ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
114 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 155# include <sys/time.h>
118# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
119#else 158#else
120# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 160# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 241
163#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
166#endif 245#endif
168#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
171#endif 250#endif
172 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
173#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 268# include <winsock.h>
175#endif 269#endif
176 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
177/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 294
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 298
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 299#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 301# define noinline __attribute__ ((noinline))
193#else 302#else
194# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
195# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
196#endif 308#endif
197 309
198#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
200 319
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 322
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
206 325
207typedef struct ev_watcher *W; 326typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
210 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
212 338
213#ifdef _WIN32 339#ifdef _WIN32
214# include "ev_win32.c" 340# include "ev_win32.c"
215#endif 341#endif
216 342
217/*****************************************************************************/ 343/*****************************************************************************/
218 344
219static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
220 346
347void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 349{
223 syserr_cb = cb; 350 syserr_cb = cb;
224} 351}
225 352
226static void 353static void noinline
227syserr (const char *msg) 354syserr (const char *msg)
228{ 355{
229 if (!msg) 356 if (!msg)
230 msg = "(libev) system error"; 357 msg = "(libev) system error";
231 358
236 perror (msg); 363 perror (msg);
237 abort (); 364 abort ();
238 } 365 }
239} 366}
240 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
241static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 384
385void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 387{
245 alloc = cb; 388 alloc = cb;
246} 389}
247 390
248static void * 391inline_speed void *
249ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
250{ 393{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
252 395
253 if (!ptr && size) 396 if (!ptr && size)
254 { 397 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 399 abort ();
277typedef struct 420typedef struct
278{ 421{
279 W w; 422 W w;
280 int events; 423 int events;
281} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
428typedef struct
429{
430 WL head;
431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
451#endif
282 452
283#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
284 454
285 struct ev_loop 455 struct ev_loop
286 { 456 {
320 gettimeofday (&tv, 0); 490 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 491 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 492#endif
323} 493}
324 494
325inline ev_tstamp 495ev_tstamp inline_size
326get_clock (void) 496get_clock (void)
327{ 497{
328#if EV_USE_MONOTONIC 498#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 499 if (expect_true (have_monotonic))
330 { 500 {
343{ 513{
344 return ev_rt_now; 514 return ev_rt_now;
345} 515}
346#endif 516#endif
347 517
348#define array_roundsize(type,n) (((n) | 4) & ~3) 518void
519ev_sleep (ev_tstamp delay)
520{
521 if (delay > 0.)
522 {
523#if EV_USE_NANOSLEEP
524 struct timespec ts;
525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532#else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539#endif
540 }
541}
542
543/*****************************************************************************/
544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
547int inline_size
548array_nextsize (int elem, int cur, int cnt)
549{
550 int ncur = cur + 1;
551
552 do
553 ncur <<= 1;
554 while (cnt > ncur);
555
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 {
559 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4;
562 ncur /= elem;
563 }
564
565 return ncur;
566}
567
568static noinline void *
569array_realloc (int elem, void *base, int *cur, int cnt)
570{
571 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur);
573}
349 574
350#define array_needsize(type,base,cur,cnt,init) \ 575#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 576 if (expect_false ((cnt) > (cur))) \
352 { \ 577 { \
353 int newcnt = cur; \ 578 int ocur_ = (cur); \
354 do \ 579 (base) = (type *)array_realloc \
355 { \ 580 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 581 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 582 }
364 583
584#if 0
365#define array_slim(type,stem) \ 585#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 586 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 587 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 588 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 589 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 591 }
592#endif
372 593
373#define array_free(stem, idx) \ 594#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 596
376/*****************************************************************************/ 597/*****************************************************************************/
377 598
378static void 599void noinline
600ev_feed_event (EV_P_ void *w, int revents)
601{
602 W w_ = (W)w;
603 int pri = ABSPRI (w_);
604
605 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents;
607 else
608 {
609 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents;
613 }
614}
615
616void inline_speed
617queue_events (EV_P_ W *events, int eventcnt, int type)
618{
619 int i;
620
621 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type);
623}
624
625/*****************************************************************************/
626
627void inline_size
379anfds_init (ANFD *base, int count) 628anfds_init (ANFD *base, int count)
380{ 629{
381 while (count--) 630 while (count--)
382 { 631 {
383 base->head = 0; 632 base->head = 0;
386 635
387 ++base; 636 ++base;
388 } 637 }
389} 638}
390 639
391void 640void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 641fd_event (EV_P_ int fd, int revents)
422{ 642{
423 ANFD *anfd = anfds + fd; 643 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 644 ev_io *w;
425 645
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 647 {
428 int ev = w->events & revents; 648 int ev = w->events & revents;
429 649
430 if (ev) 650 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 651 ev_feed_event (EV_A_ (W)w, ev);
433} 653}
434 654
435void 655void
436ev_feed_fd_event (EV_P_ int fd, int revents) 656ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 657{
658 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 659 fd_event (EV_A_ fd, revents);
439} 660}
440 661
441/*****************************************************************************/ 662void inline_size
442
443inline void
444fd_reify (EV_P) 663fd_reify (EV_P)
445{ 664{
446 int i; 665 int i;
447 666
448 for (i = 0; i < fdchangecnt; ++i) 667 for (i = 0; i < fdchangecnt; ++i)
449 { 668 {
450 int fd = fdchanges [i]; 669 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 670 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 671 ev_io *w;
453 672
454 int events = 0; 673 unsigned char events = 0;
455 674
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 676 events |= (unsigned char)w->events;
458 677
459#if EV_SELECT_IS_WINSOCKET 678#if EV_SELECT_IS_WINSOCKET
460 if (events) 679 if (events)
461 { 680 {
462 unsigned long argp; 681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
463 anfd->handle = _get_osfhandle (fd); 685 anfd->handle = _get_osfhandle (fd);
686 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 688 }
466#endif 689#endif
467 690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
468 anfd->reify = 0; 695 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
472 } 701 }
473 702
474 fdchangecnt = 0; 703 fdchangecnt = 0;
475} 704}
476 705
477static void 706void inline_size
478fd_change (EV_P_ int fd) 707fd_change (EV_P_ int fd, int flags)
479{ 708{
480 if (expect_false (anfds [fd].reify)) 709 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 710 anfds [fd].reify |= flags;
484 711
712 if (expect_true (!reify))
713 {
485 ++fdchangecnt; 714 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 716 fdchanges [fdchangecnt - 1] = fd;
717 }
488} 718}
489 719
490static void 720void inline_speed
491fd_kill (EV_P_ int fd) 721fd_kill (EV_P_ int fd)
492{ 722{
493 struct ev_io *w; 723 ev_io *w;
494 724
495 while ((w = (struct ev_io *)anfds [fd].head)) 725 while ((w = (ev_io *)anfds [fd].head))
496 { 726 {
497 ev_io_stop (EV_A_ w); 727 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 729 }
500} 730}
501 731
502inline int 732int inline_size
503fd_valid (int fd) 733fd_valid (int fd)
504{ 734{
505#ifdef _WIN32 735#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 736 return _get_osfhandle (fd) != -1;
507#else 737#else
508 return fcntl (fd, F_GETFD) != -1; 738 return fcntl (fd, F_GETFD) != -1;
509#endif 739#endif
510} 740}
511 741
512/* called on EBADF to verify fds */ 742/* called on EBADF to verify fds */
513static void 743static void noinline
514fd_ebadf (EV_P) 744fd_ebadf (EV_P)
515{ 745{
516 int fd; 746 int fd;
517 747
518 for (fd = 0; fd < anfdmax; ++fd) 748 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 750 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 751 fd_kill (EV_A_ fd);
522} 752}
523 753
524/* called on ENOMEM in select/poll to kill some fds and retry */ 754/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 755static void noinline
526fd_enomem (EV_P) 756fd_enomem (EV_P)
527{ 757{
528 int fd; 758 int fd;
529 759
530 for (fd = anfdmax; fd--; ) 760 for (fd = anfdmax; fd--; )
534 return; 764 return;
535 } 765 }
536} 766}
537 767
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 768/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 769static void noinline
540fd_rearm_all (EV_P) 770fd_rearm_all (EV_P)
541{ 771{
542 int fd; 772 int fd;
543 773
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 774 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 775 if (anfds [fd].events)
547 { 776 {
548 anfds [fd].events = 0; 777 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 779 }
551} 780}
552 781
553/*****************************************************************************/ 782/*****************************************************************************/
554 783
555static void 784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
803void inline_speed
556upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
557{ 805{
558 WT w = heap [k]; 806 ANHE he = heap [k];
559 807
560 while (k && heap [k >> 1]->at > w->at) 808 for (;;)
561 { 809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
562 heap [k] = heap [k >> 1]; 815 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
564 k >>= 1; 817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
565 } 889 }
566 890
567 heap [k] = w; 891 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
569
570} 893}
571 894
572static void 895/* away from the root */
896void inline_speed
573downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
574{ 898{
575 WT w = heap [k]; 899 ANHE he = heap [k];
576 900
577 while (k < (N >> 1)) 901 for (;;)
578 { 902 {
579 int j = k << 1; 903 int c = k << 1;
580 904
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 if (c > N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 906 break;
586 907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
587 heap [k] = heap [j]; 914 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
916
589 k = j; 917 k = c;
590 } 918 }
591 919
592 heap [k] = w; 920 heap [k] = he;
593 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
594} 922}
923#endif
595 924
596inline void 925void inline_size
597adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
598{ 927{
599 upheap (heap, k); 928 upheap (heap, k);
600 downheap (heap, N, k); 929 downheap (heap, N, k);
601} 930}
602 931
603/*****************************************************************************/ 932/*****************************************************************************/
604 933
605typedef struct 934typedef struct
606{ 935{
607 WL head; 936 WL head;
608 sig_atomic_t volatile gotsig; 937 EV_ATOMIC_T gotsig;
609} ANSIG; 938} ANSIG;
610 939
611static ANSIG *signals; 940static ANSIG *signals;
612static int signalmax; 941static int signalmax;
613 942
614static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 944
618static void 945void inline_size
619signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
620{ 947{
621 while (count--) 948 while (count--)
622 { 949 {
623 base->head = 0; 950 base->head = 0;
625 952
626 ++base; 953 ++base;
627 } 954 }
628} 955}
629 956
630static void 957/*****************************************************************************/
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636 958
637 signals [signum - 1].gotsig = 1; 959void inline_speed
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 960fd_intern (int fd)
683{ 961{
684#ifdef _WIN32 962#ifdef _WIN32
685 int arg = 1; 963 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 966 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 967 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 968#endif
691} 969}
692 970
971static void noinline
972evpipe_init (EV_P)
973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
989 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
993
994 ev_io_start (EV_A_ &pipeev);
995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
693static void 1022static void
694siginit (EV_P) 1023pipecb (EV_P_ ev_io *iow, int revents)
695{ 1024{
696 fd_intern (sigpipe [0]); 1025#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
698 1037
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1038 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 1039 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
702} 1062}
703 1063
704/*****************************************************************************/ 1064/*****************************************************************************/
705 1065
706static struct ev_child *childs [PID_HASHSIZE]; 1066static void
1067ev_sighandler (int signum)
1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return;
1094
1095 signals [signum].gotsig = 0;
1096
1097 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099}
1100
1101/*****************************************************************************/
1102
1103static WL childs [EV_PID_HASHSIZE];
707 1104
708#ifndef _WIN32 1105#ifndef _WIN32
709 1106
710static struct ev_signal childev; 1107static ev_signal childev;
1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
1113void inline_speed
1114child_reap (EV_P_ int chain, int pid, int status)
1115{
1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
1123 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1125 w->rpid = pid;
1126 w->rstatus = status;
1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1128 }
1129 }
1130}
711 1131
712#ifndef WCONTINUED 1132#ifndef WCONTINUED
713# define WCONTINUED 0 1133# define WCONTINUED 0
714#endif 1134#endif
715 1135
716static void 1136static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1137childcb (EV_P_ ev_signal *sw, int revents)
733{ 1138{
734 int pid, status; 1139 int pid, status;
735 1140
1141 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1142 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1143 if (!WCONTINUED
1144 || errno != EINVAL
1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1146 return;
1147
738 /* make sure we are called again until all childs have been reaped */ 1148 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1149 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1151
742 child_reap (EV_A_ sw, pid, pid, status); 1152 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1155}
746 1156
747#endif 1157#endif
748 1158
749/*****************************************************************************/ 1159/*****************************************************************************/
775{ 1185{
776 return EV_VERSION_MINOR; 1186 return EV_VERSION_MINOR;
777} 1187}
778 1188
779/* return true if we are running with elevated privileges and should ignore env variables */ 1189/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1190int inline_size
781enable_secure (void) 1191enable_secure (void)
782{ 1192{
783#ifdef _WIN32 1193#ifdef _WIN32
784 return 0; 1194 return 0;
785#else 1195#else
821} 1231}
822 1232
823unsigned int 1233unsigned int
824ev_embeddable_backends (void) 1234ev_embeddable_backends (void)
825{ 1235{
826 return EVBACKEND_EPOLL 1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1237
828 | EVBACKEND_PORT; 1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
829} 1243}
830 1244
831unsigned int 1245unsigned int
832ev_backend (EV_P) 1246ev_backend (EV_P)
833{ 1247{
834 return backend; 1248 return backend;
835} 1249}
836 1250
837static void 1251unsigned int
1252ev_loop_count (EV_P)
1253{
1254 return loop_count;
1255}
1256
1257void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{
1260 io_blocktime = interval;
1261}
1262
1263void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 timeout_blocktime = interval;
1267}
1268
1269static void noinline
838loop_init (EV_P_ unsigned int flags) 1270loop_init (EV_P_ unsigned int flags)
839{ 1271{
840 if (!backend) 1272 if (!backend)
841 { 1273 {
842#if EV_USE_MONOTONIC 1274#if EV_USE_MONOTONIC
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1278 have_monotonic = 1;
847 } 1279 }
848#endif 1280#endif
849 1281
850 ev_rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1283 mn_now = get_clock ();
852 now_floor = mn_now; 1284 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
1295
1296 /* pid check not overridable via env */
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif
854 1301
855 if (!(flags & EVFLAG_NOENV) 1302 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1303 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1304 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1306
860 if (!(flags & 0x0000ffffUL)) 1307 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1308 flags |= ev_recommended_backends ();
862 1309
863 backend = 0;
864#if EV_USE_PORT 1310#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1312#endif
867#if EV_USE_KQUEUE 1313#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1321#endif
876#if EV_USE_SELECT 1322#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1324#endif
879 1325
880 ev_init (&sigev, sigcb); 1326 ev_init (&pipeev, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1327 ev_set_priority (&pipeev, EV_MAXPRI);
882 } 1328 }
883} 1329}
884 1330
885static void 1331static void noinline
886loop_destroy (EV_P) 1332loop_destroy (EV_P)
887{ 1333{
888 int i; 1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
1352
1353#if EV_USE_INOTIFY
1354 if (fs_fd >= 0)
1355 close (fs_fd);
1356#endif
1357
1358 if (backend_fd >= 0)
1359 close (backend_fd);
889 1360
890#if EV_USE_PORT 1361#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1363#endif
893#if EV_USE_KQUEUE 1364#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1373#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1375#endif
905 1376
906 for (i = NUMPRI; i--; ) 1377 for (i = NUMPRI; i--; )
1378 {
907 array_free (pending, [i]); 1379 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE
1381 array_free (idle, [i]);
1382#endif
1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
908 1386
909 /* have to use the microsoft-never-gets-it-right macro */ 1387 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1388 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1389 array_free (timer, EMPTY);
912#if EV_PERIODICS 1390#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1391 array_free (periodic, EMPTY);
914#endif 1392#endif
1393#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1394 array_free (fork, EMPTY);
1395#endif
916 array_free (prepare, EMPTY0); 1396 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
918 1401
919 backend = 0; 1402 backend = 0;
920} 1403}
921 1404
922static void 1405#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P);
1407#endif
1408
1409void inline_size
923loop_fork (EV_P) 1410loop_fork (EV_P)
924{ 1411{
925#if EV_USE_PORT 1412#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1414#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1416 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1417#endif
931#if EV_USE_EPOLL 1418#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1419 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1420#endif
1421#if EV_USE_INOTIFY
1422 infy_fork (EV_A);
1423#endif
934 1424
935 if (ev_is_active (&sigev)) 1425 if (ev_is_active (&pipeev))
936 { 1426 {
937 /* default loop */ 1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
938 1433
939 ev_ref (EV_A); 1434 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
941 close (sigpipe [0]); 1444 close (evpipe [0]);
942 close (sigpipe [1]); 1445 close (evpipe [1]);
1446 }
943 1447
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
948 } 1451 }
949 1452
950 postfork = 0; 1453 postfork = 0;
951} 1454}
952 1455
974} 1477}
975 1478
976void 1479void
977ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
978{ 1481{
979 postfork = 1; 1482 postfork = 1; /* must be in line with ev_default_fork */
980} 1483}
981
982#endif 1484#endif
983 1485
984#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
985struct ev_loop * 1487struct ev_loop *
986ev_default_loop_init (unsigned int flags) 1488ev_default_loop_init (unsigned int flags)
987#else 1489#else
988int 1490int
989ev_default_loop (unsigned int flags) 1491ev_default_loop (unsigned int flags)
990#endif 1492#endif
991{ 1493{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1494 if (!ev_default_loop_ptr)
997 { 1495 {
998#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1498#else
1003 1501
1004 loop_init (EV_A_ flags); 1502 loop_init (EV_A_ flags);
1005 1503
1006 if (ev_backend (EV_A)) 1504 if (ev_backend (EV_A))
1007 { 1505 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1506#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1507 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1508 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1509 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1031#ifndef _WIN32 1527#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1528 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1529 ev_signal_stop (EV_A_ &childev);
1034#endif 1530#endif
1035 1531
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1532 loop_destroy (EV_A);
1043} 1533}
1044 1534
1045void 1535void
1046ev_default_fork (void) 1536ev_default_fork (void)
1048#if EV_MULTIPLICITY 1538#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1539 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1540#endif
1051 1541
1052 if (backend) 1542 if (backend)
1053 postfork = 1; 1543 postfork = 1; /* must be in line with ev_loop_fork */
1054} 1544}
1055 1545
1056/*****************************************************************************/ 1546/*****************************************************************************/
1057 1547
1058static int 1548void
1059any_pending (EV_P) 1549ev_invoke (EV_P_ void *w, int revents)
1060{ 1550{
1061 int pri; 1551 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1552}
1069 1553
1070inline void 1554void inline_speed
1071call_pending (EV_P) 1555call_pending (EV_P)
1072{ 1556{
1073 int pri; 1557 int pri;
1074 1558
1075 for (pri = NUMPRI; pri--; ) 1559 for (pri = NUMPRI; pri--; )
1077 { 1561 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1563
1080 if (expect_true (p->w)) 1564 if (expect_true (p->w))
1081 { 1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567
1082 p->w->pending = 0; 1568 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
1084 } 1570 }
1085 } 1571 }
1086} 1572}
1087 1573
1088inline void 1574#if EV_IDLE_ENABLE
1575void inline_size
1576idle_reify (EV_P)
1577{
1578 if (expect_false (idleall))
1579 {
1580 int pri;
1581
1582 for (pri = NUMPRI; pri--; )
1583 {
1584 if (pendingcnt [pri])
1585 break;
1586
1587 if (idlecnt [pri])
1588 {
1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1590 break;
1591 }
1592 }
1593 }
1594}
1595#endif
1596
1597void inline_size
1089timers_reify (EV_P) 1598timers_reify (EV_P)
1090{ 1599{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1092 { 1601 {
1093 struct ev_timer *w = timers [0]; 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1094 1603
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1605
1097 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
1098 if (w->repeat) 1607 if (w->repeat)
1099 { 1608 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1610
1102 ((WT)w)->at += w->repeat; 1611 ev_at (w) += w->repeat;
1103 if (((WT)w)->at < mn_now) 1612 if (ev_at (w) < mn_now)
1104 ((WT)w)->at = mn_now; 1613 ev_at (w) = mn_now;
1105 1614
1615 ANHE_at_set (timers [HEAP0]);
1106 downheap ((WT *)timers, timercnt, 0); 1616 downheap (timers, timercnt, HEAP0);
1107 } 1617 }
1108 else 1618 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1620
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1622 }
1113} 1623}
1114 1624
1115#if EV_PERIODICS 1625#if EV_PERIODIC_ENABLE
1116inline void 1626void inline_size
1117periodics_reify (EV_P) 1627periodics_reify (EV_P)
1118{ 1628{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1120 { 1630 {
1121 struct ev_periodic *w = periodics [0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1122 1632
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1634
1125 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1636 if (w->reschedule_cb)
1127 { 1637 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1130 downheap ((WT *)periodics, periodiccnt, 0); 1641 downheap (periodics, periodiccnt, HEAP0);
1131 } 1642 }
1132 else if (w->interval) 1643 else if (w->interval)
1133 { 1644 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1136 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1137 } 1650 }
1138 else 1651 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1653
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1655 }
1143} 1656}
1144 1657
1145static void 1658static void noinline
1146periodics_reschedule (EV_P) 1659periodics_reschedule (EV_P)
1147{ 1660{
1148 int i; 1661 int i;
1149 1662
1150 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1152 { 1665 {
1153 struct ev_periodic *w = periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1154 1667
1155 if (w->reschedule_cb) 1668 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1670 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 }
1160 1672
1161 /* now rebuild the heap */ 1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1162 for (i = periodiccnt >> 1; i--; ) 1677 for (i = periodiccnt >> 1; --i; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1678 downheap (periodics, periodiccnt, i + HEAP0);
1164} 1679}
1165#endif 1680#endif
1166 1681
1167inline int 1682void inline_speed
1168time_update_monotonic (EV_P) 1683time_update (EV_P_ ev_tstamp max_block)
1169{ 1684{
1685 int i;
1686
1687#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1170 mn_now = get_clock (); 1692 mn_now = get_clock ();
1171 1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1697 {
1174 ev_rt_now = rtmn_diff + mn_now; 1698 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1699 return;
1176 } 1700 }
1177 else 1701
1178 {
1179 now_floor = mn_now; 1702 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1703 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1704
1185inline void 1705 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1706 * on the choice of "4": one iteration isn't enough,
1187{ 1707 * in case we get preempted during the calls to
1188 int i; 1708 * ev_time and get_clock. a second call is almost guaranteed
1189 1709 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1710 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1711 * in the unlikely event of having been preempted here.
1192 { 1712 */
1193 if (time_update_monotonic (EV_A)) 1713 for (i = 4; --i; )
1194 { 1714 {
1195 ev_tstamp odiff = rtmn_diff; 1715 rtmn_diff = ev_rt_now - mn_now;
1196 1716
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1718 return; /* all is well */
1719
1720 ev_rt_now = ev_time ();
1721 mn_now = get_clock ();
1722 now_floor = mn_now;
1723 }
1724
1725# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A);
1727# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 }
1731 else
1732#endif
1733 {
1734 ev_rt_now = ev_time ();
1735
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 {
1738#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A);
1740#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1198 { 1743 {
1199 rtmn_diff = ev_rt_now - mn_now; 1744 ANHE *he = timers + i + HEAP0;
1200 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1746 ANHE_at_set (*he);
1202 return; /* all is well */
1203
1204 ev_rt_now = ev_time ();
1205 mn_now = get_clock ();
1206 now_floor = mn_now;
1207 } 1747 }
1208
1209# if EV_PERIODICS
1210 periodics_reschedule (EV_A);
1211# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1748 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 1749
1232 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1233 } 1751 }
1234} 1752}
1235 1753
1248static int loop_done; 1766static int loop_done;
1249 1767
1250void 1768void
1251ev_loop (EV_P_ int flags) 1769ev_loop (EV_P_ int flags)
1252{ 1770{
1253 double block; 1771 loop_done = EVUNLOOP_CANCEL;
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1255 1772
1256 while (activecnt) 1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774
1775 do
1257 { 1776 {
1777#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid))
1780 {
1781 curpid = getpid ();
1782 postfork = 1;
1783 }
1784#endif
1785
1786#if EV_FORK_ENABLE
1787 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork))
1789 if (forkcnt)
1790 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A);
1793 }
1794#endif
1795
1258 /* queue check watchers (and execute them) */ 1796 /* queue prepare watchers (and execute them) */
1259 if (expect_false (preparecnt)) 1797 if (expect_false (preparecnt))
1260 { 1798 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 1800 call_pending (EV_A);
1263 } 1801 }
1264 1802
1803 if (expect_false (!activecnt))
1804 break;
1805
1265 /* we might have forked, so reify kernel state if necessary */ 1806 /* we might have forked, so reify kernel state if necessary */
1266 if (expect_false (postfork)) 1807 if (expect_false (postfork))
1267 loop_fork (EV_A); 1808 loop_fork (EV_A);
1268 1809
1269 /* update fd-related kernel structures */ 1810 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 1811 fd_reify (EV_A);
1271 1812
1272 /* calculate blocking time */ 1813 /* calculate blocking time */
1814 {
1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
1273 1817
1274 /* we only need this for !monotonic clock or timers, but as we basically 1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1275 always have timers, we just calculate it always */
1276#if EV_USE_MONOTONIC
1277 if (expect_true (have_monotonic))
1278 time_update_monotonic (EV_A);
1279 else
1280#endif
1281 { 1819 {
1282 ev_rt_now = ev_time (); 1820 /* update time to cancel out callback processing overhead */
1283 mn_now = ev_rt_now; 1821 time_update (EV_A_ 1e100);
1284 }
1285 1822
1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1287 block = 0.;
1288 else
1289 {
1290 block = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1291 1824
1292 if (timercnt) 1825 if (timercnt)
1293 { 1826 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1295 if (block > to) block = to; 1828 if (waittime > to) waittime = to;
1296 } 1829 }
1297 1830
1298#if EV_PERIODICS 1831#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 1832 if (periodiccnt)
1300 { 1833 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1302 if (block > to) block = to; 1835 if (waittime > to) waittime = to;
1303 } 1836 }
1304#endif 1837#endif
1305 1838
1306 if (expect_false (block < 0.)) block = 0.; 1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
1307 } 1852 }
1308 1853
1854 ++loop_count;
1309 backend_poll (EV_A_ block); 1855 backend_poll (EV_A_ waittime);
1310 1856
1311 /* update ev_rt_now, do magic */ 1857 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 1858 time_update (EV_A_ waittime + sleeptime);
1859 }
1313 1860
1314 /* queue pending timers and reschedule them */ 1861 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 1862 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 1863#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 1864 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 1865#endif
1319 1866
1867#if EV_IDLE_ENABLE
1320 /* queue idle watchers unless io or timers are pending */ 1868 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 1869 idle_reify (EV_A);
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1870#endif
1323 1871
1324 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 1873 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1327 1875
1328 call_pending (EV_A); 1876 call_pending (EV_A);
1329
1330 if (expect_false (loop_done))
1331 break;
1332 } 1877 }
1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1333 1883
1334 if (loop_done != 2) 1884 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = 0; 1885 loop_done = EVUNLOOP_CANCEL;
1336} 1886}
1337 1887
1338void 1888void
1339ev_unloop (EV_P_ int how) 1889ev_unloop (EV_P_ int how)
1340{ 1890{
1341 loop_done = how; 1891 loop_done = how;
1342} 1892}
1343 1893
1344/*****************************************************************************/ 1894/*****************************************************************************/
1345 1895
1346inline void 1896void inline_size
1347wlist_add (WL *head, WL elem) 1897wlist_add (WL *head, WL elem)
1348{ 1898{
1349 elem->next = *head; 1899 elem->next = *head;
1350 *head = elem; 1900 *head = elem;
1351} 1901}
1352 1902
1353inline void 1903void inline_size
1354wlist_del (WL *head, WL elem) 1904wlist_del (WL *head, WL elem)
1355{ 1905{
1356 while (*head) 1906 while (*head)
1357 { 1907 {
1358 if (*head == elem) 1908 if (*head == elem)
1363 1913
1364 head = &(*head)->next; 1914 head = &(*head)->next;
1365 } 1915 }
1366} 1916}
1367 1917
1368inline void 1918void inline_speed
1369ev_clear_pending (EV_P_ W w) 1919clear_pending (EV_P_ W w)
1370{ 1920{
1371 if (w->pending) 1921 if (w->pending)
1372 { 1922 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1923 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1374 w->pending = 0; 1924 w->pending = 0;
1375 } 1925 }
1376} 1926}
1377 1927
1378inline void 1928int
1929ev_clear_pending (EV_P_ void *w)
1930{
1931 W w_ = (W)w;
1932 int pending = w_->pending;
1933
1934 if (expect_true (pending))
1935 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1937 w_->pending = 0;
1938 p->w = 0;
1939 return p->events;
1940 }
1941 else
1942 return 0;
1943}
1944
1945void inline_size
1946pri_adjust (EV_P_ W w)
1947{
1948 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri;
1952}
1953
1954void inline_speed
1379ev_start (EV_P_ W w, int active) 1955ev_start (EV_P_ W w, int active)
1380{ 1956{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1957 pri_adjust (EV_A_ w);
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active; 1958 w->active = active;
1385 ev_ref (EV_A); 1959 ev_ref (EV_A);
1386} 1960}
1387 1961
1388inline void 1962void inline_size
1389ev_stop (EV_P_ W w) 1963ev_stop (EV_P_ W w)
1390{ 1964{
1391 ev_unref (EV_A); 1965 ev_unref (EV_A);
1392 w->active = 0; 1966 w->active = 0;
1393} 1967}
1394 1968
1395/*****************************************************************************/ 1969/*****************************************************************************/
1396 1970
1397void 1971void noinline
1398ev_io_start (EV_P_ struct ev_io *w) 1972ev_io_start (EV_P_ ev_io *w)
1399{ 1973{
1400 int fd = w->fd; 1974 int fd = w->fd;
1401 1975
1402 if (expect_false (ev_is_active (w))) 1976 if (expect_false (ev_is_active (w)))
1403 return; 1977 return;
1404 1978
1405 assert (("ev_io_start called with negative fd", fd >= 0)); 1979 assert (("ev_io_start called with negative fd", fd >= 0));
1406 1980
1407 ev_start (EV_A_ (W)w, 1); 1981 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1983 wlist_add (&anfds[fd].head, (WL)w);
1410 1984
1411 fd_change (EV_A_ fd); 1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET;
1412} 1987}
1413 1988
1414void 1989void noinline
1415ev_io_stop (EV_P_ struct ev_io *w) 1990ev_io_stop (EV_P_ ev_io *w)
1416{ 1991{
1417 ev_clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1419 return; 1994 return;
1420 1995
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422 1997
1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1424 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1425 2000
1426 fd_change (EV_A_ w->fd); 2001 fd_change (EV_A_ w->fd, 1);
1427} 2002}
1428 2003
1429void 2004void noinline
1430ev_timer_start (EV_P_ struct ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1431{ 2006{
1432 if (expect_false (ev_is_active (w))) 2007 if (expect_false (ev_is_active (w)))
1433 return; 2008 return;
1434 2009
1435 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1436 2011
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 2013
1439 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1441 timers [timercnt - 1] = w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1442 upheap ((WT *)timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1443 2019
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1445} 2021}
1446 2022
1447void 2023void noinline
1448ev_timer_stop (EV_P_ struct ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1449{ 2025{
1450 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1452 return; 2028 return;
1453 2029
2030 {
2031 int active = ev_active (w);
2032
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1455 2034
1456 if (expect_true (((W)w)->active < timercnt--)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1457 { 2036 {
1458 timers [((W)w)->active - 1] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2038 adjustheap (timers, timercnt, active);
1460 } 2039 }
1461 2040
1462 ((WT)w)->at -= mn_now; 2041 --timercnt;
2042 }
2043
2044 ev_at (w) -= mn_now;
1463 2045
1464 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1465} 2047}
1466 2048
1467void 2049void noinline
1468ev_timer_again (EV_P_ struct ev_timer *w) 2050ev_timer_again (EV_P_ ev_timer *w)
1469{ 2051{
1470 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1471 { 2053 {
1472 if (w->repeat) 2054 if (w->repeat)
1473 { 2055 {
1474 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
1476 } 2059 }
1477 else 2060 else
1478 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1479 } 2062 }
1480 else if (w->repeat) 2063 else if (w->repeat)
1481 { 2064 {
1482 w->at = w->repeat; 2065 ev_at (w) = w->repeat;
1483 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
1484 } 2067 }
1485} 2068}
1486 2069
1487#if EV_PERIODICS 2070#if EV_PERIODIC_ENABLE
1488void 2071void noinline
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 2072ev_periodic_start (EV_P_ ev_periodic *w)
1490{ 2073{
1491 if (expect_false (ev_is_active (w))) 2074 if (expect_false (ev_is_active (w)))
1492 return; 2075 return;
1493 2076
1494 if (w->reschedule_cb) 2077 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 2079 else if (w->interval)
1497 { 2080 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1501 } 2084 }
2085 else
2086 ev_at (w) = w->offset;
1502 2087
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1507 2092
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1509} 2094}
1510 2095
1511void 2096void noinline
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1513{ 2098{
1514 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1516 return; 2101 return;
1517 2102
2103 {
2104 int active = ev_active (w);
2105
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1519 2107
1520 if (expect_true (((W)w)->active < periodiccnt--)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1521 { 2109 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2111 adjustheap (periodics, periodiccnt, active);
1524 } 2112 }
2113
2114 --periodiccnt;
2115 }
1525 2116
1526 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1527} 2118}
1528 2119
1529void 2120void noinline
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 2121ev_periodic_again (EV_P_ ev_periodic *w)
1531{ 2122{
1532 /* TODO: use adjustheap and recalculation */ 2123 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 2124 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 2125 ev_periodic_start (EV_A_ w);
1535} 2126}
1536#endif 2127#endif
1537 2128
1538void 2129#ifndef SA_RESTART
1539ev_idle_start (EV_P_ struct ev_idle *w) 2130# define SA_RESTART 0
2131#endif
2132
2133void noinline
2134ev_signal_start (EV_P_ ev_signal *w)
1540{ 2135{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
1541 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1542 return; 2140 return;
1543 2141
1544 ev_start (EV_A_ (W)w, ++idlecnt);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1546 idles [idlecnt - 1] = w;
1547}
1548
1549void
1550ev_idle_stop (EV_P_ struct ev_idle *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560void
1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1562{
1563 if (expect_false (ev_is_active (w)))
1564 return;
1565
1566 ev_start (EV_A_ (W)w, ++preparecnt);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1568 prepares [preparecnt - 1] = w;
1569}
1570
1571void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1573{
1574 ev_clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w)))
1576 return;
1577
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1579 ev_stop (EV_A_ (W)w);
1580}
1581
1582void
1583ev_check_start (EV_P_ struct ev_check *w)
1584{
1585 if (expect_false (ev_is_active (w)))
1586 return;
1587
1588 ev_start (EV_A_ (W)w, ++checkcnt);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592
1593void
1594ev_check_stop (EV_P_ struct ev_check *w)
1595{
1596 ev_clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w)))
1598 return;
1599
1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1601 ev_stop (EV_A_ (W)w);
1602}
1603
1604#ifndef SA_RESTART
1605# define SA_RESTART 0
1606#endif
1607
1608void
1609ev_signal_start (EV_P_ struct ev_signal *w)
1610{
1611#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif
1614 if (expect_false (ev_is_active (w)))
1615 return;
1616
1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1618 2143
2144 evpipe_init (EV_A);
2145
2146 {
2147#ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif
2158 }
2159
1619 ev_start (EV_A_ (W)w, 1); 2160 ev_start (EV_A_ (W)w, 1);
1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
1622 2162
1623 if (!((WL)w)->next) 2163 if (!((WL)w)->next)
1624 { 2164 {
1625#if _WIN32 2165#if _WIN32
1626 signal (w->signum, sighandler); 2166 signal (w->signum, ev_sighandler);
1627#else 2167#else
1628 struct sigaction sa; 2168 struct sigaction sa;
1629 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
1630 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
1631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1632 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
1633#endif 2173#endif
1634 } 2174 }
1635} 2175}
1636 2176
1637void 2177void noinline
1638ev_signal_stop (EV_P_ struct ev_signal *w) 2178ev_signal_stop (EV_P_ ev_signal *w)
1639{ 2179{
1640 ev_clear_pending (EV_A_ (W)w); 2180 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2181 if (expect_false (!ev_is_active (w)))
1642 return; 2182 return;
1643 2183
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
1645 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1646 2186
1647 if (!signals [w->signum - 1].head) 2187 if (!signals [w->signum - 1].head)
1648 signal (w->signum, SIG_DFL); 2188 signal (w->signum, SIG_DFL);
1649} 2189}
1650 2190
1651void 2191void
1652ev_child_start (EV_P_ struct ev_child *w) 2192ev_child_start (EV_P_ ev_child *w)
1653{ 2193{
1654#if EV_MULTIPLICITY 2194#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 2196#endif
1657 if (expect_false (ev_is_active (w))) 2197 if (expect_false (ev_is_active (w)))
1658 return; 2198 return;
1659 2199
1660 ev_start (EV_A_ (W)w, 1); 2200 ev_start (EV_A_ (W)w, 1);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1662} 2202}
1663 2203
1664void 2204void
1665ev_child_stop (EV_P_ struct ev_child *w) 2205ev_child_stop (EV_P_ ev_child *w)
1666{ 2206{
1667 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1669 return; 2209 return;
1670 2210
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1672 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1673} 2213}
1674 2214
1675#if EV_MULTIPLICITY 2215#if EV_STAT_ENABLE
2216
2217# ifdef _WIN32
2218# undef lstat
2219# define lstat(a,b) _stati64 (a,b)
2220# endif
2221
2222#define DEF_STAT_INTERVAL 5.0074891
2223#define MIN_STAT_INTERVAL 0.1074891
2224
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226
2227#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192
2229
2230static void noinline
2231infy_add (EV_P_ ev_stat *w)
2232{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234
2235 if (w->wd < 0)
2236 {
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238
2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 {
2244 char path [4096];
2245 strcpy (path, w->path);
2246
2247 do
2248 {
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251
2252 char *pend = strrchr (path, '/');
2253
2254 if (!pend)
2255 break; /* whoops, no '/', complain to your admin */
2256
2257 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 }
2262 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265
2266 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2268}
2269
2270static void noinline
2271infy_del (EV_P_ ev_stat *w)
2272{
2273 int slot;
2274 int wd = w->wd;
2275
2276 if (wd < 0)
2277 return;
2278
2279 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w);
2282
2283 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd);
2285}
2286
2287static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{
2290 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev);
2294 else
2295 {
2296 WL w_;
2297
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2299 {
2300 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */
2302
2303 if (w->wd == wd || wd == -1)
2304 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 {
2307 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */
2309 }
2310
2311 stat_timer_cb (EV_A_ &w->timer, 0);
2312 }
2313 }
2314 }
2315}
2316
1676static void 2317static void
1677embed_cb (EV_P_ struct ev_io *io, int revents) 2318infy_cb (EV_P_ ev_io *w, int revents)
1678{ 2319{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2320 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf));
1680 2324
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327}
2328
2329void inline_size
2330infy_init (EV_P)
2331{
2332 if (fs_fd != -2)
2333 return;
2334
2335 fs_fd = inotify_init ();
2336
2337 if (fs_fd >= 0)
2338 {
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w);
2342 }
2343}
2344
2345void inline_size
2346infy_fork (EV_P)
2347{
2348 int slot;
2349
2350 if (fs_fd < 0)
2351 return;
2352
2353 close (fs_fd);
2354 fs_fd = inotify_init ();
2355
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2357 {
2358 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0;
2360
2361 while (w_)
2362 {
2363 ev_stat *w = (ev_stat *)w_;
2364 w_ = w_->next; /* lets us add this watcher */
2365
2366 w->wd = -1;
2367
2368 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else
2371 ev_timer_start (EV_A_ &w->timer);
2372 }
2373
2374 }
2375}
2376
2377#endif
2378
2379void
2380ev_stat_stat (EV_P_ ev_stat *w)
2381{
2382 if (lstat (w->path, &w->attr) < 0)
2383 w->attr.st_nlink = 0;
2384 else if (!w->attr.st_nlink)
2385 w->attr.st_nlink = 1;
2386}
2387
2388static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392
2393 /* we copy this here each the time so that */
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w);
2397
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if (
2400 w->prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime
2411 ) {
2412 #if EV_USE_INOTIFY
2413 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */
2416 #endif
2417
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2418 ev_feed_event (EV_A_ w, EV_STAT);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK); 2419 }
1683} 2420}
1684 2421
1685void 2422void
1686ev_embed_start (EV_P_ struct ev_embed *w) 2423ev_stat_start (EV_P_ ev_stat *w)
1687{ 2424{
1688 if (expect_false (ev_is_active (w))) 2425 if (expect_false (ev_is_active (w)))
1689 return; 2426 return;
1690 2427
1691 { 2428 /* since we use memcmp, we need to clear any padding data etc. */
1692 struct ev_loop *loop = w->loop; 2429 memset (&w->prev, 0, sizeof (ev_statdata));
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2430 memset (&w->attr, 0, sizeof (ev_statdata));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 }
1696 2431
2432 ev_stat_stat (EV_A_ w);
2433
2434 if (w->interval < MIN_STAT_INTERVAL)
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2438 ev_set_priority (&w->timer, ev_priority (w));
2439
2440#if EV_USE_INOTIFY
2441 infy_init (EV_A);
2442
2443 if (fs_fd >= 0)
2444 infy_add (EV_A_ w);
2445 else
2446#endif
1697 ev_io_start (EV_A_ &w->io); 2447 ev_timer_start (EV_A_ &w->timer);
2448
1698 ev_start (EV_A_ (W)w, 1); 2449 ev_start (EV_A_ (W)w, 1);
1699} 2450}
1700 2451
1701void 2452void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 2453ev_stat_stop (EV_P_ ev_stat *w)
1703{ 2454{
1704 ev_clear_pending (EV_A_ (W)w); 2455 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2456 if (expect_false (!ev_is_active (w)))
1706 return; 2457 return;
1707 2458
2459#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w);
2461#endif
2462 ev_timer_stop (EV_A_ &w->timer);
2463
2464 ev_stop (EV_A_ (W)w);
2465}
2466#endif
2467
2468#if EV_IDLE_ENABLE
2469void
2470ev_idle_start (EV_P_ ev_idle *w)
2471{
2472 if (expect_false (ev_is_active (w)))
2473 return;
2474
2475 pri_adjust (EV_A_ (W)w);
2476
2477 {
2478 int active = ++idlecnt [ABSPRI (w)];
2479
2480 ++idleall;
2481 ev_start (EV_A_ (W)w, active);
2482
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w;
2485 }
2486}
2487
2488void
2489ev_idle_stop (EV_P_ ev_idle *w)
2490{
2491 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w)))
2493 return;
2494
2495 {
2496 int active = ev_active (w);
2497
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500
2501 ev_stop (EV_A_ (W)w);
2502 --idleall;
2503 }
2504}
2505#endif
2506
2507void
2508ev_prepare_start (EV_P_ ev_prepare *w)
2509{
2510 if (expect_false (ev_is_active (w)))
2511 return;
2512
2513 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w;
2516}
2517
2518void
2519ev_prepare_stop (EV_P_ ev_prepare *w)
2520{
2521 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w)))
2523 return;
2524
2525 {
2526 int active = ev_active (w);
2527
2528 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active;
2530 }
2531
2532 ev_stop (EV_A_ (W)w);
2533}
2534
2535void
2536ev_check_start (EV_P_ ev_check *w)
2537{
2538 if (expect_false (ev_is_active (w)))
2539 return;
2540
2541 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w;
2544}
2545
2546void
2547ev_check_stop (EV_P_ ev_check *w)
2548{
2549 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w)))
2551 return;
2552
2553 {
2554 int active = ev_active (w);
2555
2556 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active;
2558 }
2559
2560 ev_stop (EV_A_ (W)w);
2561}
2562
2563#if EV_EMBED_ENABLE
2564void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w)
2566{
2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2568}
2569
2570static void
2571embed_io_cb (EV_P_ ev_io *io, int revents)
2572{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574
2575 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2579}
2580
2581static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2604
2605void
2606ev_embed_start (EV_P_ ev_embed *w)
2607{
2608 if (expect_false (ev_is_active (w)))
2609 return;
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 }
2616
2617 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io);
2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
2626 ev_start (EV_A_ (W)w, 1);
2627}
2628
2629void
2630ev_embed_stop (EV_P_ ev_embed *w)
2631{
2632 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w)))
2634 return;
2635
1708 ev_io_stop (EV_A_ &w->io); 2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2638
1709 ev_stop (EV_A_ (W)w); 2639 ev_stop (EV_A_ (W)w);
1710} 2640}
1711#endif 2641#endif
1712 2642
2643#if EV_FORK_ENABLE
2644void
2645ev_fork_start (EV_P_ ev_fork *w)
2646{
2647 if (expect_false (ev_is_active (w)))
2648 return;
2649
2650 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w;
2653}
2654
2655void
2656ev_fork_stop (EV_P_ ev_fork *w)
2657{
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 {
2663 int active = ev_active (w);
2664
2665 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active;
2667 }
2668
2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2709}
2710#endif
2711
1713/*****************************************************************************/ 2712/*****************************************************************************/
1714 2713
1715struct ev_once 2714struct ev_once
1716{ 2715{
1717 struct ev_io io; 2716 ev_io io;
1718 struct ev_timer to; 2717 ev_timer to;
1719 void (*cb)(int revents, void *arg); 2718 void (*cb)(int revents, void *arg);
1720 void *arg; 2719 void *arg;
1721}; 2720};
1722 2721
1723static void 2722static void
1732 2731
1733 cb (revents, arg); 2732 cb (revents, arg);
1734} 2733}
1735 2734
1736static void 2735static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 2736once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 2737{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1740} 2739}
1741 2740
1742static void 2741static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 2742once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 2743{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1746} 2745}
1747 2746
1748void 2747void
1772 ev_timer_set (&once->to, timeout, 0.); 2771 ev_timer_set (&once->to, timeout, 0.);
1773 ev_timer_start (EV_A_ &once->to); 2772 ev_timer_start (EV_A_ &once->to);
1774 } 2773 }
1775} 2774}
1776 2775
2776#if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
2778#endif
2779
1777#ifdef __cplusplus 2780#ifdef __cplusplus
1778} 2781}
1779#endif 2782#endif
1780 2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines