
919#endif 1491#endif
920{ 1492{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1493 if (!ev_default_loop_ptr)
926 { 1494 {
927#if EV_MULTIPLICITY 1495#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1496 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1497#else
930 ev_default_loop_ptr = 1; 1498 ev_default_loop_ptr = 1;
931#endif 1499#endif
932 1500
933 loop_init (EV_A_ flags); 1501 loop_init (EV_A_ flags);
934 1502
935 if (ev_method (EV_A)) 1503 if (ev_backend (EV_A))
936 { 1504 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1505#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1506 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1507 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1508 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1509 ev_unref (EV_A); /* child watcher should not keep loop alive */
960#ifndef _WIN32 1526#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1527 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1528 ev_signal_stop (EV_A_ &childev);
963#endif 1529#endif
964 1530
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1531 loop_destroy (EV_A);
972} 1532}
973 1533
974void 1534void
975ev_default_fork (void) 1535ev_default_fork (void)
976{ 1536{
977#if EV_MULTIPLICITY 1537#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1538 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1539#endif
980 1540
981 if (method) 1541 if (backend)
982 postfork = 1; 1542 postfork = 1; /* must be in line with ev_loop_fork */
983} 1543}
984 1544
985/*****************************************************************************/ 1545/*****************************************************************************/
986 1546
987static int 1547void
988any_pending (EV_P) 1548ev_invoke (EV_P_ void *w, int revents)
989{ 1549{
990 int pri; 1550 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1551}
998 1552
999inline void 1553void inline_speed
1000call_pending (EV_P) 1554call_pending (EV_P)
1001{ 1555{
1002 int pri; 1556 int pri;
1003 1557
1004 for (pri = NUMPRI; pri--; ) 1558 for (pri = NUMPRI; pri--; )
1006 { 1560 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1561 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1562
1009 if (expect_true (p->w)) 1563 if (expect_true (p->w))
1010 { 1564 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566
1011 p->w->pending = 0; 1567 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1568 EV_CB_INVOKE (p->w, p->events);
1013 } 1569 }
1014 } 1570 }
1015} 1571}
1016 1572
1017static void 1573#if EV_IDLE_ENABLE
1574void inline_size
1575idle_reify (EV_P)
1576{
1577 if (expect_false (idleall))
1578 {
1579 int pri;
1580
1581 for (pri = NUMPRI; pri--; )
1582 {
1583 if (pendingcnt [pri])
1584 break;
1585
1586 if (idlecnt [pri])
1587 {
1588 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1589 break;
1590 }
1591 }
1592 }
1593}
1594#endif
1595
1596void inline_size
1018timers_reify (EV_P) 1597timers_reify (EV_P)
1019{ 1598{
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1021 { 1600 {
1022 struct ev_timer *w = timers [0]; 1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1023 1602
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1604
1026 /* first reschedule or stop timer */ 1605 /* first reschedule or stop timer */
1027 if (w->repeat) 1606 if (w->repeat)
1028 { 1607 {
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1609
1031 ((WT)w)->at += w->repeat; 1610 ev_at (w) += w->repeat;
1032 if (((WT)w)->at < mn_now) 1611 if (ev_at (w) < mn_now)
1033 ((WT)w)->at = mn_now; 1612 ev_at (w) = mn_now;
1034 1613
1035 downheap ((WT *)timers, timercnt, 0); 1614 downheap (timers, timercnt, HEAP0);
1036 } 1615 }
1037 else 1616 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1618
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1620 }
1042} 1621}
1043 1622
1044#if EV_PERIODICS 1623#if EV_PERIODIC_ENABLE
1045static void 1624void inline_size
1046periodics_reify (EV_P) 1625periodics_reify (EV_P)
1047{ 1626{
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1049 { 1628 {
1050 struct ev_periodic *w = periodics [0]; 1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1051 1630
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1632
1054 /* first reschedule or stop timer */ 1633 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1634 if (w->reschedule_cb)
1056 { 1635 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0); 1638 downheap (periodics, periodiccnt, 1);
1060 } 1639 }
1061 else if (w->interval) 1640 else if (w->interval)
1062 { 1641 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0); 1645 downheap (periodics, periodiccnt, HEAP0);
1066 } 1646 }
1067 else 1647 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1649
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1651 }
1072} 1652}
1073 1653
1074static void 1654static void noinline
1075periodics_reschedule (EV_P) 1655periodics_reschedule (EV_P)
1076{ 1656{
1077 int i; 1657 int i;
1078 1658
1079 /* adjust periodics after time jump */ 1659 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1660 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1081 { 1661 {
1082 struct ev_periodic *w = periodics [i]; 1662 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1083 1663
1084 if (w->reschedule_cb) 1664 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1666 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1088 } 1668 }
1089 1669
1090 /* now rebuild the heap */ 1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1091 for (i = periodiccnt >> 1; i--; ) 1671 for (i = periodiccnt >> 1; --i; )
1092 downheap ((WT *)periodics, periodiccnt, i); 1672 downheap (periodics, periodiccnt, i + HEAP0);
1093} 1673}
1094#endif 1674#endif
1095 1675
1096inline int 1676void inline_speed
1097time_update_monotonic (EV_P) 1677time_update (EV_P_ ev_tstamp max_block)
1098{ 1678{
1679 int i;
1680
1681#if EV_USE_MONOTONIC
1682 if (expect_true (have_monotonic))
1683 {
1684 ev_tstamp odiff = rtmn_diff;
1685
1099 mn_now = get_clock (); 1686 mn_now = get_clock ();
1100 1687
1688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1690 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1691 {
1103 ev_rt_now = rtmn_diff + mn_now; 1692 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1693 return;
1105 } 1694 }
1106 else 1695
1107 {
1108 now_floor = mn_now; 1696 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1697 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1698
1114static void 1699 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1700 * on the choice of "4": one iteration isn't enough,
1116{ 1701 * in case we get preempted during the calls to
1117 int i; 1702 * ev_time and get_clock. a second call is almost guaranteed
1118 1703 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1704 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1705 * in the unlikely event of having been preempted here.
1121 { 1706 */
1122 if (time_update_monotonic (EV_A)) 1707 for (i = 4; --i; )
1123 { 1708 {
1124 ev_tstamp odiff = rtmn_diff; 1709 rtmn_diff = ev_rt_now - mn_now;
1125 1710
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1711 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1712 return; /* all is well */
1713
1714 ev_rt_now = ev_time ();
1715 mn_now = get_clock ();
1716 now_floor = mn_now;
1717 }
1718
1719# if EV_PERIODIC_ENABLE
1720 periodics_reschedule (EV_A);
1721# endif
1722 /* no timer adjustment, as the monotonic clock doesn't jump */
1723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1724 }
1725 else
1726#endif
1727 {
1728 ev_rt_now = ev_time ();
1729
1730 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1731 {
1732#if EV_PERIODIC_ENABLE
1733 periodics_reschedule (EV_A);
1734#endif
1735 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i)
1127 { 1737 {
1128 rtmn_diff = ev_rt_now - mn_now; 1738 ANHE *he = timers + i + HEAP0;
1129 1739 ANHE_w (*he)->at += ev_rt_now - mn_now;
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1740 ANHE_at_set (*he);
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 } 1741 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 1742 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1743
1161 mn_now = ev_rt_now; 1744 mn_now = ev_rt_now;
1162 } 1745 }
1163} 1746}
1164 1747
1177static int loop_done; 1760static int loop_done;
1178 1761
1179void 1762void
1180ev_loop (EV_P_ int flags) 1763ev_loop (EV_P_ int flags)
1181{ 1764{
1182 double block; 1765 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1766
1185 while (activecnt) 1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1768
1769 do
1186 { 1770 {
1771#ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid))
1774 {
1775 curpid = getpid ();
1776 postfork = 1;
1777 }
1778#endif
1779
1780#if EV_FORK_ENABLE
1781 /* we might have forked, so queue fork handlers */
1782 if (expect_false (postfork))
1783 if (forkcnt)
1784 {
1785 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1786 call_pending (EV_A);
1787 }
1788#endif
1789
1187 /* queue check watchers (and execute them) */ 1790 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1791 if (expect_false (preparecnt))
1189 { 1792 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1793 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1794 call_pending (EV_A);
1192 } 1795 }
1193 1796
1797 if (expect_false (!activecnt))
1798 break;
1799
1194 /* we might have forked, so reify kernel state if necessary */ 1800 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1801 if (expect_false (postfork))
1196 loop_fork (EV_A); 1802 loop_fork (EV_A);
1197 1803
1198 /* update fd-related kernel structures */ 1804 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1805 fd_reify (EV_A);
1200 1806
1201 /* calculate blocking time */ 1807 /* calculate blocking time */
1808 {
1809 ev_tstamp waittime = 0.;
1810 ev_tstamp sleeptime = 0.;
1202 1811
1203 /* we only need this for !monotonic clock or timers, but as we basically 1812 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1813 {
1211 ev_rt_now = ev_time (); 1814 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1815 time_update (EV_A_ 1e100);
1213 }
1214 1816
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1817 waittime = MAX_BLOCKTIME;
1220 1818
1221 if (timercnt) 1819 if (timercnt)
1222 { 1820 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 1822 if (waittime > to) waittime = to;
1225 } 1823 }
1226 1824
1227#if EV_PERIODICS 1825#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1826 if (periodiccnt)
1229 { 1827 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1829 if (waittime > to) waittime = to;
1232 } 1830 }
1233#endif 1831#endif
1234 1832
1235 if (block < 0.) block = 0.; 1833 if (expect_false (waittime < timeout_blocktime))
1834 waittime = timeout_blocktime;
1835
1836 sleeptime = waittime - backend_fudge;
1837
1838 if (expect_true (sleeptime > io_blocktime))
1839 sleeptime = io_blocktime;
1840
1841 if (sleeptime)
1842 {
1843 ev_sleep (sleeptime);
1844 waittime -= sleeptime;
1845 }
1236 } 1846 }
1237 1847
1238 method_poll (EV_A_ block); 1848 ++loop_count;
1849 backend_poll (EV_A_ waittime);
1239 1850
1240 /* update ev_rt_now, do magic */ 1851 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 1852 time_update (EV_A_ waittime + sleeptime);
1853 }
1242 1854
1243 /* queue pending timers and reschedule them */ 1855 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 1856 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 1857#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 1858 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 1859#endif
1248 1860
1861#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 1862 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 1863 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1864#endif
1252 1865
1253 /* queue check watchers, to be executed first */ 1866 /* queue check watchers, to be executed first */
1254 if (checkcnt) 1867 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1868 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 1869
1257 call_pending (EV_A); 1870 call_pending (EV_A);
1258
1259 if (loop_done)
1260 break;
1261 } 1871 }
1872 while (expect_true (
1873 activecnt
1874 && !loop_done
1875 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1876 ));
1262 1877
1263 if (loop_done != 2) 1878 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 1879 loop_done = EVUNLOOP_CANCEL;
1265} 1880}
1266 1881
1267void 1882void
1268ev_unloop (EV_P_ int how) 1883ev_unloop (EV_P_ int how)
1269{ 1884{
1270 loop_done = how; 1885 loop_done = how;
1271} 1886}
1272 1887
1273/*****************************************************************************/ 1888/*****************************************************************************/
1274 1889
1275inline void 1890void inline_size
1276wlist_add (WL *head, WL elem) 1891wlist_add (WL *head, WL elem)
1277{ 1892{
1278 elem->next = *head; 1893 elem->next = *head;
1279 *head = elem; 1894 *head = elem;
1280} 1895}
1281 1896
1282inline void 1897void inline_size
1283wlist_del (WL *head, WL elem) 1898wlist_del (WL *head, WL elem)
1284{ 1899{
1285 while (*head) 1900 while (*head)
1286 { 1901 {
1287 if (*head == elem) 1902 if (*head == elem)
1292 1907
1293 head = &(*head)->next; 1908 head = &(*head)->next;
1294 } 1909 }
1295} 1910}
1296 1911
1297inline void 1912void inline_speed
1298ev_clear_pending (EV_P_ W w) 1913clear_pending (EV_P_ W w)
1299{ 1914{
1300 if (w->pending) 1915 if (w->pending)
1301 { 1916 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1917 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 1918 w->pending = 0;
1304 } 1919 }
1305} 1920}
1306 1921
1307inline void 1922int
1923ev_clear_pending (EV_P_ void *w)
1924{
1925 W w_ = (W)w;
1926 int pending = w_->pending;
1927
1928 if (expect_true (pending))
1929 {
1930 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1931 w_->pending = 0;
1932 p->w = 0;
1933 return p->events;
1934 }
1935 else
1936 return 0;
1937}
1938
1939void inline_size
1940pri_adjust (EV_P_ W w)
1941{
1942 int pri = w->priority;
1943 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1944 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1945 w->priority = pri;
1946}
1947
1948void inline_speed
1308ev_start (EV_P_ W w, int active) 1949ev_start (EV_P_ W w, int active)
1309{ 1950{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1951 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 1952 w->active = active;
1314 ev_ref (EV_A); 1953 ev_ref (EV_A);
1315} 1954}
1316 1955
1317inline void 1956void inline_size
1318ev_stop (EV_P_ W w) 1957ev_stop (EV_P_ W w)
1319{ 1958{
1320 ev_unref (EV_A); 1959 ev_unref (EV_A);
1321 w->active = 0; 1960 w->active = 0;
1322} 1961}
1323 1962
1324/*****************************************************************************/ 1963/*****************************************************************************/
1325 1964
1326void 1965void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 1966ev_io_start (EV_P_ ev_io *w)
1328{ 1967{
1329 int fd = w->fd; 1968 int fd = w->fd;
1330 1969
1331 if (ev_is_active (w)) 1970 if (expect_false (ev_is_active (w)))
1332 return; 1971 return;
1333 1972
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 1973 assert (("ev_io_start called with negative fd", fd >= 0));
1335 1974
1336 ev_start (EV_A_ (W)w, 1); 1975 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1977 wlist_add (&anfds[fd].head, (WL)w);
1339 1978
1340 fd_change (EV_A_ fd); 1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET;
1341} 1981}
1342 1982
1343void 1983void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 1984ev_io_stop (EV_P_ ev_io *w)
1345{ 1985{
1346 ev_clear_pending (EV_A_ (W)w); 1986 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 1987 if (expect_false (!ev_is_active (w)))
1348 return; 1988 return;
1349 1989
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 1991
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1992 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 1993 ev_stop (EV_A_ (W)w);
1354 1994
1355 fd_change (EV_A_ w->fd); 1995 fd_change (EV_A_ w->fd, 1);
1356} 1996}
1357 1997
1358void 1998void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 1999ev_timer_start (EV_P_ ev_timer *w)
1360{ 2000{
1361 if (ev_is_active (w)) 2001 if (expect_false (ev_is_active (w)))
1362 return; 2002 return;
1363 2003
1364 ((WT)w)->at += mn_now; 2004 ev_at (w) += mn_now;
1365 2005
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2007
1368 ev_start (EV_A_ (W)w, ++timercnt); 2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2010 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2011 ANHE_at_set (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w));
1372 2013
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1374} 2015}
1375 2016
1376void 2017void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2018ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2019{
1379 ev_clear_pending (EV_A_ (W)w); 2020 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 2021 if (expect_false (!ev_is_active (w)))
1381 return; 2022 return;
1382 2023
2024 {
2025 int active = ev_active (w);
2026
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2028
1385 if (((W)w)->active < timercnt--) 2029 if (expect_true (active < timercnt + HEAP0 - 1))
1386 { 2030 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2031 timers [active] = timers [timercnt + HEAP0 - 1];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2032 adjustheap (timers, timercnt, active);
1389 } 2033 }
1390 2034
1391 ((WT)w)->at -= mn_now; 2035 --timercnt;
2036 }
2037
2038 ev_at (w) -= mn_now;
1392 2039
1393 ev_stop (EV_A_ (W)w); 2040 ev_stop (EV_A_ (W)w);
1394} 2041}
1395 2042
1396void 2043void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2044ev_timer_again (EV_P_ ev_timer *w)
1398{ 2045{
1399 if (ev_is_active (w)) 2046 if (ev_is_active (w))
1400 { 2047 {
1401 if (w->repeat) 2048 if (w->repeat)
1402 { 2049 {
1403 ((WT)w)->at = mn_now + w->repeat; 2050 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2052 adjustheap (timers, timercnt, ev_active (w));
1405 } 2053 }
1406 else 2054 else
1407 ev_timer_stop (EV_A_ w); 2055 ev_timer_stop (EV_A_ w);
1408 } 2056 }
1409 else if (w->repeat) 2057 else if (w->repeat)
1410 { 2058 {
1411 w->at = w->repeat; 2059 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2060 ev_timer_start (EV_A_ w);
1413 } 2061 }
1414} 2062}
1415 2063
1416#if EV_PERIODICS 2064#if EV_PERIODIC_ENABLE
1417void 2065void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2066ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2067{
1420 if (ev_is_active (w)) 2068 if (expect_false (ev_is_active (w)))
1421 return; 2069 return;
1422 2070
1423 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2073 else if (w->interval)
1426 { 2074 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2075 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2076 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2078 }
2079 else
2080 ev_at (w) = w->offset;
1431 2081
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2084 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2085 upheap (periodics, ev_active (w));
1436 2086
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2088}
1439 2089
1440void 2090void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2091ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2092{
1443 ev_clear_pending (EV_A_ (W)w); 2093 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 2094 if (expect_false (!ev_is_active (w)))
1445 return; 2095 return;
1446 2096
2097 {
2098 int active = ev_active (w);
2099
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2101
1449 if (((W)w)->active < periodiccnt--) 2102 if (expect_true (active < periodiccnt + HEAP0 - 1))
1450 { 2103 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2105 adjustheap (periodics, periodiccnt, active);
1453 } 2106 }
2107
2108 --periodiccnt;
2109 }
1454 2110
1455 ev_stop (EV_A_ (W)w); 2111 ev_stop (EV_A_ (W)w);
1456} 2112}
1457 2113
1458void 2114void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2115ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2116{
1461 /* TODO: use adjustheap and recalculation */ 2117 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2118 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2119 ev_periodic_start (EV_A_ w);
1464} 2120}
1465#endif 2121#endif
1466 2122
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 2123#ifndef SA_RESTART
1534# define SA_RESTART 0 2124# define SA_RESTART 0
1535#endif 2125#endif
1536 2126
1537void 2127void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 2128ev_signal_start (EV_P_ ev_signal *w)
1539{ 2129{
1540#if EV_MULTIPLICITY 2130#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2131 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 2132#endif
1543 if (ev_is_active (w)) 2133 if (expect_false (ev_is_active (w)))
1544 return; 2134 return;
1545 2135
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 2137
2138 evpipe_init (EV_A);
2139
2140 {
2141#ifndef _WIN32
2142 sigset_t full, prev;
2143 sigfillset (&full);
2144 sigprocmask (SIG_SETMASK, &full, &prev);
2145#endif
2146
2147 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2148
2149#ifndef _WIN32
2150 sigprocmask (SIG_SETMASK, &prev, 0);
2151#endif
2152 }
2153
1548 ev_start (EV_A_ (W)w, 1); 2154 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2155 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2156
1552 if (!((WL)w)->next) 2157 if (!((WL)w)->next)
1553 { 2158 {
1554#if _WIN32 2159#if _WIN32
1555 signal (w->signum, sighandler); 2160 signal (w->signum, ev_sighandler);
1556#else 2161#else
1557 struct sigaction sa; 2162 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2163 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2164 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2166 sigaction (w->signum, &sa, 0);
1562#endif 2167#endif
1563 } 2168 }
1564} 2169}
1565 2170
1566void 2171void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2172ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2173{
1569 ev_clear_pending (EV_A_ (W)w); 2174 clear_pending (EV_A_ (W)w);
1570 if (!ev_is_active (w)) 2175 if (expect_false (!ev_is_active (w)))
1571 return; 2176 return;
1572 2177
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2178 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2179 ev_stop (EV_A_ (W)w);
1575 2180
1576 if (!signals [w->signum - 1].head) 2181 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2182 signal (w->signum, SIG_DFL);
1578} 2183}
1579 2184
1580void 2185void
1581ev_child_start (EV_P_ struct ev_child *w) 2186ev_child_start (EV_P_ ev_child *w)
1582{ 2187{
1583#if EV_MULTIPLICITY 2188#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2190#endif
1586 if (ev_is_active (w)) 2191 if (expect_false (ev_is_active (w)))
1587 return; 2192 return;
1588 2193
1589 ev_start (EV_A_ (W)w, 1); 2194 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591} 2196}
1592 2197
1593void 2198void
1594ev_child_stop (EV_P_ struct ev_child *w) 2199ev_child_stop (EV_P_ ev_child *w)
1595{ 2200{
1596 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 2202 if (expect_false (!ev_is_active (w)))
1598 return; 2203 return;
1599 2204
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1602} 2207}
1603 2208
2209#if EV_STAT_ENABLE
2210
2211# ifdef _WIN32
2212# undef lstat
2213# define lstat(a,b) _stati64 (a,b)
2214# endif
2215
2216#define DEF_STAT_INTERVAL 5.0074891
2217#define MIN_STAT_INTERVAL 0.1074891
2218
2219static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2220
2221#if EV_USE_INOTIFY
2222# define EV_INOTIFY_BUFSIZE 8192
2223
2224static void noinline
2225infy_add (EV_P_ ev_stat *w)
2226{
2227 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2228
2229 if (w->wd < 0)
2230 {
2231 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2232
2233 /* monitor some parent directory for speedup hints */
2234 /* note that exceeding the hardcoded limit is not a correctness issue, */
2235 /* but an efficiency issue only */
2236 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2237 {
2238 char path [4096];
2239 strcpy (path, w->path);
2240
2241 do
2242 {
2243 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2244 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2245
2246 char *pend = strrchr (path, '/');
2247
2248 if (!pend)
2249 break; /* whoops, no '/', complain to your admin */
2250
2251 *pend = 0;
2252 w->wd = inotify_add_watch (fs_fd, path, mask);
2253 }
2254 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2255 }
2256 }
2257 else
2258 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2259
2260 if (w->wd >= 0)
2261 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2262}
2263
2264static void noinline
2265infy_del (EV_P_ ev_stat *w)
2266{
2267 int slot;
2268 int wd = w->wd;
2269
2270 if (wd < 0)
2271 return;
2272
2273 w->wd = -2;
2274 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2275 wlist_del (&fs_hash [slot].head, (WL)w);
2276
2277 /* remove this watcher, if others are watching it, they will rearm */
2278 inotify_rm_watch (fs_fd, wd);
2279}
2280
2281static void noinline
2282infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2283{
2284 if (slot < 0)
2285 /* overflow, need to check for all hahs slots */
2286 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2287 infy_wd (EV_A_ slot, wd, ev);
2288 else
2289 {
2290 WL w_;
2291
2292 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2293 {
2294 ev_stat *w = (ev_stat *)w_;
2295 w_ = w_->next; /* lets us remove this watcher and all before it */
2296
2297 if (w->wd == wd || wd == -1)
2298 {
2299 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2300 {
2301 w->wd = -1;
2302 infy_add (EV_A_ w); /* re-add, no matter what */
2303 }
2304
2305 stat_timer_cb (EV_A_ &w->timer, 0);
2306 }
2307 }
2308 }
2309}
2310
2311static void
2312infy_cb (EV_P_ ev_io *w, int revents)
2313{
2314 char buf [EV_INOTIFY_BUFSIZE];
2315 struct inotify_event *ev = (struct inotify_event *)buf;
2316 int ofs;
2317 int len = read (fs_fd, buf, sizeof (buf));
2318
2319 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2320 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2321}
2322
2323void inline_size
2324infy_init (EV_P)
2325{
2326 if (fs_fd != -2)
2327 return;
2328
2329 fs_fd = inotify_init ();
2330
2331 if (fs_fd >= 0)
2332 {
2333 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2334 ev_set_priority (&fs_w, EV_MAXPRI);
2335 ev_io_start (EV_A_ &fs_w);
2336 }
2337}
2338
2339void inline_size
2340infy_fork (EV_P)
2341{
2342 int slot;
2343
2344 if (fs_fd < 0)
2345 return;
2346
2347 close (fs_fd);
2348 fs_fd = inotify_init ();
2349
2350 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2351 {
2352 WL w_ = fs_hash [slot].head;
2353 fs_hash [slot].head = 0;
2354
2355 while (w_)
2356 {
2357 ev_stat *w = (ev_stat *)w_;
2358 w_ = w_->next; /* lets us add this watcher */
2359
2360 w->wd = -1;
2361
2362 if (fs_fd >= 0)
2363 infy_add (EV_A_ w); /* re-add, no matter what */
2364 else
2365 ev_timer_start (EV_A_ &w->timer);
2366 }
2367
2368 }
2369}
2370
2371#endif
2372
2373void
2374ev_stat_stat (EV_P_ ev_stat *w)
2375{
2376 if (lstat (w->path, &w->attr) < 0)
2377 w->attr.st_nlink = 0;
2378 else if (!w->attr.st_nlink)
2379 w->attr.st_nlink = 1;
2380}
2381
2382static void noinline
2383stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2384{
2385 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2386
2387 /* we copy this here each the time so that */
2388 /* prev has the old value when the callback gets invoked */
2389 w->prev = w->attr;
2390 ev_stat_stat (EV_A_ w);
2391
2392 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2393 if (
2394 w->prev.st_dev != w->attr.st_dev
2395 || w->prev.st_ino != w->attr.st_ino
2396 || w->prev.st_mode != w->attr.st_mode
2397 || w->prev.st_nlink != w->attr.st_nlink
2398 || w->prev.st_uid != w->attr.st_uid
2399 || w->prev.st_gid != w->attr.st_gid
2400 || w->prev.st_rdev != w->attr.st_rdev
2401 || w->prev.st_size != w->attr.st_size
2402 || w->prev.st_atime != w->attr.st_atime
2403 || w->prev.st_mtime != w->attr.st_mtime
2404 || w->prev.st_ctime != w->attr.st_ctime
2405 ) {
2406 #if EV_USE_INOTIFY
2407 infy_del (EV_A_ w);
2408 infy_add (EV_A_ w);
2409 ev_stat_stat (EV_A_ w); /* avoid race... */
2410 #endif
2411
2412 ev_feed_event (EV_A_ w, EV_STAT);
2413 }
2414}
2415
2416void
2417ev_stat_start (EV_P_ ev_stat *w)
2418{
2419 if (expect_false (ev_is_active (w)))
2420 return;
2421
2422 /* since we use memcmp, we need to clear any padding data etc. */
2423 memset (&w->prev, 0, sizeof (ev_statdata));
2424 memset (&w->attr, 0, sizeof (ev_statdata));
2425
2426 ev_stat_stat (EV_A_ w);
2427
2428 if (w->interval < MIN_STAT_INTERVAL)
2429 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2430
2431 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2432 ev_set_priority (&w->timer, ev_priority (w));
2433
2434#if EV_USE_INOTIFY
2435 infy_init (EV_A);
2436
2437 if (fs_fd >= 0)
2438 infy_add (EV_A_ w);
2439 else
2440#endif
2441 ev_timer_start (EV_A_ &w->timer);
2442
2443 ev_start (EV_A_ (W)w, 1);
2444}
2445
2446void
2447ev_stat_stop (EV_P_ ev_stat *w)
2448{
2449 clear_pending (EV_A_ (W)w);
2450 if (expect_false (!ev_is_active (w)))
2451 return;
2452
2453#if EV_USE_INOTIFY
2454 infy_del (EV_A_ w);
2455#endif
2456 ev_timer_stop (EV_A_ &w->timer);
2457
2458 ev_stop (EV_A_ (W)w);
2459}
2460#endif
2461
2462#if EV_IDLE_ENABLE
2463void
2464ev_idle_start (EV_P_ ev_idle *w)
2465{
2466 if (expect_false (ev_is_active (w)))
2467 return;
2468
2469 pri_adjust (EV_A_ (W)w);
2470
2471 {
2472 int active = ++idlecnt [ABSPRI (w)];
2473
2474 ++idleall;
2475 ev_start (EV_A_ (W)w, active);
2476
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w;
2479 }
2480}
2481
2482void
2483ev_idle_stop (EV_P_ ev_idle *w)
2484{
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494
2495 ev_stop (EV_A_ (W)w);
2496 --idleall;
2497 }
2498}
2499#endif
2500
2501void
2502ev_prepare_start (EV_P_ ev_prepare *w)
2503{
2504 if (expect_false (ev_is_active (w)))
2505 return;
2506
2507 ev_start (EV_A_ (W)w, ++preparecnt);
2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2509 prepares [preparecnt - 1] = w;
2510}
2511
2512void
2513ev_prepare_stop (EV_P_ ev_prepare *w)
2514{
2515 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w)))
2517 return;
2518
2519 {
2520 int active = ev_active (w);
2521
2522 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active;
2524 }
2525
2526 ev_stop (EV_A_ (W)w);
2527}
2528
2529void
2530ev_check_start (EV_P_ ev_check *w)
2531{
2532 if (expect_false (ev_is_active (w)))
2533 return;
2534
2535 ev_start (EV_A_ (W)w, ++checkcnt);
2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2537 checks [checkcnt - 1] = w;
2538}
2539
2540void
2541ev_check_stop (EV_P_ ev_check *w)
2542{
2543 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w)))
2545 return;
2546
2547 {
2548 int active = ev_active (w);
2549
2550 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active;
2552 }
2553
2554 ev_stop (EV_A_ (W)w);
2555}
2556
2557#if EV_EMBED_ENABLE
2558void noinline
2559ev_embed_sweep (EV_P_ ev_embed *w)
2560{
2561 ev_loop (w->other, EVLOOP_NONBLOCK);
2562}
2563
2564static void
2565embed_io_cb (EV_P_ ev_io *io, int revents)
2566{
2567 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2568
2569 if (ev_cb (w))
2570 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2571 else
2572 ev_loop (w->other, EVLOOP_NONBLOCK);
2573}
2574
2575static void
2576embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2577{
2578 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2579
2580 {
2581 struct ev_loop *loop = w->other;
2582
2583 while (fdchangecnt)
2584 {
2585 fd_reify (EV_A);
2586 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2587 }
2588 }
2589}
2590
2591#if 0
2592static void
2593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2594{
2595 ev_idle_stop (EV_A_ idle);
2596}
2597#endif
2598
2599void
2600ev_embed_start (EV_P_ ev_embed *w)
2601{
2602 if (expect_false (ev_is_active (w)))
2603 return;
2604
2605 {
2606 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 }
2610
2611 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io);
2613
2614 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare);
2617
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619
2620 ev_start (EV_A_ (W)w, 1);
2621}
2622
2623void
2624ev_embed_stop (EV_P_ ev_embed *w)
2625{
2626 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w)))
2628 return;
2629
2630 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare);
2632
2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_FORK_ENABLE
2638void
2639ev_fork_start (EV_P_ ev_fork *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w;
2647}
2648
2649void
2650ev_fork_stop (EV_P_ ev_fork *w)
2651{
2652 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w)))
2654 return;
2655
2656 {
2657 int active = ev_active (w);
2658
2659 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active;
2661 }
2662
2663 ev_stop (EV_A_ (W)w);
2664}
2665#endif
2666
2667#if EV_ASYNC_ENABLE
2668void
2669ev_async_start (EV_P_ ev_async *w)
2670{
2671 if (expect_false (ev_is_active (w)))
2672 return;
2673
2674 evpipe_init (EV_A);
2675
2676 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w;
2679}
2680
2681void
2682ev_async_stop (EV_P_ ev_async *w)
2683{
2684 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w)))
2686 return;
2687
2688 {
2689 int active = ev_active (w);
2690
2691 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active;
2693 }
2694
2695 ev_stop (EV_A_ (W)w);
2696}
2697
2698void
2699ev_async_send (EV_P_ ev_async *w)
2700{
2701 w->sent = 1;
2702 evpipe_write (EV_A_ &gotasync);
2703}
2704#endif
2705
1604/*****************************************************************************/ 2706/*****************************************************************************/
1605 2707
1606struct ev_once 2708struct ev_once
1607{ 2709{
1608 struct ev_io io; 2710 ev_io io;
1609 struct ev_timer to; 2711 ev_timer to;
1610 void (*cb)(int revents, void *arg); 2712 void (*cb)(int revents, void *arg);
1611 void *arg; 2713 void *arg;
1612}; 2714};
1613 2715
1614static void 2716static void
1623 2725
1624 cb (revents, arg); 2726 cb (revents, arg);
1625} 2727}
1626 2728
1627static void 2729static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 2730once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 2731{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2732 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1631} 2733}
1632 2734
1633static void 2735static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 2736once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 2737{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1637} 2739}
1638 2740
1639void 2741void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2742ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 2743{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2744 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 2745
1644 if (!once) 2746 if (expect_false (!once))
2747 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2748 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1646 else 2749 return;
1647 { 2750 }
2751
1648 once->cb = cb; 2752 once->cb = cb;
1649 once->arg = arg; 2753 once->arg = arg;
1650 2754
1651 ev_init (&once->io, once_cb_io); 2755 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 2756 if (fd >= 0)
1653 { 2757 {
1654 ev_io_set (&once->io, fd, events); 2758 ev_io_set (&once->io, fd, events);
1655 ev_io_start (EV_A_ &once->io); 2759 ev_io_start (EV_A_ &once->io);
1656 } 2760 }
1657 2761
1658 ev_init (&once->to, once_cb_to); 2762 ev_init (&once->to, once_cb_to);
1659 if (timeout >= 0.) 2763 if (timeout >= 0.)
1660 { 2764 {
1661 ev_timer_set (&once->to, timeout, 0.); 2765 ev_timer_set (&once->to, timeout, 0.);
1662 ev_timer_start (EV_A_ &once->to); 2766 ev_timer_start (EV_A_ &once->to);
1663 }
1664 } 2767 }
1665} 2768}
2769
2770#if EV_MULTIPLICITY
2771 #include "ev_wrap.h"
2772#endif
1666 2773
1667#ifdef __cplusplus 2774#ifdef __cplusplus
1668} 2775}
1669#endif 2776#endif
1670 2777

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines