ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
256 338
257#ifdef _WIN32 339#ifdef _WIN32
258# include "ev_win32.c" 340# include "ev_win32.c"
259#endif 341#endif
260 342
281 perror (msg); 363 perror (msg);
282 abort (); 364 abort ();
283 } 365 }
284} 366}
285 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
286static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 384
288void 385void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 387{
291 alloc = cb; 388 alloc = cb;
292} 389}
293 390
294inline_speed void * 391inline_speed void *
295ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
296{ 393{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
298 395
299 if (!ptr && size) 396 if (!ptr && size)
300 { 397 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 399 abort ();
325 W w; 422 W w;
326 int events; 423 int events;
327} ANPENDING; 424} ANPENDING;
328 425
329#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
330typedef struct 428typedef struct
331{ 429{
332 WL head; 430 WL head;
333} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
334#endif 451#endif
335 452
336#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
337 454
338 struct ev_loop 455 struct ev_loop
396{ 513{
397 return ev_rt_now; 514 return ev_rt_now;
398} 515}
399#endif 516#endif
400 517
518void
519ev_sleep (ev_tstamp delay)
520{
521 if (delay > 0.)
522 {
523#if EV_USE_NANOSLEEP
524 struct timespec ts;
525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532#else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539#endif
540 }
541}
542
543/*****************************************************************************/
544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
401int inline_size 547int inline_size
402array_nextsize (int elem, int cur, int cnt) 548array_nextsize (int elem, int cur, int cnt)
403{ 549{
404 int ncur = cur + 1; 550 int ncur = cur + 1;
405 551
406 do 552 do
407 ncur <<= 1; 553 ncur <<= 1;
408 while (cnt > ncur); 554 while (cnt > ncur);
409 555
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 558 {
413 ncur *= elem; 559 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 561 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 562 ncur /= elem;
417 } 563 }
418 564
419 return ncur; 565 return ncur;
420} 566}
421 567
422inline_speed void * 568static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 569array_realloc (int elem, void *base, int *cur, int cnt)
424{ 570{
425 *cur = array_nextsize (elem, *cur, cnt); 571 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 572 return ev_realloc (base, elem * *cur);
427} 573}
452 598
453void noinline 599void noinline
454ev_feed_event (EV_P_ void *w, int revents) 600ev_feed_event (EV_P_ void *w, int revents)
455{ 601{
456 W w_ = (W)w; 602 W w_ = (W)w;
603 int pri = ABSPRI (w_);
457 604
458 if (expect_false (w_->pending)) 605 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents;
607 else
459 { 608 {
609 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 612 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 613 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 614}
469 615
470void inline_size 616void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 617queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 618{
473 int i; 619 int i;
474 620
475 for (i = 0; i < eventcnt; ++i) 621 for (i = 0; i < eventcnt; ++i)
507} 653}
508 654
509void 655void
510ev_feed_fd_event (EV_P_ int fd, int revents) 656ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 657{
658 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 659 fd_event (EV_A_ fd, revents);
513} 660}
514 661
515void inline_size 662void inline_size
516fd_reify (EV_P) 663fd_reify (EV_P)
517{ 664{
521 { 668 {
522 int fd = fdchanges [i]; 669 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 670 ANFD *anfd = anfds + fd;
524 ev_io *w; 671 ev_io *w;
525 672
526 int events = 0; 673 unsigned char events = 0;
527 674
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 676 events |= (unsigned char)w->events;
530 677
531#if EV_SELECT_IS_WINSOCKET 678#if EV_SELECT_IS_WINSOCKET
532 if (events) 679 if (events)
533 { 680 {
534 unsigned long argp; 681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
535 anfd->handle = _get_osfhandle (fd); 685 anfd->handle = _get_osfhandle (fd);
686 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 688 }
538#endif 689#endif
539 690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
540 anfd->reify = 0; 695 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
544 } 701 }
545 702
546 fdchangecnt = 0; 703 fdchangecnt = 0;
547} 704}
548 705
549void inline_size 706void inline_size
550fd_change (EV_P_ int fd) 707fd_change (EV_P_ int fd, int flags)
551{ 708{
552 if (expect_false (anfds [fd].reify)) 709 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 710 anfds [fd].reify |= flags;
556 711
712 if (expect_true (!reify))
713 {
557 ++fdchangecnt; 714 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 716 fdchanges [fdchangecnt - 1] = fd;
717 }
560} 718}
561 719
562void inline_speed 720void inline_speed
563fd_kill (EV_P_ int fd) 721fd_kill (EV_P_ int fd)
564{ 722{
615 773
616 for (fd = 0; fd < anfdmax; ++fd) 774 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 775 if (anfds [fd].events)
618 { 776 {
619 anfds [fd].events = 0; 777 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 779 }
622} 780}
623 781
624/*****************************************************************************/ 782/*****************************************************************************/
625 783
784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
626void inline_speed 803void inline_speed
627upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
628{ 805{
629 WT w = heap [k]; 806 ANHE he = heap [k];
630 807
631 while (k && heap [k >> 1]->at > w->at) 808 for (;;)
632 { 809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
633 heap [k] = heap [k >> 1]; 815 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
635 k >>= 1; 817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
636 } 889 }
637 890
638 heap [k] = w; 891 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
640
641} 893}
642 894
895/* away from the root */
643void inline_speed 896void inline_speed
644downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
645{ 898{
646 WT w = heap [k]; 899 ANHE he = heap [k];
647 900
648 while (k < (N >> 1)) 901 for (;;)
649 { 902 {
650 int j = k << 1; 903 int c = k << 1;
651 904
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 if (c > N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 906 break;
657 907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
658 heap [k] = heap [j]; 914 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
916
660 k = j; 917 k = c;
661 } 918 }
662 919
663 heap [k] = w; 920 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
665} 922}
923#endif
666 924
667void inline_size 925void inline_size
668adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
669{ 927{
670 upheap (heap, k); 928 upheap (heap, k);
671 downheap (heap, N, k); 929 downheap (heap, N, k);
672} 930}
673 931
674/*****************************************************************************/ 932/*****************************************************************************/
675 933
676typedef struct 934typedef struct
677{ 935{
678 WL head; 936 WL head;
679 sig_atomic_t volatile gotsig; 937 EV_ATOMIC_T gotsig;
680} ANSIG; 938} ANSIG;
681 939
682static ANSIG *signals; 940static ANSIG *signals;
683static int signalmax; 941static int signalmax;
684 942
685static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 944
689void inline_size 945void inline_size
690signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
691{ 947{
692 while (count--) 948 while (count--)
696 952
697 ++base; 953 ++base;
698 } 954 }
699} 955}
700 956
701static void 957/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 958
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 959void inline_speed
753fd_intern (int fd) 960fd_intern (int fd)
754{ 961{
755#ifdef _WIN32 962#ifdef _WIN32
756 int arg = 1; 963 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 967 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 968#endif
762} 969}
763 970
764static void noinline 971static void noinline
765siginit (EV_P) 972evpipe_init (EV_P)
766{ 973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
767 fd_intern (sigpipe [0]); 989 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
769 993
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 994 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
773} 1062}
774 1063
775/*****************************************************************************/ 1064/*****************************************************************************/
776 1065
1066static void
1067ev_sighandler (int signum)
1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return;
1094
1095 signals [signum].gotsig = 0;
1096
1097 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099}
1100
1101/*****************************************************************************/
1102
777static ev_child *childs [EV_PID_HASHSIZE]; 1103static WL childs [EV_PID_HASHSIZE];
778 1104
779#ifndef _WIN32 1105#ifndef _WIN32
780 1106
781static ev_signal childev; 1107static ev_signal childev;
782 1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
783void inline_speed 1113void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1114child_reap (EV_P_ int chain, int pid, int status)
785{ 1115{
786 ev_child *w; 1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1118
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
789 if (w->pid == pid || !w->pid) 1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
790 { 1123 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1125 w->rpid = pid;
793 w->rstatus = status; 1126 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1128 }
1129 }
796} 1130}
797 1131
798#ifndef WCONTINUED 1132#ifndef WCONTINUED
799# define WCONTINUED 0 1133# define WCONTINUED 0
800#endif 1134#endif
809 if (!WCONTINUED 1143 if (!WCONTINUED
810 || errno != EINVAL 1144 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1146 return;
813 1147
814 /* make sure we are called again until all childs have been reaped */ 1148 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1149 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1151
818 child_reap (EV_A_ sw, pid, pid, status); 1152 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1153 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1155}
822 1156
823#endif 1157#endif
824 1158
825/*****************************************************************************/ 1159/*****************************************************************************/
897} 1231}
898 1232
899unsigned int 1233unsigned int
900ev_embeddable_backends (void) 1234ev_embeddable_backends (void)
901{ 1235{
902 return EVBACKEND_EPOLL 1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1237
904 | EVBACKEND_PORT; 1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
905} 1243}
906 1244
907unsigned int 1245unsigned int
908ev_backend (EV_P) 1246ev_backend (EV_P)
909{ 1247{
912 1250
913unsigned int 1251unsigned int
914ev_loop_count (EV_P) 1252ev_loop_count (EV_P)
915{ 1253{
916 return loop_count; 1254 return loop_count;
1255}
1256
1257void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{
1260 io_blocktime = interval;
1261}
1262
1263void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 timeout_blocktime = interval;
917} 1267}
918 1268
919static void noinline 1269static void noinline
920loop_init (EV_P_ unsigned int flags) 1270loop_init (EV_P_ unsigned int flags)
921{ 1271{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1278 have_monotonic = 1;
929 } 1279 }
930#endif 1280#endif
931 1281
932 ev_rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1283 mn_now = get_clock ();
934 now_floor = mn_now; 1284 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
936 1295
937 /* pid check not overridable via env */ 1296 /* pid check not overridable via env */
938#ifndef _WIN32 1297#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1298 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1299 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1302 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1303 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1304 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1306
948 if (!(flags & 0x0000ffffUL)) 1307 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1308 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1309
957#if EV_USE_PORT 1310#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1312#endif
960#if EV_USE_KQUEUE 1313#if EV_USE_KQUEUE
968#endif 1321#endif
969#if EV_USE_SELECT 1322#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1324#endif
972 1325
973 ev_init (&sigev, sigcb); 1326 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1327 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1328 }
976} 1329}
977 1330
978static void noinline 1331static void noinline
979loop_destroy (EV_P) 1332loop_destroy (EV_P)
980{ 1333{
981 int i; 1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
982 1352
983#if EV_USE_INOTIFY 1353#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1354 if (fs_fd >= 0)
985 close (fs_fd); 1355 close (fs_fd);
986#endif 1356#endif
1003#if EV_USE_SELECT 1373#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1375#endif
1006 1376
1007 for (i = NUMPRI; i--; ) 1377 for (i = NUMPRI; i--; )
1378 {
1008 array_free (pending, [i]); 1379 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE
1381 array_free (idle, [i]);
1382#endif
1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
1009 1386
1010 /* have to use the microsoft-never-gets-it-right macro */ 1387 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1388 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1389 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1390#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1391 array_free (periodic, EMPTY);
1015#endif 1392#endif
1393#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1394 array_free (fork, EMPTY);
1395#endif
1017 array_free (prepare, EMPTY0); 1396 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
1019 1401
1020 backend = 0; 1402 backend = 0;
1021} 1403}
1022 1404
1405#if EV_USE_INOTIFY
1023void inline_size infy_fork (EV_P); 1406void inline_size infy_fork (EV_P);
1407#endif
1024 1408
1025void inline_size 1409void inline_size
1026loop_fork (EV_P) 1410loop_fork (EV_P)
1027{ 1411{
1028#if EV_USE_PORT 1412#if EV_USE_PORT
1036#endif 1420#endif
1037#if EV_USE_INOTIFY 1421#if EV_USE_INOTIFY
1038 infy_fork (EV_A); 1422 infy_fork (EV_A);
1039#endif 1423#endif
1040 1424
1041 if (ev_is_active (&sigev)) 1425 if (ev_is_active (&pipeev))
1042 { 1426 {
1043 /* default loop */ 1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1044 1433
1045 ev_ref (EV_A); 1434 ev_ref (EV_A);
1046 ev_io_stop (EV_A_ &sigev); 1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1047 close (sigpipe [0]); 1444 close (evpipe [0]);
1048 close (sigpipe [1]); 1445 close (evpipe [1]);
1446 }
1049 1447
1050 while (pipe (sigpipe))
1051 syserr ("(libev) error creating pipe");
1052
1053 siginit (EV_A); 1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1054 } 1451 }
1055 1452
1056 postfork = 0; 1453 postfork = 0;
1057} 1454}
1058 1455
1080} 1477}
1081 1478
1082void 1479void
1083ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
1084{ 1481{
1085 postfork = 1; 1482 postfork = 1; /* must be in line with ev_default_fork */
1086} 1483}
1087
1088#endif 1484#endif
1089 1485
1090#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
1091struct ev_loop * 1487struct ev_loop *
1092ev_default_loop_init (unsigned int flags) 1488ev_default_loop_init (unsigned int flags)
1093#else 1489#else
1094int 1490int
1095ev_default_loop (unsigned int flags) 1491ev_default_loop (unsigned int flags)
1096#endif 1492#endif
1097{ 1493{
1098 if (sigpipe [0] == sigpipe [1])
1099 if (pipe (sigpipe))
1100 return 0;
1101
1102 if (!ev_default_loop_ptr) 1494 if (!ev_default_loop_ptr)
1103 { 1495 {
1104#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1105 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1106#else 1498#else
1109 1501
1110 loop_init (EV_A_ flags); 1502 loop_init (EV_A_ flags);
1111 1503
1112 if (ev_backend (EV_A)) 1504 if (ev_backend (EV_A))
1113 { 1505 {
1114 siginit (EV_A);
1115
1116#ifndef _WIN32 1506#ifndef _WIN32
1117 ev_signal_init (&childev, childcb, SIGCHLD); 1507 ev_signal_init (&childev, childcb, SIGCHLD);
1118 ev_set_priority (&childev, EV_MAXPRI); 1508 ev_set_priority (&childev, EV_MAXPRI);
1119 ev_signal_start (EV_A_ &childev); 1509 ev_signal_start (EV_A_ &childev);
1120 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1137#ifndef _WIN32 1527#ifndef _WIN32
1138 ev_ref (EV_A); /* child watcher */ 1528 ev_ref (EV_A); /* child watcher */
1139 ev_signal_stop (EV_A_ &childev); 1529 ev_signal_stop (EV_A_ &childev);
1140#endif 1530#endif
1141 1531
1142 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &sigev);
1144
1145 close (sigpipe [0]); sigpipe [0] = 0;
1146 close (sigpipe [1]); sigpipe [1] = 0;
1147
1148 loop_destroy (EV_A); 1532 loop_destroy (EV_A);
1149} 1533}
1150 1534
1151void 1535void
1152ev_default_fork (void) 1536ev_default_fork (void)
1154#if EV_MULTIPLICITY 1538#if EV_MULTIPLICITY
1155 struct ev_loop *loop = ev_default_loop_ptr; 1539 struct ev_loop *loop = ev_default_loop_ptr;
1156#endif 1540#endif
1157 1541
1158 if (backend) 1542 if (backend)
1159 postfork = 1; 1543 postfork = 1; /* must be in line with ev_loop_fork */
1160} 1544}
1161 1545
1162/*****************************************************************************/ 1546/*****************************************************************************/
1163 1547
1164int inline_size 1548void
1165any_pending (EV_P) 1549ev_invoke (EV_P_ void *w, int revents)
1166{ 1550{
1167 int pri; 1551 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1552}
1175 1553
1176void inline_speed 1554void inline_speed
1177call_pending (EV_P) 1555call_pending (EV_P)
1178{ 1556{
1191 EV_CB_INVOKE (p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
1192 } 1570 }
1193 } 1571 }
1194} 1572}
1195 1573
1574#if EV_IDLE_ENABLE
1575void inline_size
1576idle_reify (EV_P)
1577{
1578 if (expect_false (idleall))
1579 {
1580 int pri;
1581
1582 for (pri = NUMPRI; pri--; )
1583 {
1584 if (pendingcnt [pri])
1585 break;
1586
1587 if (idlecnt [pri])
1588 {
1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1590 break;
1591 }
1592 }
1593 }
1594}
1595#endif
1596
1196void inline_size 1597void inline_size
1197timers_reify (EV_P) 1598timers_reify (EV_P)
1198{ 1599{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1200 { 1601 {
1201 ev_timer *w = timers [0]; 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1202 1603
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1605
1205 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
1206 if (w->repeat) 1607 if (w->repeat)
1207 { 1608 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1610
1210 ((WT)w)->at += w->repeat; 1611 ev_at (w) += w->repeat;
1211 if (((WT)w)->at < mn_now) 1612 if (ev_at (w) < mn_now)
1212 ((WT)w)->at = mn_now; 1613 ev_at (w) = mn_now;
1213 1614
1615 ANHE_at_set (timers [HEAP0]);
1214 downheap ((WT *)timers, timercnt, 0); 1616 downheap (timers, timercnt, HEAP0);
1215 } 1617 }
1216 else 1618 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1620
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1222 1624
1223#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1224void inline_size 1626void inline_size
1225periodics_reify (EV_P) 1627periodics_reify (EV_P)
1226{ 1628{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1228 { 1630 {
1229 ev_periodic *w = periodics [0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1230 1632
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1634
1233 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1636 if (w->reschedule_cb)
1235 { 1637 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1238 downheap ((WT *)periodics, periodiccnt, 0); 1641 downheap (periodics, periodiccnt, HEAP0);
1239 } 1642 }
1240 else if (w->interval) 1643 else if (w->interval)
1241 { 1644 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1244 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1245 } 1650 }
1246 else 1651 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1653
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1254periodics_reschedule (EV_P) 1659periodics_reschedule (EV_P)
1255{ 1660{
1256 int i; 1661 int i;
1257 1662
1258 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1260 { 1665 {
1261 ev_periodic *w = periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1262 1667
1263 if (w->reschedule_cb) 1668 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1670 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268 1672
1269 /* now rebuild the heap */ 1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1270 for (i = periodiccnt >> 1; i--; ) 1677 for (i = periodiccnt >> 1; --i; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1678 downheap (periodics, periodiccnt, i + HEAP0);
1272} 1679}
1273#endif 1680#endif
1274 1681
1275int inline_size 1682void inline_speed
1276time_update_monotonic (EV_P) 1683time_update (EV_P_ ev_tstamp max_block)
1277{ 1684{
1685 int i;
1686
1687#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1278 mn_now = get_clock (); 1692 mn_now = get_clock ();
1279 1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1697 {
1282 ev_rt_now = rtmn_diff + mn_now; 1698 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1699 return;
1284 } 1700 }
1285 else 1701
1286 {
1287 now_floor = mn_now; 1702 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1703 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1704
1293void inline_size 1705 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1706 * on the choice of "4": one iteration isn't enough,
1295{ 1707 * in case we get preempted during the calls to
1296 int i; 1708 * ev_time and get_clock. a second call is almost guaranteed
1297 1709 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1710 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1711 * in the unlikely event of having been preempted here.
1300 { 1712 */
1301 if (time_update_monotonic (EV_A)) 1713 for (i = 4; --i; )
1302 { 1714 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1715 rtmn_diff = ev_rt_now - mn_now;
1316 1716
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1318 return; /* all is well */ 1718 return; /* all is well */
1319 1719
1320 ev_rt_now = ev_time (); 1720 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1721 mn_now = get_clock ();
1322 now_floor = mn_now; 1722 now_floor = mn_now;
1323 } 1723 }
1324 1724
1325# if EV_PERIODIC_ENABLE 1725# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1726 periodics_reschedule (EV_A);
1327# endif 1727# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1730 }
1332 else 1731 else
1333#endif 1732#endif
1334 { 1733 {
1335 ev_rt_now = ev_time (); 1734 ev_rt_now = ev_time ();
1336 1735
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1737 {
1339#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1341#endif 1740#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1346 } 1748 }
1347 1749
1348 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1349 } 1751 }
1350} 1752}
1364static int loop_done; 1766static int loop_done;
1365 1767
1366void 1768void
1367ev_loop (EV_P_ int flags) 1769ev_loop (EV_P_ int flags)
1368{ 1770{
1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1771 loop_done = EVUNLOOP_CANCEL;
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1372 1772
1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374 1774
1375 do 1775 do
1376 { 1776 {
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1792 call_pending (EV_A);
1393 } 1793 }
1394#endif 1794#endif
1395 1795
1396 /* queue check watchers (and execute them) */ 1796 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1797 if (expect_false (preparecnt))
1398 { 1798 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1800 call_pending (EV_A);
1401 } 1801 }
1410 /* update fd-related kernel structures */ 1810 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1811 fd_reify (EV_A);
1412 1812
1413 /* calculate blocking time */ 1813 /* calculate blocking time */
1414 { 1814 {
1415 ev_tstamp block; 1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
1416 1817
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1819 {
1421 /* update time to cancel out callback processing overhead */ 1820 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1821 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1822
1432 block = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1433 1824
1434 if (timercnt) 1825 if (timercnt)
1435 { 1826 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1437 if (block > to) block = to; 1828 if (waittime > to) waittime = to;
1438 } 1829 }
1439 1830
1440#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1832 if (periodiccnt)
1442 { 1833 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1835 if (waittime > to) waittime = to;
1445 } 1836 }
1446#endif 1837#endif
1447 1838
1448 if (expect_false (block < 0.)) block = 0.; 1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
1449 } 1852 }
1450 1853
1451 ++loop_count; 1854 ++loop_count;
1452 backend_poll (EV_A_ block); 1855 backend_poll (EV_A_ waittime);
1856
1857 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime);
1453 } 1859 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 1860
1458 /* queue pending timers and reschedule them */ 1861 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 1862 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 1863#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 1864 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 1865#endif
1463 1866
1867#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 1868 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 1869 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1870#endif
1467 1871
1468 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 1873 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 1875
1472 call_pending (EV_A); 1876 call_pending (EV_A);
1473
1474 } 1877 }
1475 while (expect_true (activecnt && !loop_done)); 1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1476 1883
1477 if (loop_done == EVUNLOOP_ONE) 1884 if (loop_done == EVUNLOOP_ONE)
1478 loop_done = EVUNLOOP_CANCEL; 1885 loop_done = EVUNLOOP_CANCEL;
1479} 1886}
1480 1887
1507 head = &(*head)->next; 1914 head = &(*head)->next;
1508 } 1915 }
1509} 1916}
1510 1917
1511void inline_speed 1918void inline_speed
1512ev_clear_pending (EV_P_ W w) 1919clear_pending (EV_P_ W w)
1513{ 1920{
1514 if (w->pending) 1921 if (w->pending)
1515 { 1922 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1923 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 1924 w->pending = 0;
1518 } 1925 }
1519} 1926}
1520 1927
1928int
1929ev_clear_pending (EV_P_ void *w)
1930{
1931 W w_ = (W)w;
1932 int pending = w_->pending;
1933
1934 if (expect_true (pending))
1935 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1937 w_->pending = 0;
1938 p->w = 0;
1939 return p->events;
1940 }
1941 else
1942 return 0;
1943}
1944
1945void inline_size
1946pri_adjust (EV_P_ W w)
1947{
1948 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri;
1952}
1953
1521void inline_speed 1954void inline_speed
1522ev_start (EV_P_ W w, int active) 1955ev_start (EV_P_ W w, int active)
1523{ 1956{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1957 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 1958 w->active = active;
1528 ev_ref (EV_A); 1959 ev_ref (EV_A);
1529} 1960}
1530 1961
1531void inline_size 1962void inline_size
1535 w->active = 0; 1966 w->active = 0;
1536} 1967}
1537 1968
1538/*****************************************************************************/ 1969/*****************************************************************************/
1539 1970
1540void 1971void noinline
1541ev_io_start (EV_P_ ev_io *w) 1972ev_io_start (EV_P_ ev_io *w)
1542{ 1973{
1543 int fd = w->fd; 1974 int fd = w->fd;
1544 1975
1545 if (expect_false (ev_is_active (w))) 1976 if (expect_false (ev_is_active (w)))
1547 1978
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 1979 assert (("ev_io_start called with negative fd", fd >= 0));
1549 1980
1550 ev_start (EV_A_ (W)w, 1); 1981 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1983 wlist_add (&anfds[fd].head, (WL)w);
1553 1984
1554 fd_change (EV_A_ fd); 1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET;
1555} 1987}
1556 1988
1557void 1989void noinline
1558ev_io_stop (EV_P_ ev_io *w) 1990ev_io_stop (EV_P_ ev_io *w)
1559{ 1991{
1560 ev_clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1562 return; 1994 return;
1563 1995
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 1997
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1568 2000
1569 fd_change (EV_A_ w->fd); 2001 fd_change (EV_A_ w->fd, 1);
1570} 2002}
1571 2003
1572void 2004void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1574{ 2006{
1575 if (expect_false (ev_is_active (w))) 2007 if (expect_false (ev_is_active (w)))
1576 return; 2008 return;
1577 2009
1578 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1579 2011
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 2013
1582 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1584 timers [timercnt - 1] = w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1586 2019
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1588} 2021}
1589 2022
1590void 2023void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1592{ 2025{
1593 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1595 return; 2028 return;
1596 2029
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1598
1599 { 2030 {
1600 int active = ((W)w)->active; 2031 int active = ev_active (w);
1601 2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
1602 if (expect_true (--active < --timercnt)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1603 { 2036 {
1604 timers [active] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1605 adjustheap ((WT *)timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
1606 } 2039 }
2040
2041 --timercnt;
1607 } 2042 }
1608 2043
1609 ((WT)w)->at -= mn_now; 2044 ev_at (w) -= mn_now;
1610 2045
1611 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1612} 2047}
1613 2048
1614void 2049void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 2050ev_timer_again (EV_P_ ev_timer *w)
1616{ 2051{
1617 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1618 { 2053 {
1619 if (w->repeat) 2054 if (w->repeat)
1620 { 2055 {
1621 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
1623 } 2059 }
1624 else 2060 else
1625 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1626 } 2062 }
1627 else if (w->repeat) 2063 else if (w->repeat)
1628 { 2064 {
1629 w->at = w->repeat; 2065 ev_at (w) = w->repeat;
1630 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
1631 } 2067 }
1632} 2068}
1633 2069
1634#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1635void 2071void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 2072ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 2073{
1638 if (expect_false (ev_is_active (w))) 2074 if (expect_false (ev_is_active (w)))
1639 return; 2075 return;
1640 2076
1641 if (w->reschedule_cb) 2077 if (w->reschedule_cb)
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2079 else if (w->interval)
1644 { 2080 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 2084 }
2085 else
2086 ev_at (w) = w->offset;
1649 2087
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1654 2092
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1656} 2094}
1657 2095
1658void 2096void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 2098{
1661 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1663 return; 2101 return;
1664 2102
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1666
1667 { 2103 {
1668 int active = ((W)w)->active; 2104 int active = ev_active (w);
1669 2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
1670 if (expect_true (--active < --periodiccnt)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1671 { 2109 {
1672 periodics [active] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);
1674 } 2112 }
2113
2114 --periodiccnt;
1675 } 2115 }
1676 2116
1677 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1678} 2118}
1679 2119
1680void 2120void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 2121ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 2122{
1683 /* TODO: use adjustheap and recalculation */ 2123 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 2124 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 2125 ev_periodic_start (EV_A_ w);
1688 2128
1689#ifndef SA_RESTART 2129#ifndef SA_RESTART
1690# define SA_RESTART 0 2130# define SA_RESTART 0
1691#endif 2131#endif
1692 2132
1693void 2133void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 2134ev_signal_start (EV_P_ ev_signal *w)
1695{ 2135{
1696#if EV_MULTIPLICITY 2136#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 2138#endif
1699 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1700 return; 2140 return;
1701 2141
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 2143
2144 evpipe_init (EV_A);
2145
2146 {
2147#ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif
2158 }
2159
1704 ev_start (EV_A_ (W)w, 1); 2160 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 2162
1708 if (!((WL)w)->next) 2163 if (!((WL)w)->next)
1709 { 2164 {
1710#if _WIN32 2165#if _WIN32
1711 signal (w->signum, sighandler); 2166 signal (w->signum, ev_sighandler);
1712#else 2167#else
1713 struct sigaction sa; 2168 struct sigaction sa;
1714 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
1715 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
1716 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1717 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
1718#endif 2173#endif
1719 } 2174 }
1720} 2175}
1721 2176
1722void 2177void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 2178ev_signal_stop (EV_P_ ev_signal *w)
1724{ 2179{
1725 ev_clear_pending (EV_A_ (W)w); 2180 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 2181 if (expect_false (!ev_is_active (w)))
1727 return; 2182 return;
1728 2183
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1731 2186
1732 if (!signals [w->signum - 1].head) 2187 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 2188 signal (w->signum, SIG_DFL);
1734} 2189}
1741#endif 2196#endif
1742 if (expect_false (ev_is_active (w))) 2197 if (expect_false (ev_is_active (w)))
1743 return; 2198 return;
1744 2199
1745 ev_start (EV_A_ (W)w, 1); 2200 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1747} 2202}
1748 2203
1749void 2204void
1750ev_child_stop (EV_P_ ev_child *w) 2205ev_child_stop (EV_P_ ev_child *w)
1751{ 2206{
1752 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1754 return; 2209 return;
1755 2210
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1758} 2213}
1759 2214
1760#if EV_STAT_ENABLE 2215#if EV_STAT_ENABLE
1761 2216
1780 if (w->wd < 0) 2235 if (w->wd < 0)
1781 { 2236 {
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783 2238
1784 /* monitor some parent directory for speedup hints */ 2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 { 2243 {
1787 char path [4096]; 2244 char path [4096];
1788 strcpy (path, w->path); 2245 strcpy (path, w->path);
1789 2246
1993} 2450}
1994 2451
1995void 2452void
1996ev_stat_stop (EV_P_ ev_stat *w) 2453ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2454{
1998 ev_clear_pending (EV_A_ (W)w); 2455 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2456 if (expect_false (!ev_is_active (w)))
2000 return; 2457 return;
2001 2458
2002#if EV_USE_INOTIFY 2459#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2460 infy_del (EV_A_ w);
2006 2463
2007 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
2008} 2465}
2009#endif 2466#endif
2010 2467
2468#if EV_IDLE_ENABLE
2011void 2469void
2012ev_idle_start (EV_P_ ev_idle *w) 2470ev_idle_start (EV_P_ ev_idle *w)
2013{ 2471{
2014 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
2015 return; 2473 return;
2016 2474
2475 pri_adjust (EV_A_ (W)w);
2476
2477 {
2478 int active = ++idlecnt [ABSPRI (w)];
2479
2480 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2481 ev_start (EV_A_ (W)w, active);
2482
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2484 idles [ABSPRI (w)][active - 1] = w;
2485 }
2020} 2486}
2021 2487
2022void 2488void
2023ev_idle_stop (EV_P_ ev_idle *w) 2489ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2490{
2025 ev_clear_pending (EV_A_ (W)w); 2491 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2492 if (expect_false (!ev_is_active (w)))
2027 return; 2493 return;
2028 2494
2029 { 2495 {
2030 int active = ((W)w)->active; 2496 int active = ev_active (w);
2031 idles [active - 1] = idles [--idlecnt]; 2497
2032 ((W)idles [active - 1])->active = active; 2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500
2501 ev_stop (EV_A_ (W)w);
2502 --idleall;
2033 } 2503 }
2034
2035 ev_stop (EV_A_ (W)w);
2036} 2504}
2505#endif
2037 2506
2038void 2507void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2508ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2509{
2041 if (expect_false (ev_is_active (w))) 2510 if (expect_false (ev_is_active (w)))
2047} 2516}
2048 2517
2049void 2518void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2519ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2520{
2052 ev_clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
2054 return; 2523 return;
2055 2524
2056 { 2525 {
2057 int active = ((W)w)->active; 2526 int active = ev_active (w);
2527
2058 prepares [active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active; 2529 ev_active (prepares [active - 1]) = active;
2060 } 2530 }
2061 2531
2062 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2063} 2533}
2064 2534
2074} 2544}
2075 2545
2076void 2546void
2077ev_check_stop (EV_P_ ev_check *w) 2547ev_check_stop (EV_P_ ev_check *w)
2078{ 2548{
2079 ev_clear_pending (EV_A_ (W)w); 2549 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2550 if (expect_false (!ev_is_active (w)))
2081 return; 2551 return;
2082 2552
2083 { 2553 {
2084 int active = ((W)w)->active; 2554 int active = ev_active (w);
2555
2085 checks [active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active; 2557 ev_active (checks [active - 1]) = active;
2087 } 2558 }
2088 2559
2089 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2090} 2561}
2091 2562
2092#if EV_EMBED_ENABLE 2563#if EV_EMBED_ENABLE
2093void noinline 2564void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2565ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2566{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2568}
2098 2569
2099static void 2570static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2571embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2572{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2574
2104 if (ev_cb (w)) 2575 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2577 else
2107 ev_embed_sweep (loop, w); 2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2579}
2580
2581static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2109 2604
2110void 2605void
2111ev_embed_start (EV_P_ ev_embed *w) 2606ev_embed_start (EV_P_ ev_embed *w)
2112{ 2607{
2113 if (expect_false (ev_is_active (w))) 2608 if (expect_false (ev_is_active (w)))
2114 return; 2609 return;
2115 2610
2116 { 2611 {
2117 struct ev_loop *loop = w->loop; 2612 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2615 }
2121 2616
2122 ev_set_priority (&w->io, ev_priority (w)); 2617 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2618 ev_io_start (EV_A_ &w->io);
2124 2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
2125 ev_start (EV_A_ (W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
2126} 2627}
2127 2628
2128void 2629void
2129ev_embed_stop (EV_P_ ev_embed *w) 2630ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2631{
2131 ev_clear_pending (EV_A_ (W)w); 2632 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2633 if (expect_false (!ev_is_active (w)))
2133 return; 2634 return;
2134 2635
2135 ev_io_stop (EV_A_ &w->io); 2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2136 2638
2137 ev_stop (EV_A_ (W)w); 2639 ev_stop (EV_A_ (W)w);
2138} 2640}
2139#endif 2641#endif
2140 2642
2151} 2653}
2152 2654
2153void 2655void
2154ev_fork_stop (EV_P_ ev_fork *w) 2656ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2657{
2156 ev_clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2158 return; 2660 return;
2159 2661
2160 { 2662 {
2161 int active = ((W)w)->active; 2663 int active = ev_active (w);
2664
2162 forks [active - 1] = forks [--forkcnt]; 2665 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active; 2666 ev_active (forks [active - 1]) = active;
2164 } 2667 }
2165 2668
2166 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2167} 2709}
2168#endif 2710#endif
2169 2711
2170/*****************************************************************************/ 2712/*****************************************************************************/
2171 2713
2229 ev_timer_set (&once->to, timeout, 0.); 2771 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 2772 ev_timer_start (EV_A_ &once->to);
2231 } 2773 }
2232} 2774}
2233 2775
2776#if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
2778#endif
2779
2234#ifdef __cplusplus 2780#ifdef __cplusplus
2235} 2781}
2236#endif 2782#endif
2237 2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines