ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
432#endif 456#endif
433 457
434/* Heap Entry */ 458/* Heap Entry */
435#if EV_HEAP_CACHE_AT 459#if EV_HEAP_CACHE_AT
436 typedef struct { 460 typedef struct {
461 ev_tstamp at;
437 WT w; 462 WT w;
438 ev_tstamp at;
439 } ANHE; 463 } ANHE;
440 464
441 #define ANHE_w(he) (he) /* access watcher, read-write */ 465 #define ANHE_w(he) (he).w /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */ 466 #define ANHE_at(he) (he).at /* access cached at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */ 467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
444#else 468#else
445 typedef WT ANHE; 469 typedef WT ANHE;
446 470
447 #define ANHE_w(he) (he) 471 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at 472 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he) 473 #define ANHE_at_cache(he)
450#endif 474#endif
451 475
452#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
453 477
454 struct ev_loop 478 struct ev_loop
790 * at the moment we allow libev the luxury of two heaps, 814 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient. 816 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers. 817 * the difference is about 5% with 50000+ watchers.
794 */ 818 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP 819#if EV_USE_4HEAP
797 820
798#define DHEAP 4 821#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800 823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
801/* towards the root */ 824#define UPHEAP_DONE(p,k) ((p) == (k))
802void inline_speed
803upheap (ANHE *heap, int k)
804{
805 ANHE he = heap [k];
806
807 for (;;)
808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
814 heap [k] = heap [p];
815 ev_active (ANHE_w (heap [k])) = k;
816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822 825
823/* away from the root */ 826/* away from the root */
824void inline_speed 827void inline_speed
825downheap (ANHE *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
826{ 829{
829 832
830 for (;;) 833 for (;;)
831 { 834 {
832 ev_tstamp minat; 835 ev_tstamp minat;
833 ANHE *minpos; 836 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
835 838
836 // find minimum child 839 /* find minimum child */
837 if (expect_true (pos + DHEAP - 1 < E)) 840 if (expect_true (pos + DHEAP - 1 < E))
838 { 841 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 } 846 }
844 else if (pos < E) 847 else if (pos < E)
845 { 848 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 break; 855 break;
853 856
854 if (ANHE_at (he) <= minat) 857 if (ANHE_at (he) <= minat)
855 break; 858 break;
856 859
860 heap [k] = *minpos;
857 ev_active (ANHE_w (*minpos)) = k; 861 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859 862
860 k = minpos - heap; 863 k = minpos - heap;
861 } 864 }
862 865
866 heap [k] = he;
863 ev_active (ANHE_w (he)) = k; 867 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865} 868}
866 869
867#else // 4HEAP 870#else /* 4HEAP */
868 871
869#define HEAP0 1 872#define HEAP0 1
870 873#define HPARENT(k) ((k) >> 1)
871/* towards the root */ 874#define UPHEAP_DONE(p,k) (!(p))
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
888 }
889
890 heap [k] = w;
891 ev_active (ANHE_w (heap [k])) = k;
892}
893 875
894/* away from the root */ 876/* away from the root */
895void inline_speed 877void inline_speed
896downheap (ANHE *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
897{ 879{
899 881
900 for (;;) 882 for (;;)
901 { 883 {
902 int c = k << 1; 884 int c = k << 1;
903 885
904 if (c > N) 886 if (c > N + HEAP0 - 1)
905 break; 887 break;
906 888
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 890 ? 1 : 0;
909 891
910 if (w->at <= ANHE_at (heap [c])) 892 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break; 893 break;
912 894
913 heap [k] = heap [c]; 895 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k; 896 ev_active (ANHE_w (heap [k])) = k;
915 897
919 heap [k] = he; 901 heap [k] = he;
920 ev_active (ANHE_w (he)) = k; 902 ev_active (ANHE_w (he)) = k;
921} 903}
922#endif 904#endif
923 905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
924void inline_size 928void inline_size
925adjustheap (ANHE *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
926{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k); 932 upheap (heap, k);
933 else
928 downheap (heap, N, k); 934 downheap (heap, N, k);
929} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
930 962
931/*****************************************************************************/ 963/*****************************************************************************/
932 964
933typedef struct 965typedef struct
934{ 966{
1451 1483
1452 postfork = 0; 1484 postfork = 0;
1453} 1485}
1454 1486
1455#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1456struct ev_loop * 1489struct ev_loop *
1457ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1458{ 1491{
1459 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1460 1493
1478void 1511void
1479ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1480{ 1513{
1481 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1482} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1483#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1484 1553
1485#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1486struct ev_loop * 1555struct ev_loop *
1487ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1488#else 1557#else
1564 { 1633 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566 1635
1567 p->w->pending = 0; 1636 p->w->pending = 0;
1568 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1569 } 1639 }
1570 } 1640 }
1571} 1641}
1572 1642
1573#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1594#endif 1664#endif
1595 1665
1596void inline_size 1666void inline_size
1597timers_reify (EV_P) 1667timers_reify (EV_P)
1598{ 1668{
1669 EV_FREQUENT_CHECK;
1670
1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1600 { 1672 {
1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1602 1674
1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1604 1676
1605 /* first reschedule or stop timer */ 1677 /* first reschedule or stop timer */
1606 if (w->repeat) 1678 if (w->repeat)
1607 { 1679 {
1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1609
1610 ev_at (w) += w->repeat; 1680 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now) 1681 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now; 1682 ev_at (w) = mn_now;
1613 1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1614 downheap (timers, timercnt, HEAP0); 1687 downheap (timers, timercnt, HEAP0);
1615 } 1688 }
1616 else 1689 else
1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1618 1691
1692 EV_FREQUENT_CHECK;
1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 } 1694 }
1621} 1695}
1622 1696
1623#if EV_PERIODIC_ENABLE 1697#if EV_PERIODIC_ENABLE
1624void inline_size 1698void inline_size
1625periodics_reify (EV_P) 1699periodics_reify (EV_P)
1626{ 1700{
1701 EV_FREQUENT_CHECK;
1702
1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1628 { 1704 {
1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630 1706
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1632 1708
1633 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
1634 if (w->reschedule_cb) 1710 if (w->reschedule_cb)
1635 { 1711 {
1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1638 downheap (periodics, periodiccnt, 1); 1717 downheap (periodics, periodiccnt, HEAP0);
1639 } 1718 }
1640 else if (w->interval) 1719 else if (w->interval)
1641 { 1720 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1645 downheap (periodics, periodiccnt, HEAP0); 1736 downheap (periodics, periodiccnt, HEAP0);
1646 } 1737 }
1647 else 1738 else
1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1649 1740
1741 EV_FREQUENT_CHECK;
1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1651 } 1743 }
1652} 1744}
1653 1745
1654static void noinline 1746static void noinline
1663 1755
1664 if (w->reschedule_cb) 1756 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 1758 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669 1760
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 1761 ANHE_at_cache (periodics [i]);
1671 for (i = periodiccnt >> 1; --i; ) 1762 }
1763
1672 downheap (periodics, periodiccnt, i + HEAP0); 1764 reheap (periodics, periodiccnt);
1673} 1765}
1674#endif 1766#endif
1675 1767
1676void inline_speed 1768void inline_speed
1677time_update (EV_P_ ev_tstamp max_block) 1769time_update (EV_P_ ev_tstamp max_block)
1735 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1737 { 1829 {
1738 ANHE *he = timers + i + HEAP0; 1830 ANHE *he = timers + i + HEAP0;
1739 ANHE_w (*he)->at += ev_rt_now - mn_now; 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1740 ANHE_at_set (*he); 1832 ANHE_at_cache (*he);
1741 } 1833 }
1742 } 1834 }
1743 1835
1744 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1745 } 1837 }
1766 1858
1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1768 1860
1769 do 1861 do
1770 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1771#ifndef _WIN32 1867#ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1774 { 1870 {
1775 curpid = getpid (); 1871 curpid = getpid ();
1970 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1971 return; 2067 return;
1972 2068
1973 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1974 2070
2071 EV_FREQUENT_CHECK;
2072
1975 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1977 wlist_add (&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1978 2076
1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET; 2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1981} 2081}
1982 2082
1983void noinline 2083void noinline
1984ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1985{ 2085{
1986 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1987 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1988 return; 2088 return;
1989 2089
1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
1991 2093
1992 wlist_del (&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1993 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1994 2096
1995 fd_change (EV_A_ w->fd, 1); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1996} 2100}
1997 2101
1998void noinline 2102void noinline
1999ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
2000{ 2104{
2003 2107
2004 ev_at (w) += mn_now; 2108 ev_at (w) += mn_now;
2005 2109
2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2007 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2010 ANHE_w (timers [ev_active (w)]) = (WT)w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
2011 ANHE_at_set (timers [ev_active (w)]); 2118 ANHE_at_cache (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w)); 2119 upheap (timers, ev_active (w));
2013 2120
2121 EV_FREQUENT_CHECK;
2122
2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2015} 2124}
2016 2125
2017void noinline 2126void noinline
2018ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
2019{ 2128{
2020 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
2022 return; 2131 return;
2023 2132
2133 EV_FREQUENT_CHECK;
2134
2024 { 2135 {
2025 int active = ev_active (w); 2136 int active = ev_active (w);
2026 2137
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028 2139
2140 --timercnt;
2141
2029 if (expect_true (active < timercnt + HEAP0 - 1)) 2142 if (expect_true (active < timercnt + HEAP0))
2030 { 2143 {
2031 timers [active] = timers [timercnt + HEAP0 - 1]; 2144 timers [active] = timers [timercnt + HEAP0];
2032 adjustheap (timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
2033 } 2146 }
2034
2035 --timercnt;
2036 } 2147 }
2148
2149 EV_FREQUENT_CHECK;
2037 2150
2038 ev_at (w) -= mn_now; 2151 ev_at (w) -= mn_now;
2039 2152
2040 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
2041} 2154}
2042 2155
2043void noinline 2156void noinline
2044ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
2045{ 2158{
2159 EV_FREQUENT_CHECK;
2160
2046 if (ev_is_active (w)) 2161 if (ev_is_active (w))
2047 { 2162 {
2048 if (w->repeat) 2163 if (w->repeat)
2049 { 2164 {
2050 ev_at (w) = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]); 2166 ANHE_at_cache (timers [ev_active (w)]);
2052 adjustheap (timers, timercnt, ev_active (w)); 2167 adjustheap (timers, timercnt, ev_active (w));
2053 } 2168 }
2054 else 2169 else
2055 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
2056 } 2171 }
2057 else if (w->repeat) 2172 else if (w->repeat)
2058 { 2173 {
2059 ev_at (w) = w->repeat; 2174 ev_at (w) = w->repeat;
2060 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
2061 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
2062} 2179}
2063 2180
2064#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
2065void noinline 2182void noinline
2066ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2078 } 2195 }
2079 else 2196 else
2080 ev_at (w) = w->offset; 2197 ev_at (w) = w->offset;
2081 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2084 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2205 ANHE_at_cache (periodics [ev_active (w)]);
2085 upheap (periodics, ev_active (w)); 2206 upheap (periodics, ev_active (w));
2207
2208 EV_FREQUENT_CHECK;
2086 2209
2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2088} 2211}
2089 2212
2090void noinline 2213void noinline
2092{ 2215{
2093 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
2094 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
2095 return; 2218 return;
2096 2219
2220 EV_FREQUENT_CHECK;
2221
2097 { 2222 {
2098 int active = ev_active (w); 2223 int active = ev_active (w);
2099 2224
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101 2226
2227 --periodiccnt;
2228
2102 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2229 if (expect_true (active < periodiccnt + HEAP0))
2103 { 2230 {
2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
2105 adjustheap (periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
2106 } 2233 }
2107
2108 --periodiccnt;
2109 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
2110 2237
2111 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
2112} 2239}
2113 2240
2114void noinline 2241void noinline
2134 return; 2261 return;
2135 2262
2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2137 2264
2138 evpipe_init (EV_A); 2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2139 2268
2140 { 2269 {
2141#ifndef _WIN32 2270#ifndef _WIN32
2142 sigset_t full, prev; 2271 sigset_t full, prev;
2143 sigfillset (&full); 2272 sigfillset (&full);
2164 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2166 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
2167#endif 2296#endif
2168 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
2169} 2300}
2170 2301
2171void noinline 2302void noinline
2172ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
2173{ 2304{
2174 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2175 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2176 return; 2307 return;
2177 2308
2309 EV_FREQUENT_CHECK;
2310
2178 wlist_del (&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
2179 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2180 2313
2181 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
2182 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
2183} 2318}
2184 2319
2185void 2320void
2186ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
2187{ 2322{
2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2190#endif 2325#endif
2191 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
2192 return; 2327 return;
2193 2328
2329 EV_FREQUENT_CHECK;
2330
2194 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
2196} 2335}
2197 2336
2198void 2337void
2199ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
2200{ 2339{
2201 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
2203 return; 2342 return;
2204 2343
2344 EV_FREQUENT_CHECK;
2345
2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2206 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
2207} 2350}
2208 2351
2209#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
2210 2353
2211# ifdef _WIN32 2354# ifdef _WIN32
2439 else 2582 else
2440#endif 2583#endif
2441 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2442 2585
2443 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2444} 2589}
2445 2590
2446void 2591void
2447ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2448{ 2593{
2449 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2450 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2451 return; 2596 return;
2452 2597
2598 EV_FREQUENT_CHECK;
2599
2453#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2454 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2455#endif 2602#endif
2456 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2457 2604
2458 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2459} 2608}
2460#endif 2609#endif
2461 2610
2462#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2463void 2612void
2465{ 2614{
2466 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2467 return; 2616 return;
2468 2617
2469 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2470 2621
2471 { 2622 {
2472 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2473 2624
2474 ++idleall; 2625 ++idleall;
2475 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2476 2627
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2479 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2480} 2633}
2481 2634
2482void 2635void
2483ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2484{ 2637{
2485 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2487 return; 2640 return;
2488 2641
2642 EV_FREQUENT_CHECK;
2643
2489 { 2644 {
2490 int active = ev_active (w); 2645 int active = ev_active (w);
2491 2646
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494 2649
2495 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2496 --idleall; 2651 --idleall;
2497 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2498} 2655}
2499#endif 2656#endif
2500 2657
2501void 2658void
2502ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2503{ 2660{
2504 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2505 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2506 2665
2507 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2509 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2510} 2671}
2511 2672
2512void 2673void
2513ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2514{ 2675{
2515 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2517 return; 2678 return;
2518 2679
2680 EV_FREQUENT_CHECK;
2681
2519 { 2682 {
2520 int active = ev_active (w); 2683 int active = ev_active (w);
2521 2684
2522 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active; 2686 ev_active (prepares [active - 1]) = active;
2524 } 2687 }
2525 2688
2526 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2527} 2692}
2528 2693
2529void 2694void
2530ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2531{ 2696{
2532 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2533 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2534 2701
2535 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2537 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2538} 2707}
2539 2708
2540void 2709void
2541ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2542{ 2711{
2543 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2545 return; 2714 return;
2546 2715
2716 EV_FREQUENT_CHECK;
2717
2547 { 2718 {
2548 int active = ev_active (w); 2719 int active = ev_active (w);
2549 2720
2550 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active; 2722 ev_active (checks [active - 1]) = active;
2552 } 2723 }
2553 2724
2554 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2555} 2728}
2556 2729
2557#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2558void noinline 2731void noinline
2559ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2606 struct ev_loop *loop = w->other; 2779 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 } 2782 }
2610 2783
2784 EV_FREQUENT_CHECK;
2785
2611 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2613 2788
2614 ev_prepare_init (&w->prepare, embed_prepare_cb); 2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI); 2790 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare); 2791 ev_prepare_start (EV_A_ &w->prepare);
2617 2792
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619 2794
2620 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2621} 2798}
2622 2799
2623void 2800void
2624ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2625{ 2802{
2626 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2628 return; 2805 return;
2629 2806
2807 EV_FREQUENT_CHECK;
2808
2630 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare); 2810 ev_prepare_stop (EV_A_ &w->prepare);
2632 2811
2633 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2634} 2815}
2635#endif 2816#endif
2636 2817
2637#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2638void 2819void
2639ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2640{ 2821{
2641 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2642 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2643 2826
2644 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2647} 2832}
2648 2833
2649void 2834void
2650ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2651{ 2836{
2652 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2654 return; 2839 return;
2655 2840
2841 EV_FREQUENT_CHECK;
2842
2656 { 2843 {
2657 int active = ev_active (w); 2844 int active = ev_active (w);
2658 2845
2659 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active; 2847 ev_active (forks [active - 1]) = active;
2661 } 2848 }
2662 2849
2663 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2664} 2853}
2665#endif 2854#endif
2666 2855
2667#if EV_ASYNC_ENABLE 2856#if EV_ASYNC_ENABLE
2668void 2857void
2670{ 2859{
2671 if (expect_false (ev_is_active (w))) 2860 if (expect_false (ev_is_active (w)))
2672 return; 2861 return;
2673 2862
2674 evpipe_init (EV_A); 2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2675 2866
2676 ev_start (EV_A_ (W)w, ++asynccnt); 2867 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w; 2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2679} 2872}
2680 2873
2681void 2874void
2682ev_async_stop (EV_P_ ev_async *w) 2875ev_async_stop (EV_P_ ev_async *w)
2683{ 2876{
2684 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2686 return; 2879 return;
2687 2880
2881 EV_FREQUENT_CHECK;
2882
2688 { 2883 {
2689 int active = ev_active (w); 2884 int active = ev_active (w);
2690 2885
2691 asyncs [active - 1] = asyncs [--asynccnt]; 2886 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active; 2887 ev_active (asyncs [active - 1]) = active;
2693 } 2888 }
2694 2889
2695 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2696} 2893}
2697 2894
2698void 2895void
2699ev_async_send (EV_P_ ev_async *w) 2896ev_async_send (EV_P_ ev_async *w)
2700{ 2897{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines