ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.213 by root, Tue Feb 19 19:13:50 2008 UTC vs.
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 241
217#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
220#endif 245#endif
239# include <sys/inotify.h> 264# include <sys/inotify.h>
240#endif 265#endif
241 266
242#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
244#endif 281#endif
245 282
246/**/ 283/**/
247 284
248/* 285/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
265#else 302#else
266# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
267# define noinline 304# define noinline
268# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 306# define inline
270# endif 307# endif
271#endif 308#endif
272 309
273#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
288 325
289typedef ev_watcher *W; 326typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
292 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
293#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 337#endif
323 perror (msg); 363 perror (msg);
324 abort (); 364 abort ();
325 } 365 }
326} 366}
327 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
328static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 384
330void 385void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 387{
333 alloc = cb; 388 alloc = cb;
334} 389}
335 390
336inline_speed void * 391inline_speed void *
337ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
338{ 393{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
340 395
341 if (!ptr && size) 396 if (!ptr && size)
342 { 397 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 399 abort ();
367 W w; 422 W w;
368 int events; 423 int events;
369} ANPENDING; 424} ANPENDING;
370 425
371#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
372typedef struct 428typedef struct
373{ 429{
374 WL head; 430 WL head;
375} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#if EV_HEAP_CACHE_AT
436 typedef struct {
437 WT w;
438 ev_tstamp at;
439 } ANHE;
440
441 #define ANHE_w(he) (he) /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */
444#else
445 typedef WT ANHE;
446
447 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he)
376#endif 450#endif
377 451
378#if EV_MULTIPLICITY 452#if EV_MULTIPLICITY
379 453
380 struct ev_loop 454 struct ev_loop
451 ts.tv_sec = (time_t)delay; 525 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 526 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 527
454 nanosleep (&ts, 0); 528 nanosleep (&ts, 0);
455#elif defined(_WIN32) 529#elif defined(_WIN32)
456 Sleep (delay * 1e3); 530 Sleep ((unsigned long)(delay * 1e3));
457#else 531#else
458 struct timeval tv; 532 struct timeval tv;
459 533
460 tv.tv_sec = (time_t)delay; 534 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 535 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 538#endif
465 } 539 }
466} 540}
467 541
468/*****************************************************************************/ 542/*****************************************************************************/
543
544#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 545
470int inline_size 546int inline_size
471array_nextsize (int elem, int cur, int cnt) 547array_nextsize (int elem, int cur, int cnt)
472{ 548{
473 int ncur = cur + 1; 549 int ncur = cur + 1;
474 550
475 do 551 do
476 ncur <<= 1; 552 ncur <<= 1;
477 while (cnt > ncur); 553 while (cnt > ncur);
478 554
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 555 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 556 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 557 {
482 ncur *= elem; 558 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 559 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 560 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 561 ncur /= elem;
486 } 562 }
487 563
488 return ncur; 564 return ncur;
702 } 778 }
703} 779}
704 780
705/*****************************************************************************/ 781/*****************************************************************************/
706 782
783/*
784 * the heap functions want a real array index. array index 0 uis guaranteed to not
785 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
786 * the branching factor of the d-tree.
787 */
788
789/*
790 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers.
794 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP
797
798#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800
801/* towards the root */
707void inline_speed 802void inline_speed
708upheap (WT *heap, int k) 803upheap (ANHE *heap, int k)
709{ 804{
710 WT w = heap [k]; 805 ANHE he = heap [k];
711 806
712 while (k) 807 for (;;)
713 { 808 {
714 int p = (k - 1) >> 1; 809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
715 810
716 if (heap [p]->at <= w->at) 811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
717 break; 812 break;
718 813
719 heap [k] = heap [p]; 814 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 815 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 816 k = p;
722 } 817 }
723 818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822
823/* away from the root */
824void inline_speed
825downheap (ANHE *heap, int N, int k)
826{
827 ANHE he = heap [k];
828 ANHE *E = heap + N + HEAP0;
829
830 for (;;)
831 {
832 ev_tstamp minat;
833 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
835
836 // find minimum child
837 if (expect_true (pos + DHEAP - 1 < E))
838 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 }
844 else if (pos < E)
845 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else
852 break;
853
854 if (ANHE_at (he) <= minat)
855 break;
856
857 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859
860 k = minpos - heap;
861 }
862
863 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865}
866
867#else // 4HEAP
868
869#define HEAP0 1
870
871/* towards the root */
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
888 }
889
724 heap [k] = w; 890 heap [k] = w;
725 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
726} 892}
727 893
894/* away from the root */
728void inline_speed 895void inline_speed
729downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
730{ 897{
731 WT w = heap [k]; 898 ANHE he = heap [k];
732 899
733 for (;;) 900 for (;;)
734 { 901 {
735 int c = (k << 1) + 1; 902 int c = k << 1;
736 903
737 if (c >= N) 904 if (c > N)
738 break; 905 break;
739 906
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
741 ? 1 : 0; 908 ? 1 : 0;
742 909
743 if (w->at <= heap [c]->at) 910 if (w->at <= ANHE_at (heap [c]))
744 break; 911 break;
745 912
746 heap [k] = heap [c]; 913 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
748 915
749 k = c; 916 k = c;
750 } 917 }
751 918
752 heap [k] = w; 919 heap [k] = he;
753 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
754} 921}
922#endif
755 923
756void inline_size 924void inline_size
757adjustheap (WT *heap, int N, int k) 925adjustheap (ANHE *heap, int N, int k)
758{ 926{
759 upheap (heap, k); 927 upheap (heap, k);
760 downheap (heap, N, k); 928 downheap (heap, N, k);
761} 929}
762 930
802static void noinline 970static void noinline
803evpipe_init (EV_P) 971evpipe_init (EV_P)
804{ 972{
805 if (!ev_is_active (&pipeev)) 973 if (!ev_is_active (&pipeev))
806 { 974 {
975#if EV_USE_EVENTFD
976 if ((evfd = eventfd (0, 0)) >= 0)
977 {
978 evpipe [0] = -1;
979 fd_intern (evfd);
980 ev_io_set (&pipeev, evfd, EV_READ);
981 }
982 else
983#endif
984 {
807 while (pipe (evpipe)) 985 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 986 syserr ("(libev) error creating signal/async pipe");
809 987
810 fd_intern (evpipe [0]); 988 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 989 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 990 ev_io_set (&pipeev, evpipe [0], EV_READ);
991 }
992
814 ev_io_start (EV_A_ &pipeev); 993 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 994 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 995 }
817} 996}
818 997
819void inline_size 998void inline_size
820evpipe_write (EV_P_ int sig, int async) 999evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1000{
822 int sent = gotasync || gotsig; 1001 if (!*flag)
823
824 if (sig) gotsig = 1;
825 if (async) gotasync = 1;
826
827 if (!sent)
828 { 1002 {
829 int old_errno = errno; /* save errno becaue write might clobber it */ 1003 int old_errno = errno; /* save errno because write might clobber it */
1004
1005 *flag = 1;
1006
1007#if EV_USE_EVENTFD
1008 if (evfd >= 0)
1009 {
1010 uint64_t counter = 1;
1011 write (evfd, &counter, sizeof (uint64_t));
1012 }
1013 else
1014#endif
830 write (evpipe [1], &old_errno, 1); 1015 write (evpipe [1], &old_errno, 1);
1016
831 errno = old_errno; 1017 errno = old_errno;
832 } 1018 }
833} 1019}
834 1020
835static void 1021static void
836pipecb (EV_P_ ev_io *iow, int revents) 1022pipecb (EV_P_ ev_io *iow, int revents)
837{ 1023{
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
838 { 1026 {
839 int dummy; 1027 uint64_t counter;
1028 read (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 {
1033 char dummy;
840 read (evpipe [0], &dummy, 1); 1034 read (evpipe [0], &dummy, 1);
841 } 1035 }
842 1036
843 if (gotsig && ev_is_default_loop (EV_A)) 1037 if (gotsig && ev_is_default_loop (EV_A))
844 { 1038 {
845 int signum; 1039 int signum;
846 gotsig = 0; 1040 gotsig = 0;
867} 1061}
868 1062
869/*****************************************************************************/ 1063/*****************************************************************************/
870 1064
871static void 1065static void
872sighandler (int signum) 1066ev_sighandler (int signum)
873{ 1067{
874#if EV_MULTIPLICITY 1068#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1069 struct ev_loop *loop = &default_loop_struct;
876#endif 1070#endif
877 1071
878#if _WIN32 1072#if _WIN32
879 signal (signum, sighandler); 1073 signal (signum, ev_sighandler);
880#endif 1074#endif
881 1075
882 signals [signum - 1].gotsig = 1; 1076 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 1077 evpipe_write (EV_A_ &gotsig);
884} 1078}
885 1079
886void noinline 1080void noinline
887ev_feed_signal_event (EV_P_ int signum) 1081ev_feed_signal_event (EV_P_ int signum)
888{ 1082{
914#ifndef WIFCONTINUED 1108#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1109# define WIFCONTINUED(status) 0
916#endif 1110#endif
917 1111
918void inline_speed 1112void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1113child_reap (EV_P_ int chain, int pid, int status)
920{ 1114{
921 ev_child *w; 1115 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1117
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1118 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1119 {
926 if ((w->pid == pid || !w->pid) 1120 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1121 && (!traced || (w->flags & 1)))
928 { 1122 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1124 w->rpid = pid;
931 w->rstatus = status; 1125 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1126 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1127 }
934 } 1128 }
948 if (!WCONTINUED 1142 if (!WCONTINUED
949 || errno != EINVAL 1143 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1144 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1145 return;
952 1146
953 /* make sure we are called again until all childs have been reaped */ 1147 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1148 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1149 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1150
957 child_reap (EV_A_ sw, pid, pid, status); 1151 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1152 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1153 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1154}
961 1155
962#endif 1156#endif
963 1157
964/*****************************************************************************/ 1158/*****************************************************************************/
1107 if (!(flags & EVFLAG_NOENV) 1301 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1302 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1303 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1304 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1305
1112 if (!(flags & 0x0000ffffUL)) 1306 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1307 flags |= ev_recommended_backends ();
1114 1308
1115#if EV_USE_PORT 1309#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1310 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1311#endif
1141 if (ev_is_active (&pipeev)) 1335 if (ev_is_active (&pipeev))
1142 { 1336 {
1143 ev_ref (EV_A); /* signal watcher */ 1337 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1338 ev_io_stop (EV_A_ &pipeev);
1145 1339
1146 close (evpipe [0]); evpipe [0] = 0; 1340#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1341 if (evfd >= 0)
1342 close (evfd);
1343#endif
1344
1345 if (evpipe [0] >= 0)
1346 {
1347 close (evpipe [0]);
1348 close (evpipe [1]);
1349 }
1148 } 1350 }
1149 1351
1150#if EV_USE_INOTIFY 1352#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1353 if (fs_fd >= 0)
1152 close (fs_fd); 1354 close (fs_fd);
1197#endif 1399#endif
1198 1400
1199 backend = 0; 1401 backend = 0;
1200} 1402}
1201 1403
1404#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1405void inline_size infy_fork (EV_P);
1406#endif
1203 1407
1204void inline_size 1408void inline_size
1205loop_fork (EV_P) 1409loop_fork (EV_P)
1206{ 1410{
1207#if EV_USE_PORT 1411#if EV_USE_PORT
1226 gotasync = 1; 1430 gotasync = 1;
1227#endif 1431#endif
1228 1432
1229 ev_ref (EV_A); 1433 ev_ref (EV_A);
1230 ev_io_stop (EV_A_ &pipeev); 1434 ev_io_stop (EV_A_ &pipeev);
1435
1436#if EV_USE_EVENTFD
1437 if (evfd >= 0)
1438 close (evfd);
1439#endif
1440
1441 if (evpipe [0] >= 0)
1442 {
1231 close (evpipe [0]); 1443 close (evpipe [0]);
1232 close (evpipe [1]); 1444 close (evpipe [1]);
1445 }
1233 1446
1234 evpipe_init (EV_A); 1447 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */ 1448 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ); 1449 pipecb (EV_A_ &pipeev, EV_READ);
1237 } 1450 }
1265void 1478void
1266ev_loop_fork (EV_P) 1479ev_loop_fork (EV_P)
1267{ 1480{
1268 postfork = 1; /* must be in line with ev_default_fork */ 1481 postfork = 1; /* must be in line with ev_default_fork */
1269} 1482}
1270
1271#endif 1483#endif
1272 1484
1273#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1274struct ev_loop * 1486struct ev_loop *
1275ev_default_loop_init (unsigned int flags) 1487ev_default_loop_init (unsigned int flags)
1356 EV_CB_INVOKE (p->w, p->events); 1568 EV_CB_INVOKE (p->w, p->events);
1357 } 1569 }
1358 } 1570 }
1359} 1571}
1360 1572
1361void inline_size
1362timers_reify (EV_P)
1363{
1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1365 {
1366 ev_timer *w = (ev_timer *)timers [0];
1367
1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1369
1370 /* first reschedule or stop timer */
1371 if (w->repeat)
1372 {
1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1374
1375 ((WT)w)->at += w->repeat;
1376 if (((WT)w)->at < mn_now)
1377 ((WT)w)->at = mn_now;
1378
1379 downheap (timers, timercnt, 0);
1380 }
1381 else
1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1383
1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1385 }
1386}
1387
1388#if EV_PERIODIC_ENABLE
1389void inline_size
1390periodics_reify (EV_P)
1391{
1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1393 {
1394 ev_periodic *w = (ev_periodic *)periodics [0];
1395
1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1397
1398 /* first reschedule or stop timer */
1399 if (w->reschedule_cb)
1400 {
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1403 downheap (periodics, periodiccnt, 0);
1404 }
1405 else if (w->interval)
1406 {
1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1410 downheap (periodics, periodiccnt, 0);
1411 }
1412 else
1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1414
1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1416 }
1417}
1418
1419static void noinline
1420periodics_reschedule (EV_P)
1421{
1422 int i;
1423
1424 /* adjust periodics after time jump */
1425 for (i = 0; i < periodiccnt; ++i)
1426 {
1427 ev_periodic *w = (ev_periodic *)periodics [i];
1428
1429 if (w->reschedule_cb)
1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1431 else if (w->interval)
1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1433 }
1434
1435 /* now rebuild the heap */
1436 for (i = periodiccnt >> 1; i--; )
1437 downheap (periodics, periodiccnt, i);
1438}
1439#endif
1440
1441#if EV_IDLE_ENABLE 1573#if EV_IDLE_ENABLE
1442void inline_size 1574void inline_size
1443idle_reify (EV_P) 1575idle_reify (EV_P)
1444{ 1576{
1445 if (expect_false (idleall)) 1577 if (expect_false (idleall))
1456 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1588 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1457 break; 1589 break;
1458 } 1590 }
1459 } 1591 }
1460 } 1592 }
1593}
1594#endif
1595
1596void inline_size
1597timers_reify (EV_P)
1598{
1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1600 {
1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1602
1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1604
1605 /* first reschedule or stop timer */
1606 if (w->repeat)
1607 {
1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1609
1610 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now;
1613
1614 downheap (timers, timercnt, HEAP0);
1615 }
1616 else
1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1618
1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 }
1621}
1622
1623#if EV_PERIODIC_ENABLE
1624void inline_size
1625periodics_reify (EV_P)
1626{
1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1628 {
1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1632
1633 /* first reschedule or stop timer */
1634 if (w->reschedule_cb)
1635 {
1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1638 downheap (periodics, periodiccnt, 1);
1639 }
1640 else if (w->interval)
1641 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1645 downheap (periodics, periodiccnt, HEAP0);
1646 }
1647 else
1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1649
1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1651 }
1652}
1653
1654static void noinline
1655periodics_reschedule (EV_P)
1656{
1657 int i;
1658
1659 /* adjust periodics after time jump */
1660 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1661 {
1662 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1663
1664 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1671 for (i = periodiccnt >> 1; --i; )
1672 downheap (periodics, periodiccnt, i + HEAP0);
1461} 1673}
1462#endif 1674#endif
1463 1675
1464void inline_speed 1676void inline_speed
1465time_update (EV_P_ ev_tstamp max_block) 1677time_update (EV_P_ ev_tstamp max_block)
1494 */ 1706 */
1495 for (i = 4; --i; ) 1707 for (i = 4; --i; )
1496 { 1708 {
1497 rtmn_diff = ev_rt_now - mn_now; 1709 rtmn_diff = ev_rt_now - mn_now;
1498 1710
1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1711 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1500 return; /* all is well */ 1712 return; /* all is well */
1501 1713
1502 ev_rt_now = ev_time (); 1714 ev_rt_now = ev_time ();
1503 mn_now = get_clock (); 1715 mn_now = get_clock ();
1504 now_floor = mn_now; 1716 now_floor = mn_now;
1520#if EV_PERIODIC_ENABLE 1732#if EV_PERIODIC_ENABLE
1521 periodics_reschedule (EV_A); 1733 periodics_reschedule (EV_A);
1522#endif 1734#endif
1523 /* adjust timers. this is easy, as the offset is the same for all of them */ 1735 /* adjust timers. this is easy, as the offset is the same for all of them */
1524 for (i = 0; i < timercnt; ++i) 1736 for (i = 0; i < timercnt; ++i)
1737 {
1738 ANHE *he = timers + i + HEAP0;
1525 ((WT)timers [i])->at += ev_rt_now - mn_now; 1739 ANHE_w (*he)->at += ev_rt_now - mn_now;
1740 ANHE_at_set (*he);
1741 }
1526 } 1742 }
1527 1743
1528 mn_now = ev_rt_now; 1744 mn_now = ev_rt_now;
1529 } 1745 }
1530} 1746}
1544static int loop_done; 1760static int loop_done;
1545 1761
1546void 1762void
1547ev_loop (EV_P_ int flags) 1763ev_loop (EV_P_ int flags)
1548{ 1764{
1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1765 loop_done = EVUNLOOP_CANCEL;
1550 ? EVUNLOOP_ONE
1551 : EVUNLOOP_CANCEL;
1552 1766
1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1554 1768
1555 do 1769 do
1556 { 1770 {
1602 1816
1603 waittime = MAX_BLOCKTIME; 1817 waittime = MAX_BLOCKTIME;
1604 1818
1605 if (timercnt) 1819 if (timercnt)
1606 { 1820 {
1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1608 if (waittime > to) waittime = to; 1822 if (waittime > to) waittime = to;
1609 } 1823 }
1610 1824
1611#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1612 if (periodiccnt) 1826 if (periodiccnt)
1613 { 1827 {
1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1615 if (waittime > to) waittime = to; 1829 if (waittime > to) waittime = to;
1616 } 1830 }
1617#endif 1831#endif
1618 1832
1619 if (expect_false (waittime < timeout_blocktime)) 1833 if (expect_false (waittime < timeout_blocktime))
1652 /* queue check watchers, to be executed first */ 1866 /* queue check watchers, to be executed first */
1653 if (expect_false (checkcnt)) 1867 if (expect_false (checkcnt))
1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1868 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1655 1869
1656 call_pending (EV_A); 1870 call_pending (EV_A);
1657
1658 } 1871 }
1659 while (expect_true (activecnt && !loop_done)); 1872 while (expect_true (
1873 activecnt
1874 && !loop_done
1875 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1876 ));
1660 1877
1661 if (loop_done == EVUNLOOP_ONE) 1878 if (loop_done == EVUNLOOP_ONE)
1662 loop_done = EVUNLOOP_CANCEL; 1879 loop_done = EVUNLOOP_CANCEL;
1663} 1880}
1664 1881
1782ev_timer_start (EV_P_ ev_timer *w) 1999ev_timer_start (EV_P_ ev_timer *w)
1783{ 2000{
1784 if (expect_false (ev_is_active (w))) 2001 if (expect_false (ev_is_active (w)))
1785 return; 2002 return;
1786 2003
1787 ((WT)w)->at += mn_now; 2004 ev_at (w) += mn_now;
1788 2005
1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1790 2007
1791 ev_start (EV_A_ (W)w, ++timercnt); 2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1793 timers [timercnt - 1] = (WT)w; 2010 ANHE_w (timers [ev_active (w)]) = (WT)w;
1794 upheap (timers, timercnt - 1); 2011 ANHE_at_set (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w));
1795 2013
1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1797} 2015}
1798 2016
1799void noinline 2017void noinline
1800ev_timer_stop (EV_P_ ev_timer *w) 2018ev_timer_stop (EV_P_ ev_timer *w)
1801{ 2019{
1802 clear_pending (EV_A_ (W)w); 2020 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2021 if (expect_false (!ev_is_active (w)))
1804 return; 2022 return;
1805 2023
1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1807
1808 { 2024 {
1809 int active = ((W)w)->active; 2025 int active = ev_active (w);
1810 2026
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028
1811 if (expect_true (--active < --timercnt)) 2029 if (expect_true (active < timercnt + HEAP0 - 1))
1812 { 2030 {
1813 timers [active] = timers [timercnt]; 2031 timers [active] = timers [timercnt + HEAP0 - 1];
1814 adjustheap (timers, timercnt, active); 2032 adjustheap (timers, timercnt, active);
1815 } 2033 }
2034
2035 --timercnt;
1816 } 2036 }
1817 2037
1818 ((WT)w)->at -= mn_now; 2038 ev_at (w) -= mn_now;
1819 2039
1820 ev_stop (EV_A_ (W)w); 2040 ev_stop (EV_A_ (W)w);
1821} 2041}
1822 2042
1823void noinline 2043void noinline
1825{ 2045{
1826 if (ev_is_active (w)) 2046 if (ev_is_active (w))
1827 { 2047 {
1828 if (w->repeat) 2048 if (w->repeat)
1829 { 2049 {
1830 ((WT)w)->at = mn_now + w->repeat; 2050 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]);
1831 adjustheap (timers, timercnt, ((W)w)->active - 1); 2052 adjustheap (timers, timercnt, ev_active (w));
1832 } 2053 }
1833 else 2054 else
1834 ev_timer_stop (EV_A_ w); 2055 ev_timer_stop (EV_A_ w);
1835 } 2056 }
1836 else if (w->repeat) 2057 else if (w->repeat)
1837 { 2058 {
1838 w->at = w->repeat; 2059 ev_at (w) = w->repeat;
1839 ev_timer_start (EV_A_ w); 2060 ev_timer_start (EV_A_ w);
1840 } 2061 }
1841} 2062}
1842 2063
1843#if EV_PERIODIC_ENABLE 2064#if EV_PERIODIC_ENABLE
1846{ 2067{
1847 if (expect_false (ev_is_active (w))) 2068 if (expect_false (ev_is_active (w)))
1848 return; 2069 return;
1849 2070
1850 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1852 else if (w->interval) 2073 else if (w->interval)
1853 { 2074 {
1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2075 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1855 /* this formula differs from the one in periodic_reify because we do not always round up */ 2076 /* this formula differs from the one in periodic_reify because we do not always round up */
1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1857 } 2078 }
1858 else 2079 else
1859 ((WT)w)->at = w->offset; 2080 ev_at (w) = w->offset;
1860 2081
1861 ev_start (EV_A_ (W)w, ++periodiccnt); 2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1863 periodics [periodiccnt - 1] = (WT)w; 2084 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1864 upheap (periodics, periodiccnt - 1); 2085 upheap (periodics, ev_active (w));
1865 2086
1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1867} 2088}
1868 2089
1869void noinline 2090void noinline
1870ev_periodic_stop (EV_P_ ev_periodic *w) 2091ev_periodic_stop (EV_P_ ev_periodic *w)
1871{ 2092{
1872 clear_pending (EV_A_ (W)w); 2093 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2094 if (expect_false (!ev_is_active (w)))
1874 return; 2095 return;
1875 2096
1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1877
1878 { 2097 {
1879 int active = ((W)w)->active; 2098 int active = ev_active (w);
1880 2099
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101
1881 if (expect_true (--active < --periodiccnt)) 2102 if (expect_true (active < periodiccnt + HEAP0 - 1))
1882 { 2103 {
1883 periodics [active] = periodics [periodiccnt]; 2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1884 adjustheap (periodics, periodiccnt, active); 2105 adjustheap (periodics, periodiccnt, active);
1885 } 2106 }
2107
2108 --periodiccnt;
1886 } 2109 }
1887 2110
1888 ev_stop (EV_A_ (W)w); 2111 ev_stop (EV_A_ (W)w);
1889} 2112}
1890 2113
1932 wlist_add (&signals [w->signum - 1].head, (WL)w); 2155 wlist_add (&signals [w->signum - 1].head, (WL)w);
1933 2156
1934 if (!((WL)w)->next) 2157 if (!((WL)w)->next)
1935 { 2158 {
1936#if _WIN32 2159#if _WIN32
1937 signal (w->signum, sighandler); 2160 signal (w->signum, ev_sighandler);
1938#else 2161#else
1939 struct sigaction sa; 2162 struct sigaction sa;
1940 sa.sa_handler = sighandler; 2163 sa.sa_handler = ev_sighandler;
1941 sigfillset (&sa.sa_mask); 2164 sigfillset (&sa.sa_mask);
1942 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1943 sigaction (w->signum, &sa, 0); 2166 sigaction (w->signum, &sa, 0);
1944#endif 2167#endif
1945 } 2168 }
2006 if (w->wd < 0) 2229 if (w->wd < 0)
2007 { 2230 {
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2231 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2009 2232
2010 /* monitor some parent directory for speedup hints */ 2233 /* monitor some parent directory for speedup hints */
2234 /* note that exceeding the hardcoded limit is not a correctness issue, */
2235 /* but an efficiency issue only */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2236 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 { 2237 {
2013 char path [4096]; 2238 char path [4096];
2014 strcpy (path, w->path); 2239 strcpy (path, w->path);
2015 2240
2260 clear_pending (EV_A_ (W)w); 2485 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 2486 if (expect_false (!ev_is_active (w)))
2262 return; 2487 return;
2263 2488
2264 { 2489 {
2265 int active = ((W)w)->active; 2490 int active = ev_active (w);
2266 2491
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2493 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2269 2494
2270 ev_stop (EV_A_ (W)w); 2495 ev_stop (EV_A_ (W)w);
2271 --idleall; 2496 --idleall;
2272 } 2497 }
2273} 2498}
2290 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
2292 return; 2517 return;
2293 2518
2294 { 2519 {
2295 int active = ((W)w)->active; 2520 int active = ev_active (w);
2521
2296 prepares [active - 1] = prepares [--preparecnt]; 2522 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active; 2523 ev_active (prepares [active - 1]) = active;
2298 } 2524 }
2299 2525
2300 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2301} 2527}
2302 2528
2317 clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w))) 2544 if (expect_false (!ev_is_active (w)))
2319 return; 2545 return;
2320 2546
2321 { 2547 {
2322 int active = ((W)w)->active; 2548 int active = ev_active (w);
2549
2323 checks [active - 1] = checks [--checkcnt]; 2550 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active; 2551 ev_active (checks [active - 1]) = active;
2325 } 2552 }
2326 2553
2327 ev_stop (EV_A_ (W)w); 2554 ev_stop (EV_A_ (W)w);
2328} 2555}
2329 2556
2425 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2427 return; 2654 return;
2428 2655
2429 { 2656 {
2430 int active = ((W)w)->active; 2657 int active = ev_active (w);
2658
2431 forks [active - 1] = forks [--forkcnt]; 2659 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active; 2660 ev_active (forks [active - 1]) = active;
2433 } 2661 }
2434 2662
2435 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2436} 2664}
2437#endif 2665#endif
2456 clear_pending (EV_A_ (W)w); 2684 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 2685 if (expect_false (!ev_is_active (w)))
2458 return; 2686 return;
2459 2687
2460 { 2688 {
2461 int active = ((W)w)->active; 2689 int active = ev_active (w);
2690
2462 asyncs [active - 1] = asyncs [--asynccnt]; 2691 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active; 2692 ev_active (asyncs [active - 1]) = active;
2464 } 2693 }
2465 2694
2466 ev_stop (EV_A_ (W)w); 2695 ev_stop (EV_A_ (W)w);
2467} 2696}
2468 2697
2469void 2698void
2470ev_async_send (EV_P_ ev_async *w) 2699ev_async_send (EV_P_ ev_async *w)
2471{ 2700{
2472 w->sent = 1; 2701 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1); 2702 evpipe_write (EV_A_ &gotasync);
2474} 2703}
2475#endif 2704#endif
2476 2705
2477/*****************************************************************************/ 2706/*****************************************************************************/
2478 2707

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines