ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
256 338
257#ifdef _WIN32 339#ifdef _WIN32
258# include "ev_win32.c" 340# include "ev_win32.c"
259#endif 341#endif
260 342
281 perror (msg); 363 perror (msg);
282 abort (); 364 abort ();
283 } 365 }
284} 366}
285 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
286static void *(*alloc)(void *ptr, size_t size) = realloc; 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 384
288void 385void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 387{
291 alloc = cb; 388 alloc = cb;
292} 389}
293 390
294inline_speed void * 391inline_speed void *
295ev_realloc (void *ptr, size_t size) 392ev_realloc (void *ptr, long size)
296{ 393{
297 ptr = alloc (ptr, size); 394 ptr = alloc (ptr, size);
298 395
299 if (!ptr && size) 396 if (!ptr && size)
300 { 397 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 399 abort ();
303 } 400 }
304 401
305 return ptr; 402 return ptr;
306} 403}
324{ 421{
325 W w; 422 W w;
326 int events; 423 int events;
327} ANPENDING; 424} ANPENDING;
328 425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
329typedef struct 428typedef struct
330{ 429{
331#if EV_USE_INOTIFY
332 WL head; 430 WL head;
333#endif
334} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
451#endif
335 452
336#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
337 454
338 struct ev_loop 455 struct ev_loop
339 { 456 {
396{ 513{
397 return ev_rt_now; 514 return ev_rt_now;
398} 515}
399#endif 516#endif
400 517
401#define array_roundsize(type,n) (((n) | 4) & ~3) 518void
519ev_sleep (ev_tstamp delay)
520{
521 if (delay > 0.)
522 {
523#if EV_USE_NANOSLEEP
524 struct timespec ts;
525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532#else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539#endif
540 }
541}
542
543/*****************************************************************************/
544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
547int inline_size
548array_nextsize (int elem, int cur, int cnt)
549{
550 int ncur = cur + 1;
551
552 do
553 ncur <<= 1;
554 while (cnt > ncur);
555
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 {
559 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4;
562 ncur /= elem;
563 }
564
565 return ncur;
566}
567
568static noinline void *
569array_realloc (int elem, void *base, int *cur, int cnt)
570{
571 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur);
573}
402 574
403#define array_needsize(type,base,cur,cnt,init) \ 575#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 576 if (expect_false ((cnt) > (cur))) \
405 { \ 577 { \
406 int newcnt = cur; \ 578 int ocur_ = (cur); \
407 do \ 579 (base) = (type *)array_realloc \
408 { \ 580 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 581 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 582 }
417 583
584#if 0
418#define array_slim(type,stem) \ 585#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 586 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 587 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 588 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 589 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 591 }
592#endif
425 593
426#define array_free(stem, idx) \ 594#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 596
429/*****************************************************************************/ 597/*****************************************************************************/
430 598
431void noinline 599void noinline
432ev_feed_event (EV_P_ void *w, int revents) 600ev_feed_event (EV_P_ void *w, int revents)
433{ 601{
434 W w_ = (W)w; 602 W w_ = (W)w;
603 int pri = ABSPRI (w_);
435 604
436 if (expect_false (w_->pending)) 605 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents;
607 else
437 { 608 {
609 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 612 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 613 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 614}
447 615
448void inline_size 616void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 617queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 618{
451 int i; 619 int i;
452 620
453 for (i = 0; i < eventcnt; ++i) 621 for (i = 0; i < eventcnt; ++i)
485} 653}
486 654
487void 655void
488ev_feed_fd_event (EV_P_ int fd, int revents) 656ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 657{
658 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 659 fd_event (EV_A_ fd, revents);
491} 660}
492 661
493void inline_size 662void inline_size
494fd_reify (EV_P) 663fd_reify (EV_P)
495{ 664{
499 { 668 {
500 int fd = fdchanges [i]; 669 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 670 ANFD *anfd = anfds + fd;
502 ev_io *w; 671 ev_io *w;
503 672
504 int events = 0; 673 unsigned char events = 0;
505 674
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 676 events |= (unsigned char)w->events;
508 677
509#if EV_SELECT_IS_WINSOCKET 678#if EV_SELECT_IS_WINSOCKET
510 if (events) 679 if (events)
511 { 680 {
512 unsigned long argp; 681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
513 anfd->handle = _get_osfhandle (fd); 685 anfd->handle = _get_osfhandle (fd);
686 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 688 }
516#endif 689#endif
517 690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
518 anfd->reify = 0; 695 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
522 } 701 }
523 702
524 fdchangecnt = 0; 703 fdchangecnt = 0;
525} 704}
526 705
527void inline_size 706void inline_size
528fd_change (EV_P_ int fd) 707fd_change (EV_P_ int fd, int flags)
529{ 708{
530 if (expect_false (anfds [fd].reify)) 709 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 710 anfds [fd].reify |= flags;
534 711
712 if (expect_true (!reify))
713 {
535 ++fdchangecnt; 714 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 716 fdchanges [fdchangecnt - 1] = fd;
717 }
538} 718}
539 719
540void inline_speed 720void inline_speed
541fd_kill (EV_P_ int fd) 721fd_kill (EV_P_ int fd)
542{ 722{
589static void noinline 769static void noinline
590fd_rearm_all (EV_P) 770fd_rearm_all (EV_P)
591{ 771{
592 int fd; 772 int fd;
593 773
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 774 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 775 if (anfds [fd].events)
597 { 776 {
598 anfds [fd].events = 0; 777 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 779 }
601} 780}
602 781
603/*****************************************************************************/ 782/*****************************************************************************/
604 783
784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
605void inline_speed 803void inline_speed
606upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
607{ 805{
608 WT w = heap [k]; 806 ANHE he = heap [k];
609 807
610 while (k && heap [k >> 1]->at > w->at) 808 for (;;)
611 { 809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
612 heap [k] = heap [k >> 1]; 815 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
614 k >>= 1; 817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
615 } 889 }
616 890
617 heap [k] = w; 891 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
619
620} 893}
621 894
895/* away from the root */
622void inline_speed 896void inline_speed
623downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
624{ 898{
625 WT w = heap [k]; 899 ANHE he = heap [k];
626 900
627 while (k < (N >> 1)) 901 for (;;)
628 { 902 {
629 int j = k << 1; 903 int c = k << 1;
630 904
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 if (c > N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 906 break;
636 907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
637 heap [k] = heap [j]; 914 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
916
639 k = j; 917 k = c;
640 } 918 }
641 919
642 heap [k] = w; 920 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
644} 922}
923#endif
645 924
646void inline_size 925void inline_size
647adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
648{ 927{
649 upheap (heap, k); 928 upheap (heap, k);
650 downheap (heap, N, k); 929 downheap (heap, N, k);
651} 930}
652 931
653/*****************************************************************************/ 932/*****************************************************************************/
654 933
655typedef struct 934typedef struct
656{ 935{
657 WL head; 936 WL head;
658 sig_atomic_t volatile gotsig; 937 EV_ATOMIC_T gotsig;
659} ANSIG; 938} ANSIG;
660 939
661static ANSIG *signals; 940static ANSIG *signals;
662static int signalmax; 941static int signalmax;
663 942
664static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 944
668void inline_size 945void inline_size
669signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
670{ 947{
671 while (count--) 948 while (count--)
675 952
676 ++base; 953 ++base;
677 } 954 }
678} 955}
679 956
680static void 957/*****************************************************************************/
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686 958
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size 959void inline_speed
732fd_intern (int fd) 960fd_intern (int fd)
733{ 961{
734#ifdef _WIN32 962#ifdef _WIN32
735 int arg = 1; 963 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 967 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 968#endif
741} 969}
742 970
743static void noinline 971static void noinline
744siginit (EV_P) 972evpipe_init (EV_P)
745{ 973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
746 fd_intern (sigpipe [0]); 989 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
748 993
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 994 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
752} 1062}
753 1063
754/*****************************************************************************/ 1064/*****************************************************************************/
755 1065
1066static void
1067ev_sighandler (int signum)
1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return;
1094
1095 signals [signum].gotsig = 0;
1096
1097 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099}
1100
1101/*****************************************************************************/
1102
756static ev_child *childs [EV_PID_HASHSIZE]; 1103static WL childs [EV_PID_HASHSIZE];
757 1104
758#ifndef _WIN32 1105#ifndef _WIN32
759 1106
760static ev_signal childev; 1107static ev_signal childev;
761 1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
762void inline_speed 1113void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1114child_reap (EV_P_ int chain, int pid, int status)
764{ 1115{
765 ev_child *w; 1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1118
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
768 if (w->pid == pid || !w->pid) 1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
769 { 1123 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1125 w->rpid = pid;
772 w->rstatus = status; 1126 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1128 }
1129 }
775} 1130}
776 1131
777#ifndef WCONTINUED 1132#ifndef WCONTINUED
778# define WCONTINUED 0 1133# define WCONTINUED 0
779#endif 1134#endif
788 if (!WCONTINUED 1143 if (!WCONTINUED
789 || errno != EINVAL 1144 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1146 return;
792 1147
793 /* make sure we are called again until all childs have been reaped */ 1148 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1149 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1151
797 child_reap (EV_A_ sw, pid, pid, status); 1152 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1153 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1155}
801 1156
802#endif 1157#endif
803 1158
804/*****************************************************************************/ 1159/*****************************************************************************/
876} 1231}
877 1232
878unsigned int 1233unsigned int
879ev_embeddable_backends (void) 1234ev_embeddable_backends (void)
880{ 1235{
881 return EVBACKEND_EPOLL 1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1237
883 | EVBACKEND_PORT; 1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
884} 1243}
885 1244
886unsigned int 1245unsigned int
887ev_backend (EV_P) 1246ev_backend (EV_P)
888{ 1247{
889 return backend; 1248 return backend;
1249}
1250
1251unsigned int
1252ev_loop_count (EV_P)
1253{
1254 return loop_count;
1255}
1256
1257void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{
1260 io_blocktime = interval;
1261}
1262
1263void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 timeout_blocktime = interval;
890} 1267}
891 1268
892static void noinline 1269static void noinline
893loop_init (EV_P_ unsigned int flags) 1270loop_init (EV_P_ unsigned int flags)
894{ 1271{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1278 have_monotonic = 1;
902 } 1279 }
903#endif 1280#endif
904 1281
905 ev_rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1283 mn_now = get_clock ();
907 now_floor = mn_now; 1284 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
1295
1296 /* pid check not overridable via env */
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif
909 1301
910 if (!(flags & EVFLAG_NOENV) 1302 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1303 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1304 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1306
915 if (!(flags & 0x0000ffffUL)) 1307 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1308 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1309
924#if EV_USE_PORT 1310#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1312#endif
927#if EV_USE_KQUEUE 1313#if EV_USE_KQUEUE
935#endif 1321#endif
936#if EV_USE_SELECT 1322#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1324#endif
939 1325
940 ev_init (&sigev, sigcb); 1326 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1327 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1328 }
943} 1329}
944 1330
945static void noinline 1331static void noinline
946loop_destroy (EV_P) 1332loop_destroy (EV_P)
947{ 1333{
948 int i; 1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
949 1352
950#if EV_USE_INOTIFY 1353#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1354 if (fs_fd >= 0)
952 close (fs_fd); 1355 close (fs_fd);
953#endif 1356#endif
970#if EV_USE_SELECT 1373#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1375#endif
973 1376
974 for (i = NUMPRI; i--; ) 1377 for (i = NUMPRI; i--; )
1378 {
975 array_free (pending, [i]); 1379 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE
1381 array_free (idle, [i]);
1382#endif
1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
976 1386
977 /* have to use the microsoft-never-gets-it-right macro */ 1387 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1388 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1389 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1390#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1391 array_free (periodic, EMPTY);
982#endif 1392#endif
1393#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1394 array_free (fork, EMPTY);
1395#endif
984 array_free (prepare, EMPTY0); 1396 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
986 1401
987 backend = 0; 1402 backend = 0;
988} 1403}
989 1404
1405#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1406void inline_size infy_fork (EV_P);
1407#endif
991 1408
992void inline_size 1409void inline_size
993loop_fork (EV_P) 1410loop_fork (EV_P)
994{ 1411{
995#if EV_USE_PORT 1412#if EV_USE_PORT
1003#endif 1420#endif
1004#if EV_USE_INOTIFY 1421#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1422 infy_fork (EV_A);
1006#endif 1423#endif
1007 1424
1008 if (ev_is_active (&sigev)) 1425 if (ev_is_active (&pipeev))
1009 { 1426 {
1010 /* default loop */ 1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1011 1433
1012 ev_ref (EV_A); 1434 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1014 close (sigpipe [0]); 1444 close (evpipe [0]);
1015 close (sigpipe [1]); 1445 close (evpipe [1]);
1446 }
1016 1447
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1021 } 1451 }
1022 1452
1023 postfork = 0; 1453 postfork = 0;
1024} 1454}
1025 1455
1047} 1477}
1048 1478
1049void 1479void
1050ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
1051{ 1481{
1052 postfork = 1; 1482 postfork = 1; /* must be in line with ev_default_fork */
1053} 1483}
1054
1055#endif 1484#endif
1056 1485
1057#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
1058struct ev_loop * 1487struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1488ev_default_loop_init (unsigned int flags)
1060#else 1489#else
1061int 1490int
1062ev_default_loop (unsigned int flags) 1491ev_default_loop (unsigned int flags)
1063#endif 1492#endif
1064{ 1493{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1494 if (!ev_default_loop_ptr)
1070 { 1495 {
1071#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1498#else
1076 1501
1077 loop_init (EV_A_ flags); 1502 loop_init (EV_A_ flags);
1078 1503
1079 if (ev_backend (EV_A)) 1504 if (ev_backend (EV_A))
1080 { 1505 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1506#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1507 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1508 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1509 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104#ifndef _WIN32 1527#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1528 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1529 ev_signal_stop (EV_A_ &childev);
1107#endif 1530#endif
1108 1531
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1532 loop_destroy (EV_A);
1116} 1533}
1117 1534
1118void 1535void
1119ev_default_fork (void) 1536ev_default_fork (void)
1121#if EV_MULTIPLICITY 1538#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1539 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1540#endif
1124 1541
1125 if (backend) 1542 if (backend)
1126 postfork = 1; 1543 postfork = 1; /* must be in line with ev_loop_fork */
1127} 1544}
1128 1545
1129/*****************************************************************************/ 1546/*****************************************************************************/
1130 1547
1131int inline_size 1548void
1132any_pending (EV_P) 1549ev_invoke (EV_P_ void *w, int revents)
1133{ 1550{
1134 int pri; 1551 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1552}
1142 1553
1143void inline_speed 1554void inline_speed
1144call_pending (EV_P) 1555call_pending (EV_P)
1145{ 1556{
1158 EV_CB_INVOKE (p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
1159 } 1570 }
1160 } 1571 }
1161} 1572}
1162 1573
1574#if EV_IDLE_ENABLE
1575void inline_size
1576idle_reify (EV_P)
1577{
1578 if (expect_false (idleall))
1579 {
1580 int pri;
1581
1582 for (pri = NUMPRI; pri--; )
1583 {
1584 if (pendingcnt [pri])
1585 break;
1586
1587 if (idlecnt [pri])
1588 {
1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1590 break;
1591 }
1592 }
1593 }
1594}
1595#endif
1596
1163void inline_size 1597void inline_size
1164timers_reify (EV_P) 1598timers_reify (EV_P)
1165{ 1599{
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1167 { 1601 {
1168 ev_timer *w = timers [0]; 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1169 1603
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1605
1172 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
1173 if (w->repeat) 1607 if (w->repeat)
1174 { 1608 {
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 1610
1177 ((WT)w)->at += w->repeat; 1611 ev_at (w) += w->repeat;
1178 if (((WT)w)->at < mn_now) 1612 if (ev_at (w) < mn_now)
1179 ((WT)w)->at = mn_now; 1613 ev_at (w) = mn_now;
1180 1614
1615 ANHE_at_set (timers [HEAP0]);
1181 downheap ((WT *)timers, timercnt, 0); 1616 downheap (timers, timercnt, HEAP0);
1182 } 1617 }
1183 else 1618 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1620
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1189 1624
1190#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1191void inline_size 1626void inline_size
1192periodics_reify (EV_P) 1627periodics_reify (EV_P)
1193{ 1628{
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1195 { 1630 {
1196 ev_periodic *w = periodics [0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1197 1632
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1634
1200 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1636 if (w->reschedule_cb)
1202 { 1637 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 1641 downheap (periodics, periodiccnt, HEAP0);
1206 } 1642 }
1207 else if (w->interval) 1643 else if (w->interval)
1208 { 1644 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1211 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1212 } 1650 }
1213 else 1651 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1653
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1221periodics_reschedule (EV_P) 1659periodics_reschedule (EV_P)
1222{ 1660{
1223 int i; 1661 int i;
1224 1662
1225 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 1665 {
1228 ev_periodic *w = periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 1667
1230 if (w->reschedule_cb) 1668 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1670 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 }
1235 1672
1236 /* now rebuild the heap */ 1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1237 for (i = periodiccnt >> 1; i--; ) 1677 for (i = periodiccnt >> 1; --i; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1678 downheap (periodics, periodiccnt, i + HEAP0);
1239} 1679}
1240#endif 1680#endif
1241 1681
1242int inline_size 1682void inline_speed
1243time_update_monotonic (EV_P) 1683time_update (EV_P_ ev_tstamp max_block)
1244{ 1684{
1685 int i;
1686
1687#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1245 mn_now = get_clock (); 1692 mn_now = get_clock ();
1246 1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1697 {
1249 ev_rt_now = rtmn_diff + mn_now; 1698 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1699 return;
1251 } 1700 }
1252 else 1701
1253 {
1254 now_floor = mn_now; 1702 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1703 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1704
1260void inline_size 1705 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1706 * on the choice of "4": one iteration isn't enough,
1262{ 1707 * in case we get preempted during the calls to
1263 int i; 1708 * ev_time and get_clock. a second call is almost guaranteed
1264 1709 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1710 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1711 * in the unlikely event of having been preempted here.
1267 { 1712 */
1268 if (time_update_monotonic (EV_A)) 1713 for (i = 4; --i; )
1269 { 1714 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1715 rtmn_diff = ev_rt_now - mn_now;
1283 1716
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 1718 return; /* all is well */
1286 1719
1287 ev_rt_now = ev_time (); 1720 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1721 mn_now = get_clock ();
1289 now_floor = mn_now; 1722 now_floor = mn_now;
1290 } 1723 }
1291 1724
1292# if EV_PERIODIC_ENABLE 1725# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1726 periodics_reschedule (EV_A);
1294# endif 1727# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1730 }
1299 else 1731 else
1300#endif 1732#endif
1301 { 1733 {
1302 ev_rt_now = ev_time (); 1734 ev_rt_now = ev_time ();
1303 1735
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1737 {
1306#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1308#endif 1740#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1313 } 1748 }
1314 1749
1315 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1316 } 1751 }
1317} 1752}
1331static int loop_done; 1766static int loop_done;
1332 1767
1333void 1768void
1334ev_loop (EV_P_ int flags) 1769ev_loop (EV_P_ int flags)
1335{ 1770{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1771 loop_done = EVUNLOOP_CANCEL;
1337 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL;
1339 1772
1340 while (activecnt) 1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774
1775 do
1341 { 1776 {
1342 /* we might have forked, so reify kernel state if necessary */ 1777#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid))
1780 {
1781 curpid = getpid ();
1782 postfork = 1;
1783 }
1784#endif
1785
1343 #if EV_FORK_ENABLE 1786#if EV_FORK_ENABLE
1787 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1788 if (expect_false (postfork))
1345 if (forkcnt) 1789 if (forkcnt)
1346 { 1790 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1792 call_pending (EV_A);
1349 } 1793 }
1350 #endif 1794#endif
1351 1795
1352 /* queue check watchers (and execute them) */ 1796 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1797 if (expect_false (preparecnt))
1354 { 1798 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1800 call_pending (EV_A);
1357 } 1801 }
1358 1802
1803 if (expect_false (!activecnt))
1804 break;
1805
1359 /* we might have forked, so reify kernel state if necessary */ 1806 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1807 if (expect_false (postfork))
1361 loop_fork (EV_A); 1808 loop_fork (EV_A);
1362 1809
1363 /* update fd-related kernel structures */ 1810 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1811 fd_reify (EV_A);
1365 1812
1366 /* calculate blocking time */ 1813 /* calculate blocking time */
1367 { 1814 {
1368 double block; 1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
1369 1817
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1819 {
1374 /* update time to cancel out callback processing overhead */ 1820 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1821 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1822
1385 block = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1386 1824
1387 if (timercnt) 1825 if (timercnt)
1388 { 1826 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 1828 if (waittime > to) waittime = to;
1391 } 1829 }
1392 1830
1393#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1832 if (periodiccnt)
1395 { 1833 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1835 if (waittime > to) waittime = to;
1398 } 1836 }
1399#endif 1837#endif
1400 1838
1401 if (expect_false (block < 0.)) block = 0.; 1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
1402 } 1852 }
1403 1853
1854 ++loop_count;
1404 backend_poll (EV_A_ block); 1855 backend_poll (EV_A_ waittime);
1856
1857 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime);
1405 } 1859 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1860
1410 /* queue pending timers and reschedule them */ 1861 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1862 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1863#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1864 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1865#endif
1415 1866
1867#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1868 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1869 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1870#endif
1419 1871
1420 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1873 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1875
1424 call_pending (EV_A); 1876 call_pending (EV_A);
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 1877 }
1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1429 1883
1430 if (loop_done == EVUNLOOP_ONE) 1884 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1885 loop_done = EVUNLOOP_CANCEL;
1432} 1886}
1433 1887
1460 head = &(*head)->next; 1914 head = &(*head)->next;
1461 } 1915 }
1462} 1916}
1463 1917
1464void inline_speed 1918void inline_speed
1465ev_clear_pending (EV_P_ W w) 1919clear_pending (EV_P_ W w)
1466{ 1920{
1467 if (w->pending) 1921 if (w->pending)
1468 { 1922 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1923 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1924 w->pending = 0;
1471 } 1925 }
1472} 1926}
1473 1927
1928int
1929ev_clear_pending (EV_P_ void *w)
1930{
1931 W w_ = (W)w;
1932 int pending = w_->pending;
1933
1934 if (expect_true (pending))
1935 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1937 w_->pending = 0;
1938 p->w = 0;
1939 return p->events;
1940 }
1941 else
1942 return 0;
1943}
1944
1945void inline_size
1946pri_adjust (EV_P_ W w)
1947{
1948 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri;
1952}
1953
1474void inline_speed 1954void inline_speed
1475ev_start (EV_P_ W w, int active) 1955ev_start (EV_P_ W w, int active)
1476{ 1956{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1957 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1958 w->active = active;
1481 ev_ref (EV_A); 1959 ev_ref (EV_A);
1482} 1960}
1483 1961
1484void inline_size 1962void inline_size
1488 w->active = 0; 1966 w->active = 0;
1489} 1967}
1490 1968
1491/*****************************************************************************/ 1969/*****************************************************************************/
1492 1970
1493void 1971void noinline
1494ev_io_start (EV_P_ ev_io *w) 1972ev_io_start (EV_P_ ev_io *w)
1495{ 1973{
1496 int fd = w->fd; 1974 int fd = w->fd;
1497 1975
1498 if (expect_false (ev_is_active (w))) 1976 if (expect_false (ev_is_active (w)))
1500 1978
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 1979 assert (("ev_io_start called with negative fd", fd >= 0));
1502 1980
1503 ev_start (EV_A_ (W)w, 1); 1981 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1983 wlist_add (&anfds[fd].head, (WL)w);
1506 1984
1507 fd_change (EV_A_ fd); 1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET;
1508} 1987}
1509 1988
1510void 1989void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1990ev_io_stop (EV_P_ ev_io *w)
1512{ 1991{
1513 ev_clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1515 return; 1994 return;
1516 1995
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1997
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1521 2000
1522 fd_change (EV_A_ w->fd); 2001 fd_change (EV_A_ w->fd, 1);
1523} 2002}
1524 2003
1525void 2004void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1527{ 2006{
1528 if (expect_false (ev_is_active (w))) 2007 if (expect_false (ev_is_active (w)))
1529 return; 2008 return;
1530 2009
1531 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1532 2011
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2013
1535 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1539 2019
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2021}
1542 2022
1543void 2023void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2025{
1546 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1548 return; 2028 return;
1549 2029
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1551
1552 { 2030 {
1553 int active = ((W)w)->active; 2031 int active = ev_active (w);
1554 2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
1555 if (expect_true (--active < --timercnt)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1556 { 2036 {
1557 timers [active] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1558 adjustheap ((WT *)timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
1559 } 2039 }
2040
2041 --timercnt;
1560 } 2042 }
1561 2043
1562 ((WT)w)->at -= mn_now; 2044 ev_at (w) -= mn_now;
1563 2045
1564 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1565} 2047}
1566 2048
1567void 2049void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2050ev_timer_again (EV_P_ ev_timer *w)
1569{ 2051{
1570 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1571 { 2053 {
1572 if (w->repeat) 2054 if (w->repeat)
1573 { 2055 {
1574 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
1576 } 2059 }
1577 else 2060 else
1578 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1579 } 2062 }
1580 else if (w->repeat) 2063 else if (w->repeat)
1581 { 2064 {
1582 w->at = w->repeat; 2065 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
1584 } 2067 }
1585} 2068}
1586 2069
1587#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1588void 2071void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2072ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2073{
1591 if (expect_false (ev_is_active (w))) 2074 if (expect_false (ev_is_active (w)))
1592 return; 2075 return;
1593 2076
1594 if (w->reschedule_cb) 2077 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2079 else if (w->interval)
1597 { 2080 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2084 }
2085 else
2086 ev_at (w) = w->offset;
1602 2087
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1607 2092
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2094}
1610 2095
1611void 2096void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2098{
1614 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1616 return; 2101 return;
1617 2102
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1619
1620 { 2103 {
1621 int active = ((W)w)->active; 2104 int active = ev_active (w);
1622 2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
1623 if (expect_true (--active < --periodiccnt)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1624 { 2109 {
1625 periodics [active] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);
1627 } 2112 }
2113
2114 --periodiccnt;
1628 } 2115 }
1629 2116
1630 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1631} 2118}
1632 2119
1633void 2120void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2121ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2122{
1636 /* TODO: use adjustheap and recalculation */ 2123 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2124 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2125 ev_periodic_start (EV_A_ w);
1641 2128
1642#ifndef SA_RESTART 2129#ifndef SA_RESTART
1643# define SA_RESTART 0 2130# define SA_RESTART 0
1644#endif 2131#endif
1645 2132
1646void 2133void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2134ev_signal_start (EV_P_ ev_signal *w)
1648{ 2135{
1649#if EV_MULTIPLICITY 2136#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 2138#endif
1652 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1653 return; 2140 return;
1654 2141
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 2143
2144 evpipe_init (EV_A);
2145
2146 {
2147#ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif
2158 }
2159
1657 ev_start (EV_A_ (W)w, 1); 2160 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2162
1661 if (!((WL)w)->next) 2163 if (!((WL)w)->next)
1662 { 2164 {
1663#if _WIN32 2165#if _WIN32
1664 signal (w->signum, sighandler); 2166 signal (w->signum, ev_sighandler);
1665#else 2167#else
1666 struct sigaction sa; 2168 struct sigaction sa;
1667 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
1671#endif 2173#endif
1672 } 2174 }
1673} 2175}
1674 2176
1675void 2177void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2178ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2179{
1678 ev_clear_pending (EV_A_ (W)w); 2180 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2181 if (expect_false (!ev_is_active (w)))
1680 return; 2182 return;
1681 2183
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1684 2186
1685 if (!signals [w->signum - 1].head) 2187 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 2188 signal (w->signum, SIG_DFL);
1687} 2189}
1694#endif 2196#endif
1695 if (expect_false (ev_is_active (w))) 2197 if (expect_false (ev_is_active (w)))
1696 return; 2198 return;
1697 2199
1698 ev_start (EV_A_ (W)w, 1); 2200 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1700} 2202}
1701 2203
1702void 2204void
1703ev_child_stop (EV_P_ ev_child *w) 2205ev_child_stop (EV_P_ ev_child *w)
1704{ 2206{
1705 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1707 return; 2209 return;
1708 2210
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1711} 2213}
1712 2214
1713#if EV_STAT_ENABLE 2215#if EV_STAT_ENABLE
1714 2216
1718# endif 2220# endif
1719 2221
1720#define DEF_STAT_INTERVAL 5.0074891 2222#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 2223#define MIN_STAT_INTERVAL 0.1074891
1722 2224
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2226
1725#if EV_USE_INOTIFY 2227#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2228# define EV_INOTIFY_BUFSIZE 8192
1727 2229
1728static void noinline 2230static void noinline
1733 if (w->wd < 0) 2235 if (w->wd < 0)
1734 { 2236 {
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2238
1737 /* monitor some parent directory for speedup hints */ 2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2243 {
1740 char path [4096]; 2244 char path [4096];
1741 strcpy (path, w->path); 2245 strcpy (path, w->path);
1742 2246
1879 w->attr.st_nlink = 0; 2383 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2384 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2385 w->attr.st_nlink = 1;
1882} 2386}
1883 2387
1884void noinline 2388static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2389stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2390{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2392
1889 /* we copy this here each the time so that */ 2393 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 2394 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 2395 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 2396 ev_stat_stat (EV_A_ w);
1893 2397
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if (
2400 w->prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime
1895 { 2411 ) {
1896 #if EV_USE_INOTIFY 2412 #if EV_USE_INOTIFY
1897 infy_del (EV_A_ w); 2413 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 2414 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 2415 ev_stat_stat (EV_A_ w); /* avoid race... */
1900 #endif 2416 #endif
1934} 2450}
1935 2451
1936void 2452void
1937ev_stat_stop (EV_P_ ev_stat *w) 2453ev_stat_stop (EV_P_ ev_stat *w)
1938{ 2454{
1939 ev_clear_pending (EV_A_ (W)w); 2455 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 2456 if (expect_false (!ev_is_active (w)))
1941 return; 2457 return;
1942 2458
1943#if EV_USE_INOTIFY 2459#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 2460 infy_del (EV_A_ w);
1947 2463
1948 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1949} 2465}
1950#endif 2466#endif
1951 2467
2468#if EV_IDLE_ENABLE
1952void 2469void
1953ev_idle_start (EV_P_ ev_idle *w) 2470ev_idle_start (EV_P_ ev_idle *w)
1954{ 2471{
1955 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1956 return; 2473 return;
1957 2474
2475 pri_adjust (EV_A_ (W)w);
2476
2477 {
2478 int active = ++idlecnt [ABSPRI (w)];
2479
2480 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 2481 ev_start (EV_A_ (W)w, active);
2482
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 2484 idles [ABSPRI (w)][active - 1] = w;
2485 }
1961} 2486}
1962 2487
1963void 2488void
1964ev_idle_stop (EV_P_ ev_idle *w) 2489ev_idle_stop (EV_P_ ev_idle *w)
1965{ 2490{
1966 ev_clear_pending (EV_A_ (W)w); 2491 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 2492 if (expect_false (!ev_is_active (w)))
1968 return; 2493 return;
1969 2494
1970 { 2495 {
1971 int active = ((W)w)->active; 2496 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 2497
1973 ((W)idles [active - 1])->active = active; 2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500
2501 ev_stop (EV_A_ (W)w);
2502 --idleall;
1974 } 2503 }
1975
1976 ev_stop (EV_A_ (W)w);
1977} 2504}
2505#endif
1978 2506
1979void 2507void
1980ev_prepare_start (EV_P_ ev_prepare *w) 2508ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 2509{
1982 if (expect_false (ev_is_active (w))) 2510 if (expect_false (ev_is_active (w)))
1988} 2516}
1989 2517
1990void 2518void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 2519ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 2520{
1993 ev_clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
1995 return; 2523 return;
1996 2524
1997 { 2525 {
1998 int active = ((W)w)->active; 2526 int active = ev_active (w);
2527
1999 prepares [active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 2529 ev_active (prepares [active - 1]) = active;
2001 } 2530 }
2002 2531
2003 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2004} 2533}
2005 2534
2015} 2544}
2016 2545
2017void 2546void
2018ev_check_stop (EV_P_ ev_check *w) 2547ev_check_stop (EV_P_ ev_check *w)
2019{ 2548{
2020 ev_clear_pending (EV_A_ (W)w); 2549 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2550 if (expect_false (!ev_is_active (w)))
2022 return; 2551 return;
2023 2552
2024 { 2553 {
2025 int active = ((W)w)->active; 2554 int active = ev_active (w);
2555
2026 checks [active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 2557 ev_active (checks [active - 1]) = active;
2028 } 2558 }
2029 2559
2030 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2031} 2561}
2032 2562
2033#if EV_EMBED_ENABLE 2563#if EV_EMBED_ENABLE
2034void noinline 2564void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 2565ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 2566{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 2568}
2039 2569
2040static void 2570static void
2041embed_cb (EV_P_ ev_io *io, int revents) 2571embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 2572{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 2574
2045 if (ev_cb (w)) 2575 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 2577 else
2048 ev_embed_sweep (loop, w); 2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2579}
2580
2581static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2050 2604
2051void 2605void
2052ev_embed_start (EV_P_ ev_embed *w) 2606ev_embed_start (EV_P_ ev_embed *w)
2053{ 2607{
2054 if (expect_false (ev_is_active (w))) 2608 if (expect_false (ev_is_active (w)))
2055 return; 2609 return;
2056 2610
2057 { 2611 {
2058 struct ev_loop *loop = w->loop; 2612 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 2615 }
2062 2616
2063 ev_set_priority (&w->io, ev_priority (w)); 2617 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 2618 ev_io_start (EV_A_ &w->io);
2065 2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
2066 ev_start (EV_A_ (W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
2067} 2627}
2068 2628
2069void 2629void
2070ev_embed_stop (EV_P_ ev_embed *w) 2630ev_embed_stop (EV_P_ ev_embed *w)
2071{ 2631{
2072 ev_clear_pending (EV_A_ (W)w); 2632 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2633 if (expect_false (!ev_is_active (w)))
2074 return; 2634 return;
2075 2635
2076 ev_io_stop (EV_A_ &w->io); 2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2077 2638
2078 ev_stop (EV_A_ (W)w); 2639 ev_stop (EV_A_ (W)w);
2079} 2640}
2080#endif 2641#endif
2081 2642
2092} 2653}
2093 2654
2094void 2655void
2095ev_fork_stop (EV_P_ ev_fork *w) 2656ev_fork_stop (EV_P_ ev_fork *w)
2096{ 2657{
2097 ev_clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2099 return; 2660 return;
2100 2661
2101 { 2662 {
2102 int active = ((W)w)->active; 2663 int active = ev_active (w);
2664
2103 forks [active - 1] = forks [--forkcnt]; 2665 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 2666 ev_active (forks [active - 1]) = active;
2105 } 2667 }
2106 2668
2107 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2108} 2709}
2109#endif 2710#endif
2110 2711
2111/*****************************************************************************/ 2712/*****************************************************************************/
2112 2713
2170 ev_timer_set (&once->to, timeout, 0.); 2771 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 2772 ev_timer_start (EV_A_ &once->to);
2172 } 2773 }
2173} 2774}
2174 2775
2776#if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
2778#endif
2779
2175#ifdef __cplusplus 2780#ifdef __cplusplus
2176} 2781}
2177#endif 2782#endif
2178 2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines