ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC vs.
Revision 1.259 by root, Mon Sep 8 13:14:23 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
432#endif 465#endif
433 466
434/* Heap Entry */ 467/* Heap Entry */
435#if EV_HEAP_CACHE_AT 468#if EV_HEAP_CACHE_AT
436 typedef struct { 469 typedef struct {
470 ev_tstamp at;
437 WT w; 471 WT w;
438 ev_tstamp at;
439 } ANHE; 472 } ANHE;
440 473
441 #define ANHE_w(he) (he) /* access watcher, read-write */ 474 #define ANHE_w(he) (he).w /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */ 475 #define ANHE_at(he) (he).at /* access cached at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */ 476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
444#else 477#else
445 typedef WT ANHE; 478 typedef WT ANHE;
446 479
447 #define ANHE_w(he) (he) 480 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at 481 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he) 482 #define ANHE_at_cache(he)
450#endif 483#endif
451 484
452#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
453 486
454 struct ev_loop 487 struct ev_loop
532 struct timeval tv; 565 struct timeval tv;
533 566
534 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
535 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
536 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
537 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
538#endif 574#endif
539 } 575 }
540} 576}
541 577
675 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
676 712
677#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
678 if (events) 714 if (events)
679 { 715 {
680 unsigned long argp; 716 unsigned long arg;
681 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
682 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
683 #else 719 #else
684 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
685 #endif 721 #endif
686 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
687 } 723 }
688#endif 724#endif
689 725
690 { 726 {
691 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
744{ 780{
745 int fd; 781 int fd;
746 782
747 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
748 if (anfds [fd].events) 784 if (anfds [fd].events)
749 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
750 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
751} 787}
752 788
753/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
754static void noinline 790static void noinline
790 * at the moment we allow libev the luxury of two heaps, 826 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient. 828 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers. 829 * the difference is about 5% with 50000+ watchers.
794 */ 830 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP 831#if EV_USE_4HEAP
797 832
798#define DHEAP 4 833#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800 835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
801/* towards the root */ 836#define UPHEAP_DONE(p,k) ((p) == (k))
802void inline_speed
803upheap (ANHE *heap, int k)
804{
805 ANHE he = heap [k];
806
807 for (;;)
808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
814 heap [k] = heap [p];
815 ev_active (ANHE_w (heap [k])) = k;
816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822 837
823/* away from the root */ 838/* away from the root */
824void inline_speed 839void inline_speed
825downheap (ANHE *heap, int N, int k) 840downheap (ANHE *heap, int N, int k)
826{ 841{
829 844
830 for (;;) 845 for (;;)
831 { 846 {
832 ev_tstamp minat; 847 ev_tstamp minat;
833 ANHE *minpos; 848 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
835 850
836 // find minimum child 851 /* find minimum child */
837 if (expect_true (pos + DHEAP - 1 < E)) 852 if (expect_true (pos + DHEAP - 1 < E))
838 { 853 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 } 858 }
844 else if (pos < E) 859 else if (pos < E)
845 { 860 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 break; 867 break;
853 868
854 if (ANHE_at (he) <= minat) 869 if (ANHE_at (he) <= minat)
855 break; 870 break;
856 871
872 heap [k] = *minpos;
857 ev_active (ANHE_w (*minpos)) = k; 873 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859 874
860 k = minpos - heap; 875 k = minpos - heap;
861 } 876 }
862 877
878 heap [k] = he;
863 ev_active (ANHE_w (he)) = k; 879 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865} 880}
866 881
867#else // 4HEAP 882#else /* 4HEAP */
868 883
869#define HEAP0 1 884#define HEAP0 1
870 885#define HPARENT(k) ((k) >> 1)
871/* towards the root */ 886#define UPHEAP_DONE(p,k) (!(p))
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
888 }
889
890 heap [k] = w;
891 ev_active (ANHE_w (heap [k])) = k;
892}
893 887
894/* away from the root */ 888/* away from the root */
895void inline_speed 889void inline_speed
896downheap (ANHE *heap, int N, int k) 890downheap (ANHE *heap, int N, int k)
897{ 891{
899 893
900 for (;;) 894 for (;;)
901 { 895 {
902 int c = k << 1; 896 int c = k << 1;
903 897
904 if (c > N) 898 if (c > N + HEAP0 - 1)
905 break; 899 break;
906 900
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 902 ? 1 : 0;
909 903
910 if (w->at <= ANHE_at (heap [c])) 904 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break; 905 break;
912 906
913 heap [k] = heap [c]; 907 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k; 908 ev_active (ANHE_w (heap [k])) = k;
915 909
919 heap [k] = he; 913 heap [k] = he;
920 ev_active (ANHE_w (he)) = k; 914 ev_active (ANHE_w (he)) = k;
921} 915}
922#endif 916#endif
923 917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
938}
939
924void inline_size 940void inline_size
925adjustheap (ANHE *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
926{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k); 944 upheap (heap, k);
945 else
928 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
929} 959}
930 960
931/*****************************************************************************/ 961/*****************************************************************************/
932 962
933typedef struct 963typedef struct
957 987
958void inline_speed 988void inline_speed
959fd_intern (int fd) 989fd_intern (int fd)
960{ 990{
961#ifdef _WIN32 991#ifdef _WIN32
962 int arg = 1; 992 unsigned long arg = 1;
963 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
964#else 994#else
965 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
966 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
967#endif 997#endif
1451 1481
1452 postfork = 0; 1482 postfork = 0;
1453} 1483}
1454 1484
1455#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1456struct ev_loop * 1487struct ev_loop *
1457ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1458{ 1489{
1459 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1460 1491
1478void 1509void
1479ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1480{ 1511{
1481 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1482} 1513}
1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1483#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1484 1615
1485#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1486struct ev_loop * 1617struct ev_loop *
1487ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1488#else 1619#else
1564 { 1695 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566 1697
1567 p->w->pending = 0; 1698 p->w->pending = 0;
1568 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1569 } 1701 }
1570 } 1702 }
1571} 1703}
1572 1704
1573#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1594#endif 1726#endif
1595 1727
1596void inline_size 1728void inline_size
1597timers_reify (EV_P) 1729timers_reify (EV_P)
1598{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1600 { 1734 {
1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1602 1736
1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1604 1738
1605 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1606 if (w->repeat) 1740 if (w->repeat)
1607 { 1741 {
1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1609
1610 ev_at (w) += w->repeat; 1742 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now) 1743 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now; 1744 ev_at (w) = mn_now;
1613 1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1614 downheap (timers, timercnt, HEAP0); 1749 downheap (timers, timercnt, HEAP0);
1615 } 1750 }
1616 else 1751 else
1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1618 1753
1754 EV_FREQUENT_CHECK;
1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 } 1756 }
1621} 1757}
1622 1758
1623#if EV_PERIODIC_ENABLE 1759#if EV_PERIODIC_ENABLE
1624void inline_size 1760void inline_size
1625periodics_reify (EV_P) 1761periodics_reify (EV_P)
1626{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1628 { 1766 {
1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630 1768
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1632 1770
1633 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1634 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1635 { 1773 {
1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1638 downheap (periodics, periodiccnt, 1); 1779 downheap (periodics, periodiccnt, HEAP0);
1639 } 1780 }
1640 else if (w->interval) 1781 else if (w->interval)
1641 { 1782 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1645 downheap (periodics, periodiccnt, HEAP0); 1798 downheap (periodics, periodiccnt, HEAP0);
1646 } 1799 }
1647 else 1800 else
1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1649 1802
1803 EV_FREQUENT_CHECK;
1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1651 } 1805 }
1652} 1806}
1653 1807
1654static void noinline 1808static void noinline
1663 1817
1664 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 1820 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669 1822
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 1823 ANHE_at_cache (periodics [i]);
1671 for (i = periodiccnt >> 1; --i; ) 1824 }
1825
1672 downheap (periodics, periodiccnt, i + HEAP0); 1826 reheap (periodics, periodiccnt);
1673} 1827}
1674#endif 1828#endif
1675 1829
1676void inline_speed 1830void inline_speed
1677time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1735 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1737 { 1891 {
1738 ANHE *he = timers + i + HEAP0; 1892 ANHE *he = timers + i + HEAP0;
1739 ANHE_w (*he)->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1740 ANHE_at_set (*he); 1894 ANHE_at_cache (*he);
1741 } 1895 }
1742 } 1896 }
1743 1897
1744 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1745 } 1899 }
1766 1920
1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1768 1922
1769 do 1923 do
1770 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1771#ifndef _WIN32 1929#ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */ 1930 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid)) 1931 if (expect_false (getpid () != curpid))
1774 { 1932 {
1775 curpid = getpid (); 1933 curpid = getpid ();
1970 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1971 return; 2129 return;
1972 2130
1973 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1974 2132
2133 EV_FREQUENT_CHECK;
2134
1975 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1977 wlist_add (&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1978 2138
1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET; 2140 w->events &= ~EV_IOFDSET;
2141
2142 EV_FREQUENT_CHECK;
1981} 2143}
1982 2144
1983void noinline 2145void noinline
1984ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1985{ 2147{
1986 clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1987 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1988 return; 2150 return;
1989 2151
1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153
2154 EV_FREQUENT_CHECK;
1991 2155
1992 wlist_del (&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1993 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1994 2158
1995 fd_change (EV_A_ w->fd, 1); 2159 fd_change (EV_A_ w->fd, 1);
2160
2161 EV_FREQUENT_CHECK;
1996} 2162}
1997 2163
1998void noinline 2164void noinline
1999ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
2000{ 2166{
2003 2169
2004 ev_at (w) += mn_now; 2170 ev_at (w) += mn_now;
2005 2171
2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2007 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2010 ANHE_w (timers [ev_active (w)]) = (WT)w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
2011 ANHE_at_set (timers [ev_active (w)]); 2180 ANHE_at_cache (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w)); 2181 upheap (timers, ev_active (w));
2013 2182
2183 EV_FREQUENT_CHECK;
2184
2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2015} 2186}
2016 2187
2017void noinline 2188void noinline
2018ev_timer_stop (EV_P_ ev_timer *w) 2189ev_timer_stop (EV_P_ ev_timer *w)
2019{ 2190{
2020 clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
2022 return; 2193 return;
2023 2194
2195 EV_FREQUENT_CHECK;
2196
2024 { 2197 {
2025 int active = ev_active (w); 2198 int active = ev_active (w);
2026 2199
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028 2201
2202 --timercnt;
2203
2029 if (expect_true (active < timercnt + HEAP0 - 1)) 2204 if (expect_true (active < timercnt + HEAP0))
2030 { 2205 {
2031 timers [active] = timers [timercnt + HEAP0 - 1]; 2206 timers [active] = timers [timercnt + HEAP0];
2032 adjustheap (timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
2033 } 2208 }
2034
2035 --timercnt;
2036 } 2209 }
2210
2211 EV_FREQUENT_CHECK;
2037 2212
2038 ev_at (w) -= mn_now; 2213 ev_at (w) -= mn_now;
2039 2214
2040 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
2041} 2216}
2042 2217
2043void noinline 2218void noinline
2044ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
2045{ 2220{
2221 EV_FREQUENT_CHECK;
2222
2046 if (ev_is_active (w)) 2223 if (ev_is_active (w))
2047 { 2224 {
2048 if (w->repeat) 2225 if (w->repeat)
2049 { 2226 {
2050 ev_at (w) = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]); 2228 ANHE_at_cache (timers [ev_active (w)]);
2052 adjustheap (timers, timercnt, ev_active (w)); 2229 adjustheap (timers, timercnt, ev_active (w));
2053 } 2230 }
2054 else 2231 else
2055 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
2056 } 2233 }
2057 else if (w->repeat) 2234 else if (w->repeat)
2058 { 2235 {
2059 ev_at (w) = w->repeat; 2236 ev_at (w) = w->repeat;
2060 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
2061 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
2062} 2241}
2063 2242
2064#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
2065void noinline 2244void noinline
2066ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2078 } 2257 }
2079 else 2258 else
2080 ev_at (w) = w->offset; 2259 ev_at (w) = w->offset;
2081 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2084 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2267 ANHE_at_cache (periodics [ev_active (w)]);
2085 upheap (periodics, ev_active (w)); 2268 upheap (periodics, ev_active (w));
2269
2270 EV_FREQUENT_CHECK;
2086 2271
2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2088} 2273}
2089 2274
2090void noinline 2275void noinline
2092{ 2277{
2093 clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
2094 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
2095 return; 2280 return;
2096 2281
2282 EV_FREQUENT_CHECK;
2283
2097 { 2284 {
2098 int active = ev_active (w); 2285 int active = ev_active (w);
2099 2286
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101 2288
2289 --periodiccnt;
2290
2102 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2291 if (expect_true (active < periodiccnt + HEAP0))
2103 { 2292 {
2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
2105 adjustheap (periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
2106 } 2295 }
2107
2108 --periodiccnt;
2109 } 2296 }
2297
2298 EV_FREQUENT_CHECK;
2110 2299
2111 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
2112} 2301}
2113 2302
2114void noinline 2303void noinline
2134 return; 2323 return;
2135 2324
2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2137 2326
2138 evpipe_init (EV_A); 2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
2139 2330
2140 { 2331 {
2141#ifndef _WIN32 2332#ifndef _WIN32
2142 sigset_t full, prev; 2333 sigset_t full, prev;
2143 sigfillset (&full); 2334 sigfillset (&full);
2164 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2166 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
2167#endif 2358#endif
2168 } 2359 }
2360
2361 EV_FREQUENT_CHECK;
2169} 2362}
2170 2363
2171void noinline 2364void noinline
2172ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
2173{ 2366{
2174 clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
2175 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
2176 return; 2369 return;
2177 2370
2371 EV_FREQUENT_CHECK;
2372
2178 wlist_del (&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
2179 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
2180 2375
2181 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
2182 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
2183} 2380}
2184 2381
2185void 2382void
2186ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
2187{ 2384{
2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2190#endif 2387#endif
2191 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
2192 return; 2389 return;
2193 2390
2391 EV_FREQUENT_CHECK;
2392
2194 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
2196} 2397}
2197 2398
2198void 2399void
2199ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
2200{ 2401{
2201 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
2203 return; 2404 return;
2204 2405
2406 EV_FREQUENT_CHECK;
2407
2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2206 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
2207} 2412}
2208 2413
2209#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
2210 2415
2211# ifdef _WIN32 2416# ifdef _WIN32
2366 } 2571 }
2367 2572
2368 } 2573 }
2369} 2574}
2370 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2371#endif 2582#endif
2372 2583
2373void 2584void
2374ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
2375{ 2586{
2439 else 2650 else
2440#endif 2651#endif
2441 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
2442 2653
2443 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2444} 2657}
2445 2658
2446void 2659void
2447ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
2448{ 2661{
2449 clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
2450 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
2451 return; 2664 return;
2452 2665
2666 EV_FREQUENT_CHECK;
2667
2453#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
2454 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
2455#endif 2670#endif
2456 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
2457 2672
2458 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2459} 2676}
2460#endif 2677#endif
2461 2678
2462#if EV_IDLE_ENABLE 2679#if EV_IDLE_ENABLE
2463void 2680void
2465{ 2682{
2466 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
2467 return; 2684 return;
2468 2685
2469 pri_adjust (EV_A_ (W)w); 2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2470 2689
2471 { 2690 {
2472 int active = ++idlecnt [ABSPRI (w)]; 2691 int active = ++idlecnt [ABSPRI (w)];
2473 2692
2474 ++idleall; 2693 ++idleall;
2475 ev_start (EV_A_ (W)w, active); 2694 ev_start (EV_A_ (W)w, active);
2476 2695
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2479 } 2698 }
2699
2700 EV_FREQUENT_CHECK;
2480} 2701}
2481 2702
2482void 2703void
2483ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
2484{ 2705{
2485 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
2487 return; 2708 return;
2488 2709
2710 EV_FREQUENT_CHECK;
2711
2489 { 2712 {
2490 int active = ev_active (w); 2713 int active = ev_active (w);
2491 2714
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494 2717
2495 ev_stop (EV_A_ (W)w); 2718 ev_stop (EV_A_ (W)w);
2496 --idleall; 2719 --idleall;
2497 } 2720 }
2721
2722 EV_FREQUENT_CHECK;
2498} 2723}
2499#endif 2724#endif
2500 2725
2501void 2726void
2502ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
2503{ 2728{
2504 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2505 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
2506 2733
2507 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2509 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2510} 2739}
2511 2740
2512void 2741void
2513ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2514{ 2743{
2515 clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2517 return; 2746 return;
2518 2747
2748 EV_FREQUENT_CHECK;
2749
2519 { 2750 {
2520 int active = ev_active (w); 2751 int active = ev_active (w);
2521 2752
2522 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active; 2754 ev_active (prepares [active - 1]) = active;
2524 } 2755 }
2525 2756
2526 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2527} 2760}
2528 2761
2529void 2762void
2530ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2531{ 2764{
2532 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2533 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2534 2769
2535 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2537 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2538} 2775}
2539 2776
2540void 2777void
2541ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2542{ 2779{
2543 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2545 return; 2782 return;
2546 2783
2784 EV_FREQUENT_CHECK;
2785
2547 { 2786 {
2548 int active = ev_active (w); 2787 int active = ev_active (w);
2549 2788
2550 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active; 2790 ev_active (checks [active - 1]) = active;
2552 } 2791 }
2553 2792
2554 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2555} 2796}
2556 2797
2557#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2558void noinline 2799void noinline
2559ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2606 struct ev_loop *loop = w->other; 2847 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 } 2850 }
2610 2851
2852 EV_FREQUENT_CHECK;
2853
2611 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2613 2856
2614 ev_prepare_init (&w->prepare, embed_prepare_cb); 2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI); 2858 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare); 2859 ev_prepare_start (EV_A_ &w->prepare);
2617 2860
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619 2862
2620 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2621} 2866}
2622 2867
2623void 2868void
2624ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2625{ 2870{
2626 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2628 return; 2873 return;
2629 2874
2875 EV_FREQUENT_CHECK;
2876
2630 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare); 2878 ev_prepare_stop (EV_A_ &w->prepare);
2632 2879
2633 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2634} 2883}
2635#endif 2884#endif
2636 2885
2637#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2638void 2887void
2639ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2640{ 2889{
2641 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2642 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2643 2894
2644 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2647} 2900}
2648 2901
2649void 2902void
2650ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2651{ 2904{
2652 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2654 return; 2907 return;
2655 2908
2909 EV_FREQUENT_CHECK;
2910
2656 { 2911 {
2657 int active = ev_active (w); 2912 int active = ev_active (w);
2658 2913
2659 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active; 2915 ev_active (forks [active - 1]) = active;
2661 } 2916 }
2662 2917
2663 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2664} 2921}
2665#endif 2922#endif
2666 2923
2667#if EV_ASYNC_ENABLE 2924#if EV_ASYNC_ENABLE
2668void 2925void
2670{ 2927{
2671 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2672 return; 2929 return;
2673 2930
2674 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2675 2934
2676 ev_start (EV_A_ (W)w, ++asynccnt); 2935 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w; 2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2679} 2940}
2680 2941
2681void 2942void
2682ev_async_stop (EV_P_ ev_async *w) 2943ev_async_stop (EV_P_ ev_async *w)
2683{ 2944{
2684 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2686 return; 2947 return;
2687 2948
2949 EV_FREQUENT_CHECK;
2950
2688 { 2951 {
2689 int active = ev_active (w); 2952 int active = ev_active (w);
2690 2953
2691 asyncs [active - 1] = asyncs [--asynccnt]; 2954 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active; 2955 ev_active (asyncs [active - 1]) = active;
2693 } 2956 }
2694 2957
2695 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2696} 2961}
2697 2962
2698void 2963void
2699ev_async_send (EV_P_ ev_async *w) 2964ev_async_send (EV_P_ ev_async *w)
2700{ 2965{
2717once_cb (EV_P_ struct ev_once *once, int revents) 2982once_cb (EV_P_ struct ev_once *once, int revents)
2718{ 2983{
2719 void (*cb)(int revents, void *arg) = once->cb; 2984 void (*cb)(int revents, void *arg) = once->cb;
2720 void *arg = once->arg; 2985 void *arg = once->arg;
2721 2986
2722 ev_io_stop (EV_A_ &once->io); 2987 ev_io_stop (EV_A_ &once->io);
2723 ev_timer_stop (EV_A_ &once->to); 2988 ev_timer_stop (EV_A_ &once->to);
2724 ev_free (once); 2989 ev_free (once);
2725 2990
2726 cb (revents, arg); 2991 cb (revents, arg);
2727} 2992}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines