ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
114 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 155# include <sys/time.h>
118# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
119#else 158#else
120# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 160# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 241
163#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
166#endif 245#endif
168#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
171#endif 250#endif
172 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
173#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 268# include <winsock.h>
175#endif 269#endif
176 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
177/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 294
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 298
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 299#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 301# define noinline __attribute__ ((noinline))
193#else 302#else
194# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
195# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
196#endif 308#endif
197 309
198#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
200 319
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 322
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
206 325
207typedef struct ev_watcher *W; 326typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
210 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
212 338
213#ifdef _WIN32 339#ifdef _WIN32
214# include "ev_win32.c" 340# include "ev_win32.c"
215#endif 341#endif
216 342
217/*****************************************************************************/ 343/*****************************************************************************/
218 344
219static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
220 346
347void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 349{
223 syserr_cb = cb; 350 syserr_cb = cb;
224} 351}
225 352
226static void 353static void noinline
227syserr (const char *msg) 354syserr (const char *msg)
228{ 355{
229 if (!msg) 356 if (!msg)
230 msg = "(libev) system error"; 357 msg = "(libev) system error";
231 358
236 perror (msg); 363 perror (msg);
237 abort (); 364 abort ();
238 } 365 }
239} 366}
240 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
241static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 384
385void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 387{
245 alloc = cb; 388 alloc = cb;
246} 389}
247 390
248static void * 391inline_speed void *
249ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
250{ 393{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
252 395
253 if (!ptr && size) 396 if (!ptr && size)
254 { 397 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 399 abort ();
277typedef struct 420typedef struct
278{ 421{
279 W w; 422 W w;
280 int events; 423 int events;
281} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
428typedef struct
429{
430 WL head;
431} ANFS;
432#endif
433
434/* Heap Entry */
435#if EV_HEAP_CACHE_AT
436 typedef struct {
437 WT w;
438 ev_tstamp at;
439 } ANHE;
440
441 #define ANHE_w(he) (he) /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */
444#else
445 typedef WT ANHE;
446
447 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he)
450#endif
282 451
283#if EV_MULTIPLICITY 452#if EV_MULTIPLICITY
284 453
285 struct ev_loop 454 struct ev_loop
286 { 455 {
320 gettimeofday (&tv, 0); 489 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 490 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 491#endif
323} 492}
324 493
325inline ev_tstamp 494ev_tstamp inline_size
326get_clock (void) 495get_clock (void)
327{ 496{
328#if EV_USE_MONOTONIC 497#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 498 if (expect_true (have_monotonic))
330 { 499 {
343{ 512{
344 return ev_rt_now; 513 return ev_rt_now;
345} 514}
346#endif 515#endif
347 516
348#define array_roundsize(type,n) (((n) | 4) & ~3) 517void
518ev_sleep (ev_tstamp delay)
519{
520 if (delay > 0.)
521 {
522#if EV_USE_NANOSLEEP
523 struct timespec ts;
524
525 ts.tv_sec = (time_t)delay;
526 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
527
528 nanosleep (&ts, 0);
529#elif defined(_WIN32)
530 Sleep ((unsigned long)(delay * 1e3));
531#else
532 struct timeval tv;
533
534 tv.tv_sec = (time_t)delay;
535 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
536
537 select (0, 0, 0, 0, &tv);
538#endif
539 }
540}
541
542/*****************************************************************************/
543
544#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
545
546int inline_size
547array_nextsize (int elem, int cur, int cnt)
548{
549 int ncur = cur + 1;
550
551 do
552 ncur <<= 1;
553 while (cnt > ncur);
554
555 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
556 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
557 {
558 ncur *= elem;
559 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
560 ncur = ncur - sizeof (void *) * 4;
561 ncur /= elem;
562 }
563
564 return ncur;
565}
566
567static noinline void *
568array_realloc (int elem, void *base, int *cur, int cnt)
569{
570 *cur = array_nextsize (elem, *cur, cnt);
571 return ev_realloc (base, elem * *cur);
572}
349 573
350#define array_needsize(type,base,cur,cnt,init) \ 574#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 575 if (expect_false ((cnt) > (cur))) \
352 { \ 576 { \
353 int newcnt = cur; \ 577 int ocur_ = (cur); \
354 do \ 578 (base) = (type *)array_realloc \
355 { \ 579 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 580 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 581 }
364 582
583#if 0
365#define array_slim(type,stem) \ 584#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 585 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 586 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 587 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 588 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 589 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 590 }
591#endif
372 592
373#define array_free(stem, idx) \ 593#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 594 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 595
376/*****************************************************************************/ 596/*****************************************************************************/
377 597
378static void 598void noinline
599ev_feed_event (EV_P_ void *w, int revents)
600{
601 W w_ = (W)w;
602 int pri = ABSPRI (w_);
603
604 if (expect_false (w_->pending))
605 pendings [pri][w_->pending - 1].events |= revents;
606 else
607 {
608 w_->pending = ++pendingcnt [pri];
609 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
610 pendings [pri][w_->pending - 1].w = w_;
611 pendings [pri][w_->pending - 1].events = revents;
612 }
613}
614
615void inline_speed
616queue_events (EV_P_ W *events, int eventcnt, int type)
617{
618 int i;
619
620 for (i = 0; i < eventcnt; ++i)
621 ev_feed_event (EV_A_ events [i], type);
622}
623
624/*****************************************************************************/
625
626void inline_size
379anfds_init (ANFD *base, int count) 627anfds_init (ANFD *base, int count)
380{ 628{
381 while (count--) 629 while (count--)
382 { 630 {
383 base->head = 0; 631 base->head = 0;
386 634
387 ++base; 635 ++base;
388 } 636 }
389} 637}
390 638
391void 639void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 640fd_event (EV_P_ int fd, int revents)
422{ 641{
423 ANFD *anfd = anfds + fd; 642 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 643 ev_io *w;
425 644
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 645 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 646 {
428 int ev = w->events & revents; 647 int ev = w->events & revents;
429 648
430 if (ev) 649 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 650 ev_feed_event (EV_A_ (W)w, ev);
433} 652}
434 653
435void 654void
436ev_feed_fd_event (EV_P_ int fd, int revents) 655ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 656{
657 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 658 fd_event (EV_A_ fd, revents);
439} 659}
440 660
441/*****************************************************************************/ 661void inline_size
442
443inline void
444fd_reify (EV_P) 662fd_reify (EV_P)
445{ 663{
446 int i; 664 int i;
447 665
448 for (i = 0; i < fdchangecnt; ++i) 666 for (i = 0; i < fdchangecnt; ++i)
449 { 667 {
450 int fd = fdchanges [i]; 668 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 669 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 670 ev_io *w;
453 671
454 int events = 0; 672 unsigned char events = 0;
455 673
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 674 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 675 events |= (unsigned char)w->events;
458 676
459#if EV_SELECT_IS_WINSOCKET 677#if EV_SELECT_IS_WINSOCKET
460 if (events) 678 if (events)
461 { 679 {
462 unsigned long argp; 680 unsigned long argp;
681 #ifdef EV_FD_TO_WIN32_HANDLE
682 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
683 #else
463 anfd->handle = _get_osfhandle (fd); 684 anfd->handle = _get_osfhandle (fd);
685 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 686 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 687 }
466#endif 688#endif
467 689
690 {
691 unsigned char o_events = anfd->events;
692 unsigned char o_reify = anfd->reify;
693
468 anfd->reify = 0; 694 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 695 anfd->events = events;
696
697 if (o_events != events || o_reify & EV_IOFDSET)
698 backend_modify (EV_A_ fd, o_events, events);
699 }
472 } 700 }
473 701
474 fdchangecnt = 0; 702 fdchangecnt = 0;
475} 703}
476 704
477static void 705void inline_size
478fd_change (EV_P_ int fd) 706fd_change (EV_P_ int fd, int flags)
479{ 707{
480 if (expect_false (anfds [fd].reify)) 708 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 709 anfds [fd].reify |= flags;
484 710
711 if (expect_true (!reify))
712 {
485 ++fdchangecnt; 713 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 714 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 715 fdchanges [fdchangecnt - 1] = fd;
716 }
488} 717}
489 718
490static void 719void inline_speed
491fd_kill (EV_P_ int fd) 720fd_kill (EV_P_ int fd)
492{ 721{
493 struct ev_io *w; 722 ev_io *w;
494 723
495 while ((w = (struct ev_io *)anfds [fd].head)) 724 while ((w = (ev_io *)anfds [fd].head))
496 { 725 {
497 ev_io_stop (EV_A_ w); 726 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 727 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 728 }
500} 729}
501 730
502inline int 731int inline_size
503fd_valid (int fd) 732fd_valid (int fd)
504{ 733{
505#ifdef _WIN32 734#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 735 return _get_osfhandle (fd) != -1;
507#else 736#else
508 return fcntl (fd, F_GETFD) != -1; 737 return fcntl (fd, F_GETFD) != -1;
509#endif 738#endif
510} 739}
511 740
512/* called on EBADF to verify fds */ 741/* called on EBADF to verify fds */
513static void 742static void noinline
514fd_ebadf (EV_P) 743fd_ebadf (EV_P)
515{ 744{
516 int fd; 745 int fd;
517 746
518 for (fd = 0; fd < anfdmax; ++fd) 747 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 749 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 750 fd_kill (EV_A_ fd);
522} 751}
523 752
524/* called on ENOMEM in select/poll to kill some fds and retry */ 753/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 754static void noinline
526fd_enomem (EV_P) 755fd_enomem (EV_P)
527{ 756{
528 int fd; 757 int fd;
529 758
530 for (fd = anfdmax; fd--; ) 759 for (fd = anfdmax; fd--; )
534 return; 763 return;
535 } 764 }
536} 765}
537 766
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 767/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 768static void noinline
540fd_rearm_all (EV_P) 769fd_rearm_all (EV_P)
541{ 770{
542 int fd; 771 int fd;
543 772
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 773 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 774 if (anfds [fd].events)
547 { 775 {
548 anfds [fd].events = 0; 776 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 777 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 778 }
551} 779}
552 780
553/*****************************************************************************/ 781/*****************************************************************************/
554 782
555static void 783/*
784 * the heap functions want a real array index. array index 0 uis guaranteed to not
785 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
786 * the branching factor of the d-tree.
787 */
788
789/*
790 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers.
794 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP
797
798#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800
801/* towards the root */
802void inline_speed
556upheap (WT *heap, int k) 803upheap (ANHE *heap, int k)
557{ 804{
558 WT w = heap [k]; 805 ANHE he = heap [k];
559 806
560 while (k && heap [k >> 1]->at > w->at) 807 for (;;)
561 { 808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
562 heap [k] = heap [k >> 1]; 814 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 815 ev_active (ANHE_w (heap [k])) = k;
564 k >>= 1; 816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822
823/* away from the root */
824void inline_speed
825downheap (ANHE *heap, int N, int k)
826{
827 ANHE he = heap [k];
828 ANHE *E = heap + N + HEAP0;
829
830 for (;;)
831 {
832 ev_tstamp minat;
833 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
835
836 // find minimum child
837 if (expect_true (pos + DHEAP - 1 < E))
838 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 }
844 else if (pos < E)
845 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else
852 break;
853
854 if (ANHE_at (he) <= minat)
855 break;
856
857 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859
860 k = minpos - heap;
861 }
862
863 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865}
866
867#else // 4HEAP
868
869#define HEAP0 1
870
871/* towards the root */
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
565 } 888 }
566 889
567 heap [k] = w; 890 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
569
570} 892}
571 893
572static void 894/* away from the root */
895void inline_speed
573downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
574{ 897{
575 WT w = heap [k]; 898 ANHE he = heap [k];
576 899
577 while (k < (N >> 1)) 900 for (;;)
578 { 901 {
579 int j = k << 1; 902 int c = k << 1;
580 903
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 904 if (c > N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 905 break;
586 906
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (w->at <= ANHE_at (heap [c]))
911 break;
912
587 heap [k] = heap [j]; 913 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
589 k = j; 916 k = c;
590 } 917 }
591 918
592 heap [k] = w; 919 heap [k] = he;
593 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
594} 921}
922#endif
595 923
596inline void 924void inline_size
597adjustheap (WT *heap, int N, int k) 925adjustheap (ANHE *heap, int N, int k)
598{ 926{
599 upheap (heap, k); 927 upheap (heap, k);
600 downheap (heap, N, k); 928 downheap (heap, N, k);
601} 929}
602 930
603/*****************************************************************************/ 931/*****************************************************************************/
604 932
605typedef struct 933typedef struct
606{ 934{
607 WL head; 935 WL head;
608 sig_atomic_t volatile gotsig; 936 EV_ATOMIC_T gotsig;
609} ANSIG; 937} ANSIG;
610 938
611static ANSIG *signals; 939static ANSIG *signals;
612static int signalmax; 940static int signalmax;
613 941
614static int sigpipe [2]; 942static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 943
618static void 944void inline_size
619signals_init (ANSIG *base, int count) 945signals_init (ANSIG *base, int count)
620{ 946{
621 while (count--) 947 while (count--)
622 { 948 {
623 base->head = 0; 949 base->head = 0;
625 951
626 ++base; 952 ++base;
627 } 953 }
628} 954}
629 955
630static void 956/*****************************************************************************/
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636 957
637 signals [signum - 1].gotsig = 1; 958void inline_speed
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 959fd_intern (int fd)
683{ 960{
684#ifdef _WIN32 961#ifdef _WIN32
685 int arg = 1; 962 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 963 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 965 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 966 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 967#endif
691} 968}
692 969
970static void noinline
971evpipe_init (EV_P)
972{
973 if (!ev_is_active (&pipeev))
974 {
975#if EV_USE_EVENTFD
976 if ((evfd = eventfd (0, 0)) >= 0)
977 {
978 evpipe [0] = -1;
979 fd_intern (evfd);
980 ev_io_set (&pipeev, evfd, EV_READ);
981 }
982 else
983#endif
984 {
985 while (pipe (evpipe))
986 syserr ("(libev) error creating signal/async pipe");
987
988 fd_intern (evpipe [0]);
989 fd_intern (evpipe [1]);
990 ev_io_set (&pipeev, evpipe [0], EV_READ);
991 }
992
993 ev_io_start (EV_A_ &pipeev);
994 ev_unref (EV_A); /* watcher should not keep loop alive */
995 }
996}
997
998void inline_size
999evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1000{
1001 if (!*flag)
1002 {
1003 int old_errno = errno; /* save errno because write might clobber it */
1004
1005 *flag = 1;
1006
1007#if EV_USE_EVENTFD
1008 if (evfd >= 0)
1009 {
1010 uint64_t counter = 1;
1011 write (evfd, &counter, sizeof (uint64_t));
1012 }
1013 else
1014#endif
1015 write (evpipe [1], &old_errno, 1);
1016
1017 errno = old_errno;
1018 }
1019}
1020
693static void 1021static void
694siginit (EV_P) 1022pipecb (EV_P_ ev_io *iow, int revents)
695{ 1023{
696 fd_intern (sigpipe [0]); 1024#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 1025 if (evfd >= 0)
1026 {
1027 uint64_t counter;
1028 read (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 {
1033 char dummy;
1034 read (evpipe [0], &dummy, 1);
1035 }
698 1036
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1037 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 1038 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1039 int signum;
1040 gotsig = 0;
1041
1042 for (signum = signalmax; signum--; )
1043 if (signals [signum].gotsig)
1044 ev_feed_signal_event (EV_A_ signum + 1);
1045 }
1046
1047#if EV_ASYNC_ENABLE
1048 if (gotasync)
1049 {
1050 int i;
1051 gotasync = 0;
1052
1053 for (i = asynccnt; i--; )
1054 if (asyncs [i]->sent)
1055 {
1056 asyncs [i]->sent = 0;
1057 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1058 }
1059 }
1060#endif
702} 1061}
703 1062
704/*****************************************************************************/ 1063/*****************************************************************************/
705 1064
706static struct ev_child *childs [PID_HASHSIZE]; 1065static void
1066ev_sighandler (int signum)
1067{
1068#if EV_MULTIPLICITY
1069 struct ev_loop *loop = &default_loop_struct;
1070#endif
1071
1072#if _WIN32
1073 signal (signum, ev_sighandler);
1074#endif
1075
1076 signals [signum - 1].gotsig = 1;
1077 evpipe_write (EV_A_ &gotsig);
1078}
1079
1080void noinline
1081ev_feed_signal_event (EV_P_ int signum)
1082{
1083 WL w;
1084
1085#if EV_MULTIPLICITY
1086 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1087#endif
1088
1089 --signum;
1090
1091 if (signum < 0 || signum >= signalmax)
1092 return;
1093
1094 signals [signum].gotsig = 0;
1095
1096 for (w = signals [signum].head; w; w = w->next)
1097 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1098}
1099
1100/*****************************************************************************/
1101
1102static WL childs [EV_PID_HASHSIZE];
707 1103
708#ifndef _WIN32 1104#ifndef _WIN32
709 1105
710static struct ev_signal childev; 1106static ev_signal childev;
1107
1108#ifndef WIFCONTINUED
1109# define WIFCONTINUED(status) 0
1110#endif
1111
1112void inline_speed
1113child_reap (EV_P_ int chain, int pid, int status)
1114{
1115 ev_child *w;
1116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1117
1118 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1119 {
1120 if ((w->pid == pid || !w->pid)
1121 && (!traced || (w->flags & 1)))
1122 {
1123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1124 w->rpid = pid;
1125 w->rstatus = status;
1126 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1127 }
1128 }
1129}
711 1130
712#ifndef WCONTINUED 1131#ifndef WCONTINUED
713# define WCONTINUED 0 1132# define WCONTINUED 0
714#endif 1133#endif
715 1134
716static void 1135static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1136childcb (EV_P_ ev_signal *sw, int revents)
733{ 1137{
734 int pid, status; 1138 int pid, status;
735 1139
1140 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1141 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1142 if (!WCONTINUED
1143 || errno != EINVAL
1144 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1145 return;
1146
738 /* make sure we are called again until all childs have been reaped */ 1147 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1148 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1149 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1150
742 child_reap (EV_A_ sw, pid, pid, status); 1151 child_reap (EV_A_ pid, pid, status);
1152 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1153 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1154}
746 1155
747#endif 1156#endif
748 1157
749/*****************************************************************************/ 1158/*****************************************************************************/
775{ 1184{
776 return EV_VERSION_MINOR; 1185 return EV_VERSION_MINOR;
777} 1186}
778 1187
779/* return true if we are running with elevated privileges and should ignore env variables */ 1188/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1189int inline_size
781enable_secure (void) 1190enable_secure (void)
782{ 1191{
783#ifdef _WIN32 1192#ifdef _WIN32
784 return 0; 1193 return 0;
785#else 1194#else
821} 1230}
822 1231
823unsigned int 1232unsigned int
824ev_embeddable_backends (void) 1233ev_embeddable_backends (void)
825{ 1234{
826 return EVBACKEND_EPOLL 1235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1236
828 | EVBACKEND_PORT; 1237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1238 /* please fix it and tell me how to detect the fix */
1239 flags &= ~EVBACKEND_EPOLL;
1240
1241 return flags;
829} 1242}
830 1243
831unsigned int 1244unsigned int
832ev_backend (EV_P) 1245ev_backend (EV_P)
833{ 1246{
834 return backend; 1247 return backend;
835} 1248}
836 1249
837static void 1250unsigned int
1251ev_loop_count (EV_P)
1252{
1253 return loop_count;
1254}
1255
1256void
1257ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1258{
1259 io_blocktime = interval;
1260}
1261
1262void
1263ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1264{
1265 timeout_blocktime = interval;
1266}
1267
1268static void noinline
838loop_init (EV_P_ unsigned int flags) 1269loop_init (EV_P_ unsigned int flags)
839{ 1270{
840 if (!backend) 1271 if (!backend)
841 { 1272 {
842#if EV_USE_MONOTONIC 1273#if EV_USE_MONOTONIC
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1276 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1277 have_monotonic = 1;
847 } 1278 }
848#endif 1279#endif
849 1280
850 ev_rt_now = ev_time (); 1281 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1282 mn_now = get_clock ();
852 now_floor = mn_now; 1283 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1284 rtmn_diff = ev_rt_now - mn_now;
1285
1286 io_blocktime = 0.;
1287 timeout_blocktime = 0.;
1288 backend = 0;
1289 backend_fd = -1;
1290 gotasync = 0;
1291#if EV_USE_INOTIFY
1292 fs_fd = -2;
1293#endif
1294
1295 /* pid check not overridable via env */
1296#ifndef _WIN32
1297 if (flags & EVFLAG_FORKCHECK)
1298 curpid = getpid ();
1299#endif
854 1300
855 if (!(flags & EVFLAG_NOENV) 1301 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1302 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1303 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1304 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1305
860 if (!(flags & 0x0000ffffUL)) 1306 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1307 flags |= ev_recommended_backends ();
862 1308
863 backend = 0;
864#if EV_USE_PORT 1309#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1310 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1311#endif
867#if EV_USE_KQUEUE 1312#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1313 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1320#endif
876#if EV_USE_SELECT 1321#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1322 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1323#endif
879 1324
880 ev_init (&sigev, sigcb); 1325 ev_init (&pipeev, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1326 ev_set_priority (&pipeev, EV_MAXPRI);
882 } 1327 }
883} 1328}
884 1329
885static void 1330static void noinline
886loop_destroy (EV_P) 1331loop_destroy (EV_P)
887{ 1332{
888 int i; 1333 int i;
1334
1335 if (ev_is_active (&pipeev))
1336 {
1337 ev_ref (EV_A); /* signal watcher */
1338 ev_io_stop (EV_A_ &pipeev);
1339
1340#if EV_USE_EVENTFD
1341 if (evfd >= 0)
1342 close (evfd);
1343#endif
1344
1345 if (evpipe [0] >= 0)
1346 {
1347 close (evpipe [0]);
1348 close (evpipe [1]);
1349 }
1350 }
1351
1352#if EV_USE_INOTIFY
1353 if (fs_fd >= 0)
1354 close (fs_fd);
1355#endif
1356
1357 if (backend_fd >= 0)
1358 close (backend_fd);
889 1359
890#if EV_USE_PORT 1360#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1361 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1362#endif
893#if EV_USE_KQUEUE 1363#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1372#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1373 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1374#endif
905 1375
906 for (i = NUMPRI; i--; ) 1376 for (i = NUMPRI; i--; )
1377 {
907 array_free (pending, [i]); 1378 array_free (pending, [i]);
1379#if EV_IDLE_ENABLE
1380 array_free (idle, [i]);
1381#endif
1382 }
1383
1384 ev_free (anfds); anfdmax = 0;
908 1385
909 /* have to use the microsoft-never-gets-it-right macro */ 1386 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1387 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1388 array_free (timer, EMPTY);
912#if EV_PERIODICS 1389#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1390 array_free (periodic, EMPTY);
914#endif 1391#endif
1392#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1393 array_free (fork, EMPTY);
1394#endif
916 array_free (prepare, EMPTY0); 1395 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1396 array_free (check, EMPTY);
1397#if EV_ASYNC_ENABLE
1398 array_free (async, EMPTY);
1399#endif
918 1400
919 backend = 0; 1401 backend = 0;
920} 1402}
921 1403
922static void 1404#if EV_USE_INOTIFY
1405void inline_size infy_fork (EV_P);
1406#endif
1407
1408void inline_size
923loop_fork (EV_P) 1409loop_fork (EV_P)
924{ 1410{
925#if EV_USE_PORT 1411#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1412 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1413#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1415 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1416#endif
931#if EV_USE_EPOLL 1417#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1418 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1419#endif
1420#if EV_USE_INOTIFY
1421 infy_fork (EV_A);
1422#endif
934 1423
935 if (ev_is_active (&sigev)) 1424 if (ev_is_active (&pipeev))
936 { 1425 {
937 /* default loop */ 1426 /* this "locks" the handlers against writing to the pipe */
1427 /* while we modify the fd vars */
1428 gotsig = 1;
1429#if EV_ASYNC_ENABLE
1430 gotasync = 1;
1431#endif
938 1432
939 ev_ref (EV_A); 1433 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1434 ev_io_stop (EV_A_ &pipeev);
1435
1436#if EV_USE_EVENTFD
1437 if (evfd >= 0)
1438 close (evfd);
1439#endif
1440
1441 if (evpipe [0] >= 0)
1442 {
941 close (sigpipe [0]); 1443 close (evpipe [0]);
942 close (sigpipe [1]); 1444 close (evpipe [1]);
1445 }
943 1446
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1447 evpipe_init (EV_A);
1448 /* now iterate over everything, in case we missed something */
1449 pipecb (EV_A_ &pipeev, EV_READ);
948 } 1450 }
949 1451
950 postfork = 0; 1452 postfork = 0;
951} 1453}
952 1454
974} 1476}
975 1477
976void 1478void
977ev_loop_fork (EV_P) 1479ev_loop_fork (EV_P)
978{ 1480{
979 postfork = 1; 1481 postfork = 1; /* must be in line with ev_default_fork */
980} 1482}
981
982#endif 1483#endif
983 1484
984#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
985struct ev_loop * 1486struct ev_loop *
986ev_default_loop_init (unsigned int flags) 1487ev_default_loop_init (unsigned int flags)
987#else 1488#else
988int 1489int
989ev_default_loop (unsigned int flags) 1490ev_default_loop (unsigned int flags)
990#endif 1491#endif
991{ 1492{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1493 if (!ev_default_loop_ptr)
997 { 1494 {
998#if EV_MULTIPLICITY 1495#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1496 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1497#else
1003 1500
1004 loop_init (EV_A_ flags); 1501 loop_init (EV_A_ flags);
1005 1502
1006 if (ev_backend (EV_A)) 1503 if (ev_backend (EV_A))
1007 { 1504 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1505#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1506 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1507 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1508 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1509 ev_unref (EV_A); /* child watcher should not keep loop alive */
1031#ifndef _WIN32 1526#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1527 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1528 ev_signal_stop (EV_A_ &childev);
1034#endif 1529#endif
1035 1530
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1531 loop_destroy (EV_A);
1043} 1532}
1044 1533
1045void 1534void
1046ev_default_fork (void) 1535ev_default_fork (void)
1048#if EV_MULTIPLICITY 1537#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1538 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1539#endif
1051 1540
1052 if (backend) 1541 if (backend)
1053 postfork = 1; 1542 postfork = 1; /* must be in line with ev_loop_fork */
1054} 1543}
1055 1544
1056/*****************************************************************************/ 1545/*****************************************************************************/
1057 1546
1058static int 1547void
1059any_pending (EV_P) 1548ev_invoke (EV_P_ void *w, int revents)
1060{ 1549{
1061 int pri; 1550 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1551}
1069 1552
1070inline void 1553void inline_speed
1071call_pending (EV_P) 1554call_pending (EV_P)
1072{ 1555{
1073 int pri; 1556 int pri;
1074 1557
1075 for (pri = NUMPRI; pri--; ) 1558 for (pri = NUMPRI; pri--; )
1077 { 1560 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1561 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1562
1080 if (expect_true (p->w)) 1563 if (expect_true (p->w))
1081 { 1564 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566
1082 p->w->pending = 0; 1567 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1568 EV_CB_INVOKE (p->w, p->events);
1084 } 1569 }
1085 } 1570 }
1086} 1571}
1087 1572
1088inline void 1573#if EV_IDLE_ENABLE
1574void inline_size
1575idle_reify (EV_P)
1576{
1577 if (expect_false (idleall))
1578 {
1579 int pri;
1580
1581 for (pri = NUMPRI; pri--; )
1582 {
1583 if (pendingcnt [pri])
1584 break;
1585
1586 if (idlecnt [pri])
1587 {
1588 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1589 break;
1590 }
1591 }
1592 }
1593}
1594#endif
1595
1596void inline_size
1089timers_reify (EV_P) 1597timers_reify (EV_P)
1090{ 1598{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1092 { 1600 {
1093 struct ev_timer *w = timers [0]; 1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1094 1602
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1604
1097 /* first reschedule or stop timer */ 1605 /* first reschedule or stop timer */
1098 if (w->repeat) 1606 if (w->repeat)
1099 { 1607 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1609
1102 ((WT)w)->at += w->repeat; 1610 ev_at (w) += w->repeat;
1103 if (((WT)w)->at < mn_now) 1611 if (ev_at (w) < mn_now)
1104 ((WT)w)->at = mn_now; 1612 ev_at (w) = mn_now;
1105 1613
1106 downheap ((WT *)timers, timercnt, 0); 1614 downheap (timers, timercnt, HEAP0);
1107 } 1615 }
1108 else 1616 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1618
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1620 }
1113} 1621}
1114 1622
1115#if EV_PERIODICS 1623#if EV_PERIODIC_ENABLE
1116inline void 1624void inline_size
1117periodics_reify (EV_P) 1625periodics_reify (EV_P)
1118{ 1626{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1120 { 1628 {
1121 struct ev_periodic *w = periodics [0]; 1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1122 1630
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1632
1125 /* first reschedule or stop timer */ 1633 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1634 if (w->reschedule_cb)
1127 { 1635 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1638 downheap (periodics, periodiccnt, 1);
1131 } 1639 }
1132 else if (w->interval) 1640 else if (w->interval)
1133 { 1641 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1645 downheap (periodics, periodiccnt, HEAP0);
1137 } 1646 }
1138 else 1647 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1649
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1651 }
1143} 1652}
1144 1653
1145static void 1654static void noinline
1146periodics_reschedule (EV_P) 1655periodics_reschedule (EV_P)
1147{ 1656{
1148 int i; 1657 int i;
1149 1658
1150 /* adjust periodics after time jump */ 1659 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1660 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1152 { 1661 {
1153 struct ev_periodic *w = periodics [i]; 1662 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1154 1663
1155 if (w->reschedule_cb) 1664 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1666 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1668 }
1160 1669
1161 /* now rebuild the heap */ 1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1162 for (i = periodiccnt >> 1; i--; ) 1671 for (i = periodiccnt >> 1; --i; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1672 downheap (periodics, periodiccnt, i + HEAP0);
1164} 1673}
1165#endif 1674#endif
1166 1675
1167inline int 1676void inline_speed
1168time_update_monotonic (EV_P) 1677time_update (EV_P_ ev_tstamp max_block)
1169{ 1678{
1679 int i;
1680
1681#if EV_USE_MONOTONIC
1682 if (expect_true (have_monotonic))
1683 {
1684 ev_tstamp odiff = rtmn_diff;
1685
1170 mn_now = get_clock (); 1686 mn_now = get_clock ();
1171 1687
1688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1690 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1691 {
1174 ev_rt_now = rtmn_diff + mn_now; 1692 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1693 return;
1176 } 1694 }
1177 else 1695
1178 {
1179 now_floor = mn_now; 1696 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1697 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1698
1185inline void 1699 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1700 * on the choice of "4": one iteration isn't enough,
1187{ 1701 * in case we get preempted during the calls to
1188 int i; 1702 * ev_time and get_clock. a second call is almost guaranteed
1189 1703 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1704 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1705 * in the unlikely event of having been preempted here.
1192 { 1706 */
1193 if (time_update_monotonic (EV_A)) 1707 for (i = 4; --i; )
1194 { 1708 {
1195 ev_tstamp odiff = rtmn_diff; 1709 rtmn_diff = ev_rt_now - mn_now;
1196 1710
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1711 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1712 return; /* all is well */
1713
1714 ev_rt_now = ev_time ();
1715 mn_now = get_clock ();
1716 now_floor = mn_now;
1717 }
1718
1719# if EV_PERIODIC_ENABLE
1720 periodics_reschedule (EV_A);
1721# endif
1722 /* no timer adjustment, as the monotonic clock doesn't jump */
1723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1724 }
1725 else
1726#endif
1727 {
1728 ev_rt_now = ev_time ();
1729
1730 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1731 {
1732#if EV_PERIODIC_ENABLE
1733 periodics_reschedule (EV_A);
1734#endif
1735 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i)
1198 { 1737 {
1199 rtmn_diff = ev_rt_now - mn_now; 1738 ANHE *he = timers + i + HEAP0;
1200 1739 ANHE_w (*he)->at += ev_rt_now - mn_now;
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1740 ANHE_at_set (*he);
1202 return; /* all is well */
1203
1204 ev_rt_now = ev_time ();
1205 mn_now = get_clock ();
1206 now_floor = mn_now;
1207 } 1741 }
1208
1209# if EV_PERIODICS
1210 periodics_reschedule (EV_A);
1211# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1742 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 1743
1232 mn_now = ev_rt_now; 1744 mn_now = ev_rt_now;
1233 } 1745 }
1234} 1746}
1235 1747
1248static int loop_done; 1760static int loop_done;
1249 1761
1250void 1762void
1251ev_loop (EV_P_ int flags) 1763ev_loop (EV_P_ int flags)
1252{ 1764{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1765 loop_done = EVUNLOOP_CANCEL;
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
1256 1766
1257 while (activecnt) 1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1768
1769 do
1258 { 1770 {
1771#ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid))
1774 {
1775 curpid = getpid ();
1776 postfork = 1;
1777 }
1778#endif
1779
1780#if EV_FORK_ENABLE
1781 /* we might have forked, so queue fork handlers */
1782 if (expect_false (postfork))
1783 if (forkcnt)
1784 {
1785 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1786 call_pending (EV_A);
1787 }
1788#endif
1789
1259 /* queue check watchers (and execute them) */ 1790 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1791 if (expect_false (preparecnt))
1261 { 1792 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1793 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1794 call_pending (EV_A);
1264 } 1795 }
1265 1796
1797 if (expect_false (!activecnt))
1798 break;
1799
1266 /* we might have forked, so reify kernel state if necessary */ 1800 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1801 if (expect_false (postfork))
1268 loop_fork (EV_A); 1802 loop_fork (EV_A);
1269 1803
1270 /* update fd-related kernel structures */ 1804 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1805 fd_reify (EV_A);
1272 1806
1273 /* calculate blocking time */ 1807 /* calculate blocking time */
1274 { 1808 {
1275 double block; 1809 ev_tstamp waittime = 0.;
1810 ev_tstamp sleeptime = 0.;
1276 1811
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1812 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1278 block = 0.; /* do not block at all */
1279 else
1280 { 1813 {
1281 /* update time to cancel out callback processing overhead */ 1814 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 1815 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 1816
1292 block = MAX_BLOCKTIME; 1817 waittime = MAX_BLOCKTIME;
1293 1818
1294 if (timercnt) 1819 if (timercnt)
1295 { 1820 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1297 if (block > to) block = to; 1822 if (waittime > to) waittime = to;
1298 } 1823 }
1299 1824
1300#if EV_PERIODICS 1825#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1826 if (periodiccnt)
1302 { 1827 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1829 if (waittime > to) waittime = to;
1305 } 1830 }
1306#endif 1831#endif
1307 1832
1308 if (expect_false (block < 0.)) block = 0.; 1833 if (expect_false (waittime < timeout_blocktime))
1834 waittime = timeout_blocktime;
1835
1836 sleeptime = waittime - backend_fudge;
1837
1838 if (expect_true (sleeptime > io_blocktime))
1839 sleeptime = io_blocktime;
1840
1841 if (sleeptime)
1842 {
1843 ev_sleep (sleeptime);
1844 waittime -= sleeptime;
1845 }
1309 } 1846 }
1310 1847
1848 ++loop_count;
1311 backend_poll (EV_A_ block); 1849 backend_poll (EV_A_ waittime);
1850
1851 /* update ev_rt_now, do magic */
1852 time_update (EV_A_ waittime + sleeptime);
1312 } 1853 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 1854
1317 /* queue pending timers and reschedule them */ 1855 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1856 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1857#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1858 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1859#endif
1322 1860
1861#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1862 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1863 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1864#endif
1326 1865
1327 /* queue check watchers, to be executed first */ 1866 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1867 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1868 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1869
1331 call_pending (EV_A); 1870 call_pending (EV_A);
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 1871 }
1872 while (expect_true (
1873 activecnt
1874 && !loop_done
1875 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1876 ));
1336 1877
1337 if (loop_done == EVUNLOOP_ONE) 1878 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1879 loop_done = EVUNLOOP_CANCEL;
1339} 1880}
1340 1881
1344 loop_done = how; 1885 loop_done = how;
1345} 1886}
1346 1887
1347/*****************************************************************************/ 1888/*****************************************************************************/
1348 1889
1349inline void 1890void inline_size
1350wlist_add (WL *head, WL elem) 1891wlist_add (WL *head, WL elem)
1351{ 1892{
1352 elem->next = *head; 1893 elem->next = *head;
1353 *head = elem; 1894 *head = elem;
1354} 1895}
1355 1896
1356inline void 1897void inline_size
1357wlist_del (WL *head, WL elem) 1898wlist_del (WL *head, WL elem)
1358{ 1899{
1359 while (*head) 1900 while (*head)
1360 { 1901 {
1361 if (*head == elem) 1902 if (*head == elem)
1366 1907
1367 head = &(*head)->next; 1908 head = &(*head)->next;
1368 } 1909 }
1369} 1910}
1370 1911
1371inline void 1912void inline_speed
1372ev_clear_pending (EV_P_ W w) 1913clear_pending (EV_P_ W w)
1373{ 1914{
1374 if (w->pending) 1915 if (w->pending)
1375 { 1916 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1917 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1918 w->pending = 0;
1378 } 1919 }
1379} 1920}
1380 1921
1381inline void 1922int
1923ev_clear_pending (EV_P_ void *w)
1924{
1925 W w_ = (W)w;
1926 int pending = w_->pending;
1927
1928 if (expect_true (pending))
1929 {
1930 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1931 w_->pending = 0;
1932 p->w = 0;
1933 return p->events;
1934 }
1935 else
1936 return 0;
1937}
1938
1939void inline_size
1940pri_adjust (EV_P_ W w)
1941{
1942 int pri = w->priority;
1943 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1944 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1945 w->priority = pri;
1946}
1947
1948void inline_speed
1382ev_start (EV_P_ W w, int active) 1949ev_start (EV_P_ W w, int active)
1383{ 1950{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1951 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1952 w->active = active;
1388 ev_ref (EV_A); 1953 ev_ref (EV_A);
1389} 1954}
1390 1955
1391inline void 1956void inline_size
1392ev_stop (EV_P_ W w) 1957ev_stop (EV_P_ W w)
1393{ 1958{
1394 ev_unref (EV_A); 1959 ev_unref (EV_A);
1395 w->active = 0; 1960 w->active = 0;
1396} 1961}
1397 1962
1398/*****************************************************************************/ 1963/*****************************************************************************/
1399 1964
1400void 1965void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 1966ev_io_start (EV_P_ ev_io *w)
1402{ 1967{
1403 int fd = w->fd; 1968 int fd = w->fd;
1404 1969
1405 if (expect_false (ev_is_active (w))) 1970 if (expect_false (ev_is_active (w)))
1406 return; 1971 return;
1407 1972
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 1973 assert (("ev_io_start called with negative fd", fd >= 0));
1409 1974
1410 ev_start (EV_A_ (W)w, 1); 1975 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1977 wlist_add (&anfds[fd].head, (WL)w);
1413 1978
1414 fd_change (EV_A_ fd); 1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET;
1415} 1981}
1416 1982
1417void 1983void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 1984ev_io_stop (EV_P_ ev_io *w)
1419{ 1985{
1420 ev_clear_pending (EV_A_ (W)w); 1986 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1987 if (expect_false (!ev_is_active (w)))
1422 return; 1988 return;
1423 1989
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 1991
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1992 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 1993 ev_stop (EV_A_ (W)w);
1428 1994
1429 fd_change (EV_A_ w->fd); 1995 fd_change (EV_A_ w->fd, 1);
1430} 1996}
1431 1997
1432void 1998void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 1999ev_timer_start (EV_P_ ev_timer *w)
1434{ 2000{
1435 if (expect_false (ev_is_active (w))) 2001 if (expect_false (ev_is_active (w)))
1436 return; 2002 return;
1437 2003
1438 ((WT)w)->at += mn_now; 2004 ev_at (w) += mn_now;
1439 2005
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 2007
1442 ev_start (EV_A_ (W)w, ++timercnt); 2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1444 timers [timercnt - 1] = w; 2010 ANHE_w (timers [ev_active (w)]) = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 2011 ANHE_at_set (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w));
1446 2013
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1448} 2015}
1449 2016
1450void 2017void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 2018ev_timer_stop (EV_P_ ev_timer *w)
1452{ 2019{
1453 ev_clear_pending (EV_A_ (W)w); 2020 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 2021 if (expect_false (!ev_is_active (w)))
1455 return; 2022 return;
1456 2023
2024 {
2025 int active = ev_active (w);
2026
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1458 2028
1459 if (expect_true (((W)w)->active < timercnt--)) 2029 if (expect_true (active < timercnt + HEAP0 - 1))
1460 { 2030 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 2031 timers [active] = timers [timercnt + HEAP0 - 1];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2032 adjustheap (timers, timercnt, active);
1463 } 2033 }
1464 2034
1465 ((WT)w)->at -= mn_now; 2035 --timercnt;
2036 }
2037
2038 ev_at (w) -= mn_now;
1466 2039
1467 ev_stop (EV_A_ (W)w); 2040 ev_stop (EV_A_ (W)w);
1468} 2041}
1469 2042
1470void 2043void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 2044ev_timer_again (EV_P_ ev_timer *w)
1472{ 2045{
1473 if (ev_is_active (w)) 2046 if (ev_is_active (w))
1474 { 2047 {
1475 if (w->repeat) 2048 if (w->repeat)
1476 { 2049 {
1477 ((WT)w)->at = mn_now + w->repeat; 2050 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]);
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2052 adjustheap (timers, timercnt, ev_active (w));
1479 } 2053 }
1480 else 2054 else
1481 ev_timer_stop (EV_A_ w); 2055 ev_timer_stop (EV_A_ w);
1482 } 2056 }
1483 else if (w->repeat) 2057 else if (w->repeat)
1484 { 2058 {
1485 w->at = w->repeat; 2059 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 2060 ev_timer_start (EV_A_ w);
1487 } 2061 }
1488} 2062}
1489 2063
1490#if EV_PERIODICS 2064#if EV_PERIODIC_ENABLE
1491void 2065void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 2066ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 2067{
1494 if (expect_false (ev_is_active (w))) 2068 if (expect_false (ev_is_active (w)))
1495 return; 2069 return;
1496 2070
1497 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 2073 else if (w->interval)
1500 { 2074 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2075 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 2076 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 2078 }
2079 else
2080 ev_at (w) = w->offset;
1505 2081
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 2084 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 2085 upheap (periodics, ev_active (w));
1510 2086
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1512} 2088}
1513 2089
1514void 2090void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 2091ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 2092{
1517 ev_clear_pending (EV_A_ (W)w); 2093 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 2094 if (expect_false (!ev_is_active (w)))
1519 return; 2095 return;
1520 2096
2097 {
2098 int active = ev_active (w);
2099
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1522 2101
1523 if (expect_true (((W)w)->active < periodiccnt--)) 2102 if (expect_true (active < periodiccnt + HEAP0 - 1))
1524 { 2103 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2105 adjustheap (periodics, periodiccnt, active);
1527 } 2106 }
2107
2108 --periodiccnt;
2109 }
1528 2110
1529 ev_stop (EV_A_ (W)w); 2111 ev_stop (EV_A_ (W)w);
1530} 2112}
1531 2113
1532void 2114void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 2115ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 2116{
1535 /* TODO: use adjustheap and recalculation */ 2117 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 2118 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 2119 ev_periodic_start (EV_A_ w);
1538} 2120}
1539#endif 2121#endif
1540 2122
1541void 2123#ifndef SA_RESTART
1542ev_idle_start (EV_P_ struct ev_idle *w) 2124# define SA_RESTART 0
2125#endif
2126
2127void noinline
2128ev_signal_start (EV_P_ ev_signal *w)
1543{ 2129{
2130#if EV_MULTIPLICITY
2131 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2132#endif
1544 if (expect_false (ev_is_active (w))) 2133 if (expect_false (ev_is_active (w)))
1545 return; 2134 return;
1546 2135
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART
1608# define SA_RESTART 0
1609#endif
1610
1611void
1612ev_signal_start (EV_P_ struct ev_signal *w)
1613{
1614#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif
1617 if (expect_false (ev_is_active (w)))
1618 return;
1619
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 2137
2138 evpipe_init (EV_A);
2139
2140 {
2141#ifndef _WIN32
2142 sigset_t full, prev;
2143 sigfillset (&full);
2144 sigprocmask (SIG_SETMASK, &full, &prev);
2145#endif
2146
2147 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2148
2149#ifndef _WIN32
2150 sigprocmask (SIG_SETMASK, &prev, 0);
2151#endif
2152 }
2153
1622 ev_start (EV_A_ (W)w, 1); 2154 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2155 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 2156
1626 if (!((WL)w)->next) 2157 if (!((WL)w)->next)
1627 { 2158 {
1628#if _WIN32 2159#if _WIN32
1629 signal (w->signum, sighandler); 2160 signal (w->signum, ev_sighandler);
1630#else 2161#else
1631 struct sigaction sa; 2162 struct sigaction sa;
1632 sa.sa_handler = sighandler; 2163 sa.sa_handler = ev_sighandler;
1633 sigfillset (&sa.sa_mask); 2164 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0); 2166 sigaction (w->signum, &sa, 0);
1636#endif 2167#endif
1637 } 2168 }
1638} 2169}
1639 2170
1640void 2171void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 2172ev_signal_stop (EV_P_ ev_signal *w)
1642{ 2173{
1643 ev_clear_pending (EV_A_ (W)w); 2174 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2175 if (expect_false (!ev_is_active (w)))
1645 return; 2176 return;
1646 2177
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2178 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 2179 ev_stop (EV_A_ (W)w);
1649 2180
1650 if (!signals [w->signum - 1].head) 2181 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 2182 signal (w->signum, SIG_DFL);
1652} 2183}
1653 2184
1654void 2185void
1655ev_child_start (EV_P_ struct ev_child *w) 2186ev_child_start (EV_P_ ev_child *w)
1656{ 2187{
1657#if EV_MULTIPLICITY 2188#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 2190#endif
1660 if (expect_false (ev_is_active (w))) 2191 if (expect_false (ev_is_active (w)))
1661 return; 2192 return;
1662 2193
1663 ev_start (EV_A_ (W)w, 1); 2194 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 2196}
1666 2197
1667void 2198void
1668ev_child_stop (EV_P_ struct ev_child *w) 2199ev_child_stop (EV_P_ ev_child *w)
1669{ 2200{
1670 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 2202 if (expect_false (!ev_is_active (w)))
1672 return; 2203 return;
1673 2204
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1676} 2207}
1677 2208
1678#if EV_MULTIPLICITY 2209#if EV_STAT_ENABLE
2210
2211# ifdef _WIN32
2212# undef lstat
2213# define lstat(a,b) _stati64 (a,b)
2214# endif
2215
2216#define DEF_STAT_INTERVAL 5.0074891
2217#define MIN_STAT_INTERVAL 0.1074891
2218
2219static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2220
2221#if EV_USE_INOTIFY
2222# define EV_INOTIFY_BUFSIZE 8192
2223
2224static void noinline
2225infy_add (EV_P_ ev_stat *w)
2226{
2227 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2228
2229 if (w->wd < 0)
2230 {
2231 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2232
2233 /* monitor some parent directory for speedup hints */
2234 /* note that exceeding the hardcoded limit is not a correctness issue, */
2235 /* but an efficiency issue only */
2236 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2237 {
2238 char path [4096];
2239 strcpy (path, w->path);
2240
2241 do
2242 {
2243 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2244 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2245
2246 char *pend = strrchr (path, '/');
2247
2248 if (!pend)
2249 break; /* whoops, no '/', complain to your admin */
2250
2251 *pend = 0;
2252 w->wd = inotify_add_watch (fs_fd, path, mask);
2253 }
2254 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2255 }
2256 }
2257 else
2258 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2259
2260 if (w->wd >= 0)
2261 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2262}
2263
2264static void noinline
2265infy_del (EV_P_ ev_stat *w)
2266{
2267 int slot;
2268 int wd = w->wd;
2269
2270 if (wd < 0)
2271 return;
2272
2273 w->wd = -2;
2274 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2275 wlist_del (&fs_hash [slot].head, (WL)w);
2276
2277 /* remove this watcher, if others are watching it, they will rearm */
2278 inotify_rm_watch (fs_fd, wd);
2279}
2280
2281static void noinline
2282infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2283{
2284 if (slot < 0)
2285 /* overflow, need to check for all hahs slots */
2286 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2287 infy_wd (EV_A_ slot, wd, ev);
2288 else
2289 {
2290 WL w_;
2291
2292 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2293 {
2294 ev_stat *w = (ev_stat *)w_;
2295 w_ = w_->next; /* lets us remove this watcher and all before it */
2296
2297 if (w->wd == wd || wd == -1)
2298 {
2299 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2300 {
2301 w->wd = -1;
2302 infy_add (EV_A_ w); /* re-add, no matter what */
2303 }
2304
2305 stat_timer_cb (EV_A_ &w->timer, 0);
2306 }
2307 }
2308 }
2309}
2310
1679static void 2311static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 2312infy_cb (EV_P_ ev_io *w, int revents)
1681{ 2313{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2314 char buf [EV_INOTIFY_BUFSIZE];
2315 struct inotify_event *ev = (struct inotify_event *)buf;
2316 int ofs;
2317 int len = read (fs_fd, buf, sizeof (buf));
1683 2318
2319 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2320 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2321}
2322
2323void inline_size
2324infy_init (EV_P)
2325{
2326 if (fs_fd != -2)
2327 return;
2328
2329 fs_fd = inotify_init ();
2330
2331 if (fs_fd >= 0)
2332 {
2333 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2334 ev_set_priority (&fs_w, EV_MAXPRI);
2335 ev_io_start (EV_A_ &fs_w);
2336 }
2337}
2338
2339void inline_size
2340infy_fork (EV_P)
2341{
2342 int slot;
2343
2344 if (fs_fd < 0)
2345 return;
2346
2347 close (fs_fd);
2348 fs_fd = inotify_init ();
2349
2350 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2351 {
2352 WL w_ = fs_hash [slot].head;
2353 fs_hash [slot].head = 0;
2354
2355 while (w_)
2356 {
2357 ev_stat *w = (ev_stat *)w_;
2358 w_ = w_->next; /* lets us add this watcher */
2359
2360 w->wd = -1;
2361
2362 if (fs_fd >= 0)
2363 infy_add (EV_A_ w); /* re-add, no matter what */
2364 else
2365 ev_timer_start (EV_A_ &w->timer);
2366 }
2367
2368 }
2369}
2370
2371#endif
2372
2373void
2374ev_stat_stat (EV_P_ ev_stat *w)
2375{
2376 if (lstat (w->path, &w->attr) < 0)
2377 w->attr.st_nlink = 0;
2378 else if (!w->attr.st_nlink)
2379 w->attr.st_nlink = 1;
2380}
2381
2382static void noinline
2383stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2384{
2385 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2386
2387 /* we copy this here each the time so that */
2388 /* prev has the old value when the callback gets invoked */
2389 w->prev = w->attr;
2390 ev_stat_stat (EV_A_ w);
2391
2392 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2393 if (
2394 w->prev.st_dev != w->attr.st_dev
2395 || w->prev.st_ino != w->attr.st_ino
2396 || w->prev.st_mode != w->attr.st_mode
2397 || w->prev.st_nlink != w->attr.st_nlink
2398 || w->prev.st_uid != w->attr.st_uid
2399 || w->prev.st_gid != w->attr.st_gid
2400 || w->prev.st_rdev != w->attr.st_rdev
2401 || w->prev.st_size != w->attr.st_size
2402 || w->prev.st_atime != w->attr.st_atime
2403 || w->prev.st_mtime != w->attr.st_mtime
2404 || w->prev.st_ctime != w->attr.st_ctime
2405 ) {
2406 #if EV_USE_INOTIFY
2407 infy_del (EV_A_ w);
2408 infy_add (EV_A_ w);
2409 ev_stat_stat (EV_A_ w); /* avoid race... */
2410 #endif
2411
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2412 ev_feed_event (EV_A_ w, EV_STAT);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2413 }
1686} 2414}
1687 2415
1688void 2416void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2417ev_stat_start (EV_P_ ev_stat *w)
1690{ 2418{
1691 if (expect_false (ev_is_active (w))) 2419 if (expect_false (ev_is_active (w)))
1692 return; 2420 return;
1693 2421
1694 { 2422 /* since we use memcmp, we need to clear any padding data etc. */
1695 struct ev_loop *loop = w->loop; 2423 memset (&w->prev, 0, sizeof (ev_statdata));
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2424 memset (&w->attr, 0, sizeof (ev_statdata));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699 2425
2426 ev_stat_stat (EV_A_ w);
2427
2428 if (w->interval < MIN_STAT_INTERVAL)
2429 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2430
2431 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2432 ev_set_priority (&w->timer, ev_priority (w));
2433
2434#if EV_USE_INOTIFY
2435 infy_init (EV_A);
2436
2437 if (fs_fd >= 0)
2438 infy_add (EV_A_ w);
2439 else
2440#endif
1700 ev_io_start (EV_A_ &w->io); 2441 ev_timer_start (EV_A_ &w->timer);
2442
1701 ev_start (EV_A_ (W)w, 1); 2443 ev_start (EV_A_ (W)w, 1);
1702} 2444}
1703 2445
1704void 2446void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2447ev_stat_stop (EV_P_ ev_stat *w)
1706{ 2448{
1707 ev_clear_pending (EV_A_ (W)w); 2449 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2450 if (expect_false (!ev_is_active (w)))
1709 return; 2451 return;
1710 2452
2453#if EV_USE_INOTIFY
2454 infy_del (EV_A_ w);
2455#endif
2456 ev_timer_stop (EV_A_ &w->timer);
2457
2458 ev_stop (EV_A_ (W)w);
2459}
2460#endif
2461
2462#if EV_IDLE_ENABLE
2463void
2464ev_idle_start (EV_P_ ev_idle *w)
2465{
2466 if (expect_false (ev_is_active (w)))
2467 return;
2468
2469 pri_adjust (EV_A_ (W)w);
2470
2471 {
2472 int active = ++idlecnt [ABSPRI (w)];
2473
2474 ++idleall;
2475 ev_start (EV_A_ (W)w, active);
2476
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w;
2479 }
2480}
2481
2482void
2483ev_idle_stop (EV_P_ ev_idle *w)
2484{
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494
2495 ev_stop (EV_A_ (W)w);
2496 --idleall;
2497 }
2498}
2499#endif
2500
2501void
2502ev_prepare_start (EV_P_ ev_prepare *w)
2503{
2504 if (expect_false (ev_is_active (w)))
2505 return;
2506
2507 ev_start (EV_A_ (W)w, ++preparecnt);
2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2509 prepares [preparecnt - 1] = w;
2510}
2511
2512void
2513ev_prepare_stop (EV_P_ ev_prepare *w)
2514{
2515 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w)))
2517 return;
2518
2519 {
2520 int active = ev_active (w);
2521
2522 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active;
2524 }
2525
2526 ev_stop (EV_A_ (W)w);
2527}
2528
2529void
2530ev_check_start (EV_P_ ev_check *w)
2531{
2532 if (expect_false (ev_is_active (w)))
2533 return;
2534
2535 ev_start (EV_A_ (W)w, ++checkcnt);
2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2537 checks [checkcnt - 1] = w;
2538}
2539
2540void
2541ev_check_stop (EV_P_ ev_check *w)
2542{
2543 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w)))
2545 return;
2546
2547 {
2548 int active = ev_active (w);
2549
2550 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active;
2552 }
2553
2554 ev_stop (EV_A_ (W)w);
2555}
2556
2557#if EV_EMBED_ENABLE
2558void noinline
2559ev_embed_sweep (EV_P_ ev_embed *w)
2560{
2561 ev_loop (w->other, EVLOOP_NONBLOCK);
2562}
2563
2564static void
2565embed_io_cb (EV_P_ ev_io *io, int revents)
2566{
2567 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2568
2569 if (ev_cb (w))
2570 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2571 else
2572 ev_loop (w->other, EVLOOP_NONBLOCK);
2573}
2574
2575static void
2576embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2577{
2578 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2579
2580 {
2581 struct ev_loop *loop = w->other;
2582
2583 while (fdchangecnt)
2584 {
2585 fd_reify (EV_A);
2586 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2587 }
2588 }
2589}
2590
2591#if 0
2592static void
2593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2594{
2595 ev_idle_stop (EV_A_ idle);
2596}
2597#endif
2598
2599void
2600ev_embed_start (EV_P_ ev_embed *w)
2601{
2602 if (expect_false (ev_is_active (w)))
2603 return;
2604
2605 {
2606 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 }
2610
2611 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io);
2613
2614 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare);
2617
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619
2620 ev_start (EV_A_ (W)w, 1);
2621}
2622
2623void
2624ev_embed_stop (EV_P_ ev_embed *w)
2625{
2626 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w)))
2628 return;
2629
1711 ev_io_stop (EV_A_ &w->io); 2630 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare);
2632
1712 ev_stop (EV_A_ (W)w); 2633 ev_stop (EV_A_ (W)w);
1713} 2634}
1714#endif 2635#endif
1715 2636
2637#if EV_FORK_ENABLE
2638void
2639ev_fork_start (EV_P_ ev_fork *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w;
2647}
2648
2649void
2650ev_fork_stop (EV_P_ ev_fork *w)
2651{
2652 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w)))
2654 return;
2655
2656 {
2657 int active = ev_active (w);
2658
2659 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active;
2661 }
2662
2663 ev_stop (EV_A_ (W)w);
2664}
2665#endif
2666
2667#if EV_ASYNC_ENABLE
2668void
2669ev_async_start (EV_P_ ev_async *w)
2670{
2671 if (expect_false (ev_is_active (w)))
2672 return;
2673
2674 evpipe_init (EV_A);
2675
2676 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w;
2679}
2680
2681void
2682ev_async_stop (EV_P_ ev_async *w)
2683{
2684 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w)))
2686 return;
2687
2688 {
2689 int active = ev_active (w);
2690
2691 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active;
2693 }
2694
2695 ev_stop (EV_A_ (W)w);
2696}
2697
2698void
2699ev_async_send (EV_P_ ev_async *w)
2700{
2701 w->sent = 1;
2702 evpipe_write (EV_A_ &gotasync);
2703}
2704#endif
2705
1716/*****************************************************************************/ 2706/*****************************************************************************/
1717 2707
1718struct ev_once 2708struct ev_once
1719{ 2709{
1720 struct ev_io io; 2710 ev_io io;
1721 struct ev_timer to; 2711 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2712 void (*cb)(int revents, void *arg);
1723 void *arg; 2713 void *arg;
1724}; 2714};
1725 2715
1726static void 2716static void
1735 2725
1736 cb (revents, arg); 2726 cb (revents, arg);
1737} 2727}
1738 2728
1739static void 2729static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2730once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2731{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2732 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2733}
1744 2734
1745static void 2735static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2736once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2737{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2739}
1750 2740
1751void 2741void
1775 ev_timer_set (&once->to, timeout, 0.); 2765 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 2766 ev_timer_start (EV_A_ &once->to);
1777 } 2767 }
1778} 2768}
1779 2769
2770#if EV_MULTIPLICITY
2771 #include "ev_wrap.h"
2772#endif
2773
1780#ifdef __cplusplus 2774#ifdef __cplusplus
1781} 2775}
1782#endif 2776#endif
1783 2777

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines