ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
432#endif 456#endif
433 457
434/* Heap Entry */ 458/* Heap Entry */
435#if EV_HEAP_CACHE_AT 459#if EV_HEAP_CACHE_AT
436 typedef struct { 460 typedef struct {
461 ev_tstamp at;
437 WT w; 462 WT w;
438 ev_tstamp at;
439 } ANHE; 463 } ANHE;
440 464
441 #define ANHE_w(he) (he) /* access watcher, read-write */ 465 #define ANHE_w(he) (he).w /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */ 466 #define ANHE_at(he) (he).at /* access cached at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */ 467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
444#else 468#else
445 typedef WT ANHE; 469 typedef WT ANHE;
446 470
447 #define ANHE_w(he) (he) 471 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at 472 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he) 473 #define ANHE_at_cache(he)
450#endif 474#endif
451 475
452#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
453 477
454 struct ev_loop 478 struct ev_loop
790 * at the moment we allow libev the luxury of two heaps, 814 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient. 816 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers. 817 * the difference is about 5% with 50000+ watchers.
794 */ 818 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP 819#if EV_USE_4HEAP
797 820
798#define DHEAP 4 821#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800 823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
801/* towards the root */ 824#define UPHEAP_DONE(p,k) ((p) == (k))
802void inline_speed
803upheap (ANHE *heap, int k)
804{
805 ANHE he = heap [k];
806
807 for (;;)
808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
814 heap [k] = heap [p];
815 ev_active (ANHE_w (heap [k])) = k;
816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822 825
823/* away from the root */ 826/* away from the root */
824void inline_speed 827void inline_speed
825downheap (ANHE *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
826{ 829{
829 832
830 for (;;) 833 for (;;)
831 { 834 {
832 ev_tstamp minat; 835 ev_tstamp minat;
833 ANHE *minpos; 836 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
835 838
836 // find minimum child 839 /* find minimum child */
837 if (expect_true (pos + DHEAP - 1 < E)) 840 if (expect_true (pos + DHEAP - 1 < E))
838 { 841 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 } 846 }
844 else if (pos < E) 847 else if (pos < E)
845 { 848 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 break; 855 break;
853 856
854 if (ANHE_at (he) <= minat) 857 if (ANHE_at (he) <= minat)
855 break; 858 break;
856 859
860 heap [k] = *minpos;
857 ev_active (ANHE_w (*minpos)) = k; 861 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859 862
860 k = minpos - heap; 863 k = minpos - heap;
861 } 864 }
862 865
866 heap [k] = he;
863 ev_active (ANHE_w (he)) = k; 867 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865} 868}
866 869
867#else // 4HEAP 870#else /* 4HEAP */
868 871
869#define HEAP0 1 872#define HEAP0 1
870 873#define HPARENT(k) ((k) >> 1)
871/* towards the root */ 874#define UPHEAP_DONE(p,k) (!(p))
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
888 }
889
890 heap [k] = w;
891 ev_active (ANHE_w (heap [k])) = k;
892}
893 875
894/* away from the root */ 876/* away from the root */
895void inline_speed 877void inline_speed
896downheap (ANHE *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
897{ 879{
899 881
900 for (;;) 882 for (;;)
901 { 883 {
902 int c = k << 1; 884 int c = k << 1;
903 885
904 if (c > N) 886 if (c > N + HEAP0 - 1)
905 break; 887 break;
906 888
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 890 ? 1 : 0;
909 891
910 if (w->at <= ANHE_at (heap [c])) 892 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break; 893 break;
912 894
913 heap [k] = heap [c]; 895 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k; 896 ev_active (ANHE_w (heap [k])) = k;
915 897
919 heap [k] = he; 901 heap [k] = he;
920 ev_active (ANHE_w (he)) = k; 902 ev_active (ANHE_w (he)) = k;
921} 903}
922#endif 904#endif
923 905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
924void inline_size 928void inline_size
925adjustheap (ANHE *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
926{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k); 932 upheap (heap, k);
933 else
928 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
929} 947}
930 948
931/*****************************************************************************/ 949/*****************************************************************************/
932 950
933typedef struct 951typedef struct
1451 1469
1452 postfork = 0; 1470 postfork = 0;
1453} 1471}
1454 1472
1455#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1456struct ev_loop * 1475struct ev_loop *
1457ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1458{ 1477{
1459 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1460 1479
1478void 1497void
1479ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1480{ 1499{
1481 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1482} 1501}
1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1483#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1484 1602
1485#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1486struct ev_loop * 1604struct ev_loop *
1487ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1488#else 1606#else
1564 { 1682 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566 1684
1567 p->w->pending = 0; 1685 p->w->pending = 0;
1568 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1569 } 1688 }
1570 } 1689 }
1571} 1690}
1572 1691
1573#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1594#endif 1713#endif
1595 1714
1596void inline_size 1715void inline_size
1597timers_reify (EV_P) 1716timers_reify (EV_P)
1598{ 1717{
1718 EV_FREQUENT_CHECK;
1719
1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1600 { 1721 {
1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1602 1723
1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1604 1725
1605 /* first reschedule or stop timer */ 1726 /* first reschedule or stop timer */
1606 if (w->repeat) 1727 if (w->repeat)
1607 { 1728 {
1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1609
1610 ev_at (w) += w->repeat; 1729 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now) 1730 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now; 1731 ev_at (w) = mn_now;
1613 1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1614 downheap (timers, timercnt, HEAP0); 1736 downheap (timers, timercnt, HEAP0);
1615 } 1737 }
1616 else 1738 else
1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1618 1740
1741 EV_FREQUENT_CHECK;
1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 } 1743 }
1621} 1744}
1622 1745
1623#if EV_PERIODIC_ENABLE 1746#if EV_PERIODIC_ENABLE
1624void inline_size 1747void inline_size
1625periodics_reify (EV_P) 1748periodics_reify (EV_P)
1626{ 1749{
1750 EV_FREQUENT_CHECK;
1751
1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1628 { 1753 {
1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630 1755
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1632 1757
1633 /* first reschedule or stop timer */ 1758 /* first reschedule or stop timer */
1634 if (w->reschedule_cb) 1759 if (w->reschedule_cb)
1635 { 1760 {
1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1638 downheap (periodics, periodiccnt, 1); 1766 downheap (periodics, periodiccnt, HEAP0);
1639 } 1767 }
1640 else if (w->interval) 1768 else if (w->interval)
1641 { 1769 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1645 downheap (periodics, periodiccnt, HEAP0); 1785 downheap (periodics, periodiccnt, HEAP0);
1646 } 1786 }
1647 else 1787 else
1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1649 1789
1790 EV_FREQUENT_CHECK;
1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1651 } 1792 }
1652} 1793}
1653 1794
1654static void noinline 1795static void noinline
1663 1804
1664 if (w->reschedule_cb) 1805 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 1807 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669 1809
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 1810 ANHE_at_cache (periodics [i]);
1671 for (i = periodiccnt >> 1; --i; ) 1811 }
1812
1672 downheap (periodics, periodiccnt, i + HEAP0); 1813 reheap (periodics, periodiccnt);
1673} 1814}
1674#endif 1815#endif
1675 1816
1676void inline_speed 1817void inline_speed
1677time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1735 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1737 { 1878 {
1738 ANHE *he = timers + i + HEAP0; 1879 ANHE *he = timers + i + HEAP0;
1739 ANHE_w (*he)->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1740 ANHE_at_set (*he); 1881 ANHE_at_cache (*he);
1741 } 1882 }
1742 } 1883 }
1743 1884
1744 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1745 } 1886 }
1766 1907
1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1768 1909
1769 do 1910 do
1770 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1771#ifndef _WIN32 1916#ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1774 { 1919 {
1775 curpid = getpid (); 1920 curpid = getpid ();
1970 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1971 return; 2116 return;
1972 2117
1973 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1974 2119
2120 EV_FREQUENT_CHECK;
2121
1975 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1977 wlist_add (&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1978 2125
1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET; 2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1981} 2130}
1982 2131
1983void noinline 2132void noinline
1984ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1985{ 2134{
1986 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1987 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1988 return; 2137 return;
1989 2138
1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140
2141 EV_FREQUENT_CHECK;
1991 2142
1992 wlist_del (&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1993 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1994 2145
1995 fd_change (EV_A_ w->fd, 1); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1996} 2149}
1997 2150
1998void noinline 2151void noinline
1999ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
2000{ 2153{
2003 2156
2004 ev_at (w) += mn_now; 2157 ev_at (w) += mn_now;
2005 2158
2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2007 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2010 ANHE_w (timers [ev_active (w)]) = (WT)w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
2011 ANHE_at_set (timers [ev_active (w)]); 2167 ANHE_at_cache (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w)); 2168 upheap (timers, ev_active (w));
2013 2169
2170 EV_FREQUENT_CHECK;
2171
2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2015} 2173}
2016 2174
2017void noinline 2175void noinline
2018ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
2019{ 2177{
2020 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
2022 return; 2180 return;
2023 2181
2182 EV_FREQUENT_CHECK;
2183
2024 { 2184 {
2025 int active = ev_active (w); 2185 int active = ev_active (w);
2026 2186
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028 2188
2189 --timercnt;
2190
2029 if (expect_true (active < timercnt + HEAP0 - 1)) 2191 if (expect_true (active < timercnt + HEAP0))
2030 { 2192 {
2031 timers [active] = timers [timercnt + HEAP0 - 1]; 2193 timers [active] = timers [timercnt + HEAP0];
2032 adjustheap (timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
2033 } 2195 }
2034
2035 --timercnt;
2036 } 2196 }
2197
2198 EV_FREQUENT_CHECK;
2037 2199
2038 ev_at (w) -= mn_now; 2200 ev_at (w) -= mn_now;
2039 2201
2040 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
2041} 2203}
2042 2204
2043void noinline 2205void noinline
2044ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
2045{ 2207{
2208 EV_FREQUENT_CHECK;
2209
2046 if (ev_is_active (w)) 2210 if (ev_is_active (w))
2047 { 2211 {
2048 if (w->repeat) 2212 if (w->repeat)
2049 { 2213 {
2050 ev_at (w) = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]); 2215 ANHE_at_cache (timers [ev_active (w)]);
2052 adjustheap (timers, timercnt, ev_active (w)); 2216 adjustheap (timers, timercnt, ev_active (w));
2053 } 2217 }
2054 else 2218 else
2055 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
2056 } 2220 }
2057 else if (w->repeat) 2221 else if (w->repeat)
2058 { 2222 {
2059 ev_at (w) = w->repeat; 2223 ev_at (w) = w->repeat;
2060 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
2061 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
2062} 2228}
2063 2229
2064#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
2065void noinline 2231void noinline
2066ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2078 } 2244 }
2079 else 2245 else
2080 ev_at (w) = w->offset; 2246 ev_at (w) = w->offset;
2081 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2084 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2254 ANHE_at_cache (periodics [ev_active (w)]);
2085 upheap (periodics, ev_active (w)); 2255 upheap (periodics, ev_active (w));
2256
2257 EV_FREQUENT_CHECK;
2086 2258
2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2088} 2260}
2089 2261
2090void noinline 2262void noinline
2092{ 2264{
2093 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
2094 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
2095 return; 2267 return;
2096 2268
2269 EV_FREQUENT_CHECK;
2270
2097 { 2271 {
2098 int active = ev_active (w); 2272 int active = ev_active (w);
2099 2273
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101 2275
2276 --periodiccnt;
2277
2102 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2278 if (expect_true (active < periodiccnt + HEAP0))
2103 { 2279 {
2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
2105 adjustheap (periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
2106 } 2282 }
2107
2108 --periodiccnt;
2109 } 2283 }
2284
2285 EV_FREQUENT_CHECK;
2110 2286
2111 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
2112} 2288}
2113 2289
2114void noinline 2290void noinline
2134 return; 2310 return;
2135 2311
2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2137 2313
2138 evpipe_init (EV_A); 2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2139 2317
2140 { 2318 {
2141#ifndef _WIN32 2319#ifndef _WIN32
2142 sigset_t full, prev; 2320 sigset_t full, prev;
2143 sigfillset (&full); 2321 sigfillset (&full);
2164 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2166 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
2167#endif 2345#endif
2168 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
2169} 2349}
2170 2350
2171void noinline 2351void noinline
2172ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
2173{ 2353{
2174 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
2175 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
2176 return; 2356 return;
2177 2357
2358 EV_FREQUENT_CHECK;
2359
2178 wlist_del (&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
2179 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
2180 2362
2181 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
2182 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
2183} 2367}
2184 2368
2185void 2369void
2186ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
2187{ 2371{
2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2190#endif 2374#endif
2191 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
2192 return; 2376 return;
2193 2377
2378 EV_FREQUENT_CHECK;
2379
2194 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
2196} 2384}
2197 2385
2198void 2386void
2199ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
2200{ 2388{
2201 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
2203 return; 2391 return;
2204 2392
2393 EV_FREQUENT_CHECK;
2394
2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2206 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
2207} 2399}
2208 2400
2209#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
2210 2402
2211# ifdef _WIN32 2403# ifdef _WIN32
2439 else 2631 else
2440#endif 2632#endif
2441 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2442 2634
2443 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2444} 2638}
2445 2639
2446void 2640void
2447ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2448{ 2642{
2449 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2450 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2451 return; 2645 return;
2452 2646
2647 EV_FREQUENT_CHECK;
2648
2453#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2454 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2455#endif 2651#endif
2456 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2457 2653
2458 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2459} 2657}
2460#endif 2658#endif
2461 2659
2462#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2463void 2661void
2465{ 2663{
2466 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2467 return; 2665 return;
2468 2666
2469 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2470 2670
2471 { 2671 {
2472 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2473 2673
2474 ++idleall; 2674 ++idleall;
2475 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2476 2676
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2479 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2480} 2682}
2481 2683
2482void 2684void
2483ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2484{ 2686{
2485 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2487 return; 2689 return;
2488 2690
2691 EV_FREQUENT_CHECK;
2692
2489 { 2693 {
2490 int active = ev_active (w); 2694 int active = ev_active (w);
2491 2695
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494 2698
2495 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2496 --idleall; 2700 --idleall;
2497 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2498} 2704}
2499#endif 2705#endif
2500 2706
2501void 2707void
2502ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2503{ 2709{
2504 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2505 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2506 2714
2507 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2509 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2510} 2720}
2511 2721
2512void 2722void
2513ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2514{ 2724{
2515 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2517 return; 2727 return;
2518 2728
2729 EV_FREQUENT_CHECK;
2730
2519 { 2731 {
2520 int active = ev_active (w); 2732 int active = ev_active (w);
2521 2733
2522 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active; 2735 ev_active (prepares [active - 1]) = active;
2524 } 2736 }
2525 2737
2526 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2527} 2741}
2528 2742
2529void 2743void
2530ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2531{ 2745{
2532 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2533 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2534 2750
2535 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2537 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2538} 2756}
2539 2757
2540void 2758void
2541ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2542{ 2760{
2543 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2545 return; 2763 return;
2546 2764
2765 EV_FREQUENT_CHECK;
2766
2547 { 2767 {
2548 int active = ev_active (w); 2768 int active = ev_active (w);
2549 2769
2550 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active; 2771 ev_active (checks [active - 1]) = active;
2552 } 2772 }
2553 2773
2554 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2555} 2777}
2556 2778
2557#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2558void noinline 2780void noinline
2559ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2606 struct ev_loop *loop = w->other; 2828 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 } 2831 }
2610 2832
2833 EV_FREQUENT_CHECK;
2834
2611 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2613 2837
2614 ev_prepare_init (&w->prepare, embed_prepare_cb); 2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI); 2839 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare); 2840 ev_prepare_start (EV_A_ &w->prepare);
2617 2841
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619 2843
2620 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2621} 2847}
2622 2848
2623void 2849void
2624ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2625{ 2851{
2626 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2628 return; 2854 return;
2629 2855
2856 EV_FREQUENT_CHECK;
2857
2630 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare); 2859 ev_prepare_stop (EV_A_ &w->prepare);
2632 2860
2633 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2634} 2864}
2635#endif 2865#endif
2636 2866
2637#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2638void 2868void
2639ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2640{ 2870{
2641 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2642 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2643 2875
2644 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2647} 2881}
2648 2882
2649void 2883void
2650ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2651{ 2885{
2652 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2654 return; 2888 return;
2655 2889
2890 EV_FREQUENT_CHECK;
2891
2656 { 2892 {
2657 int active = ev_active (w); 2893 int active = ev_active (w);
2658 2894
2659 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active; 2896 ev_active (forks [active - 1]) = active;
2661 } 2897 }
2662 2898
2663 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2664} 2902}
2665#endif 2903#endif
2666 2904
2667#if EV_ASYNC_ENABLE 2905#if EV_ASYNC_ENABLE
2668void 2906void
2670{ 2908{
2671 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2672 return; 2910 return;
2673 2911
2674 evpipe_init (EV_A); 2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2675 2915
2676 ev_start (EV_A_ (W)w, ++asynccnt); 2916 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w; 2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2679} 2921}
2680 2922
2681void 2923void
2682ev_async_stop (EV_P_ ev_async *w) 2924ev_async_stop (EV_P_ ev_async *w)
2683{ 2925{
2684 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2686 return; 2928 return;
2687 2929
2930 EV_FREQUENT_CHECK;
2931
2688 { 2932 {
2689 int active = ev_active (w); 2933 int active = ev_active (w);
2690 2934
2691 asyncs [active - 1] = asyncs [--asynccnt]; 2935 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active; 2936 ev_active (asyncs [active - 1]) = active;
2693 } 2937 }
2694 2938
2695 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2696} 2942}
2697 2943
2698void 2944void
2699ev_async_send (EV_P_ ev_async *w) 2945ev_async_send (EV_P_ ev_async *w)
2700{ 2946{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines