ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
256 338
257#ifdef _WIN32 339#ifdef _WIN32
258# include "ev_win32.c" 340# include "ev_win32.c"
259#endif 341#endif
260 342
281 perror (msg); 363 perror (msg);
282 abort (); 364 abort ();
283 } 365 }
284} 366}
285 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
286static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 384
288void 385void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 387{
291 alloc = cb; 388 alloc = cb;
292} 389}
293 390
294inline_speed void * 391inline_speed void *
295ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
296{ 393{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
298 395
299 if (!ptr && size) 396 if (!ptr && size)
300 { 397 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 399 abort ();
325 W w; 422 W w;
326 int events; 423 int events;
327} ANPENDING; 424} ANPENDING;
328 425
329#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
330typedef struct 428typedef struct
331{ 429{
332 WL head; 430 WL head;
333} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
334#endif 451#endif
335 452
336#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
337 454
338 struct ev_loop 455 struct ev_loop
396{ 513{
397 return ev_rt_now; 514 return ev_rt_now;
398} 515}
399#endif 516#endif
400 517
401#define array_roundsize(type,n) (((n) | 4) & ~3) 518void
519ev_sleep (ev_tstamp delay)
520{
521 if (delay > 0.)
522 {
523#if EV_USE_NANOSLEEP
524 struct timespec ts;
525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532#else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539#endif
540 }
541}
542
543/*****************************************************************************/
544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
547int inline_size
548array_nextsize (int elem, int cur, int cnt)
549{
550 int ncur = cur + 1;
551
552 do
553 ncur <<= 1;
554 while (cnt > ncur);
555
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 {
559 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4;
562 ncur /= elem;
563 }
564
565 return ncur;
566}
567
568static noinline void *
569array_realloc (int elem, void *base, int *cur, int cnt)
570{
571 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur);
573}
402 574
403#define array_needsize(type,base,cur,cnt,init) \ 575#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 576 if (expect_false ((cnt) > (cur))) \
405 { \ 577 { \
406 int newcnt = cur; \ 578 int ocur_ = (cur); \
407 do \ 579 (base) = (type *)array_realloc \
408 { \ 580 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 581 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 582 }
417 583
584#if 0
418#define array_slim(type,stem) \ 585#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 586 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 587 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 588 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 589 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 591 }
592#endif
425 593
426#define array_free(stem, idx) \ 594#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 596
429/*****************************************************************************/ 597/*****************************************************************************/
430 598
431void noinline 599void noinline
432ev_feed_event (EV_P_ void *w, int revents) 600ev_feed_event (EV_P_ void *w, int revents)
433{ 601{
434 W w_ = (W)w; 602 W w_ = (W)w;
603 int pri = ABSPRI (w_);
435 604
436 if (expect_false (w_->pending)) 605 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents;
607 else
437 { 608 {
609 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 612 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 613 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 614}
447 615
448void inline_size 616void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 617queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 618{
451 int i; 619 int i;
452 620
453 for (i = 0; i < eventcnt; ++i) 621 for (i = 0; i < eventcnt; ++i)
485} 653}
486 654
487void 655void
488ev_feed_fd_event (EV_P_ int fd, int revents) 656ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 657{
658 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 659 fd_event (EV_A_ fd, revents);
491} 660}
492 661
493void inline_size 662void inline_size
494fd_reify (EV_P) 663fd_reify (EV_P)
495{ 664{
499 { 668 {
500 int fd = fdchanges [i]; 669 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 670 ANFD *anfd = anfds + fd;
502 ev_io *w; 671 ev_io *w;
503 672
504 int events = 0; 673 unsigned char events = 0;
505 674
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 676 events |= (unsigned char)w->events;
508 677
509#if EV_SELECT_IS_WINSOCKET 678#if EV_SELECT_IS_WINSOCKET
510 if (events) 679 if (events)
511 { 680 {
512 unsigned long argp; 681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
513 anfd->handle = _get_osfhandle (fd); 685 anfd->handle = _get_osfhandle (fd);
686 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 688 }
516#endif 689#endif
517 690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
518 anfd->reify = 0; 695 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
522 } 701 }
523 702
524 fdchangecnt = 0; 703 fdchangecnt = 0;
525} 704}
526 705
527void inline_size 706void inline_size
528fd_change (EV_P_ int fd) 707fd_change (EV_P_ int fd, int flags)
529{ 708{
530 if (expect_false (anfds [fd].reify)) 709 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 710 anfds [fd].reify |= flags;
534 711
712 if (expect_true (!reify))
713 {
535 ++fdchangecnt; 714 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 716 fdchanges [fdchangecnt - 1] = fd;
717 }
538} 718}
539 719
540void inline_speed 720void inline_speed
541fd_kill (EV_P_ int fd) 721fd_kill (EV_P_ int fd)
542{ 722{
593 773
594 for (fd = 0; fd < anfdmax; ++fd) 774 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 775 if (anfds [fd].events)
596 { 776 {
597 anfds [fd].events = 0; 777 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 779 }
600} 780}
601 781
602/*****************************************************************************/ 782/*****************************************************************************/
603 783
784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
604void inline_speed 803void inline_speed
605upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
606{ 805{
607 WT w = heap [k]; 806 ANHE he = heap [k];
608 807
609 while (k && heap [k >> 1]->at > w->at) 808 for (;;)
610 { 809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
611 heap [k] = heap [k >> 1]; 815 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
613 k >>= 1; 817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
614 } 889 }
615 890
616 heap [k] = w; 891 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
618
619} 893}
620 894
895/* away from the root */
621void inline_speed 896void inline_speed
622downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
623{ 898{
624 WT w = heap [k]; 899 ANHE he = heap [k];
625 900
626 while (k < (N >> 1)) 901 for (;;)
627 { 902 {
628 int j = k << 1; 903 int c = k << 1;
629 904
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 if (c > N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 906 break;
635 907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
636 heap [k] = heap [j]; 914 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
916
638 k = j; 917 k = c;
639 } 918 }
640 919
641 heap [k] = w; 920 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
643} 922}
923#endif
644 924
645void inline_size 925void inline_size
646adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
647{ 927{
648 upheap (heap, k); 928 upheap (heap, k);
649 downheap (heap, N, k); 929 downheap (heap, N, k);
650} 930}
651 931
652/*****************************************************************************/ 932/*****************************************************************************/
653 933
654typedef struct 934typedef struct
655{ 935{
656 WL head; 936 WL head;
657 sig_atomic_t volatile gotsig; 937 EV_ATOMIC_T gotsig;
658} ANSIG; 938} ANSIG;
659 939
660static ANSIG *signals; 940static ANSIG *signals;
661static int signalmax; 941static int signalmax;
662 942
663static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 944
667void inline_size 945void inline_size
668signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
669{ 947{
670 while (count--) 948 while (count--)
674 952
675 ++base; 953 ++base;
676 } 954 }
677} 955}
678 956
679static void 957/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 958
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 959void inline_speed
731fd_intern (int fd) 960fd_intern (int fd)
732{ 961{
733#ifdef _WIN32 962#ifdef _WIN32
734 int arg = 1; 963 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 967 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 968#endif
740} 969}
741 970
742static void noinline 971static void noinline
743siginit (EV_P) 972evpipe_init (EV_P)
744{ 973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
745 fd_intern (sigpipe [0]); 989 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
747 993
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 994 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
751} 1062}
752 1063
753/*****************************************************************************/ 1064/*****************************************************************************/
754 1065
1066static void
1067ev_sighandler (int signum)
1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return;
1094
1095 signals [signum].gotsig = 0;
1096
1097 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099}
1100
1101/*****************************************************************************/
1102
755static ev_child *childs [EV_PID_HASHSIZE]; 1103static WL childs [EV_PID_HASHSIZE];
756 1104
757#ifndef _WIN32 1105#ifndef _WIN32
758 1106
759static ev_signal childev; 1107static ev_signal childev;
760 1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
761void inline_speed 1113void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1114child_reap (EV_P_ int chain, int pid, int status)
763{ 1115{
764 ev_child *w; 1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1118
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
767 if (w->pid == pid || !w->pid) 1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
768 { 1123 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1125 w->rpid = pid;
771 w->rstatus = status; 1126 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1128 }
1129 }
774} 1130}
775 1131
776#ifndef WCONTINUED 1132#ifndef WCONTINUED
777# define WCONTINUED 0 1133# define WCONTINUED 0
778#endif 1134#endif
787 if (!WCONTINUED 1143 if (!WCONTINUED
788 || errno != EINVAL 1144 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1146 return;
791 1147
792 /* make sure we are called again until all childs have been reaped */ 1148 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1149 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1151
796 child_reap (EV_A_ sw, pid, pid, status); 1152 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1153 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1155}
800 1156
801#endif 1157#endif
802 1158
803/*****************************************************************************/ 1159/*****************************************************************************/
875} 1231}
876 1232
877unsigned int 1233unsigned int
878ev_embeddable_backends (void) 1234ev_embeddable_backends (void)
879{ 1235{
880 return EVBACKEND_EPOLL 1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1237
882 | EVBACKEND_PORT; 1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
883} 1243}
884 1244
885unsigned int 1245unsigned int
886ev_backend (EV_P) 1246ev_backend (EV_P)
887{ 1247{
888 return backend; 1248 return backend;
1249}
1250
1251unsigned int
1252ev_loop_count (EV_P)
1253{
1254 return loop_count;
1255}
1256
1257void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{
1260 io_blocktime = interval;
1261}
1262
1263void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 timeout_blocktime = interval;
889} 1267}
890 1268
891static void noinline 1269static void noinline
892loop_init (EV_P_ unsigned int flags) 1270loop_init (EV_P_ unsigned int flags)
893{ 1271{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1278 have_monotonic = 1;
901 } 1279 }
902#endif 1280#endif
903 1281
904 ev_rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1283 mn_now = get_clock ();
906 now_floor = mn_now; 1284 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
908 1295
909 /* pid check not overridable via env */ 1296 /* pid check not overridable via env */
910#ifndef _WIN32 1297#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1298 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1299 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1302 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1303 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1304 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1306
920 if (!(flags & 0x0000ffffUL)) 1307 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1308 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1309
929#if EV_USE_PORT 1310#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1312#endif
932#if EV_USE_KQUEUE 1313#if EV_USE_KQUEUE
940#endif 1321#endif
941#if EV_USE_SELECT 1322#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1324#endif
944 1325
945 ev_init (&sigev, sigcb); 1326 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1327 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1328 }
948} 1329}
949 1330
950static void noinline 1331static void noinline
951loop_destroy (EV_P) 1332loop_destroy (EV_P)
952{ 1333{
953 int i; 1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
954 1352
955#if EV_USE_INOTIFY 1353#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1354 if (fs_fd >= 0)
957 close (fs_fd); 1355 close (fs_fd);
958#endif 1356#endif
975#if EV_USE_SELECT 1373#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1375#endif
978 1376
979 for (i = NUMPRI; i--; ) 1377 for (i = NUMPRI; i--; )
1378 {
980 array_free (pending, [i]); 1379 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE
1381 array_free (idle, [i]);
1382#endif
1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
981 1386
982 /* have to use the microsoft-never-gets-it-right macro */ 1387 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1388 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1389 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1390#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1391 array_free (periodic, EMPTY);
987#endif 1392#endif
1393#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1394 array_free (fork, EMPTY);
1395#endif
989 array_free (prepare, EMPTY0); 1396 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
991 1401
992 backend = 0; 1402 backend = 0;
993} 1403}
994 1404
1405#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1406void inline_size infy_fork (EV_P);
1407#endif
996 1408
997void inline_size 1409void inline_size
998loop_fork (EV_P) 1410loop_fork (EV_P)
999{ 1411{
1000#if EV_USE_PORT 1412#if EV_USE_PORT
1008#endif 1420#endif
1009#if EV_USE_INOTIFY 1421#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1422 infy_fork (EV_A);
1011#endif 1423#endif
1012 1424
1013 if (ev_is_active (&sigev)) 1425 if (ev_is_active (&pipeev))
1014 { 1426 {
1015 /* default loop */ 1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1016 1433
1017 ev_ref (EV_A); 1434 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1019 close (sigpipe [0]); 1444 close (evpipe [0]);
1020 close (sigpipe [1]); 1445 close (evpipe [1]);
1446 }
1021 1447
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1451 }
1027 1452
1028 postfork = 0; 1453 postfork = 0;
1029} 1454}
1030 1455
1052} 1477}
1053 1478
1054void 1479void
1055ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
1056{ 1481{
1057 postfork = 1; 1482 postfork = 1; /* must be in line with ev_default_fork */
1058} 1483}
1059
1060#endif 1484#endif
1061 1485
1062#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
1063struct ev_loop * 1487struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1488ev_default_loop_init (unsigned int flags)
1065#else 1489#else
1066int 1490int
1067ev_default_loop (unsigned int flags) 1491ev_default_loop (unsigned int flags)
1068#endif 1492#endif
1069{ 1493{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1494 if (!ev_default_loop_ptr)
1075 { 1495 {
1076#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1498#else
1081 1501
1082 loop_init (EV_A_ flags); 1502 loop_init (EV_A_ flags);
1083 1503
1084 if (ev_backend (EV_A)) 1504 if (ev_backend (EV_A))
1085 { 1505 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1506#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1507 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1508 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1509 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1527#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1528 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1529 ev_signal_stop (EV_A_ &childev);
1112#endif 1530#endif
1113 1531
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1532 loop_destroy (EV_A);
1121} 1533}
1122 1534
1123void 1535void
1124ev_default_fork (void) 1536ev_default_fork (void)
1126#if EV_MULTIPLICITY 1538#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1539 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1540#endif
1129 1541
1130 if (backend) 1542 if (backend)
1131 postfork = 1; 1543 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1544}
1133 1545
1134/*****************************************************************************/ 1546/*****************************************************************************/
1135 1547
1136int inline_size 1548void
1137any_pending (EV_P) 1549ev_invoke (EV_P_ void *w, int revents)
1138{ 1550{
1139 int pri; 1551 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1552}
1147 1553
1148void inline_speed 1554void inline_speed
1149call_pending (EV_P) 1555call_pending (EV_P)
1150{ 1556{
1163 EV_CB_INVOKE (p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
1164 } 1570 }
1165 } 1571 }
1166} 1572}
1167 1573
1574#if EV_IDLE_ENABLE
1575void inline_size
1576idle_reify (EV_P)
1577{
1578 if (expect_false (idleall))
1579 {
1580 int pri;
1581
1582 for (pri = NUMPRI; pri--; )
1583 {
1584 if (pendingcnt [pri])
1585 break;
1586
1587 if (idlecnt [pri])
1588 {
1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1590 break;
1591 }
1592 }
1593 }
1594}
1595#endif
1596
1168void inline_size 1597void inline_size
1169timers_reify (EV_P) 1598timers_reify (EV_P)
1170{ 1599{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1172 { 1601 {
1173 ev_timer *w = timers [0]; 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1174 1603
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1605
1177 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
1178 if (w->repeat) 1607 if (w->repeat)
1179 { 1608 {
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1610
1182 ((WT)w)->at += w->repeat; 1611 ev_at (w) += w->repeat;
1183 if (((WT)w)->at < mn_now) 1612 if (ev_at (w) < mn_now)
1184 ((WT)w)->at = mn_now; 1613 ev_at (w) = mn_now;
1185 1614
1615 ANHE_at_set (timers [HEAP0]);
1186 downheap ((WT *)timers, timercnt, 0); 1616 downheap (timers, timercnt, HEAP0);
1187 } 1617 }
1188 else 1618 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1620
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1194 1624
1195#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1196void inline_size 1626void inline_size
1197periodics_reify (EV_P) 1627periodics_reify (EV_P)
1198{ 1628{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1200 { 1630 {
1201 ev_periodic *w = periodics [0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 1632
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1634
1205 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1636 if (w->reschedule_cb)
1207 { 1637 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1641 downheap (periodics, periodiccnt, HEAP0);
1211 } 1642 }
1212 else if (w->interval) 1643 else if (w->interval)
1213 { 1644 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1217 } 1650 }
1218 else 1651 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1653
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1226periodics_reschedule (EV_P) 1659periodics_reschedule (EV_P)
1227{ 1660{
1228 int i; 1661 int i;
1229 1662
1230 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1665 {
1233 ev_periodic *w = periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1667
1235 if (w->reschedule_cb) 1668 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1670 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 }
1240 1672
1241 /* now rebuild the heap */ 1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1242 for (i = periodiccnt >> 1; i--; ) 1677 for (i = periodiccnt >> 1; --i; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1678 downheap (periodics, periodiccnt, i + HEAP0);
1244} 1679}
1245#endif 1680#endif
1246 1681
1247int inline_size 1682void inline_speed
1248time_update_monotonic (EV_P) 1683time_update (EV_P_ ev_tstamp max_block)
1249{ 1684{
1685 int i;
1686
1687#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1250 mn_now = get_clock (); 1692 mn_now = get_clock ();
1251 1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1697 {
1254 ev_rt_now = rtmn_diff + mn_now; 1698 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1699 return;
1256 } 1700 }
1257 else 1701
1258 {
1259 now_floor = mn_now; 1702 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1703 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1704
1265void inline_size 1705 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1706 * on the choice of "4": one iteration isn't enough,
1267{ 1707 * in case we get preempted during the calls to
1268 int i; 1708 * ev_time and get_clock. a second call is almost guaranteed
1269 1709 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1710 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1711 * in the unlikely event of having been preempted here.
1272 { 1712 */
1273 if (time_update_monotonic (EV_A)) 1713 for (i = 4; --i; )
1274 { 1714 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1715 rtmn_diff = ev_rt_now - mn_now;
1288 1716
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1718 return; /* all is well */
1291 1719
1292 ev_rt_now = ev_time (); 1720 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1721 mn_now = get_clock ();
1294 now_floor = mn_now; 1722 now_floor = mn_now;
1295 } 1723 }
1296 1724
1297# if EV_PERIODIC_ENABLE 1725# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1726 periodics_reschedule (EV_A);
1299# endif 1727# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1730 }
1304 else 1731 else
1305#endif 1732#endif
1306 { 1733 {
1307 ev_rt_now = ev_time (); 1734 ev_rt_now = ev_time ();
1308 1735
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1737 {
1311#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1313#endif 1740#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1318 } 1748 }
1319 1749
1320 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1321 } 1751 }
1322} 1752}
1336static int loop_done; 1766static int loop_done;
1337 1767
1338void 1768void
1339ev_loop (EV_P_ int flags) 1769ev_loop (EV_P_ int flags)
1340{ 1770{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1771 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1772
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1774
1347 while (activecnt) 1775 do
1348 { 1776 {
1349#ifndef _WIN32 1777#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1778 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1779 if (expect_false (getpid () != curpid))
1352 { 1780 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1792 call_pending (EV_A);
1365 } 1793 }
1366#endif 1794#endif
1367 1795
1368 /* queue check watchers (and execute them) */ 1796 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1797 if (expect_false (preparecnt))
1370 { 1798 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1800 call_pending (EV_A);
1373 } 1801 }
1374 1802
1803 if (expect_false (!activecnt))
1804 break;
1805
1375 /* we might have forked, so reify kernel state if necessary */ 1806 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1807 if (expect_false (postfork))
1377 loop_fork (EV_A); 1808 loop_fork (EV_A);
1378 1809
1379 /* update fd-related kernel structures */ 1810 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 1811 fd_reify (EV_A);
1381 1812
1382 /* calculate blocking time */ 1813 /* calculate blocking time */
1383 { 1814 {
1384 ev_tstamp block; 1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
1385 1817
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 1819 {
1390 /* update time to cancel out callback processing overhead */ 1820 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1821 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1822
1401 block = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1402 1824
1403 if (timercnt) 1825 if (timercnt)
1404 { 1826 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1406 if (block > to) block = to; 1828 if (waittime > to) waittime = to;
1407 } 1829 }
1408 1830
1409#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 1832 if (periodiccnt)
1411 { 1833 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 1835 if (waittime > to) waittime = to;
1414 } 1836 }
1415#endif 1837#endif
1416 1838
1417 if (expect_false (block < 0.)) block = 0.; 1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
1418 } 1852 }
1419 1853
1854 ++loop_count;
1420 backend_poll (EV_A_ block); 1855 backend_poll (EV_A_ waittime);
1856
1857 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime);
1421 } 1859 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1860
1426 /* queue pending timers and reschedule them */ 1861 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1862 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1863#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1864 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1865#endif
1431 1866
1867#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1868 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1869 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1870#endif
1435 1871
1436 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1873 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1875
1440 call_pending (EV_A); 1876 call_pending (EV_A);
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 1877 }
1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1445 1883
1446 if (loop_done == EVUNLOOP_ONE) 1884 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1885 loop_done = EVUNLOOP_CANCEL;
1448} 1886}
1449 1887
1476 head = &(*head)->next; 1914 head = &(*head)->next;
1477 } 1915 }
1478} 1916}
1479 1917
1480void inline_speed 1918void inline_speed
1481ev_clear_pending (EV_P_ W w) 1919clear_pending (EV_P_ W w)
1482{ 1920{
1483 if (w->pending) 1921 if (w->pending)
1484 { 1922 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1923 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 1924 w->pending = 0;
1487 } 1925 }
1488} 1926}
1489 1927
1928int
1929ev_clear_pending (EV_P_ void *w)
1930{
1931 W w_ = (W)w;
1932 int pending = w_->pending;
1933
1934 if (expect_true (pending))
1935 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1937 w_->pending = 0;
1938 p->w = 0;
1939 return p->events;
1940 }
1941 else
1942 return 0;
1943}
1944
1945void inline_size
1946pri_adjust (EV_P_ W w)
1947{
1948 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri;
1952}
1953
1490void inline_speed 1954void inline_speed
1491ev_start (EV_P_ W w, int active) 1955ev_start (EV_P_ W w, int active)
1492{ 1956{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1957 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 1958 w->active = active;
1497 ev_ref (EV_A); 1959 ev_ref (EV_A);
1498} 1960}
1499 1961
1500void inline_size 1962void inline_size
1504 w->active = 0; 1966 w->active = 0;
1505} 1967}
1506 1968
1507/*****************************************************************************/ 1969/*****************************************************************************/
1508 1970
1509void 1971void noinline
1510ev_io_start (EV_P_ ev_io *w) 1972ev_io_start (EV_P_ ev_io *w)
1511{ 1973{
1512 int fd = w->fd; 1974 int fd = w->fd;
1513 1975
1514 if (expect_false (ev_is_active (w))) 1976 if (expect_false (ev_is_active (w)))
1516 1978
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 1979 assert (("ev_io_start called with negative fd", fd >= 0));
1518 1980
1519 ev_start (EV_A_ (W)w, 1); 1981 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1983 wlist_add (&anfds[fd].head, (WL)w);
1522 1984
1523 fd_change (EV_A_ fd); 1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET;
1524} 1987}
1525 1988
1526void 1989void noinline
1527ev_io_stop (EV_P_ ev_io *w) 1990ev_io_stop (EV_P_ ev_io *w)
1528{ 1991{
1529 ev_clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1531 return; 1994 return;
1532 1995
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 1997
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1537 2000
1538 fd_change (EV_A_ w->fd); 2001 fd_change (EV_A_ w->fd, 1);
1539} 2002}
1540 2003
1541void 2004void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1543{ 2006{
1544 if (expect_false (ev_is_active (w))) 2007 if (expect_false (ev_is_active (w)))
1545 return; 2008 return;
1546 2009
1547 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1548 2011
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 2013
1551 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1555 2019
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 2021}
1558 2022
1559void 2023void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1561{ 2025{
1562 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1564 return; 2028 return;
1565 2029
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1567
1568 { 2030 {
1569 int active = ((W)w)->active; 2031 int active = ev_active (w);
1570 2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
1571 if (expect_true (--active < --timercnt)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1572 { 2036 {
1573 timers [active] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1574 adjustheap ((WT *)timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
1575 } 2039 }
2040
2041 --timercnt;
1576 } 2042 }
1577 2043
1578 ((WT)w)->at -= mn_now; 2044 ev_at (w) -= mn_now;
1579 2045
1580 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1581} 2047}
1582 2048
1583void 2049void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 2050ev_timer_again (EV_P_ ev_timer *w)
1585{ 2051{
1586 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1587 { 2053 {
1588 if (w->repeat) 2054 if (w->repeat)
1589 { 2055 {
1590 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
1592 } 2059 }
1593 else 2060 else
1594 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1595 } 2062 }
1596 else if (w->repeat) 2063 else if (w->repeat)
1597 { 2064 {
1598 w->at = w->repeat; 2065 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
1600 } 2067 }
1601} 2068}
1602 2069
1603#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1604void 2071void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 2072ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 2073{
1607 if (expect_false (ev_is_active (w))) 2074 if (expect_false (ev_is_active (w)))
1608 return; 2075 return;
1609 2076
1610 if (w->reschedule_cb) 2077 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 2079 else if (w->interval)
1613 { 2080 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 2084 }
2085 else
2086 ev_at (w) = w->offset;
1618 2087
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1623 2092
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 2094}
1626 2095
1627void 2096void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 2098{
1630 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1632 return; 2101 return;
1633 2102
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1635
1636 { 2103 {
1637 int active = ((W)w)->active; 2104 int active = ev_active (w);
1638 2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
1639 if (expect_true (--active < --periodiccnt)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1640 { 2109 {
1641 periodics [active] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);
1643 } 2112 }
2113
2114 --periodiccnt;
1644 } 2115 }
1645 2116
1646 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1647} 2118}
1648 2119
1649void 2120void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 2121ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 2122{
1652 /* TODO: use adjustheap and recalculation */ 2123 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 2124 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 2125 ev_periodic_start (EV_A_ w);
1657 2128
1658#ifndef SA_RESTART 2129#ifndef SA_RESTART
1659# define SA_RESTART 0 2130# define SA_RESTART 0
1660#endif 2131#endif
1661 2132
1662void 2133void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2134ev_signal_start (EV_P_ ev_signal *w)
1664{ 2135{
1665#if EV_MULTIPLICITY 2136#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 2138#endif
1668 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1669 return; 2140 return;
1670 2141
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 2143
2144 evpipe_init (EV_A);
2145
2146 {
2147#ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif
2158 }
2159
1673 ev_start (EV_A_ (W)w, 1); 2160 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2162
1677 if (!((WL)w)->next) 2163 if (!((WL)w)->next)
1678 { 2164 {
1679#if _WIN32 2165#if _WIN32
1680 signal (w->signum, sighandler); 2166 signal (w->signum, ev_sighandler);
1681#else 2167#else
1682 struct sigaction sa; 2168 struct sigaction sa;
1683 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
1687#endif 2173#endif
1688 } 2174 }
1689} 2175}
1690 2176
1691void 2177void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2178ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2179{
1694 ev_clear_pending (EV_A_ (W)w); 2180 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2181 if (expect_false (!ev_is_active (w)))
1696 return; 2182 return;
1697 2183
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1700 2186
1701 if (!signals [w->signum - 1].head) 2187 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 2188 signal (w->signum, SIG_DFL);
1703} 2189}
1710#endif 2196#endif
1711 if (expect_false (ev_is_active (w))) 2197 if (expect_false (ev_is_active (w)))
1712 return; 2198 return;
1713 2199
1714 ev_start (EV_A_ (W)w, 1); 2200 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1716} 2202}
1717 2203
1718void 2204void
1719ev_child_stop (EV_P_ ev_child *w) 2205ev_child_stop (EV_P_ ev_child *w)
1720{ 2206{
1721 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1723 return; 2209 return;
1724 2210
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1727} 2213}
1728 2214
1729#if EV_STAT_ENABLE 2215#if EV_STAT_ENABLE
1730 2216
1749 if (w->wd < 0) 2235 if (w->wd < 0)
1750 { 2236 {
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1752 2238
1753 /* monitor some parent directory for speedup hints */ 2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 2243 {
1756 char path [4096]; 2244 char path [4096];
1757 strcpy (path, w->path); 2245 strcpy (path, w->path);
1758 2246
1962} 2450}
1963 2451
1964void 2452void
1965ev_stat_stop (EV_P_ ev_stat *w) 2453ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2454{
1967 ev_clear_pending (EV_A_ (W)w); 2455 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2456 if (expect_false (!ev_is_active (w)))
1969 return; 2457 return;
1970 2458
1971#if EV_USE_INOTIFY 2459#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2460 infy_del (EV_A_ w);
1975 2463
1976 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1977} 2465}
1978#endif 2466#endif
1979 2467
2468#if EV_IDLE_ENABLE
1980void 2469void
1981ev_idle_start (EV_P_ ev_idle *w) 2470ev_idle_start (EV_P_ ev_idle *w)
1982{ 2471{
1983 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1984 return; 2473 return;
1985 2474
2475 pri_adjust (EV_A_ (W)w);
2476
2477 {
2478 int active = ++idlecnt [ABSPRI (w)];
2479
2480 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2481 ev_start (EV_A_ (W)w, active);
2482
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2484 idles [ABSPRI (w)][active - 1] = w;
2485 }
1989} 2486}
1990 2487
1991void 2488void
1992ev_idle_stop (EV_P_ ev_idle *w) 2489ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2490{
1994 ev_clear_pending (EV_A_ (W)w); 2491 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2492 if (expect_false (!ev_is_active (w)))
1996 return; 2493 return;
1997 2494
1998 { 2495 {
1999 int active = ((W)w)->active; 2496 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 2497
2001 ((W)idles [active - 1])->active = active; 2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500
2501 ev_stop (EV_A_ (W)w);
2502 --idleall;
2002 } 2503 }
2003
2004 ev_stop (EV_A_ (W)w);
2005} 2504}
2505#endif
2006 2506
2007void 2507void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2508ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2509{
2010 if (expect_false (ev_is_active (w))) 2510 if (expect_false (ev_is_active (w)))
2016} 2516}
2017 2517
2018void 2518void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2519ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2520{
2021 ev_clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
2023 return; 2523 return;
2024 2524
2025 { 2525 {
2026 int active = ((W)w)->active; 2526 int active = ev_active (w);
2527
2027 prepares [active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 2529 ev_active (prepares [active - 1]) = active;
2029 } 2530 }
2030 2531
2031 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2032} 2533}
2033 2534
2043} 2544}
2044 2545
2045void 2546void
2046ev_check_stop (EV_P_ ev_check *w) 2547ev_check_stop (EV_P_ ev_check *w)
2047{ 2548{
2048 ev_clear_pending (EV_A_ (W)w); 2549 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2550 if (expect_false (!ev_is_active (w)))
2050 return; 2551 return;
2051 2552
2052 { 2553 {
2053 int active = ((W)w)->active; 2554 int active = ev_active (w);
2555
2054 checks [active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 2557 ev_active (checks [active - 1]) = active;
2056 } 2558 }
2057 2559
2058 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2059} 2561}
2060 2562
2061#if EV_EMBED_ENABLE 2563#if EV_EMBED_ENABLE
2062void noinline 2564void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2565ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2566{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2568}
2067 2569
2068static void 2570static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2571embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2572{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2574
2073 if (ev_cb (w)) 2575 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2577 else
2076 ev_embed_sweep (loop, w); 2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2579}
2580
2581static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2078 2604
2079void 2605void
2080ev_embed_start (EV_P_ ev_embed *w) 2606ev_embed_start (EV_P_ ev_embed *w)
2081{ 2607{
2082 if (expect_false (ev_is_active (w))) 2608 if (expect_false (ev_is_active (w)))
2083 return; 2609 return;
2084 2610
2085 { 2611 {
2086 struct ev_loop *loop = w->loop; 2612 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 2615 }
2090 2616
2091 ev_set_priority (&w->io, ev_priority (w)); 2617 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 2618 ev_io_start (EV_A_ &w->io);
2093 2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
2094 ev_start (EV_A_ (W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
2095} 2627}
2096 2628
2097void 2629void
2098ev_embed_stop (EV_P_ ev_embed *w) 2630ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2631{
2100 ev_clear_pending (EV_A_ (W)w); 2632 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2633 if (expect_false (!ev_is_active (w)))
2102 return; 2634 return;
2103 2635
2104 ev_io_stop (EV_A_ &w->io); 2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2105 2638
2106 ev_stop (EV_A_ (W)w); 2639 ev_stop (EV_A_ (W)w);
2107} 2640}
2108#endif 2641#endif
2109 2642
2120} 2653}
2121 2654
2122void 2655void
2123ev_fork_stop (EV_P_ ev_fork *w) 2656ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2657{
2125 ev_clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2127 return; 2660 return;
2128 2661
2129 { 2662 {
2130 int active = ((W)w)->active; 2663 int active = ev_active (w);
2664
2131 forks [active - 1] = forks [--forkcnt]; 2665 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 2666 ev_active (forks [active - 1]) = active;
2133 } 2667 }
2134 2668
2135 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2136} 2709}
2137#endif 2710#endif
2138 2711
2139/*****************************************************************************/ 2712/*****************************************************************************/
2140 2713
2198 ev_timer_set (&once->to, timeout, 0.); 2771 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 2772 ev_timer_start (EV_A_ &once->to);
2200 } 2773 }
2201} 2774}
2202 2775
2776#if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
2778#endif
2779
2203#ifdef __cplusplus 2780#ifdef __cplusplus
2204} 2781}
2205#endif 2782#endif
2206 2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines