ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC vs.
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
432#endif 465#endif
433 466
434/* Heap Entry */ 467/* Heap Entry */
435#if EV_HEAP_CACHE_AT 468#if EV_HEAP_CACHE_AT
436 typedef struct { 469 typedef struct {
470 ev_tstamp at;
437 WT w; 471 WT w;
438 ev_tstamp at;
439 } ANHE; 472 } ANHE;
440 473
441 #define ANHE_w(he) (he) /* access watcher, read-write */ 474 #define ANHE_w(he) (he).w /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */ 475 #define ANHE_at(he) (he).at /* access cached at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */ 476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
444#else 477#else
445 typedef WT ANHE; 478 typedef WT ANHE;
446 479
447 #define ANHE_w(he) (he) 480 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at 481 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he) 482 #define ANHE_at_cache(he)
450#endif 483#endif
451 484
452#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
453 486
454 struct ev_loop 487 struct ev_loop
675 events |= (unsigned char)w->events; 708 events |= (unsigned char)w->events;
676 709
677#if EV_SELECT_IS_WINSOCKET 710#if EV_SELECT_IS_WINSOCKET
678 if (events) 711 if (events)
679 { 712 {
680 unsigned long argp; 713 unsigned long arg;
681 #ifdef EV_FD_TO_WIN32_HANDLE 714 #ifdef EV_FD_TO_WIN32_HANDLE
682 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
683 #else 716 #else
684 anfd->handle = _get_osfhandle (fd); 717 anfd->handle = _get_osfhandle (fd);
685 #endif 718 #endif
686 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
687 } 720 }
688#endif 721#endif
689 722
690 { 723 {
691 unsigned char o_events = anfd->events; 724 unsigned char o_events = anfd->events;
744{ 777{
745 int fd; 778 int fd;
746 779
747 for (fd = 0; fd < anfdmax; ++fd) 780 for (fd = 0; fd < anfdmax; ++fd)
748 if (anfds [fd].events) 781 if (anfds [fd].events)
749 if (!fd_valid (fd) == -1 && errno == EBADF) 782 if (!fd_valid (fd) && errno == EBADF)
750 fd_kill (EV_A_ fd); 783 fd_kill (EV_A_ fd);
751} 784}
752 785
753/* called on ENOMEM in select/poll to kill some fds and retry */ 786/* called on ENOMEM in select/poll to kill some fds and retry */
754static void noinline 787static void noinline
790 * at the moment we allow libev the luxury of two heaps, 823 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 824 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient. 825 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers. 826 * the difference is about 5% with 50000+ watchers.
794 */ 827 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP 828#if EV_USE_4HEAP
797 829
798#define DHEAP 4 830#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 831#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800 832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
801/* towards the root */ 833#define UPHEAP_DONE(p,k) ((p) == (k))
802void inline_speed
803upheap (ANHE *heap, int k)
804{
805 ANHE he = heap [k];
806
807 for (;;)
808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
814 heap [k] = heap [p];
815 ev_active (ANHE_w (heap [k])) = k;
816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822 834
823/* away from the root */ 835/* away from the root */
824void inline_speed 836void inline_speed
825downheap (ANHE *heap, int N, int k) 837downheap (ANHE *heap, int N, int k)
826{ 838{
829 841
830 for (;;) 842 for (;;)
831 { 843 {
832 ev_tstamp minat; 844 ev_tstamp minat;
833 ANHE *minpos; 845 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 846 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
835 847
836 // find minimum child 848 /* find minimum child */
837 if (expect_true (pos + DHEAP - 1 < E)) 849 if (expect_true (pos + DHEAP - 1 < E))
838 { 850 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 851 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 852 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 853 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 854 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 } 855 }
844 else if (pos < E) 856 else if (pos < E)
845 { 857 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 858 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 859 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 break; 864 break;
853 865
854 if (ANHE_at (he) <= minat) 866 if (ANHE_at (he) <= minat)
855 break; 867 break;
856 868
869 heap [k] = *minpos;
857 ev_active (ANHE_w (*minpos)) = k; 870 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859 871
860 k = minpos - heap; 872 k = minpos - heap;
861 } 873 }
862 874
875 heap [k] = he;
863 ev_active (ANHE_w (he)) = k; 876 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865} 877}
866 878
867#else // 4HEAP 879#else /* 4HEAP */
868 880
869#define HEAP0 1 881#define HEAP0 1
870 882#define HPARENT(k) ((k) >> 1)
871/* towards the root */ 883#define UPHEAP_DONE(p,k) (!(p))
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
888 }
889
890 heap [k] = w;
891 ev_active (ANHE_w (heap [k])) = k;
892}
893 884
894/* away from the root */ 885/* away from the root */
895void inline_speed 886void inline_speed
896downheap (ANHE *heap, int N, int k) 887downheap (ANHE *heap, int N, int k)
897{ 888{
899 890
900 for (;;) 891 for (;;)
901 { 892 {
902 int c = k << 1; 893 int c = k << 1;
903 894
904 if (c > N) 895 if (c > N + HEAP0 - 1)
905 break; 896 break;
906 897
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 899 ? 1 : 0;
909 900
910 if (w->at <= ANHE_at (heap [c])) 901 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break; 902 break;
912 903
913 heap [k] = heap [c]; 904 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k; 905 ev_active (ANHE_w (heap [k])) = k;
915 906
919 heap [k] = he; 910 heap [k] = he;
920 ev_active (ANHE_w (he)) = k; 911 ev_active (ANHE_w (he)) = k;
921} 912}
922#endif 913#endif
923 914
915/* towards the root */
916void inline_speed
917upheap (ANHE *heap, int k)
918{
919 ANHE he = heap [k];
920
921 for (;;)
922 {
923 int p = HPARENT (k);
924
925 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
926 break;
927
928 heap [k] = heap [p];
929 ev_active (ANHE_w (heap [k])) = k;
930 k = p;
931 }
932
933 heap [k] = he;
934 ev_active (ANHE_w (he)) = k;
935}
936
924void inline_size 937void inline_size
925adjustheap (ANHE *heap, int N, int k) 938adjustheap (ANHE *heap, int N, int k)
926{ 939{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k); 941 upheap (heap, k);
942 else
928 downheap (heap, N, k); 943 downheap (heap, N, k);
944}
945
946/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size
948reheap (ANHE *heap, int N)
949{
950 int i;
951
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
953 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
954 for (i = 0; i < N; ++i)
955 upheap (heap, i + HEAP0);
929} 956}
930 957
931/*****************************************************************************/ 958/*****************************************************************************/
932 959
933typedef struct 960typedef struct
957 984
958void inline_speed 985void inline_speed
959fd_intern (int fd) 986fd_intern (int fd)
960{ 987{
961#ifdef _WIN32 988#ifdef _WIN32
962 int arg = 1; 989 unsigned long arg = 1;
963 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
964#else 991#else
965 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
966 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
967#endif 994#endif
1451 1478
1452 postfork = 0; 1479 postfork = 0;
1453} 1480}
1454 1481
1455#if EV_MULTIPLICITY 1482#if EV_MULTIPLICITY
1483
1456struct ev_loop * 1484struct ev_loop *
1457ev_loop_new (unsigned int flags) 1485ev_loop_new (unsigned int flags)
1458{ 1486{
1459 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1460 1488
1478void 1506void
1479ev_loop_fork (EV_P) 1507ev_loop_fork (EV_P)
1480{ 1508{
1481 postfork = 1; /* must be in line with ev_default_fork */ 1509 postfork = 1; /* must be in line with ev_default_fork */
1482} 1510}
1511
1512#if EV_VERIFY
1513void noinline
1514verify_watcher (EV_P_ W w)
1515{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517
1518 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520}
1521
1522static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N)
1524{
1525 int i;
1526
1527 for (i = HEAP0; i < N + HEAP0; ++i)
1528 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 }
1535}
1536
1537static void noinline
1538array_verify (EV_P_ W *ws, int cnt)
1539{
1540 while (cnt--)
1541 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]);
1544 }
1545}
1546#endif
1547
1548void
1549ev_loop_verify (EV_P)
1550{
1551#if EV_VERIFY
1552 int i;
1553 WL w;
1554
1555 assert (activecnt >= -1);
1556
1557 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1560
1561 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next)
1564 {
1565 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 }
1569
1570 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt);
1572
1573#if EV_PERIODIC_ENABLE
1574 assert (periodicmax >= periodiccnt);
1575 verify_heap (EV_A_ periodics, periodiccnt);
1576#endif
1577
1578 for (i = NUMPRI; i--; )
1579 {
1580 assert (pendingmax [i] >= pendingcnt [i]);
1581#if EV_IDLE_ENABLE
1582 assert (idleall >= 0);
1583 assert (idlemax [i] >= idlecnt [i]);
1584 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1585#endif
1586 }
1587
1588#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif
1592
1593#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif
1597
1598 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt);
1600
1601 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt);
1603
1604# if 0
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1483#endif 1607# endif
1608#endif
1609}
1610
1611#endif /* multiplicity */
1484 1612
1485#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1486struct ev_loop * 1614struct ev_loop *
1487ev_default_loop_init (unsigned int flags) 1615ev_default_loop_init (unsigned int flags)
1488#else 1616#else
1564 { 1692 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566 1694
1567 p->w->pending = 0; 1695 p->w->pending = 0;
1568 EV_CB_INVOKE (p->w, p->events); 1696 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK;
1569 } 1698 }
1570 } 1699 }
1571} 1700}
1572 1701
1573#if EV_IDLE_ENABLE 1702#if EV_IDLE_ENABLE
1594#endif 1723#endif
1595 1724
1596void inline_size 1725void inline_size
1597timers_reify (EV_P) 1726timers_reify (EV_P)
1598{ 1727{
1728 EV_FREQUENT_CHECK;
1729
1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1600 { 1731 {
1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1602 1733
1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1604 1735
1605 /* first reschedule or stop timer */ 1736 /* first reschedule or stop timer */
1606 if (w->repeat) 1737 if (w->repeat)
1607 { 1738 {
1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1609
1610 ev_at (w) += w->repeat; 1739 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now) 1740 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now; 1741 ev_at (w) = mn_now;
1613 1742
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744
1745 ANHE_at_cache (timers [HEAP0]);
1614 downheap (timers, timercnt, HEAP0); 1746 downheap (timers, timercnt, HEAP0);
1615 } 1747 }
1616 else 1748 else
1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1618 1750
1751 EV_FREQUENT_CHECK;
1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 } 1753 }
1621} 1754}
1622 1755
1623#if EV_PERIODIC_ENABLE 1756#if EV_PERIODIC_ENABLE
1624void inline_size 1757void inline_size
1625periodics_reify (EV_P) 1758periodics_reify (EV_P)
1626{ 1759{
1760 EV_FREQUENT_CHECK;
1761
1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1628 { 1763 {
1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630 1765
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1632 1767
1633 /* first reschedule or stop timer */ 1768 /* first reschedule or stop timer */
1634 if (w->reschedule_cb) 1769 if (w->reschedule_cb)
1635 { 1770 {
1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772
1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774
1775 ANHE_at_cache (periodics [HEAP0]);
1638 downheap (periodics, periodiccnt, 1); 1776 downheap (periodics, periodiccnt, HEAP0);
1639 } 1777 }
1640 else if (w->interval) 1778 else if (w->interval)
1641 { 1779 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1784 {
1785 ev_at (w) += w->interval;
1786
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1645 downheap (periodics, periodiccnt, HEAP0); 1795 downheap (periodics, periodiccnt, HEAP0);
1646 } 1796 }
1647 else 1797 else
1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1649 1799
1800 EV_FREQUENT_CHECK;
1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1651 } 1802 }
1652} 1803}
1653 1804
1654static void noinline 1805static void noinline
1663 1814
1664 if (w->reschedule_cb) 1815 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 1817 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669 1819
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 1820 ANHE_at_cache (periodics [i]);
1671 for (i = periodiccnt >> 1; --i; ) 1821 }
1822
1672 downheap (periodics, periodiccnt, i + HEAP0); 1823 reheap (periodics, periodiccnt);
1673} 1824}
1674#endif 1825#endif
1675 1826
1676void inline_speed 1827void inline_speed
1677time_update (EV_P_ ev_tstamp max_block) 1828time_update (EV_P_ ev_tstamp max_block)
1735 /* adjust timers. this is easy, as the offset is the same for all of them */ 1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i) 1887 for (i = 0; i < timercnt; ++i)
1737 { 1888 {
1738 ANHE *he = timers + i + HEAP0; 1889 ANHE *he = timers + i + HEAP0;
1739 ANHE_w (*he)->at += ev_rt_now - mn_now; 1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1740 ANHE_at_set (*he); 1891 ANHE_at_cache (*he);
1741 } 1892 }
1742 } 1893 }
1743 1894
1744 mn_now = ev_rt_now; 1895 mn_now = ev_rt_now;
1745 } 1896 }
1766 1917
1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1768 1919
1769 do 1920 do
1770 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1771#ifndef _WIN32 1926#ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1774 { 1929 {
1775 curpid = getpid (); 1930 curpid = getpid ();
1970 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1971 return; 2126 return;
1972 2127
1973 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
1974 2129
2130 EV_FREQUENT_CHECK;
2131
1975 ev_start (EV_A_ (W)w, 1); 2132 ev_start (EV_A_ (W)w, 1);
1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1977 wlist_add (&anfds[fd].head, (WL)w); 2134 wlist_add (&anfds[fd].head, (WL)w);
1978 2135
1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET; 2137 w->events &= ~EV_IOFDSET;
2138
2139 EV_FREQUENT_CHECK;
1981} 2140}
1982 2141
1983void noinline 2142void noinline
1984ev_io_stop (EV_P_ ev_io *w) 2143ev_io_stop (EV_P_ ev_io *w)
1985{ 2144{
1986 clear_pending (EV_A_ (W)w); 2145 clear_pending (EV_A_ (W)w);
1987 if (expect_false (!ev_is_active (w))) 2146 if (expect_false (!ev_is_active (w)))
1988 return; 2147 return;
1989 2148
1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2150
2151 EV_FREQUENT_CHECK;
1991 2152
1992 wlist_del (&anfds[w->fd].head, (WL)w); 2153 wlist_del (&anfds[w->fd].head, (WL)w);
1993 ev_stop (EV_A_ (W)w); 2154 ev_stop (EV_A_ (W)w);
1994 2155
1995 fd_change (EV_A_ w->fd, 1); 2156 fd_change (EV_A_ w->fd, 1);
2157
2158 EV_FREQUENT_CHECK;
1996} 2159}
1997 2160
1998void noinline 2161void noinline
1999ev_timer_start (EV_P_ ev_timer *w) 2162ev_timer_start (EV_P_ ev_timer *w)
2000{ 2163{
2003 2166
2004 ev_at (w) += mn_now; 2167 ev_at (w) += mn_now;
2005 2168
2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2007 2170
2171 EV_FREQUENT_CHECK;
2172
2173 ++timercnt;
2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2175 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2010 ANHE_w (timers [ev_active (w)]) = (WT)w; 2176 ANHE_w (timers [ev_active (w)]) = (WT)w;
2011 ANHE_at_set (timers [ev_active (w)]); 2177 ANHE_at_cache (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w)); 2178 upheap (timers, ev_active (w));
2013 2179
2180 EV_FREQUENT_CHECK;
2181
2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2015} 2183}
2016 2184
2017void noinline 2185void noinline
2018ev_timer_stop (EV_P_ ev_timer *w) 2186ev_timer_stop (EV_P_ ev_timer *w)
2019{ 2187{
2020 clear_pending (EV_A_ (W)w); 2188 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2189 if (expect_false (!ev_is_active (w)))
2022 return; 2190 return;
2023 2191
2192 EV_FREQUENT_CHECK;
2193
2024 { 2194 {
2025 int active = ev_active (w); 2195 int active = ev_active (w);
2026 2196
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028 2198
2199 --timercnt;
2200
2029 if (expect_true (active < timercnt + HEAP0 - 1)) 2201 if (expect_true (active < timercnt + HEAP0))
2030 { 2202 {
2031 timers [active] = timers [timercnt + HEAP0 - 1]; 2203 timers [active] = timers [timercnt + HEAP0];
2032 adjustheap (timers, timercnt, active); 2204 adjustheap (timers, timercnt, active);
2033 } 2205 }
2034
2035 --timercnt;
2036 } 2206 }
2207
2208 EV_FREQUENT_CHECK;
2037 2209
2038 ev_at (w) -= mn_now; 2210 ev_at (w) -= mn_now;
2039 2211
2040 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
2041} 2213}
2042 2214
2043void noinline 2215void noinline
2044ev_timer_again (EV_P_ ev_timer *w) 2216ev_timer_again (EV_P_ ev_timer *w)
2045{ 2217{
2218 EV_FREQUENT_CHECK;
2219
2046 if (ev_is_active (w)) 2220 if (ev_is_active (w))
2047 { 2221 {
2048 if (w->repeat) 2222 if (w->repeat)
2049 { 2223 {
2050 ev_at (w) = mn_now + w->repeat; 2224 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]); 2225 ANHE_at_cache (timers [ev_active (w)]);
2052 adjustheap (timers, timercnt, ev_active (w)); 2226 adjustheap (timers, timercnt, ev_active (w));
2053 } 2227 }
2054 else 2228 else
2055 ev_timer_stop (EV_A_ w); 2229 ev_timer_stop (EV_A_ w);
2056 } 2230 }
2057 else if (w->repeat) 2231 else if (w->repeat)
2058 { 2232 {
2059 ev_at (w) = w->repeat; 2233 ev_at (w) = w->repeat;
2060 ev_timer_start (EV_A_ w); 2234 ev_timer_start (EV_A_ w);
2061 } 2235 }
2236
2237 EV_FREQUENT_CHECK;
2062} 2238}
2063 2239
2064#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
2065void noinline 2241void noinline
2066ev_periodic_start (EV_P_ ev_periodic *w) 2242ev_periodic_start (EV_P_ ev_periodic *w)
2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2078 } 2254 }
2079 else 2255 else
2080 ev_at (w) = w->offset; 2256 ev_at (w) = w->offset;
2081 2257
2258 EV_FREQUENT_CHECK;
2259
2260 ++periodiccnt;
2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2261 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2262 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2084 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2263 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2264 ANHE_at_cache (periodics [ev_active (w)]);
2085 upheap (periodics, ev_active (w)); 2265 upheap (periodics, ev_active (w));
2266
2267 EV_FREQUENT_CHECK;
2086 2268
2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2088} 2270}
2089 2271
2090void noinline 2272void noinline
2092{ 2274{
2093 clear_pending (EV_A_ (W)w); 2275 clear_pending (EV_A_ (W)w);
2094 if (expect_false (!ev_is_active (w))) 2276 if (expect_false (!ev_is_active (w)))
2095 return; 2277 return;
2096 2278
2279 EV_FREQUENT_CHECK;
2280
2097 { 2281 {
2098 int active = ev_active (w); 2282 int active = ev_active (w);
2099 2283
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101 2285
2286 --periodiccnt;
2287
2102 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2288 if (expect_true (active < periodiccnt + HEAP0))
2103 { 2289 {
2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2290 periodics [active] = periodics [periodiccnt + HEAP0];
2105 adjustheap (periodics, periodiccnt, active); 2291 adjustheap (periodics, periodiccnt, active);
2106 } 2292 }
2107
2108 --periodiccnt;
2109 } 2293 }
2294
2295 EV_FREQUENT_CHECK;
2110 2296
2111 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
2112} 2298}
2113 2299
2114void noinline 2300void noinline
2134 return; 2320 return;
2135 2321
2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2137 2323
2138 evpipe_init (EV_A); 2324 evpipe_init (EV_A);
2325
2326 EV_FREQUENT_CHECK;
2139 2327
2140 { 2328 {
2141#ifndef _WIN32 2329#ifndef _WIN32
2142 sigset_t full, prev; 2330 sigset_t full, prev;
2143 sigfillset (&full); 2331 sigfillset (&full);
2164 sigfillset (&sa.sa_mask); 2352 sigfillset (&sa.sa_mask);
2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2166 sigaction (w->signum, &sa, 0); 2354 sigaction (w->signum, &sa, 0);
2167#endif 2355#endif
2168 } 2356 }
2357
2358 EV_FREQUENT_CHECK;
2169} 2359}
2170 2360
2171void noinline 2361void noinline
2172ev_signal_stop (EV_P_ ev_signal *w) 2362ev_signal_stop (EV_P_ ev_signal *w)
2173{ 2363{
2174 clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
2175 if (expect_false (!ev_is_active (w))) 2365 if (expect_false (!ev_is_active (w)))
2176 return; 2366 return;
2177 2367
2368 EV_FREQUENT_CHECK;
2369
2178 wlist_del (&signals [w->signum - 1].head, (WL)w); 2370 wlist_del (&signals [w->signum - 1].head, (WL)w);
2179 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
2180 2372
2181 if (!signals [w->signum - 1].head) 2373 if (!signals [w->signum - 1].head)
2182 signal (w->signum, SIG_DFL); 2374 signal (w->signum, SIG_DFL);
2375
2376 EV_FREQUENT_CHECK;
2183} 2377}
2184 2378
2185void 2379void
2186ev_child_start (EV_P_ ev_child *w) 2380ev_child_start (EV_P_ ev_child *w)
2187{ 2381{
2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2190#endif 2384#endif
2191 if (expect_false (ev_is_active (w))) 2385 if (expect_false (ev_is_active (w)))
2192 return; 2386 return;
2193 2387
2388 EV_FREQUENT_CHECK;
2389
2194 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2392
2393 EV_FREQUENT_CHECK;
2196} 2394}
2197 2395
2198void 2396void
2199ev_child_stop (EV_P_ ev_child *w) 2397ev_child_stop (EV_P_ ev_child *w)
2200{ 2398{
2201 clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 2400 if (expect_false (!ev_is_active (w)))
2203 return; 2401 return;
2204 2402
2403 EV_FREQUENT_CHECK;
2404
2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2206 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2407
2408 EV_FREQUENT_CHECK;
2207} 2409}
2208 2410
2209#if EV_STAT_ENABLE 2411#if EV_STAT_ENABLE
2210 2412
2211# ifdef _WIN32 2413# ifdef _WIN32
2366 } 2568 }
2367 2569
2368 } 2570 }
2369} 2571}
2370 2572
2573#endif
2574
2575#ifdef _WIN32
2576# define EV_LSTAT(p,b) _stati64 (p, b)
2577#else
2578# define EV_LSTAT(p,b) lstat (p, b)
2371#endif 2579#endif
2372 2580
2373void 2581void
2374ev_stat_stat (EV_P_ ev_stat *w) 2582ev_stat_stat (EV_P_ ev_stat *w)
2375{ 2583{
2439 else 2647 else
2440#endif 2648#endif
2441 ev_timer_start (EV_A_ &w->timer); 2649 ev_timer_start (EV_A_ &w->timer);
2442 2650
2443 ev_start (EV_A_ (W)w, 1); 2651 ev_start (EV_A_ (W)w, 1);
2652
2653 EV_FREQUENT_CHECK;
2444} 2654}
2445 2655
2446void 2656void
2447ev_stat_stop (EV_P_ ev_stat *w) 2657ev_stat_stop (EV_P_ ev_stat *w)
2448{ 2658{
2449 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
2450 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
2451 return; 2661 return;
2452 2662
2663 EV_FREQUENT_CHECK;
2664
2453#if EV_USE_INOTIFY 2665#if EV_USE_INOTIFY
2454 infy_del (EV_A_ w); 2666 infy_del (EV_A_ w);
2455#endif 2667#endif
2456 ev_timer_stop (EV_A_ &w->timer); 2668 ev_timer_stop (EV_A_ &w->timer);
2457 2669
2458 ev_stop (EV_A_ (W)w); 2670 ev_stop (EV_A_ (W)w);
2671
2672 EV_FREQUENT_CHECK;
2459} 2673}
2460#endif 2674#endif
2461 2675
2462#if EV_IDLE_ENABLE 2676#if EV_IDLE_ENABLE
2463void 2677void
2465{ 2679{
2466 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
2467 return; 2681 return;
2468 2682
2469 pri_adjust (EV_A_ (W)w); 2683 pri_adjust (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2470 2686
2471 { 2687 {
2472 int active = ++idlecnt [ABSPRI (w)]; 2688 int active = ++idlecnt [ABSPRI (w)];
2473 2689
2474 ++idleall; 2690 ++idleall;
2475 ev_start (EV_A_ (W)w, active); 2691 ev_start (EV_A_ (W)w, active);
2476 2692
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2693 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w; 2694 idles [ABSPRI (w)][active - 1] = w;
2479 } 2695 }
2696
2697 EV_FREQUENT_CHECK;
2480} 2698}
2481 2699
2482void 2700void
2483ev_idle_stop (EV_P_ ev_idle *w) 2701ev_idle_stop (EV_P_ ev_idle *w)
2484{ 2702{
2485 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2487 return; 2705 return;
2488 2706
2707 EV_FREQUENT_CHECK;
2708
2489 { 2709 {
2490 int active = ev_active (w); 2710 int active = ev_active (w);
2491 2711
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2712 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2713 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494 2714
2495 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2496 --idleall; 2716 --idleall;
2497 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2498} 2720}
2499#endif 2721#endif
2500 2722
2501void 2723void
2502ev_prepare_start (EV_P_ ev_prepare *w) 2724ev_prepare_start (EV_P_ ev_prepare *w)
2503{ 2725{
2504 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
2505 return; 2727 return;
2728
2729 EV_FREQUENT_CHECK;
2506 2730
2507 ev_start (EV_A_ (W)w, ++preparecnt); 2731 ev_start (EV_A_ (W)w, ++preparecnt);
2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2732 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2509 prepares [preparecnt - 1] = w; 2733 prepares [preparecnt - 1] = w;
2734
2735 EV_FREQUENT_CHECK;
2510} 2736}
2511 2737
2512void 2738void
2513ev_prepare_stop (EV_P_ ev_prepare *w) 2739ev_prepare_stop (EV_P_ ev_prepare *w)
2514{ 2740{
2515 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
2517 return; 2743 return;
2518 2744
2745 EV_FREQUENT_CHECK;
2746
2519 { 2747 {
2520 int active = ev_active (w); 2748 int active = ev_active (w);
2521 2749
2522 prepares [active - 1] = prepares [--preparecnt]; 2750 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active; 2751 ev_active (prepares [active - 1]) = active;
2524 } 2752 }
2525 2753
2526 ev_stop (EV_A_ (W)w); 2754 ev_stop (EV_A_ (W)w);
2755
2756 EV_FREQUENT_CHECK;
2527} 2757}
2528 2758
2529void 2759void
2530ev_check_start (EV_P_ ev_check *w) 2760ev_check_start (EV_P_ ev_check *w)
2531{ 2761{
2532 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
2533 return; 2763 return;
2764
2765 EV_FREQUENT_CHECK;
2534 2766
2535 ev_start (EV_A_ (W)w, ++checkcnt); 2767 ev_start (EV_A_ (W)w, ++checkcnt);
2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2768 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2537 checks [checkcnt - 1] = w; 2769 checks [checkcnt - 1] = w;
2770
2771 EV_FREQUENT_CHECK;
2538} 2772}
2539 2773
2540void 2774void
2541ev_check_stop (EV_P_ ev_check *w) 2775ev_check_stop (EV_P_ ev_check *w)
2542{ 2776{
2543 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2545 return; 2779 return;
2546 2780
2781 EV_FREQUENT_CHECK;
2782
2547 { 2783 {
2548 int active = ev_active (w); 2784 int active = ev_active (w);
2549 2785
2550 checks [active - 1] = checks [--checkcnt]; 2786 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active; 2787 ev_active (checks [active - 1]) = active;
2552 } 2788 }
2553 2789
2554 ev_stop (EV_A_ (W)w); 2790 ev_stop (EV_A_ (W)w);
2791
2792 EV_FREQUENT_CHECK;
2555} 2793}
2556 2794
2557#if EV_EMBED_ENABLE 2795#if EV_EMBED_ENABLE
2558void noinline 2796void noinline
2559ev_embed_sweep (EV_P_ ev_embed *w) 2797ev_embed_sweep (EV_P_ ev_embed *w)
2606 struct ev_loop *loop = w->other; 2844 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 } 2847 }
2610 2848
2849 EV_FREQUENT_CHECK;
2850
2611 ev_set_priority (&w->io, ev_priority (w)); 2851 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io); 2852 ev_io_start (EV_A_ &w->io);
2613 2853
2614 ev_prepare_init (&w->prepare, embed_prepare_cb); 2854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI); 2855 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare); 2856 ev_prepare_start (EV_A_ &w->prepare);
2617 2857
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619 2859
2620 ev_start (EV_A_ (W)w, 1); 2860 ev_start (EV_A_ (W)w, 1);
2861
2862 EV_FREQUENT_CHECK;
2621} 2863}
2622 2864
2623void 2865void
2624ev_embed_stop (EV_P_ ev_embed *w) 2866ev_embed_stop (EV_P_ ev_embed *w)
2625{ 2867{
2626 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2628 return; 2870 return;
2629 2871
2872 EV_FREQUENT_CHECK;
2873
2630 ev_io_stop (EV_A_ &w->io); 2874 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare); 2875 ev_prepare_stop (EV_A_ &w->prepare);
2632 2876
2633 ev_stop (EV_A_ (W)w); 2877 ev_stop (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2634} 2880}
2635#endif 2881#endif
2636 2882
2637#if EV_FORK_ENABLE 2883#if EV_FORK_ENABLE
2638void 2884void
2639ev_fork_start (EV_P_ ev_fork *w) 2885ev_fork_start (EV_P_ ev_fork *w)
2640{ 2886{
2641 if (expect_false (ev_is_active (w))) 2887 if (expect_false (ev_is_active (w)))
2642 return; 2888 return;
2889
2890 EV_FREQUENT_CHECK;
2643 2891
2644 ev_start (EV_A_ (W)w, ++forkcnt); 2892 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2893 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w; 2894 forks [forkcnt - 1] = w;
2895
2896 EV_FREQUENT_CHECK;
2647} 2897}
2648 2898
2649void 2899void
2650ev_fork_stop (EV_P_ ev_fork *w) 2900ev_fork_stop (EV_P_ ev_fork *w)
2651{ 2901{
2652 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
2654 return; 2904 return;
2655 2905
2906 EV_FREQUENT_CHECK;
2907
2656 { 2908 {
2657 int active = ev_active (w); 2909 int active = ev_active (w);
2658 2910
2659 forks [active - 1] = forks [--forkcnt]; 2911 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active; 2912 ev_active (forks [active - 1]) = active;
2661 } 2913 }
2662 2914
2663 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2664} 2918}
2665#endif 2919#endif
2666 2920
2667#if EV_ASYNC_ENABLE 2921#if EV_ASYNC_ENABLE
2668void 2922void
2670{ 2924{
2671 if (expect_false (ev_is_active (w))) 2925 if (expect_false (ev_is_active (w)))
2672 return; 2926 return;
2673 2927
2674 evpipe_init (EV_A); 2928 evpipe_init (EV_A);
2929
2930 EV_FREQUENT_CHECK;
2675 2931
2676 ev_start (EV_A_ (W)w, ++asynccnt); 2932 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2933 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w; 2934 asyncs [asynccnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2679} 2937}
2680 2938
2681void 2939void
2682ev_async_stop (EV_P_ ev_async *w) 2940ev_async_stop (EV_P_ ev_async *w)
2683{ 2941{
2684 clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
2686 return; 2944 return;
2687 2945
2946 EV_FREQUENT_CHECK;
2947
2688 { 2948 {
2689 int active = ev_active (w); 2949 int active = ev_active (w);
2690 2950
2691 asyncs [active - 1] = asyncs [--asynccnt]; 2951 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active; 2952 ev_active (asyncs [active - 1]) = active;
2693 } 2953 }
2694 2954
2695 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2696} 2958}
2697 2959
2698void 2960void
2699ev_async_send (EV_P_ ev_async *w) 2961ev_async_send (EV_P_ ev_async *w)
2700{ 2962{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines